82 research outputs found

    A Mini Review of Peer-to-Peer (P2P) for Vehicular Communication

    Get PDF
    In recent times, peer-to-peer (P2P) has evolved, where it leverages the capability to scale compared to server-based networks. Consequently, P2P has appeared to be the future distributed systems in emerging several applications. P2P is actually a disruptive technology for setting up applications that scale to numerous concurrent individuals. Thus, in a P2P distributed system, individuals become themselves as peers through contributing, sharing, and managing the resources in a network. In this paper, P2P for vehicular communication is explored. A comprehensive of the functioning concept of both P2P along with vehicular communication is examined. In addition, the advantages are furthermore conversed for a far better understanding on the implementation

    VideosisÀllön jakelu Internetin vÀlityksellÀ

    Get PDF
    Popularity of multimedia streaming services has created great demand for reliable and effective content delivery over unreliable networks, such as the Internet. Currently, a significant part of the Internet data traffic is generated by video streaming applications. The multimedia streaming services are often bandwidth-heavy and are prone to delays or any other varying network conditions. In order to address high demands of real-time multimedia streaming applications, specialized solutions called content delivery networks, have emerged. A content delivery network consists of many geographically distributed replica servers, often deployed close to the end-users. This study consists of two parts and a set of interviews. First part explores development of video technologies and their relation to network bandwidth requirements. Second part proceeds to present the content delivery mechanisms related to video distribution over the Internet. Lastly, the interviews of selected experts was used to gain more relevant and realistic insights for two first parts. The results offer a wide overview of content delivery related findings ranging from streaming techniques to quality of experience. How the video related development progress would affect the future networks and what kind of content delivery models are mostly used in the modern Internet.Multimediapalveluiden suosio on noussut huomattavasti viime vuosina. Videoliikenteen osuus kaikesta tiedonsiirrosta InternetissÀ on kasvanut merkittÀvÀsti. TÀmÀ on luonut suuren tarpeen luotettaville ja tehokkaille videosisÀllön siirtÀmisen keinoille epÀluotettavien verkkojen yli. Videon suoratoistopalvelut ovat herkkiÀ verkossa tapahtuville hÀiriöille ja lisÀksi ne vaativat usein verkolta paljon tiedonsiirtokapasiteettia. Ratkaistakseen multimedian reaaliaikaisen tiedonsiirron vaatimukset on kehitetty sisÀllönsiirtoon erikoistuneita verkkoja (eng. content deliver network - CDN). NÀmÀ sisÀllönjakoon erikoistuneet verkot ovat fyysisesti hajautettuja kokonaisuuksia. YleensÀ ne sijoitetaan mahdollisimman lÀhelle kohdekÀyttÀjÀryhmÀÀ. TÀmÀ työ koostuu kahdesta osasta ja asiantuntijahaastatteluista. EnsimmÀinen osa keskittyy taustatietojen kerÀÀmiseen, videotekniikoiden kehitykseen ja sen siirtoon liittyviin haasteisiin. Toinen osa esittelee sisÀllönjaon toiminnot liittyen suoratoistopalveluiden toteutukseen. Haastatteluiden tarkoitus on tuoda esille asiantuntijoiden nÀkemyksiÀ kirjallisuuskatsauksen tueksi. Tulokset tarjoavat laajan katsauksen suoratoistopalveluiden sisÀllönjakotekniikoista, aina videon kehityksestÀ palvelun kÀyttökokemukseen saakka. Miten videon kuvanlaadun ja pakkaamisen kehitys voisi vaikuttaa tulevien verkkoteknologioiden kehitykseen Internet-pohjaisessa sisÀllönjakelussa

    Solving key design issues for massively multiplayer online games on peer-to-peer architectures

    Get PDF
    Massively Multiplayer Online Games (MMOGs) are increasing in both popularity and scale on the Internet and are predominantly implemented by Client/Server architectures. While such a classical approach to distributed system design offers many benefits, it suffers from significant technical and commercial drawbacks, primarily reliability and scalability costs. This realisation has sparked recent research interest in adapting MMOGs to Peer-to-Peer (P2P) architectures. This thesis identifies six key design issues to be addressed by P2P MMOGs, namely interest management, event dissemination, task sharing, state persistency, cheating mitigation, and incentive mechanisms. Design alternatives for each issue are systematically compared, and their interrelationships discussed. How well representative P2P MMOG architectures fulfil the design criteria is also evaluated. It is argued that although P2P MMOG architectures are developing rapidly, their support for task sharing and incentive mechanisms still need to be improved. The design of a novel framework for P2P MMOGs, Mediator, is presented. It employs a self-organising super-peer network over a P2P overlay infrastructure, and addresses the six design issues in an integrated system. The Mediator framework is extensible, as it supports flexible policy plug-ins and can accommodate the introduction of new superpeer roles. Key components of this framework have been implemented and evaluated with a simulated P2P MMOG. As the Mediator framework relies on super-peers for computational and administrative tasks, membership management is crucial, e.g. to allow the system to recover from super-peer failures. A new technology for this, namely Membership-Aware Multicast with Bushiness Optimisation (MAMBO), has been designed, implemented and evaluated. It reuses the communication structure of a tree-based application-level multicast to track group membership efficiently. Evaluation of a demonstration application shows i that MAMBO is able to quickly detect and handle peers joining and leaving. Compared to a conventional supervision architecture, MAMBO is more scalable, and yet incurs less communication overheads. Besides MMOGs, MAMBO is suitable for other P2P applications, such as collaborative computing and multimedia streaming. This thesis also presents the design, implementation and evaluation of a novel task mapping infrastructure for heterogeneous P2P environments, Deadline-Driven Auctions (DDA). DDA is primarily designed to support NPC host allocation in P2P MMOGs, and specifically in the Mediator framework. However, it can also support the sharing of computational and interactive tasks with various deadlines in general P2P applications. Experimental and analytical results demonstrate that DDA efficiently allocates computing resources for large numbers of real-time NPC tasks in a simulated P2P MMOG with approximately 1000 players. Furthermore, DDA supports gaming interactivity by keeping the communication latency among NPC hosts and ordinary players low. It also supports flexible matchmaking policies, and can motivate application participants to contribute resources to the system

    SEARCH, REPLICATION AND GROUPING FOR UNSTRUCTURED P2P NETWORKS

    Get PDF
    In my dissertation, I present a suite of protocols that assist in efficient content location and distribution in unstructured Peer-to-Peer overlays. The basis of these schemes is their ability to learn from past interactions, increasing their performance with time. Peer-to-Peer (P2P) networks are gaining increasing attention from both the scientific and the large Internet user community. Popular applications utilizing this new technology offer many attractive features to a growing number of users. P2P systems have two basic functions: Content search and dissemination. Search (or lookup) protocols define how participants locate remotely maintained resources. In data dissemination, users transmit or receive content from single or multiple sites in the network. P2P applications traditionally operate under purely decentralized and highly dynamic environments. Unstructured systems represent a particularly interesting class of P2P networks. Peers form an overlay in an ad-hoc manner, without any guarantees relative to lookup performance or content availability. Resources are locally maintained, while participants have limited knowledge, usually confined to their immediate neighborhood in the overlay. My work aims at providing effective and bandwidth-efficient searching and data sharing. A suite of algorithms which provide peers in unstructured P2P overlays with the state necessary in order to efficiently locate, disseminate and replicate objects is presented. The Adaptive Probabilistic Search (APS) scheme utilizes directed walkers to forward queries on a hop-by-hop basis. Peers store success probabilities for each of their neighbors in order to efficiently route towards object holders. AGNO performs implicit grouping of peers according to the demand incentive and utilizes state maintained by APS in order to route messages from content holders towards interested peers, without requiring any subscription process. Finally, the Adaptive Probabilistic REplication (APRE) scheme expands on the state that AGNO builds in order to replicate content inside query intensive areas according to demand

    A Content-Addressable Network for Similarity Search in Metric Spaces

    Get PDF
    Because of the ongoing digital data explosion, more advanced search paradigms than the traditional exact match are needed for contentbased retrieval in huge and ever growing collections of data produced in application areas such as multimedia, molecular biology, marketing, computer-aided design and purchasing assistance. As the variety of data types is fast going towards creating a database utilized by people, the computer systems must be able to model human fundamental reasoning paradigms, which are naturally based on similarity. The ability to perceive similarities is crucial for recognition, classification, and learning, and it plays an important role in scientific discovery and creativity. Recently, the mathematical notion of metric space has become a useful abstraction of similarity and many similarity search indexes have been developed. In this thesis, we accept the metric space similarity paradigm and concentrate on the scalability issues. By exploiting computer networks and applying the Peer-to-Peer communication paradigms, we build a structured network of computers able to process similarity queries in parallel. Since no centralized entities are used, such architectures are fully scalable. Specifically, we propose a Peer-to-Peer system for similarity search in metric spaces called Metric Content-Addressable Network (MCAN) which is an extension of the well known Content-Addressable Network (CAN) used for hash lookup. A prototype implementation of MCAN was tested on real-life datasets of image features, protein symbols, and text — observed results are reported. We also compared the performance of MCAN with three other, recently proposed, distributed data structures for similarity search in metric spaces

    User-Centric Traffic Engineering in Software Defined Networks

    Get PDF
    Software defined networking (SDN) is a relatively new paradigm that decouples individual network elements from the control logic, offering real-time network programmability, translating high level policy abstractions into low level device configurations. The framework comprises of the data (forwarding) plane incorporating network devices, while the control logic and network services reside in the control and application planes respectively. Operators can optimize the network fabric to yield performance gains for individual applications and services utilizing flow metering and application-awareness, the default traffic management method in SDN. Existing approaches to traffic optimization, however, do not explicitly consider user application trends. Recent SDN traffic engineering designs either offer improvements for typical time-critical applications or focus on devising monitoring solutions aimed at measuring performance metrics of the respective services. The performance caveats of isolated service differentiation on the end users may be substantial considering the growth in Internet and network applications on offer and the resulting diversity in user activities. Application-level flow metering schemes therefore, fall short of fully exploiting the real-time network provisioning capability offered by SDN instead relying on rather static traffic control primitives frequent in legacy networking. For individual users, SDN may lead to substantial improvements if the framework allows operators to allocate resources while accounting for a user-centric mix of applications. This thesis explores the user traffic application trends in different network environments and proposes a novel user traffic profiling framework to aid the SDN control plane (controller) in accurately configuring network elements for a broad spectrum of users without impeding specific application requirements. This thesis starts with a critical review of existing traffic engineering solutions in SDN and highlights recent and ongoing work in network optimization studies. Predominant existing segregated application policy based controls in SDN do not consider the cost of isolated application gains on parallel SDN services and resulting consequence for users having varying application usage. Therefore, attention is given to investigating techniques which may capture the user behaviour for possible integration in SDN traffic controls. To this end, profiling of user application traffic trends is identified as a technique which may offer insight into the inherent diversity in user activities and offer possible incorporation in SDN based traffic engineering. A series of subsequent user traffic profiling studies are carried out in this regard employing network flow statistics collected from residential and enterprise network environments. Utilizing machine learning techniques including the prominent unsupervised k-means cluster analysis, user generated traffic flows are cluster analysed and the derived profiles in each networking environment are benchmarked for stability before integration in SDN control solutions. In parallel, a novel flow-based traffic classifier is designed to yield high accuracy in identifying user application flows and the traffic profiling mechanism is automated. The core functions of the novel user-centric traffic engineering solution are validated by the implementation of traffic profiling based SDN network control applications in residential, data center and campus based SDN environments. A series of simulations highlighting varying traffic conditions and profile based policy controls are designed and evaluated in each network setting using the traffic profiles derived from realistic environments to demonstrate the effectiveness of the traffic management solution. The overall network performance metrics per profile show substantive gains, proportional to operator defined user profile prioritization policies despite high traffic load conditions. The proposed user-centric SDN traffic engineering framework therefore, dynamically provisions data plane resources among different user traffic classes (profiles), capturing user behaviour to define and implement network policy controls, going beyond isolated application management

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks
    • 

    corecore