12 research outputs found

    Balancing groundwater conservation and rural livelihoods under water and climate uncertainties: An integrated hydro-economic modeling framework

    Get PDF
    In arid countries worldwide, social conflicts between irrigation-based human development and the conservation of aquatic ecosystems are widespread and attract many public debates. This research focuses on the analysis of water and agricultural policies aimed at conserving groundwater resources and maintaining rurallivelihoods in a basin in Spain's central arid region. Intensive groundwater mining for irrigation has caused overexploitation of the basin's large aquifer, the degradation of reputed wetlands and has given rise to notable social conflicts over the years. With the aim of tackling the multifaceted socio-ecological interactions of complex water systems, the methodology used in this study consists in a novel integration into a common platform of an economic optimization model and a hydrology model WEAP (Water Evaluation And Planning system). This robust tool is used to analyze the spatial and temporal effects of different water and agricultural policies under different climate scenarios. It permits the prediction of different climate and policy outcomes across farm types (water stress impacts and adaptation), at basin's level (aquifer recovery), and along the policies’ implementation horizon (short and long run). Results show that the region's current quota-based water policies may contribute to reduce water consumption in the farms but will not be able to recover the aquifer and will inflict income losses to the rural communities. This situation would worsen in case of drought. Economies of scale and technology are evidenced as larger farms with cropping diversification and those equipped with modern irrigation will better adapt to water stress conditions. However, the long-term sustainability of the aquifer and the maintenance of rurallivelihoods will be attained only if additional policy measures are put in place such as the control of illegal abstractions and the establishing of a water bank. Within the policy domain, the research contributes to the new sustainable development strategy of the EU by concluding that, in water-scarce regions, effective integration of water and agricultural policies is essential for achieving the water protection objectives of the EU policies. Therefore, the design and enforcement of well-balanced region-specific polices is a major task faced by policy makers for achieving successful water management that will ensure nature protection and human development at tolerable social costs. From a methodological perspective, this research initiative contributes to better address hydrological questions as well as economic and social issues in complex water and human systems. Its integrated vision provides a valuable illustration to inform water policy and management decisions within contexts of water-related conflicts worldwide

    Representing past and future hydro-climatic variability over multi-decadal periods in poorly-gauged regions: the case of Ecuador

    Get PDF
    Cette thèse évalue des méthodes pour représenter la variabilité spatio-temporelle hydro-climatique passée et future dans les régions peu jaugées. Elle propose une procédure complète et reproductible appliquée à l'Équateur et s'appuyant sur des données hydro-climatiques observées et simulées en vue de représenter la variabilité passée et de projeter l'impact potentiel des changements climatiques sur les écoulements à la fin du 21ème siècle. Un état de l'art a permis d'identifier plusieurs techniques qui ont été intégrées dans une chaîne méthodologique pour obtenir des séries spatio-temporelles continues de température, de précipitation et de débit sur les périodes multi-décennales passées et futures. Trois chapitres centraux sont consacrés à cet objectif selon les thèmes suivants : (1) régionalisation de la température et des précipitations à partir de mesures in situ en comparant des techniques déterministes et géostatistiques avec une prise en compte de corrections orographiques; (2) reconstruction du débit dans différents bassins versants à l'aide de modèles hydrologiques conceptuels utilisés selon une approche multimodèle et multiparamétrique; et (3) projections hydro-climatiques basées sur des simulations de modèles climatiques sous contrainte d'un scénario marqué d'émission de gaz à effet de serre. La régionalisation du climat a révélé l'importance de caler les paramètres de spatialisation et d'évaluer les champs interpolés par rapport à des stations ponctuelles indépendantes et via des analyses de sensibilité hydrologique. La reconstruction des débits a été possible grâce aux simulations combinées de trois modèles hydrologiques évalués dans des conditions climatiques contrastées, et forcés par les variables climatiques régionalisées. Des simulations de changements hydro-climatiques à moyen terme (2040-2070) et à long terme (2070-2100) ont ensuite été analysées avec des intervalles de confiance de 95 %, en utilisant des scénarios de neuf modèles climatiques et en transférant les paramètres hydrologiques calibrés pour la reconstruction des débits. L'analyse de la variabilité hydro-climatique montre une légère augmentation des températures sur la période 1985-2015, tandis que la variabilité des précipitations est liée aux principaux modes des phases El Niño et La Niña à l'échelle inter-annuelle et au déplacement de la zone de convergence inter-tropicale (ZCIT) à l'échelle saisonnière. Une augmentation générale de la température (+4,4 °C) et des précipitations (+17 %) est attendue d'ici à la fin du 21ème siècle, ce qui pourrait entraîner une augmentation de +5 % à +71 % du débit annuel moyen selon les bassins versants. Ces résultats sont discutés en termes d'importance pour la gestion de l'eau, avant de suggérer de futures recherches hydrologiques telles que la régionalisation du débit des cours d'eau, une meilleure quantification des incertitudes et une évaluation de la capacité à satisfaire les futurs besoins en eau.This thesis investigates methods to represent the past and future hydro-climatic variability in space and over time in poorly-gauged regions. It proposes a complete and reproducible procedure applied to the continental Ecuador to deal with observed and simulated hydro-climatic data in order to represent past variability and project the potential impact of climate change on water resources by the end of the 21st century. Up-to-date techniques were identified in a literature review and were integrated in a chain protocol to obtain continuous space-time series of air temperature, precipitation and streamflow over past and future multi-decadal periods. Three central chapters are dedicated to this objective according to the following topics: (1) regionalization of air temperature and precipitation from in situ measurements by comparing deterministic and geostatistical techniques including orographic corrections; (2) streamflow reconstruction in various catchments using conceptual hydrological models in a multi-model, multi-parameter approach; and (3) hydro-climate projections using climate model simulations under a high range emission scenario. Climate regionalization revealed the importance of calibrating parameters and of assessing interpolated fields against independent gauges and via hydrological sensitivity analyses. Streamflow reconstruction was possible with the regionalized climate inputs and the combined simulations of three hydrological models evaluated in contrasting climate conditions. Future medium term (2040-2070) and long term (2070-2100) hydro-climatic changes were analysed with confidence intervals of 95% using scenarios from nine climate models and transferring the model parameters calibrated for streamflow reconstruction. Analysis of hydro-climatic variability over the period 1985-2015 showed a slight increase in temperature, while precipitation variability was linked to the main modes of El Niño and La Niña phases at inter-annual scale and to the displacement of the inter-tropical convergence zone (ITCZ) at seasonal scale. Under climate change, a general increase in temperature (+4.4 °C) and precipitation (+17%) is expected by the end of the 21st century, which could lead to between +5% and 71% increase in mean annual streamflow depending on the catchments. These results are discussed in terms of significance for water management before suggesting future hydrological research such as regionalizing streamflow, better quantifying uncertainties and assessing the capacity to meet future water requirements

    Development of an Integrated Methodology to Estimate Groundwater Vulnerability to Pollution in Karst Areas

    Get PDF
    Groundwater is a very important resource since water volumes stored underground are much larger compared with those located at the surface, such as rivers and lakes. Aquifers supply a high percentage of freshwater for human consumption as well as supplying economic activities like industry, agriculture, and livestock production. Among them, karst aquifers stand out due to their special hydrologic characteristics and behaviour. In karst aquifers, infiltration occurs faster in comparison with unconsolidated aquifers, due to high permeability features at the surface like dolines, karren, epikarst, and swallow holes that allow precipitating water to recharge the aquifer at higher rates. Nevertheless, these characteristics also increase the aquifer’s susceptibility to being affected by pollution generated by anthropogenic practices. With a low natural pollutant degradation capacity, karst systems mostly experience problems related with water quality rather than water quantity. At present, this represents a significant challenge because a high percentage of the world population is settled on karst areas and is solely dependent upon karst aquifers to fulfil their necessary water supply. A good example to represent this case is the Yucatan Peninsula. The Peninsula is a transboundary limestone platform, covering parts of Mexico, Belize, and Guatemala, whose characteristics do not allow surface streams to generate. Therefore, the karstic aquifer provides water for nearly 4.5 million inhabitants within Mexican territory; this estimation excludes water volumes used for economic activities. The anthropogenic impacts over this karst aquifer have generated problems for water intended for human consumption, furthered by weak environmental regulations that allow the disposal of wastewater without adequate treatment. In the Mexican state of Yucatan, roughly 10% of the population has access to public sewer services where wastewater is treated. Additionally, the use of fertilizers and pesticides is not regulated in agricultural areas, while pig farming is an increasing activity, which fails to keep the necessary standards for the proper disposal of pig slurry. Similar situations can be found around the world, thus the development of plans and strategies to preserve karst groundwater quality that aim to find a balance between resource protection and regional development is increasingly necessary. One important tool emerged to support decisions regarding groundwater protection: the groundwater vulnerability concept. However, due to the hydrologic differences among detritus and karst aquifers, the vulnerability concept, which was first promoted for the former aquifer type, necessitated the development of a specialized vulnerability method to consider the natural characteristics of karst landscapes. Nevertheless, due to the high heterogeneity and anisotropy present in karst systems several methodologies to estimate karst groundwater vulnerability have arisen. Current methodologies are theoretical approximations to differentiate areas where an assumed pollutant particle, released at the surface, is more likely to reach the aquifer due to the natural characteristics of the area. These methods have shown themselves to be useful in defining protection areas and in highlighting regions in which further studies can be performed. However, the high subjectivity and exclusion of anthropogenic influences as part of the analysis is a drawback for these methods. In order to estimate karst groundwater vulnerability for current and future scenarios, an integrated approach is highly necessary. Since most of the methods focus solely on the travel time of a theoretical pollutant from the surface towards groundwater or to a spring, inclusion of pollutants residence time and concentration as parameters to estimate vulnerability is of the uttermost importance. To reach this goal, it is necessary to investigate current intrinsic-based methods in terms of their applicability and regional congruence in order to highlight advantages and probable misclassifications among them and to propose improvements. Pollutant residence time and concentration can be estimated from modelling, which can highlight areas where pollution can represent a problem due to anthropogenic practices, such as wastewater disposal and water extraction fields influencing groundwater flow. Other problems to be contemplated are the data availability and the variable processes by which areas are classified as vulnerable or not. Evaluation of multiple criteria to define degrees of vulnerability is complicated, since several factors, such as subjectivity, data quality, scale, and regional conditions, will always be present. This work presents the results from the application of eight karst groundwater vulnerability methods to the Yucatan karst and outcomes from solute transport. Important considerations are explained in order to improve the workflow for intrinsic groundwater vulnerability assessment. Possible parameters, to be included as part of vulnerability analysis, are evaluated by modelling, demonstrating the importance of anthropogenic impacts for current vulnerability scenarios. Results obtained in this research are displayed as the basis for an Integrated Karst Aquifer Vulnerability (IKAV) method proposed as an alternative for vulnerability studies

    Eutrophisation et dynamique du phosphore et de l'azote en Seine : un nouveau contexte suite à l’amélioration du traitement des eaux usées

    Get PDF
    The Seine river system is an ecosystem deeply affected by human activities. The new water quality requirements have led to significant changes. We provided an overview of nitrogen transfers in the Seine basin. We conducted sampling campaigns in order to describe the dynamics of nitrogen and nitrification. Furthermore, we compared our results with the observations before the implementation of nitrogen treatment at the wastewater treatment plant Seine Aval (WWTP SAV). The results proved that the WWTP discharges less ammonium and more nitrifiers but with a slower development than before. These communities disappear downstream, without causing low oxygen concentrations in the lower Seine and its estuary, as they did before... A simplified modelling of nitrogen concentrations and nitrification before and after the implementation of nitrogen treatment helped to reproduce the past and the present trends.Moreover, the assessment of the fluxes and the analysis of the role of phosphorus were realized. The inputs to the river system have been reduced almost three times in the early year 2000. The experimental measurement of phosphorus sorption characteristics onto suspended solids has shown that particles could be affected by the discharges coming from the WWTP SAV after the introduction of an advanced treatment. We show also by modelling, that the algal growth is very sensitive to adsorption process. The changes in frequency and amplitude of algal blooms observed in the Seine can be explained by the reduction of point phosphorus loadings. The modelling of algal blooms throughout the entire basin remains difficult with the currently available mechanistic tools.La Seine est un écosystème profondément affecté par les activités humaines. Il a subi des changements améliorant le traitement des eaux usées parisiennes et les apports diffus de l'agriculture. Des campagnes de prélèvements en profils longitudinaux ont été menées à l'amont et à l'aval de la station d'épuration Seine-Aval (step SAV) pour décrire la dynamique de l'azote et des activités des micro-organismes nitrifiants et la comparer aux observations disponibles antérieures à l'implémentation d'un traitement de l'azote. Les résultats prouvent que la step SAV rejette moins d'ammonium et plus d'organismes nitrifiants mais avec un développement plus lent et moins important qui disparaissent en aval améliorant le déficit en oxygène en Seine. De plus, le bilan et le rôle du phosphore ont été démontrés avec des apports au milieu fluvial diminués d'un facteur 2.7 depuis le début des années 2000. La mesure expérimentale des paramètres de l'adsorption du phosphore sur la matière en suspension a permis d'affirmer que ceux-ci sont influencés par les rejets des stations d'épuration mettant en oeuvre un traitement du phosphore. Nous montrons, par modélisation, que la dynamique de développement des algues est sensible au processus d'adsorption du phosphore. Les changements apparus dans la fréquence et l'intensité des blooms algaux en Seine peuvent s'expliquer par la réduction de la charge ponctuelle en phosphore. Avec des concentrations en orthophosphates proches de la limitation dans les secteurs amont, une modélisation précise de l'apparition du phytoplancton à l'échelle du bassin versant reste cependant encore difficile avec les outils mécanistiques actuels que nous avons développés

    Fonctionnement hydro-biogéochimique des hydrosystèmes karstiques: Impact du changement climatique et du changement d'occupation des sols

    Get PDF
    Les hydrosystèmes karstiques sont des environnements très sensibles aux activités anthropiques (AA) et aux variations hydroclimatiques, telles que celles entraînées par le Changement Climatique (CC). Au sein de la Zone Critique (ZC), ces milieux sont les plus réactifs et également les plus vulnérables à ces forçages qui peuvent modifier le transfert interne rapide des éléments dissous, et notamment des contaminants. Ces systèmes karstiques sont donc d’excellents candidats pour étudier l’impact du CC et des AA sur les ressources en eau et sur les cycles biogéochimiques des éléments, notamment C et S, fortement perturbés par les changements d’occupation des terres, ainsi que par les retombées atmosphériques liées aux AA (dépôts acides). L’objectif de cette thèse est donc de comprendre le fonctionnement hydro- biogéochimique des systèmes karstiques en milieu tempéré et d’identifier l’impact du CC et des AA. Ces questionnements ont été abordés à différentes échelles spatiales et temporelles sur le bassin versant karstique du Baget (BC, Pyrénées Ariégeoises, bassin forestier, multilithologique et quasi pristine) et sur une vingtaine d’autres bassins versants karstiques à l'échelle régionale (Pyrénées et Massif Central). Ces bassins disposent d'une base de données robuste pour étudier à long ou moyen terme leur réponse hydrogéochimique à ces impacts. Sur BC, depuis les années 70, les suivis hydroclimatiques (précipitation, température, débit), hydrochimiques (éléments majeurs) et isotopiques (13C, 34S ), ont permis: (i) d’identifier et quantifier la contribution des sources atmosphérique, biologique, anthropique et lithologique aux flux d’éléments dissous exportés par la rivière ; (ii) de déterminer les principaux facteurs environnementaux contrôlant les concentrations et les flux d’éléments dissous exportés par la rivière, tels que la lithologie, le drainage, l’épikarst, la température et l’occupation des sols; (iii) d’établir les bilans de matières dissoutes et particulaires, l’intensité de l’érosion mécanique et chimique, et la consommation de CO2 par l’altération chimique des roches et ; (iv) de mettre en évidence de mécanismes internes au cours d’eau comme la précipitation de la calcite et le dégazage de CO2, grâce au développement innovant de diagrammes de mélange basés sur le 13CDIC. De plus, l’analyse haute fréquence a permis : (i) d’identifier l’importance des différents types d’écoulements (écoulements à réponse rapide, de subsurface et de base) sur la qualité des eaux ; (ii) d’établir une typologie des crues en fonction de leur nature, de leur intensité et du comportement des éléments; (iii) de quantifier l’importance des événements hydrologiques majeurs sur les flux totaux annuels de matières en suspension (90%) et d’éléments en solution (>50%) pendant moins d’un tiers du temps de l’année. L’évolution des concentrations en éléments majeurs dans le BC est globalement comparable aux tendances observées dans les Pyrénées (5 bassins étudiés) et le Massif Central (15 bassins). L’augmentation de Ca+Mg (+5 μeq.L-1.an-1) et de l’alcalinité (+9 μeq.L-1.an-1) dans les eaux de drainage du BC sur les 40 dernières années, est statistiquement liée à l’augmentation de la température (+0,03 °C.an-1), à la diminution du débit (-4 L.s-1.an-1) et à la fermeture du milieu (reprise de la forêt de +0,05 Km2.an-1). Cette quantification a été rendue possible grâce à la détermination d’un indicateur original d’évolution du paysage par analyse d’images depuis les années 40. De plus, la baisse des sulfates (-2,2 μeq.L-1.an-1) du cours d’eau est le reflet de la diminution du dépôt atmosphérique acide observée dans les zones rurales françaises. Cette baisse continue suggère que le déstockage du soufre des sols, issu des apports atmosphériques acides, se produit encore aujourd'hui vers le cours d’eau

    Méthodologie pour la conception et la gestion des aménagements hydrauliques à buts multiples par une analyse systémique

    Get PDF
    Repeated failures as well as difficulties related to the implementation of new hydroelectric powerplants in industrialized countries illustrate the paradigm evolution which manages relationship between human society and nature. Problems resulting from these plants, often ignored during planning phases, in addition to the current trend to restore a natural state, require ecological analyses for new constructions as well as for scheme restoration or river corrections. Taking into account energy and ecology, together with security, financial and socio-economical aspects, transforms the design of hydraulic schemes into complex problems. Designing, dimensioning and managing in an integrated way such multipurpose hydraulic schemes thus require new approaches. The first objective of the present work is the comprehension of the complex system formed by a multipurpose hydraulic scheme and the determination of its most important characteristics. The second objective aims at developing a methodology to quantify the installation impacts on the key factors of the system. The third objective is an optimization of the system itself as well as the determination of the distribution of the cost between the various purposes. The developed methodology first includes a qualitative analysis of the system which then allows a quantitative modelling. Optimization is carried out on the basis of this second modelling. The cost distribution is finally obtained by comparison of partial optimizations of the system. The qualitative analysis is carried out starting from the method developed by Gomez and Probst (1995) which is based on a cognitive representation in order to model the complex system behavior. This representation includes feedback loops between the various factors. The mathematical analysis of the network classifies these factors and highlights the most important ones (key factors). In the particular case of the multipurpose run-of-river hydroelectric scheme, this method distinguishes the decisional level from the functional level. It underlines the variable, namely the downstream flow, which constitutes the bond between the two levels. The purposes of this project are to reduce hydropeaking, to produce energy, to offer a retention volume for flood mitigation and to allow a social use for leisure activities. Quantitative modelling is carried out by simulation models, considering an optimized operation of the reservoir which determines the downstream flow. This optimization is performed by a mathematical resolution using the software AMPL. It includes the constraints to reduce the downstream flow variations with the objective of maximizing energy production. It also results in minimal reservoir water level variations. The simulation models then calculate the scheme behaviors (hydraulic, energy, thermal, ecological, social and financial). The flood management is treated separately, with the objective of reducing the flood peak by preventive draining of the reservoir. A financial comparison of the probable impact of retention on peak floods is carried out by evaluating the potential of lowering downstream dams. An optimization of the turbine dimensioning, specifically applicable in case of highly variable water levels (upstream and downstream) and flow discharge, is also developed. The general optimization of the system, performed with the optimization tool QMOO (developed at the Industrial Energy Systems Laboratory – EPFL), is related to variables which determine the size of the scheme. This optimization is carried out in two stages. The first stage determines, for each goal of the system (partial optimization), the optimum production conditions of the set goal. This stage defines a transfer function between the optimal production and the minimal investment. The second stage determines, by a complete optimization using the transfer functions, the set of optimal solutions. These optimal solutions are then filtered by two successive filters : the synergistic filter eliminates solutions which do not reduce the investment, whereas the filter of the actors eliminates solutions which produce quantities below the limit or which require investment above the fixed limit. The complete methodology, developed in 12 steps from the qualitative analysis to the final set of solutions, is applied to a study case on the Swiss Upper Rhone River. The solutions found are able to satisfy the requirements of the various actors while generating a saving on investment higher than 10 %. This reduction, called synergistic profit, is compared to the sum of the optimal investments of a single purpose scheme carried out separately. The solutions found require an investment in the range of 150 to 180 MioCHF. They allow producing 42GWh/yr of electricity, reducing the current hydropeaking by approximately 30% and offering a social impact calculated at 55'000 visits per year. The available volume for flood management oscillates between 5 and 8 Mio m3. This research work, carried out within a team of ecologists, architects, civil and mechanical engineers, producers of hydroelectricity and public authorities, showed the relevance of the selected approach which led to the feasibility of the suggested solutions. In addition, the modularity of the developed methods (qualitative analysis, hydropeaking management, probabilistic retention impact on flood peaks, optimisation of turbine dimensioning, partial and complete optimizations) allow a wide range of possibilities for partial use, for applications to other works or for future developments. The principal results of this research can be defined as follows : 1) an operation method is developed in order to absorb more than 50% of the current hydropeaking while losing less than 10% of the energy potential, 2) the financial retention impact on flood peak is justified, 3) turbine dimensions are optimized in case of strong variability on both flow and head, 4) conception and dimension of multipurpose schemes are performed in an integrated way and lead to solutions which allow cost saving for each objective
    corecore