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Abstract 

User-Centric Traffic Engineering in Software Defined Networks 

Taimur Bakhshi 

 

Software defined networking (SDN) is a relatively new paradigm that decouples individual 

network elements from the control logic, offering real-time network programmability, translating 

high level policy abstractions into low level device configurations. The framework comprises of the 

data (forwarding) plane incorporating network devices, while the control logic and network services 

reside in the control and application planes respectively. Operators can optimize the network fabric 

to yield performance gains for individual applications and services utilizing flow metering and 

application-awareness, the default traffic management method in SDN. Existing approaches to 

traffic optimization, however, do not explicitly consider user application trends. Recent SDN traffic 

engineering designs either offer improvements for typical time-critical applications or focus on 

devising monitoring solutions aimed at measuring performance metrics of the respective services. 

The performance caveats of isolated service differentiation on the end users may be substantial 

considering the growth in Internet and network applications on offer and the resulting diversity in 

user activities. Application-level flow metering schemes therefore, fall short of fully exploiting the 

real-time network provisioning capability offered by SDN instead relying on rather static traffic 

control primitives frequent in legacy networking.   

 

For individual users, SDN may lead to substantial improvements if the framework allows operators 

to allocate resources while accounting for a user-centric mix of applications. This thesis explores the 

user traffic application trends in different network environments and proposes a novel user traffic 

profiling framework to aid the SDN control plane (controller) in accurately configuring network 

elements for a broad spectrum of users without impeding specific application requirements. 

 

This thesis starts with a critical review of existing traffic engineering solutions in SDN and highlights 

recent and ongoing work in network optimization studies. Predominant existing segregated 

application policy based controls in SDN do not consider the cost of isolated application gains on 

parallel SDN services and resulting consequence for users having varying application usage. 

Therefore, attention is given to investigating techniques which may capture the user behaviour for 

possible integration in SDN traffic controls. To this end, profiling of user application traffic trends is 

identified as a technique which may offer insight into the inherent diversity in user activities and 

offer possible incorporation in SDN based traffic engineering. 
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A series of subsequent user traffic profiling studies are carried out in this regard employing network 

flow statistics collected from residential and enterprise network environments. Utilizing machine 

learning techniques including the prominent unsupervised k-means cluster analysis, user generated 

traffic flows are cluster analysed and the derived profiles in each networking environment are 

benchmarked for stability before integration in SDN control solutions. In parallel, a novel flow-

based traffic classifier is designed to yield high accuracy in identifying user application flows and the 

traffic profiling mechanism is automated.   

 

The core functions of the novel user-centric traffic engineering solution are validated by the 

implementation of traffic profiling based SDN network control applications in residential, data 

center and campus based SDN environments. A series of simulations highlighting varying traffic 

conditions and profile based policy controls are designed and evaluated in each network setting 

using the traffic profiles derived from realistic environments to demonstrate the effectiveness of 

the traffic management solution. The overall network performance metrics per profile show 

substantive gains, proportional to operator defined user profile prioritization policies despite high 

traffic load conditions. The proposed user-centric SDN traffic engineering framework therefore, 

dynamically provisions data plane resources among different user traffic classes (profiles), capturing 

user behaviour to define and implement network policy controls, going beyond isolated application 

management.  
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Chapter 1    Introduction 

 

1.1 Introduction 

Software defined networking (SDN) is a relatively new paradigm introduced in the world of 

computer networking, promising a fundamental shift in the way network configuration and real-

time traffic management is performed. While the term itself is relatively new, the salient history of 

SDN can be traced back to the roots of several traffic engineering and network control mechanisms 

developed through the years [1-4]. The underlying objective of deriving and centralizing network 

control primitives has always been to improve the overall network performance and to introduce 

some degree of network control in at least a particular segment of a much larger network. SDN is 

seen by many in industry and academia as a culmination of these efforts. The Open Networking 

Foundation (ONF) [5], an industry consortia furthering work in several areas of SDN development 

defines the term as “the physical separation of the network control plane from the forwarding 

plane and where a control plane controls several devices” [1]. The SDN framework tends to make 

the data plane completely programmable and separated from the control logic and, therefore, 

eliminates the existing manually intensive regime of fine tuning individual hardware components. 

The paradigm introduces a centralized control structure, which dynamically configures and governs 

all underlying hardware based on end user application requirements. Software developers and 

network managers can collaboratively utilize the high level of network abstraction offered via the 

control plane to define network resource utilization models and optimize the underlying network 

fabric according to evolving service requirements. The resulting ease in management of diverse set 

of network appliances according to real-time traffic conditions provides substantial benefits to 

operators and managers in efficiently provisioning resources as well as introducing technological 

and business updates in a seamless fashion. In addition to ONF industry conglomerate, the 

OpenFlow Network Research Center (ONRC) was created to particularly focus academic research in 

SDN [6], with major standardization bodies such as ETSI, IETF, ONF, 3GPP, and IEEE itself working 

towards standardizing different SDN aspects. However, despite the stated advantages and the 

promise of simplified management, the SDN framework encounters challenges in practical 

implementation hampering its functionality and resulting performance in avenues ranging from the 

cloud to data center networking.  

 

The present chapter highlights prominent research challenges in SDN and presents the aims and 

objectives of the present thesis along with a description of the thesis structure. The remainder of 
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this chapter is organized as follows. Section 1.2 briefly discusses existing SDN research challenges 

and initiatives. Section 1.3 details the aims and objectives of the present research. The organization 

of this thesis is presented in section 1.4.  

 

1.2 Research challenges and intiatives 

The continued development and deployment of the SDN framework has presented new 

application opportunities in several avenues ranging from data centers to wireless communications. 

The increasing adoption of SDN based traffic engineering solutions in turn has also provided 

academia and industry with new research challenges. Some of the prominent areas of investigation 

and initiatives being taken in the context of SDN are summarized as follows. 

 

1.2.1 Application and service improvement 

A prominent area of focus in a number of SDN traffic optimization studies has concentrated 

on improving application and service performance using per-application flow metering [58][59][62]. 

A range of network control primitives utilizing the centralized SDN control plane have been 

employed in efforts to offer differentiated quality of service (QoS) primarily for voice and video 

streaming applications [60][61][115]-[118]. Focus on application and service prioritization has also 

led to the development of novel SDN based monitoring solutions and test-beds to benchmark 

individual application and protocol performance metrics [120-124]. A significant amount of work in 

application and service improvement has also considered the use of information-centric 

approaches using the centralized SDN control plane to offer optimized content delivery for certain 

services from caching servers geographically closer to the end user [125-130]. From a physical layer 

perspective, a few studies have also considered the scope of optimizing service delivery in 

heterogeneous and legacy networks using the SDN paradigm resulting in enhanced application 

performance [55][133][134].  

 

The devised SDN traffic management policies in the above studies, are however, typically tied to a 

single (or set of) applications or services. While isolated service improvement using QoS guarantees 

may offer increased performance for certain applications such as streaming, voice and other real-

time communication, it may also result in negative experience for users having diverse application 

requirements and when several workload profiles are present in the network. To accurately capture 

user behaviour, network administrators can instead derive traffic profiles based on user application 
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trends. The resulting profiles may subsequently be integrated in the SDN framework to allow 

improved traffic management and resource optimization in view of user trends. Utilizing profiling 

based traffic engineering, network operators can fully take into account the user-centric mix of 

applications and implement real-time network policies through the SDN control plane. The scheme 

may offer significant benefits in terms of devising and applying user-centric network policies over 

the presently prevalent method of individual application improvement in SDN.  

 

1.2.2 Control plane centralization  

In addition to the considerable amount of work undertaken in application and service 

improvement studies other major areas of investigation in SDN have focused on increasing the real-

time scalability of the centralized SDN control plane (controller). The SDN controller(s) while 

allowing seamless management of the underlying networking gear also introduces additional 

network latency during device-controller communication requiring optimal placement solutions 

and suitable redundancy in case of failure [34][35]. The amount of time it takes for network nodes 

to communicate with SDN controller and subsequent fetching of flow forwarding instructions can 

affect some end user applications. Additionally, another important aspect is the requirement of 

having a suitable level of redundancy in controllers and if more than one controller is deployed, 

placement of controller(s) and latency involved in inter-controller communication channels. 

 

The rapid detection of network topology changes by the control plane when a network node 

becomes unresponsive is dependent on availability of the communication channel between the 

controller and network elements [41][42]. The level of control delegated to network devices has, 

therefore, also been the topic of interest in SDN. The level of control delegated to data plane 

(switches) depends on business requirements and required redundancy; sometimes allowing both 

SDN based centralized control as well as legacy switching and routing capability for fail-safe 

operation. There is no perfect scheme and the resulting solution is highly dependent on trade-offs 

between operational requirements, costs and speedy re-convergence in case of failures. 

 

1.2.3 Security vulnerabilities 

In parallel with application performance and controller placement solutions, a number of 

studies concentrating on SDN security aspects have sought to address SDN controller vulnerabilities. 

Centralized control infrastructure offered by SDN may allow malicious traffic to compromise not 

only the underlying network devices but also the controller, giving away control of the entire 
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network [46][48][64]. While the technology is relatively new, integration with existing security 

technologies is either absent or needs to be custom aligned to the SDN framework [43]. 

Administrators therefore, need to focus on permitting access to management traffic in an 

intelligent manner as well as segregate traffic from several organizations in multi-tenant 

deployments such as cloud environments to contain and address security incidents. 

 

1.2.4 Standardization efforts 

Finally, with regards to standardization efforts, the SDN paradigm may be easier to implement 

with a standard set of application programming interfaces (APIs) and protocols. However, such 

standardized protocols may not work in all cases and diversity in SDN programming interfaces will 

nonetheless grow. For example, while the majority of vendors have opted for the OpenFlow [17] 

open standard as their primary choice for data-control plane southbound protocol, industry giants 

like Juniper and Cisco have selected other solutions such as XMPP [20] and OpFlex [63] to ensure 

that customers are limited to their technology solution. There are no standard network operating 

systems, routers or switches as such to be specifically used for SDN and multiple vendors have 

come up with proprietary technologies in each plane of the SDN architecture advocating ideal 

solutions. 

 

1.2.5 Industry pragmatism and operational requirements 

If industry finds an easier way to solve the same problems offering automation, real-time 

programmability, centralized control, improved monitoring, support for virtualization and dynamic 

provisioning by other methods in future, those methods may win. A prominent historical example 

of this is ATM vs MPLS [9], where the latter took over as the preferred method, despite several 

years of development, improvement, and deployment spent on ATM based architectures. 

 

1.3 Aims and objectives 

The aim of this research is to investigate the application usage trends among users in different 

networking environments and to establish whether the existing SDN traffic management solutions 

focusing on individual service improvement (application flow metering), may lead to performance 

penalties for users frequenting a diverse set of applications. Furthermore, the research aims to 

propose a user behaviour profiling framework that can accurately capture user application trends 
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and integrate user traffic profiles in the SDN control plane, leading to user-centric traffic 

management policies.  

 

In order to achieve this, the research work is divided into the following distinct objectives. 

  

1. To compose a comprehensive review of state-of-the-art in software defined networking 

technologies and the inherent traffic management approaches. 

2. To investigate the diversity of user activities by profiling user traffic and the potential 

benefits of integrating user-centric (profiling based) controls in the software defined 

networking framework. 

3. To design and propose a method for extracting user traffic profiles in different network 

environments, focusing on residential and enterprise networks, and analyse temporal 

variation in the derived profiles for subsequent utilization in an SDN traffic management 

solution. 

4. To propose a novel SDN traffic control framework utilizing the derived profiles in 

monitoring and managing the respective SDN environment including residential and 

enterprise networking. 

5. To benchmark effectiveness of the proposed user-centric (profiling) controls by carrying out 

a series of simulation tests in each network setting and monitoring network performance 

metrics under varying traffic conditions. 

 

1.4 Thesis organization 

The organization of this thesis as follows. Chapter 2 presents a comprehensive review of state-

of-the-art in software defined networking and the remaining chapters are divided into two logical 

parts. Part 1 discusses Residential Traffic Management in SDN (chapter 3, 4, 5) and Part 2 

concentrates on Enterprise Traffic Engineering (chapter 6, 7, 8). A brief description of each chapter 

is summarized below. 

 

Chapter 2 begins by reviewing a brief history of complementing technologies leading to the 

development of SDN along with a discussion of popular SDN protocols, platforms, and application 

avenues. The review seeks to highlight the benefits of centralized control and programmability 

offered by SDN. Existing traffic engineering solutions are discussed, which primarily target 

individual application performance, and the need for user oriented network policy controls that can 



29 
 

provide the administrator with a more meaningful traffic management primitive is identified. 

Furthermore, due to the relatively early phase of SDN technology development and deployment 

some notable issues in SDN design, scalability, and security are also considered. 

 

Chapter 3 presents the beginning of Part 1, focusing on SDN based traffic management in 

residential networks and discusses the feasibility of deriving user traffic profiles from network flow 

measurements. For this purpose user traffic profiling is carried out on traffic generated from 

individual user premises in a residential building using unsupervised k-means cluster analysis. The 

initial work uses IP and port-based mapping of popular Internet applications to identify user traffic 

flows. The extracted profiles present significant discrimination in user activities, establishing the 

need for going beyond isolated application improvement, which may otherwise penalize certain 

users (profiles). The chapter also presents some initial ideas on the utilization of user traffic profiles 

in SDN based traffic controls. 

 

Chapter 4 further builds on the user profiling methodology and evaluates the stability of the 

extracted user traffic profiles in the residential network employed in chapter 3. Using updated 

traffic flow measurements, different clustering techniques are also evaluated, aiming to identify the 

approach that leads to a more meaningful set of user traffic classes (profiles). The profiles derived 

using k-means clustering remain significantly better in terms of expressing describing user trends. 

The study further investigates the inter-profile transitions among user devices belonging to the 

same user premises, reporting an overall high level of stability for subsequent utilization in SDN 

based traffic management.  

 

Chapter 5 provides a novel traffic management framework for residential settings using 

software defined networking. The study designs an SDN traffic management application for 

dynamic bandwidth allocation among multiple residential users according to a profile priority 

primitive defined by the residential network administrator/ user. The residential SDN controller and 

traffic management application in turn employs hierarchical token bucket queueing to dynamically 

assign per user bandwidth between the service provider and residential gateway router. Using the 

previously derived user traffic profiles from chapter 4, simulation tests are carried out under 

varying traffic conditions (user loads) to evaluate the effectiveness of the proposed approach in 

catering to prioritized users (profiles).   
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Chapter 6 presents the beginning of Part 2, focusing on enterprise traffic management using 

SDN framework. This chapter proposes a real-time application traffic classification approach using 

flow based measurements. The study focuses on the improvement of classifying user traffic flows 

from the relatively basic IP address and port based traffic identification used in chapter 3 and 

chapter 4 to an automated machine learning based classification. The study investigates the 

features in typical flow measurements (NetFlow) and designs a two-phase traffic classifier using 

unsupervised cluster analysis in tandem with supervised decision tree training to yield optimal per-

flow classification accuracy. The resulting classifier is validated against flows from fifteen popular 

Internet applications reporting high classification accuracy for the examined applications. The 

chapter concludes by recommending the extension of the proposed method to other applications 

to achieve highly granular real-time application flow classification and applying the derived 

classifier in future user traffic profiling and traffic classification studies. 

 

Chapter 7 investigates and evaluates the use of the OpenFlow protocol for traffic profile 

derivation in campus based SDN. The study assesses the OpenFlow protocol features to derive user 

traffic profiles for network monitoring and management in campus network environments. The 

investigation aims to utilize and collect OpenFlow traffic statistics via the SDN control plane 

(controller), eliminating reliance on external flow accounting methods (such as NetFlow) in campus 

networking where network devices may be geographically dispersed and operators can benefit 

from a centralized user profiling mechanism. A test campus network access switch is used for 

collection of OpenFlow based traffic statistics and fed into the previously derived traffic profiling 

mechanism. The derived profiles are analysed and benchmarked for stability to ascertain their 

viability of network monitoring and management in the campus environment. Additionally, the 

study uses simulation tests to appraise the management overhead of the proposed approach.  

 

Chapter 8 presents a novel traffic profiling and network control framework for the data center 

(DC) SDN. The study profiles user activity in an enterprise network, segregating users into different 

traffic profiles based on varying usage of enterprise data sources and highlights the performance 

caveats the end users may experience due to conventional DC load balancing techniques. A novel 

user profiling based traffic management scheme is, subsequently proposed for the DC environment, 

utilizing operator defined global (user) profile and application hierarchy to manage external and 

internal DC traffic. The proposed framework tracks real-time profile memberships and dynamically 

configures the individual DC network elements via the SDN control plane (controller). A series of 

simulation tests are carried out using different user loads to compare the design performance of 
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the derived user profiling based solution against conventional load balancing schemes. Furthermore, 

the chapter concludes by evaluating the real-time scalability and management overhead of the 

proposed approach.  

 

Finally, Chapter 9 presents the conclusions from this research, highlighting the project 

achievements and limitations. Future research and development related to the work carried out in 

thesis are also suggested in this concluding chapter. 
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Chapter 2   Software Defined Networking Technologies 

 

2.1 Introduction 

Computer networks consist of a diverse number of network devices serving several 

functionalities ranging from security and access control to load balancing and supporting a range of 

distributed and complex protocols. Changing application and traffic demands necessitate that 

administrators update network parameters, involving manual translation of high level-policies into 

low-level device configuration commands. In addition to being repetitive and prone to errors, the 

underlying lack of automation in network management hinders quick provisioning for relatively 

new applications such as cloud services.  Present network virtualization and automated device 

programmability mechanisms, although ease network administration and allow some degree of 

dynamic scalability, they remain far from an ideal solution. Software defined networking on the 

other hand, as mentioned earlier in chapter 1 decouples the network into a management and 

traffic forwarding plane. The paradigm allows for both real-time network programmability as well 

as the integration of virtualized network functions [1][2]. Continued adoption of SDN, however, 

greatly depends on the development of its underlying constituent technologies. Despite being a 

relatively new, industry and academia has been involved in furthering the SDN paradigm through 

the development and deployment of new SDN-specific as well as legacy communication protocols 

and platforms in the SDN ecosystem. The present chapter examines state-of-the-art in software 

defined networking by providing a brief historical perspective of the field as well as detailing the 

SDN architecture. Prominent SDN communication protocols, the controller and switch platforms in 

use as well as tools for SDN simulation and development are reviewed. Furthermore, major 

operational challenges and recently proposed solutions are presented in detail to provide a 

comprehensive discussion of issues such as application-level traffic prioritization, real-time SDN 

scalability and security. 

 

The remainder of this chapter is organized as follows. Section 2.2 presents provides a brief 

background to SDN and complementary technologies while also highlighting present day 

networking requirements that led to the emergence of SDN.  Section 2.3 discusses the SDN 

architecture. A detailed review of prominent communication APIs and protocols being deployed in 

relation to the SDN framework are detailed in section 2.4.  Section 2.5 reviews the available SDN 

controller and switch platforms, while SDN simulation and development tools are discussed in 

Section 2.6. Section 2.7 summarizes the progress in several SDN typical deployment scenarios such 



33 
 

as data centers, campus environments, wireless communications and residential networks. A 

discussion of key technological and research challenges inherent in the present SDN framework is 

presented in section 2.8. Final conclusions are drawn in section 2.9.  

 

2.2 Background and complementary technologies 

It is rather difficult to examine the etymology of ‘software defined networking’ as the 

fundamental requirement of introducing network programmability has been around since the 

inception of computer networks. The term however, was first coined in an article in 2009 [7], to 

describe work done in developing a standard called OpenFlow giving network engineers access to 

flow tables in switches and routers from external computers for changing network layout and traffic 

flow in real-time. However, technologies supporting the centralization of network control, 

introducing programmability and virtualization have existed prior to SDN and over the years 

matured to varying degrees of adoption among operators catering to individual application 

requirements. The following sub-sections briefly highlight some of these key supporting 

technologies in centralizing network control, introducing network programmability and virtualizing 

the network fabric to provide a better understanding of their similarities and inadequacies in 

comparison with SDN. Table 2.1 gives a summarization of these complementing technologies. A 

timeline depicting development of key complimentaing and SDN specific technologies is presented 

in Fig. 2.1.  

 

2.2.1 Centralized network control 

Centralization of network control dates back to at least the early 1980s when AT&T 

introduced the network control point (NCP), offering a centralized database of telephone circuits 

and out-of-band signalling mechanism for calling card machines [206]. The idea of control and data 

plane separation was also used in BSD4.4 routing sockets in the early 1990s, allowing route tables 

to be controlled by a simple command line or by a router daemon [207]. Another significant 

milestone in the development of centralized network control includes the Forwarding and Control 

Element Separation (ForCES) project which started as an IETF working group in 2001. ForCES 

employs a control element to formulate the routing table in traffic forwarding elements [8]. Each 

control element interacts with one or more forwarding elements, in turn managed by a control and 

forwarding element manager offering increased design scalability. With the development and wider 

adoption of generalized and multi-protocol label switching (G/MPLS), network routers were  
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Table 2.1. Complementary Technologies 

Functionality Control Functions, APIs Complimentary Technologies 

Centralized Control Centralized /delegated control 
framework 

ForCES [8], PCE [10], OPENSIG [11], NCP 
[206], BSD4.4 Routing Sockets [207], 
GSMP [12], 4D [13], Ethane [14], G/MPLS 
[9] 

Network 
Programmability 

Low level network abstraction Active Networks [18], XMPP [20], DCAN 
[19] 

High level network abstraction ALTO [21], I2RS [22], Cisco onePK [23] 

Configuration API NETCONF [31], SNMP [32], GeoPlex [208] 

Virtualization Network device virtualization 
and overlays 

Tempest [25], VINI [26], Cabo [27],  
VXLAN [28], NVGRE [29], STT [30], NFV 
[33] 

 

 

required to perform complex computations for path determination while satisfying multiple 

constraints ranging from backup route calculations to using paths which conformed to a given or 

required bandwidth [9]. Individual routers, however, to a great extent lacked the computing power 

or network knowledge to carry out the required route construction. Following this, the IETF path 

computation engine (PCE) working group developed a set of protocols that allowed a client such as 

a router to get path information from the computation engine, which could be centralized or partly 

distributed, in every router [10]. The technology has attracted significant interest, having more than 

twenty-five RFCs at the time of writing. In spite of its benefits, the scheme, however, lacks a 

dedicated control or path computation engine discovery mechanism and provides only a reactive or 

on-demand facilitation of information to computation clients. The Open Signalling (OPENSIG) group 

 

 

Figure 2.1. Key developments in complementary and SDN-specific technologies 
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started in 1998 aimed to make the ATM, Internet and mobile networking both programmable as 

well as open [11]. The group worked towards allowing access to network hardware via 

programmable interfaces offering distributed and scalable deployment of new services on existing 

devices. The IETF took this idea to standardize and specify the General Switch Management 

Protocol (GSMP), a protocol managing network switch ports, connections, monitoring statistics as 

well as updating and assigning switch resources via a controller [12]. The 4D project, initiated in 

2004, proposed network design that separated the traffic forwarding logic and the protocols used 

for inter-element communication [13]. The framework proposed the control or "decision" plane 

having a global view facilitated by planes further down the hierarchy responsible for providing 

element state information and also forwarding traffic. More recently, and a direct predecessor to 

enabling SDN technology was the Ethane project [14]. Proposed in 2007, the domain controller in 

Ethane computed flow table entries based on access control policies and used custom switches 

running on OpenWRT [15], NetFPGA [16] and Linux systems to implement the traffic forwarding 

constructs. Due to the constraints of requiring customized hardware Ethane, however, was not 

taken up by many industry vendors as anticipated. In comparison the present scheme for SDN uses 

existing hardware and vendors are only required to expose interfaces to flow tables on switches 

with OpenFlow [17] protocol providing capability of controller-switch communication. Growth in 

centralized network control has not been in insolation and efforts have continued in parallel to 

bring automation and programmability to the network appliances as examined in the following 

section. 

 

2.2.2 Real-time network programmability 

Network administrators have long yearned for ease in programmability of network devices 

as the present method of configuration (mainly via CLI) despite being effective is rather slow and 

requires laborious work in changing configurations, growing significantly with the size of the 

network. The US defense and advanced research projects agency (DARPA) in the late-1990s 

envisioned the underlying problems in integrating new technology in conventional networking and 

the elaborate and tedious re-configurations required hampering acceleration of innovation. The 

term active networks was proposed around the same time and advocated custom computation on 

packets to significantly reduce pre-determination of traffic forwarding constructs required in 

individual devices [18]. An example of this would have been trace programs running on routers and 

the idea of active nodes downloading new service instructions to for example, serve as firewall or 

offer other application services. However, not having a clear application at the time such as present 
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day cloud networking and lack of cheap network support, the idea did not fully achieve fruition. 

Another network programming initiative in the mid-1990s was the Devolved   Control   of   ATM   

Networks (DCAN) [19]. The underlying aim of DCAN was the designing and development of 

infrastructure and services required to achieve scalability in controlling and programming ATM 

networks. The working principle of the technology is that ATM switch control decisions should be 

decoupled from the devices and delegated to external entities, the DCAN manager. The DCAN 

manager in turn uses programming instructions to manage the network elements, similar to 

present day SDN. Another similar project aimed at incorporating programmability in the network 

elements was AT&T's GeoPlex [208]. The project utilized Java programming language to implement 

middleware functionality in networking gear. GeoPlex was meant to be a service platform 

managing networks and services using the operating systems running on Internet connected 

computers. The resulting soft switch abstraction, however, could not re-program physical devices 

due to incompatibility with proprietary operating systems running on these devices. Another vital 

addition to network programmability came in the form of the extensible message and presence 

protocol (XMPP). XMPP described in RFC6121 works quite similar to SMTP but is targeted at near 

real-time communication offering additional functionalities of monitoring presence along with 

messaging [20]. Each XMPP client sets up a connection with the server in the network which 

maintains contact addresses of clients and lets other clients know when a contact is online. 

Messages are pushed (real-time) as opposed to polled as in SMTP/POP and the protocol is now 

being used in data center networking as well as the upcoming Internet of things (IoT) paradigm to 

manage network elements. Network devices run XMPP clients which respond to XMPP messages 

containing CLI management requests. Juniper Networks have chosen it as the southbound protocol 

of choice for the SDN controller to network element (control-data plane) communication in a 

substantial number of hardware devices.  

 

From a network configuration perspective, legacy technologies such as SNMP [32] and NETCONF 

[31] have and continue to remain widely deployed in several networking environments. The 

configuration APIs give administrators the ability to install, change and update the configuration of 

network devices as well as aid in collating and organizing information about the managed routers, 

switches and other network devices. Although promising in terms of automating configuration as 

well as the monitoring of networking gear, the need for bringing further automation and 

programmability to networks especially emerging cloud and data center environments continues. 

Offering an even higher level of abstraction from a network administrator or service provider’s 

perspective is the Application Layer Traffic Optimization (ALTO) protocol. ALTO started by an IETF 
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working group and originally aimed at optimizing P2P traffic by identifying nearby peers has seen 

further extension for locating resources in data centers [21]. ALTO clients produce a list of 

resources, their underlying constraints such as memory, storage, and bandwidth and power 

consumption and present this information to the server. The ALTO server gathers knowledge about 

the available resources and allows a detailed orchestration of the network fabric to be used by the 

running applications. The Interface to the Routing System project (I2RS) of IETF also allows a similar 

routing strategy and proposes the splitting of traffic management decision-making process 

between a centralized management system and individual applications [22]. Unlike SDN, I2RS 

proposes using traditional routing protocols executed on network hardware in parallel to offering 

centralized control. The scheme uses distributed routing while allowing individual applications to 

influence routing decisions as required. Developments in network programmability however, have 

not been limited solely to standardization bodies and workgroups. Lately, technology vendors such 

as Cisco have also taken up the SDN paradigm to enable programmers to develop applications that 

can integrate with the network fabric. The Cisco Open Network Environment Platform Kit (Cisco 

onePK) provides an SDN programmable framework allowing operators to customize traffic flows 

and visualize network information for easier deployment according to changing business needs [23]. 

The framework is now being folded in to Cisco’s Application Centric Infrastructure (ACI) [24], which 

seeks to further integrate software and hardware driven by operational requirements. 

 

 

2.2.3 Network virtualization 

 Network virtualization can be described as the representation of one or more network 

topologies residing on the same infrastructure. Virtualization has seen several phases of 

deployment from relatively basic VLANs, to various intermediate technologies and test-beds. A few 

milestone projects worth mentioning include Tempest, VINI and Cabo. Tempest originated at 

Cambridge in 1998 and proposed the idea of switch virtualization as well as a separation of control 

framework from switches as well as [25]. Tempest proved to be an early attempt at decoupling 

traffic forwarding and control logic, specifically in the context of ATM networks. Similar to present 

day SDN, Tempest project put emphasis on having open programming interfaces and additional 

support for network virtualization. On a slightly separate strand, network virtualization focusing on 

testing new protocols and services was the Virtual network infrastructure (VINI). VINI came to light 

in 2006, offering researchers a virtual networking testbed to deploy and evaluate multiple ideas 

simultaneously on different network topologies using realistic routing software, user traffic and 

networking events [26]. A VINI-enabled network also allowed operators to run multiple protocols 
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on the same underlying physical network, independently controlling traffic forwarding in individual 

network devices for each virtual switch. For service providers relying on hardware infrastructure 

from multiple infrastructure vendors, the Cabo project in 2007 proposed a separation of 

infrastructure from services [27]. Using virtualization and programmable traffic routing, CABO 

offers the ability for service providers to run multiple services on networking gear belonging to 

disparate infrastructure providers. Virtualization in presently deployed networks offers improved 

resource sharing which can either be multiple logical routing devices on a shared platform allowing 

resource slicing such as dedicated memory allocation or independent traffic forwarding software 

utilities, all running on the same general purpose computing hardware.  

 

In addition to device virtualization projects, network overlays such as the Virtual Extensible Local 

Area Network (VXLAN) technology were developed as a means to mitigate the limitations of 

present networking technology and allow service extensibility in larger data center and cloud 

deployments [28]. VXLANs utilize MAC-in-IP tunnelling, creating stateless overlay tunnels between 

endpoint switches performing encapsulation. Similar to VXLAN is the Network Virtualization using 

GRE (NVGRE) [29]. NVGRE also embeds MAC-in-IP tunnelling, with a slight difference in the header 

format. VXLAN packets use UDP-over-IP packet formats sent as unicast between two endpoint 

switches to assist load balancing while NVGRE uses the GRE standard header. Another relatively 

new virtualization technique is the Stateless Transport Tunnelling (STT) again using MAC-in-IP 

tunnelling [30]. While the general idea of a virtual network exists in STT, it is however, enclosed in a 

more general identifier called a context ID. STT context IDs are 64 bits, allowing for a much larger 

number of virtual networks and a broader range of service models. STT attempts to achieve 

performance gains over NVGRE and VXLAN by leveraging the TCP Segmentation Offload (TSO) 

found in the network interface cards (NICs) of many servers. TSO allows large packets of data to be 

sent from the server to the NIC in a single send request, thus reducing the overhead. STT, as the 

name implies, is also stateless and packets are unicast between tunnel end points, utilizing TCP in a 

stateless manner (without TCP windowing scheme) associated with TSO. In addition to network 

virtualization, services such as DNS, access control, firewalls and caching can also be decoupled 

from the underlying virtual network to solely run as software applications on high volume 

dedicated hardware and storage. Such virtualization of network functionality (NFV) generally aims 

at reducing the operational and capital expenditure for organizations minimizing dedicated 

hardware requirements [33]. 
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2.2.4 Requirement for SDN 

While the network virtualization technologies promise greater benefits when compared to 

conventional and legacy protocols and architectures, the growth in Internet, public and private 

network infrastructure, as well as the evolving range of applications requires a comprehensive re-

vamping of the existing networking framework. The use of distributed protocols and coordination 

of changes in conventional networks remains incredibly complex involving the implementation of 

distributed protocols on the underlying network hardware to facilitate multiple services from traffic 

routing, switching and guaranteeing quality of service applications to providing authentication. 

Keeping track of the state of several network devices and updating policies becomes even more 

challenging when increasingly sophisticated policies are implemented through a constrained set of 

low-level configuration commands on commodity networking hardware. This frequently results in 

misconfigurations as changing traffic conditions require repeated manual interventions to 

reconfigure the network, however, the tools available might not be sophisticated enough to 

provide enough granularity and automation to achieve optimal configurations. 

 

The fundamental requirement of an overall framework that catered for a range of operational 

requirements such as ease of programmability, dynamic deployment and provisioning while fully 

facilitating an innovative range of applications and services such as the cloud, dictated newer 

network architecture capable of fulfilling these prerequisites. The following list details the 

technology and operational concerns eventually leading to development of the SDN traffic 

management framework corroborated during this review. 

 

 Automation: An increased level of automation to reduce the overall operational 

expenditure as well as facilitate effective troubleshooting, reducing unscheduled 

downtimes, ease of policy enforcement and provisioning of network resources and 

corresponding application workloads as required. 

 Dynamic Scalability: Dynamically changing the size of the network, updating the topology 

and the assigned network resources, which may be further aided by network virtualization 

 Orchestration: Orchestrating control of the complete range of network appliances by 

hundreds or even thousands such as in data centers or larger campus network 

environments. 

 Multi-tenancy Support: With growing proliferation of cloud based services, tenants prefer 

complete control over their addresses, topology, routing and security and consequently 

there is a requirement to separate the infrastructure from tenant hosted services. 
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 Open APIs: Users having a full choice of modular plug-ins, offering abstraction, defining 

tasks by APIs and not being specifically concerned about implementation details. For 

example, communication between two nodes may be furnished without the specification of 

the exact protocol. 

 Greater Programmability: A fundamental requirement in present network provisioning is 

the ability to change device behaviour and configuration in real-time according to the 

prevalent traffic conditions. 

 Improved Performance: A control framework offering the ability to incorporate innovative 

traffic engineering solutions, capacity calculation, load-balancing and a higher level of 

utilization to reduce carbon footprint.  

 Multiple Service Integration: The ability to include multiple services seamlessly such as 

load-balancers, firewalls, intrusion detection systems which can be provisioned on-demand 

and placed in the traffic path as and when required. 

 Network Virtualization: The ability to provision network resources without concerns about 

the location of individual components such as routers, switches, etc. 

 Visibility and Real-time Monitoring: Improving the real-time monitoring and connectivity 

of devices. 

 

A centralized view of the distributed network through the SDN control plane provides a more 

efficient orchestration and automation of network services. While legacy protocols can react after 

services come online, SDN can foresee additional service requirements and take pro-active 

measures to allocate resources. Furthermore, SDN based network applications deliver highly 

granular network policies on per-application traffic flows. The following section examines the 

architecture of the SDN framework in detail. 

 

2.3 Architectural overview 

The basic architecture of SDN utilizes modularity based abstractions, quite similar to formal 

software engineering methods [1][3]. A typical SDN based network architecture divides processes 

such as configuration, resource allocation, traffic prioritization and traffic forwarding in the 

underlying hardware in three basic layers namely application, control and data planes. Each of the 

planes has well defined boundaries, a specific role, and relevant application programmable 

interfaces (APIs) to communicate with adjacent planes. A comparison between the existing 
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distributed traffic control of individual devices and the centralized SDN architecture is illustrated in 

Fig 2.2. The key components of the framework entail the following. 

 

 Data (forwarding) Plane: The data plane is a set of network components which can be 

switches, routers, virtual networking equipment, firewalls, etc. The sole purpose of data 

plane is to forward network traffic as efficiently as possible based on a certain set of 

forwarding rules which are instructed by the control plane. SDN architecture makes the 

networking hardware rather inoculate by removing forwarding intelligence and isolated 

configuration per network element and moving these functionalities to the control plane. 

Communication between data and control planes is achieved by APIs (southbound). At 

present the OpenFlow protocol [17], serves as a prominent southbound communication 

protocol supported by several vendors including the ONF [5]. 

 

 Control Plane: The control plane is responsible for making decisions on how traffic would 

be routed through the network from one particular node to another based on end user 

application requirements and communicating the computed network policies to the data 

plane. The central component of a control plane is the SDN controller. An SDN controller 

translates individual application requirements and business objectives such as the need for 

traffic prioritizing, access control, bandwidth management, QoS etc. into relevant 

forwarding rules which are communicated to data plane components. Based on the size of 

the network there can be more than one SDN controller to provide additional redundancy 

[34][35]. By introducing network programmability through the control plane, it becomes 

possible to manipulate flow tables in individual elements in real-time based on network 

performance and service requirements. The controller gives a clear and centralized view of 

the underlying network giving a powerful network management tool to fine tune network 

performance. 

 

 Application Plane: The application plane comprises of network and business applications. 

An abstract view of the underlying network is presented to applications via a controller 

northbound API. The level of abstraction may include network parameters like delay, 

throughput, and availability descriptors giving the applications a wider view of the network 

[58]-[62]. Applications in return request connectivity between end nodes and once the 

application or network services communicate these requirements to the SDN controller, it      
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Figure 2.2. Diagram illustrating (a) Decentralized Network Control and (b) SDN based Centralized 

Control 
 

 

correspondingly configures individual network elements in the data plane for efficient 

traffic forwarding. Centralized management of network elements provides additional 

leverage to administrators giving them vital network statistics to adapt service quality and 

customize network topology as needed [58], [59], [62]. For example, during periods of high 

network utilization certain bandwidth consuming services such as video streaming, large 

file transfers, etc. can be load balanced over dedicated channels. In other scenarios, such as 

during an emergency (fire alarms, building evacuations, etc.) services such as VoIP can take 
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control of the network i.e. telephony taking precedence over everything else. A brief 

overview of the SDN controller and control-service communication protocols is presented 

in the following sections. 

 

2.4 Communication APIs  

SDN framework utilizes the link between the data and control plane to control traffic 

forwarding elements. The link should therefore, present high availability as well as security. One of 

the major southbound protocols in this category is the OpenFlow protocol [17]. The protocol offers 

communication between the switches and the controller(s) using Transport Layer Security (TLS) and 

certificate exchanges between the switches and the controller. In addition to OpenFlow protocol 

SDN implementations may also utilize legacy technologies such as XMPP [20], Cisco OpFlex [63] or 

even legacy NETCONF [31] for controller-switch communication.  

 

In addition to controller-switch communication, external applications and services may require 

information about the network topology, state and network device capabilities to manage traffic 

forwarding and define network policies. However, unlike the controller-switch communication 

protocols, there is no standardized northbound programming interface and solutions are applied on 

an ad-hoc basis depending on controller support and compatibility [1][2]. The architecture and APIs 

(northbound) of SDN applications vary between vendors. Some vendors have incorporated SDN 

controllers inside applications while others have defined custom northbound APIs for policy 

translation between controllers and proprietary higher application layer SDN services. Prominent 

programming paradigms such as the Representational State Transfer (RESTful) protocol [36] and 

Java based Open Services Gateway Interface (OSGI) [37] have found increasing applicability across a 

wide range of controller platforms to serve northbound (controller-application) communication 

requirements.  

 

 

2.4.1 Southbound communication protocols 

Southbound APIs provide the network control required by the SDN controller to dynamically 

make network changes as per real-time requirements. The OpenFlow protocol [17] maintained and 

updated by ONF [5] is the first and most prominent southbound communication interface. 

OpenFlow defines controller-data plane interaction facilitating administrators to manage traffic 



44 
 

according to changing business requirements. Using OpenFlow, flow forwarding constructs can be 

added and removed in switch flow tables to make the network fabric more responsive to service 

demands. A number of networking vendors have signed up to support implementation of 

OpenFlow including Big Switch, Arista, Brocade, Dell, IBM, NoviFlow, HP, Cisco, Extreme Networks 

and NEC among others. While OpenFlow is quite well-known it is not the only one available or 

under development. Besides, the OpenFlow protocol, Cisco OpFlex [63] has gained momentum 

among southbound APIs. The extensible messaging and presence protocol (XMPP) [20] has found a 

certain degree of traction for further deployment especially in hybrid SDN which uses a bulk of 

legacy protocols such as OSPF, MPLS, BGP, and IS-IS  to interconnect with SDN architecture. The 

operational functionality of OpenFlow, XMPP and OpFlex are further detailed in the following sub-

sections. 

 

a) OpenFlow protocol 

 

OpenFlow is a major Southbound API developed in the early stages of SDN paradigm and is 

meant to communicate control messages between the SDN controller and the networking 

components in the data plane [17]. A typical OpenFlow compatible switch comprises of one or 

more flow tables, matching incoming flows (and packets) with policy actions such as prioritization, 

queueing, packet dropping etc. The SDN controller can manipulate the flow tables either in (a) real-

time, reactively, by interrogating the controller to ask for forwarding information (e.g., if the 

forwarding path for a packet is unknown) or (b) proactively, by sending complete flow entries based 

on requirements dictated by higher applications residing in the application plane. The OpenFlow 

pipeline processing through flow tables is depicted in Fig. 2.3 and a descriptive table with flow table 

entries is given in Table 2.2. 

 

Figure 2.3. OpenFlow Pipeline Processing 
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Table 2.2. OpenFlow Flow Table Entries 

Parameter Match Fields Counters Instructions 

Functionality Matching packet headers, ingress 
ports, instructions and previous 
table meta data  

Update respective 
counters based on 
packet matches 

Apply per-flow actions 

Purpose Traffic segregation for further 
processing 

Measuring flow 
statistics, real-time 
traffic monitoring 

Flow routing, metering, 
queueing, QoS, etc. 

 

 

OpenFlow allows multiple flow tables to offer specific control instructions to be applied in a 

sequential order and flow segregation. Once a packet arrives at the switch, matching is performed 

in either a single flow table and sent to its destination (outgoing port) or sent to other flow tables 

as dictated by the network control logic provided by the controller. Flow matching occurs on the 

basis of a prioritization mechanism in table entries, with the top matching (first match) entry in the 

flow table and corresponding action to be executed. If no match is found (called a “table miss”) the 

packet is either dropped or a request for processing instructions is sent to the controller (packet_in). 

The controller in turn has the prerequisite knowledge regarding location of the target destination, 

such as campus server(s) or the Internet gateway discovered during service initiation. The controller 

sends a packet_out message to the respective switch and flow_mod messages to each switch along 

the destined path of the flow describing forwarding actions. 

 

Packets transverse switch flow tables in the form of metadata communicated between different 

tables. Flow entries can also point the packet to a set of particular group actions. Group actions 

allow a set of complex policies to be executed on the packets compared to flow tables such as route 

aggregation, multicasting, etc. Packets arriving at the ingress port of a switch are generically 

processed in the following sequence. 

 

1. Highest priority matching flow entry in the first flow table is found based on ingress port, 

metadata and packet headers. Priority is calculated on a top to bottom approach with 

entries at the top carrying higher priority. 

 

2. Relevant instructions are applied: 

 Modify the packet as instructed in actions list. 

 Update the action set by adding and deleting actions in the actions list. 

 Update metadata. 

        3. Send match data and action set to the next table for further processing. 
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The fundamental difference between an action list and action set is the time of execution [5]. An 

action list is executed as soon as a packet leaves the flow table to make necessary changes to this 

data whereas an action set keeps accumulating actions which are executed once the packet(s) 

transverses through all relevant flow tables. Flow tables are assigned numbers in sequence and 

match data along with its action set can generally only be sent from a table of lower sequence to 

higher, assuring that packets move in forward direction instead of backward through a switch. The 

flow-entries, once installed in switch tables, conform to pre-set idle_timeout and hard_timeout 

values. An OpenFlow compliant switch maintains a TLS control channel with the SDN controller and 

periodically sends keepalive “hello” messages to communicate state information. The 

communication uses the TCP protocol to ensure reliability in message delivery between the 

controller and switch. Well known TCP ports for OpenFlow traffic are 6633 and 6653 (official IANA 

port since 18-07-2013) [17]. OpenFlow versions have evolved over the past few years offering bug 

fixes and enhancements. The latest version available at the time of writing is v1.5 [17]. 

 

The OpenFlow protocol also allows multi-part read-state messages to retrieve traffic statistics from 

switches via the SDN controller. The three prominent message  types used are (i) Controller-to-

switch, initiated by the controller to manage and inspect switch state, (ii) Asymmetric, initiated by 

the switch to notify of network events  and  (iii) Symmetric, initiated by either entity to keepalive 

the control channel [17]. Each message comprises of further sub-types for specific actions. Some 

well-known message types and their size are presented in Table 2.3. The controller, however, does 

not orchestrate flow-forwarding behaviour based on any collected statistical information on its own. 

Using the controller northbound programming interface (API), allows administrators to poll 

OpenFlow switch counters and utilize this information in a monitoring solution to manage the 

underlying network. 

Table 2.3. OpenFlow Message Specification 

Type Message OpenFlow Switch 
Conformance Spec. 

v1.3.1 

Size 

Flow forwarding and control Packet_In OFPT_PACKET_IN 160 bits+ first flow packet 

Packet_Out OFPT_PACKET_OUT 160 bits+ update packet 

Statistics, counter polling Table_Stat OFPC_TABLE_STATS 32.3 bytes 

Flow_Stat OFPC_FLOW_STATS 448 bits 

Switch event Flow_Rem OFPT_FLOW_REMOVED 352 bits 
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b) Extensible Messaging and Presence Protocol (XMPP) 

 

The extensible messaging and presence protocol (XMPP) was originally designed as a general 

communications protocol offering messaging and presence information exchange among clients 

through centralized servers [20]. XMPP remains quite similar to simple message transfer protocol 

(SMTP), however, the schema is extensible through XML encoding for user customization and 

additionally the protocol provides near real-time communication.  Each XMPP client is identified by 

an ID, which can be as simple as an email address. Client machines set up connections to advertise 

their presence to a central server, which maintains contact addresses and may inform other 

contacts know that a particular client is online. Clients communicate with each other through chat 

messages which are pushed as opposed to polling used in SMTP/POP emails. The protocol is an IETF 

standardization of the Jabber protocol and has been defined for use with TCP connections in RFC 

6121. A number of open source XMPP implementations are also available with variations being 

used in applications including Google, Skype, Facebook and many games. The protocol has found 

new applicability in hybrid SDN, Internet of Things (IoT) and data centers and is being used for 

managing individual network devices. Network devices run XMPP clients which respond to XMPP 

messages containing CLI management requests. In data centers, every object such as virtual 

machine, switch and hypervisor can have an XMPP client module awaiting instructions from XMPP 

server for authentication and traffic forwarding as shown in Fig. 2.4. Upon receiving instructions, 

the clients update their configuration as per server request(s).  

 

 

 

 

Figure 2.4. XMPP Client-Server Communication 
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While XMPP is defined in an open standard and follows an open systems development and 

application approach allowing interoperability among multiple infrastructures, it also suffers a few 

weaknesses. The protocol requires an assured message delivery extension to guarantee QoS of 

message exchanges between the XMPP client and the server. Additionally, the protocol does not 

allow end-to-end encryption, a fundamental requirement in the modern dispersed and multi-

tenanted network architectures. Extensions are, however, available dealing with assured message 

delivery, and the encryption of messages. 

 

c) Cisco OpFlex 

 

Cisco OpFlex is another example of a southbound SDN protocol facilitating control-date plane 

communication with a goal of becoming a standard, enabling policy application across multiple 

physical and virtual environments. In comparison with OpenFlow protocol, which centralizes all the 

network control functions using the SDN controller, the Cisco OpFlex protocol instead concentrates 

primarily on implementing and defining the policies [63]. The reason for enhanced focus on policies 

is to remove the controller scalability and control channel communication from becoming the 

network bottleneck and pushing some level of intelligence to the devices using legacy protocols. 

The framework allows policy definition within a logical, centralized repository in the SDN controller, 

and the OpFlex protocol communicates and enforces the respective policies within a subset of 

distributed elements on the switches. The protocol allows bidirectional communication of policies, 

networking events and statistical monitoring information. Real-time provision of information may 

in turn be used to make networking adjustments. The switches contain an OpFlex agent supporting 

the Cisco OpFlex protocol. Cisco is currently developing an open source, interoperable OpFlex agent. 

Some of the industry giants, including Microsoft, IBM, F5, Citrix and Red Hat, have shown 

commitment to embedding OpFlex agent in their product lines [63]. OpFlex relies on traditional and 

distributed network control protocols to push commands to the embedded agents in switches. One 

of the main reasons for the early adaption of OpenFlow has been the level of control it can offer to 

developers for designing network control applications with minimal support from network vendors. 

Therefore, in order to standardize OpFlex, Cisco has also submitted the protocol to IETF 

standardization process and several vendors are presently working to standardize as well as 

increase the adoption of the protocol [63]. 
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2.4.2 Northbound communication protocols 

 

Since the inception of SDN, a number of networking vendors have started actively developing 

SDN oriented applications with the aim of reducing the OPEX and CAPEX of future IT network 

infrastructures. The applications themselves vary in scope with some providing a comprehensive 

network monitoring and control solution while others solely target a particular aspect of load 

balancing, security and traffic optimization through SDN controllers. The architecture and APIs 

(northbound) of SDN applications vary between vendors. Some have incorporated SDN controllers 

inside applications while others have defined custom northbound APIs for policy translation 

between controllers and their own higher application layer SDN services. As per the ONF SDN 

framework [1], applications might act as an SDN controller in their own right or liaise with one or 

more SDN controllers to gain exclusive control of resources exposed by controllers. Applications can 

exist at any level of abstraction with a general perception that the further north (higher) we go in 

SDN framework, the greater the level of abstraction. A specific distinction between applications and 

controller is not precise [2][3]. A controller-application interface may mean different things to 

different vendors. However, the fundamental principle of abstracting network resources and 

presenting network state to applications provides real-time network programmability, the 

cornerstone of SDN.  

 

The ONF constituted a special working group in June 2013 towards standardizing the northbound 

interface (NBI) architecture across the industry [5]. Although there is considerable debate within 

industry whether such a standardized interface is even required, the benefits of having an open 

northbound API are also significant. Open northbound API allows developers from different areas of 

industry and research to develop a network application, as opposed to only equipment vendors. It 

also gives network operators the ability to quickly modify or customize network control. Despite 

initially proposing it, the ONF consortium has, therefore, subsequently avoided northbound API 

standardization to allow maximum innovation and experimentation. As a direct result, more than 

20 different SDN controllers that are currently available feature varying northbound APIs based on 

the needs of the applications and the orchestration systems residing above. There is a chance there 

will never ever be a standardized northbound API. Routing and switching vendors that traditionally 

rely on network-based applications and features to differentiate their hardware are positioning 

themselves to maintain profitability in the SDN arena. These vendors may invest in custom software, 

while using standard southbound protocols such as OpenFlow to run concurrently alongside their 

operating system and complement the existing control plane. The result would definitely be a 
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complex and crowded SDN ecosystem. The following subsections review the two popular 

northbound APIs, the RESTful [36] and Java based OSGi [37] interface prevalent in SDN controllers. 

 

a) Representational State Transfer (RESTful) 

 

Representational state transfer, or simply REST, follows the software architecture style 

developed for World Wide Web consortium (W3C) encompassing all client-server communications. 

The concept was originally introduced by Roy Fielding in [36]. The main goals of the scheme are to 

offer scalability, generality, and independence and allow the inclusion of intermediate components 

between clients and servers to facilitate these necessary functionalities. Both clients and servers 

can be developed independently or in tandem, there is no particular necessity to have both 

developed by same vendor. A schematic diagram representing RESTful calls is shown in Fig. 2.5. The 

server component is stateless and clients keep track of their individual states to allow scalability. 

Server responses can be cached for a specified time. Every entity or global resource can be 

identified with global identifiers such as URIs and is able to respond to create, read, update and 

delete (CRUD) operations. The uniform interface for each resource is GET (read), POST (Insert), PUT 

(write) and DELETE (remove). Data types can define network components such as controller, 

firewall rule, topology, configuration, switch, port, link and even hardware. RESTful is prevalent in 

most controller architectures as the northbound interface of choice along with Java APIs. One of 

the major drawbacks of RESTful however, is the lack of public subscription or live feed informing 

the SDN controller of network state changes. Like HTTP, REST cannot determine when a page has 

changed and requires frequent refresh. Application developers therefore, use loop calls at periodic 

time intervals to retrieve and subsequently post updates to individual switches based on pre-

defined policies. 

 

 

Figure 2.5. RESTful Application Programming Interface (API) 
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b) Open Services Gateway Initiative (OSGi) 

 

The open services gateway initiative (OSGi) is a set of specifications for dynamic application 

composition using reusable Java components called bundles [37]. Bundles publish their services 

with OSGi service registry and can find/use services of other bundles as depicted in Fig. 2.6. Bundles 

can be installed, started, stopped, updated and uninstalled using a lifecycle API. Modules define 

how a bundle can import/export code. The security layer handles security and execution 

environment defines what methods and classes are available in a specific platform. A bundle can 

get a service or it can listen for a service to appear or disappear. Each service has properties that 

allow other services to select among multiple bundles offering the same service. Services are 

dynamic and a bundle can decide to withdraw its service, which will cause other bundles to stop 

using it. Bundles can be installed and uninstalled on the fly. The OpenDaylight project [71] is one 

major example of a SDN controller platform built using the Java based OSGi framework. OSGi allows 

the starting, stopping, loading and unloading of Java based network (module) functionalities. In 

comparison, platforms such as Ryu [70], do not offer OSGi support and the controller has to be 

stopped and restarted with the needed modules or a custom REST method is built with all the 

required functionalities included to avoid controller restarts. A few other SDN platforms supporting 

OSGi include Beacon [75], Floodlight [76] and ONOS [93]. 

 

 

 

 
Figure 2.6. Open Services Gateway Initiative (OSGi) 

 

 

 

 

 



52 
 

2.5 Network controllers and switches 

The SDN controller provides a programming interface for administrators to control the 

underlying network elements. Network administrators and application developers can 

collaboratively use the controller to perform management tasks as well as introduce newer 

functionalities such as flow metering for QoS, re-routing and load-balancing as well as providing 

access control. The level of abstraction offered to the operator, therefore, depicts the underlying 

network switches as a single system which can be updated in real-time according to service 

requirements. The SDN framework can be applied to a wide range of services and heterogeneous 

networking technologies as well as media including virtual and physical networking gear and wired 

and wireless networks. Since the inception of SDN, there have been a number of controller 

platforms developed for the purposes of academic research as well as several vendors producing 

proprietary carrier-grade solutions. The support for southbound and northbound APIs in controller 

platforms, however, varies with each platform [40]. While the previous sections discussed about 

the architectural components and interactions, this section refers to the physical components and 

how the architecture links to an actual implementation. SDN controller and SDN-compliant switch 

features are elaborated further in the following sub-sections. 

 

2.5.1 SDN controllers 

 
The SDN controller maintains and applies network policies as required by higher applications 

and services, and translates and configures these policies in individual network devices. As 

mentioned earlier, once a packet arrives at switch, in case of a table miss (absence of flow entry) it 

may get forwarded to the controller, which determines the next course of action for the respective 

traffic flow. A schematic representing generic controller architecture is given in Fig.2.7. Depending 

on the deployed redundancy measures, switches may communicate with either a single or several 

controllers [34]. Inter-controller communication is usually served by an external legacy protocol 

such as the Border Gateway Protocol (BGP) or the Session Initiation Protocol (SIP) over TCP 

channels to exchange routing information. Multiple controllers can improve the reliability of the 

system. In case of failure of one controller or control channel, the switch can obtain flow 

forwarding instructions from another controller instance. The number of controllers and their 

placement depends on the topology and operational requirements of an organization. Two popular 

schemes proposed include the vertical approach, where multiple controllers are in effect controlled 
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by controller(s) at a higher layer, and the horizontal approach in which controllers establish a peer-

to-peer communication relationship [65][67]. 

 

Controllers are usually hosted on network attached server(s). In the case of multiple controllers, 

OpenFlow dictates that the switches maintain a control channel with each controller, independent 

of the data channel. A summary of commonly used OpenFlow compliant controllers is given in 

Table 2.4, along with their development platform and brief description. The development of 

controllers has been rather organic due to the ongoing development of the SDN area. The two 

broad categories of controllers covered in the Table 2.4. include general and special purpose 

controllers. NOX and POX were early stage general purpose controller platforms during SDN 

evolution[68][69]; POX in addition to offering OpenFlow support also offers a visual topology 

manager. Ryu, developed in Python by the NTT Corporation, has found increased applicability in 

several research studies, being a complete SDN ecosystem supporting the OpenFlow protocol as 

well as the RESTful at the northbound interface [70]. The OpenDaylight (ODL) controller platform 

founded and led by several industry giants offers Java based development and deployment of 

carrier-grade SDN solutions [71]. Special purpose controllers such as FlowVisor [72], RouteFlow [73] 

and Oflops [74] serve specific tasks including serving as transparent proxies between switches and 

multiple controllers, performing virtualized IP routing over OpenFlow network switches and 

benchmarking switch performance. 

 

 

 

                                                     Figure 2.7. SDN Controller Schematic 
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Table 2.4. Popular OpenFlow Compliant Controller Implementations 
Controller Implementation Open Source Developer Description 

NOX C++/ Python Yes Nicira The first OpenFlow controller [68]. 

POX Python Yes Nicira Controller supporting OpenFlow having a 
high-level API including topology graph 
and virtualization support [69]. 

Ryu Python Yes NTT, OSRG Network Operating System (NOS) that 
supports OpenFlow [70]. 

OpenDaylight Java Yes Industry 
consortia 

Platform for building programmable, 
software-defined network applications 
[71]. 

Beacon Java Yes Stanford 
University 

Java-based controller that supports both 
event-based and threaded operations 
[75]. 

Floodlight Java Yes Big Switch OpenFlow controller, forked from the 
Beacon controller [76]. 

Helios  No NEC Controller providing shell environment for 
integrating experiments [77]. 

Trema C/ Ruby Yes NEC Full-stack framework for developing 
OpenFlow controllers in Ruby and C [78]. 

Jaxon Java Yes Independe
nt 

NOX-dependent Java-based OpenFlow 
controller [79]. 

MUL C Yes Kulcloud OpenFlow controller having multi-
threaded infrastructure at its core and 
designed for performance and reliability 
in mission-critical environments [80].. 

IRIS Java Yes IRIS Team - 
ETRI 

OpenFlow Controller having horizontal 
scalability for carrier-grade network, high 
availability and multi-domain support 
[81]. 

Maestro Java Yes Rice 
University 

OpenFlow operating system for 
orchestrating network control 
applications [82].. 

NodeFlow JavaScript Yes Independe
nt 

OpenFlow controller written in pure 
JavaScript [83]. 

NDDI - OESS C++ Yes Internet2, 
Indiana 
University 

Application to configure and control 
OpenFlow enabled switches through a 
simple and user friendly interface [84]. 

RouteFlow C++ Yes CPqD Special purpose provides virtualized IP 
routing composed of an OpenFlow 
controller application, an independent 
server and physical network emulation 
[73]. 

FlowVisor Java Yes Stanford 
University/ 
Nicira 

Special purpose OpenFlow controller, a 
transparent proxy between switches and 
multiple controllers [72]. 

SNAC C++ No Nicira Special purpose controller built on NOX 
uses a web-based policy manager [85]. 

Resonance NOX+OpenFlow Yes Georgia 
Tech. 

Special purpose network access control 
application built using NOX and OpenFlow 

Oflops C Yes Cambridge, 
Berlin, Big 
Switch 

Special purpose standalone controller 
used to benchmark performance and test 
an OpenFlow switch [74].  

ovs-controller C Yes Independe
nt 

Reference controller packaged with Open 
vSwitch [86]. 
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2.5.2 SDN compliant switches 

 

In addition to the several network controllers on offer, several types of SDN software and 

hardware switches are currently available. A summary of current OpenFlow switch 

implementations are presented in Table 2.5, along with their brief description and development 

platform (language). The software switches can be used to run SDN test simulations as well as 

develop protocols and services. Open vSwitch for example, is now a part of the Linux kernel (as of 

version 3.3) and facilitates both the ability to serve as virtual gateway between physical and virtual 

services as well as a testing platform to be used in tandem with SDN topology simulation tools such 

as Mininet [103]. In addition to software switches, companies such as IBM, HP and NEC have also 

brought physical carrier-grade switches to market. The networking industry has taken keen interest 

in SDN evidenced by the availability of a number of commercial hardware switches which are 

OpenFlow-enabled. 

 

2.6 Simulation, development and debugging tools 

The development of SDN has seen the advent of several key simulation and emulation test-

beds to carry out feasibility studies and introduce new protocols and services. The set of tools 

available for the purpose can be broadly divided into three categories (i) simulation and emulation 

platforms (ii) software switch implementations and (iii) debugging and troubleshooting tools. A 

summary description of major utilities within each category and their description are given in Table 

2.6. An overview of the tools is given below.  

2.6.1 Simulation and debugging platforms 

a) Mininet: Among the emulation tools, Mininet [103] is the most prominent. The platform 

allows an entire network based on OpenFlow to be emulated on a single hosted machine. 

Mininet simplifies the development and deployment of new services by providing a 

software platform to create virtual machines, hosts and network switches connected to an 

in-built (ovs-reference) or user-defined controller for testing purposes. The latest Mininet 

v2.2.1 supports OpenFlow versions up to 1.3 (along with Open vSwitch v2.3). While Mininet 

supports Open vSwitch [86] by default, it can also be customized to use an external user 

space switch such as the softswitch13 [90]. 
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Table 2.5. Common OpenFlow Compliant Switches and Standalone Stacks 

Switch Implementation Category Description 

Open vSwitch C/ Python Software OpenFlow stack that is used both as a 
virtual switch and ported to multiple 
hardware platforms [86].  

Indigo C Software Software running on hardware 
switching implementations and based 
on the Stanford reference [87]. 

OpenFlowJ Java Software OpenFlow stack written in Java [88]. 

OpenFaucet Python Software Python implementation of the 
OpenFlow 1.0 protocol [89]. 

ofsoftswitch13 C/ C++ Software User-space software switches 
implementation [90]. 

Pantou C Software OpenFlow port to the OpenWRT 
wireless environment [91]. 

Oflib-node JavaScript Software OpenFlow protocol library for Node.js 
converting between the protocol 
messages and JavaScript objects [92]. 

OpenFlow Reference C Software Minimal OpenFlow reference stack that 
tracks the specification [17]. 

Open Source Network 
Operating System 
(ONOS) 

Java Software Open source scalable control plane 
cluster offering GUI and OpenFlow as 
well as NetCONF support [93]. 

Pica8 C Physical and 
software 

Software platform for hardware 
switching chips which includes L2/L3 
stack [94]. 

A10 Networks –AX 
Series 

Proprietary Physical and 
software 

Physical and software appliances (AX 
Series), offering L4-7 programming [95]. 

Big Switch Networks - 
Big Virtual Switch  

Proprietary Physical and 
software 

Data center network virtualization 
application built upon an OpenFlow 
switches [96]. 

Brocade ADX Series Proprietary Physical and 
software 

Secure and scalable application service 
infrastructures using the RESTful API on 
northbound interface [97]. 

NEC 
ProgrammableFlow 
Switch Series 

Proprietary Physical and 
software 

Series offers network virtualization, 
multipath routing, security, and 
programmability [98]. 

ADVA Optical - FSP 150 
& 3000 

Proprietary Physical FSP 150 carrier Ethernet and FSP 3000 
transport layer products [99]. 

IBM RackSwitch G8264 Proprietary Physical Offers low cost flexible connectivity for 
high-speed server and storage devices 
in DC environments [100]. 

HP 2920, 3500, 3800, 
5400 series 

Proprietary Physical Advanced modular switch series built 
on programmable ASICs offering 
scalable QoS and security [101]. 

Juniper Junos MX, EX, 
QFX Series 

Proprietary Physical Series supports different versions of 
OpenFlow varying with model [102].  
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b) NS-3: The network simulator has long been used by the networking community to test and 

develop networking protocols and services. The latest ns-3 simulator offers support for 

OpenFlow switches, however, it is limited to a very early version of OpenFlow v0.89 [104]. 

While official work is continuing on introducing newer updated versions of OpenFlow, a 

specialist OpenFlow 1.3 module for ns-3 namely OFSwitch13 module has been designed 

independently [105]. The module relies on the ofsoftswitch13 library providing a data path 

(switch) implementation in the user pace and to convert OpenFlow v1.3 messages from 

wire format. 

 

c) OMNeT++: The OMNet++ is a discrete event simulator allowing the development and 

testing of SDN based network models [106]. SDN oriented projects can be integrated with 

OMNeT++ using an OpenFlow components and an INET Framework. 

 

 

2.6.2 Software switch implementations 

A non-exhaustive summary of software switches which are also used for experimentation and 

new service development were given earlier in Table 2.5. Well-adopted implementations such as 

the Open vSwitch have been implemented in multiple platforms including Mininet and ns-3. A brief 

overview of some of the well-known software switches presently available is given below. 

 

a) Open vSwitch: The Open vSwitch is one of the most widely deployed software switches. It 

employs an OpenFlow stack that can be used both as a virtual switch in virtualized network 

topologies and has also been ported to multiple hardware/ commodity switch platforms. [86] 

The Open vSwitch has been built in the Linux kernel since version 3.3 [17].  

 

b) ofsoftswitch13: The ofsoftswitch13 running in the user space also provides support for 

multiple OpenFlow versions [90]. The soft switch supports Data Path Control (Dpctl), a 

management utility to directly control the OpenFlow switch, allowing the addition and 

deletion of flows, query switch statistics and modify flow table configurations. Although 

ofsoftswitch13 supports a variety of OpenFlow features, it has recently run into some 

compatibility issues with latest versions of Linux (Ubuntu 14.0 and beyond) and developer 

support has also stagnated. 
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Table 2.6. Common OpenFlow Compliant Utilities 

Category Purpose Software and tools 

Emulation and 
simulation 

Emulating network topologies as 
well as providing a reference for 
network event simulation 

Mininet [103], ns-3 [104], 
OMNeT++ [106] 

Software switches and 
platforms 

A software platform to test and 
validate switch-controller 
behaviour and southbound 
protocol working 

Open vSwitch [86], ofsoftswitch13 
[90], Indigo [87], Pica8 PicOS [94], 
ONOS [93], Pantou [91] 

Debugging and 
troubleshooting 

Specialist tool set to debug SDN 
behaviour at the switch and 
controller level 

STS [107], Open vSwitch [86], NICE 
[108], OFTest [109], Anteater 
[110], VeriFlow [111], OFRewind 
[112], NDB [113], Wireshark [114] 

 

c) Indigo: The Indigo project is an open source implementation of OpenFlow which can be run 

on a range of physical switches and utilizes the hardware features of existing Ethernet switch 

ASICs to run OpenFlow pipeline at line rates [87]. The implementation is based on the original 

OpenFlow Reference Implementation and currently supports all features required in the 

OpenFlow 1.0 standard. 

 

d) Pica8 PicOS: The PicOS by Pica8 is a network operating system allowing network 

administrators to build flexible and programmable networks using white box switches with 

OpenFlow [94]. The proprietary software allows the integration of OpenFlow rules to be used 

in legacy layer 2 / layer 3 networks, without disrupting existing network and creating a new 

one from scratch. 

 

d) Open source network operating system (ONOS): Although not specifically a soft switch 

implementation, the mission of ONOS is to develop an operating system resilient for 

carrier-grade deployment of software defined networks [93]. The ONOS GUI provides the 

multi-layer view of the underlying network and allows operators to peruse network devices, 

links, and errors. 

 

e) Pantou: Pantou modifies a commercial wireless router and access point to an OpenFlow 

enabled switch. The OpenFlow protocol is implemented as an application on top of 

OpenWRT platform [91]. The OpenWRT platform used is based on the BackFire release 

(Linux v2.6.32) while the OpenFlow module is based on the Stanford reference 

implementation in user space. 
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2.6.3 Debugging and troubleshooting tools 

Debugging and troubleshooting tools serve as vital resources for development and testing 

of SDN based services.  The following list presents some of the popular SDN debugging and 

verification tools. 

 

a) SDN troubleshooting system (STS): STS simulates the network devices of your 

network while also allowing enough programmatically to generate and examine 

various test case deployments. Users can interactively visualize the network states, 

the real-time changes and also automatically determine the events that trigger 

deviant behaviour and identify bugs. The implementation is based on the POX 

controller platform, with the feasibility to use other OpenFlow compliant controllers 

supporting OpenFlow v1.0. 

 

b) Open vSwitch specific tools: The Open vSwitch comes with a comprehensive set of 

tools to debug the switch and network behaviour. The utilities comprise of the 

following: 

 

 ovs-vsctl: Used for configuring the switch (daemon) configuration database (known 

as ovs-db.) 

 ovs-ofctl: A command line tool for monitoring and administering OpenFlow 

switches. 

 ovs-dpctl: Used to administer Open vSwitch datapaths (switches). In addition to 

Open vSwitch ovs-dpctl, a reference dpctl comes with the OpenFlow reference 

distribution and enables visibility and control over a single switch's flow table. The 

syntax of commands used by the utilities is quite different. 

 ovs−appctl: Used for querying and controlling Open vSwitch daemons. 

 

c) NICE: NICE offers an automated testing tool used to identify and check bugs in 

OpenFlow programs [108]. The tool applies model checking to explore the entire 

state of the controller, the switches, and the hosts. To address scalability issues, the 

tool uses model checking with symbolic execution of event handlers (identifying the 

representative packets that exercise code paths on the controller). NICE prototype 

tests Python applications using the NOX platform. 

 



60 
 

d) OFTest: OFTest is an OpenFlow switch test framework built in Python and also 

includes a collection of test cases [109]. The tool is based on the unittest function, 

which is included in the standard Python distribution. OFTest hosts the switch under 

test and the OFTest code runs on the test switch. Both control plane and data plane 

side of switch connections can be tested by sending and receiving packets to the 

switch as well as polling switch counters. 

 

e) Anteater: Anteater attempts to check network invariants that exist in the 

networking devices, such as connectivity or consistency [110]. The main benefit of 

using Anteater is that it is agnostic to protocols and will catch errors that result from 

faulty firmware as well as control channel communication. 

 

f) VeriFlow: VeriFlow allows real-time verification and resides between the controller 

and the data plane elements (switches) [111]. The framework allows pruning of flow 

rules that may result in anomalous network behaviour. 

 

g) OFRewind: OFRewind is another tool that allows debugging of network events both 

in the control and data plane and to log these at different levels of detail to be 

replayed later in examining problematic scenarios and localize troubleshooting 

efforts [112]. 

 

h) Network debugger (NDB): NDB implements traffic breakpoints and packet-

backtraces for an SDN environment [113]. Similar to the popular software 

debugging utility gdb, users can isolate networking events that may have led to an 

error during traffic forwarding. It works using the OpenFlow API to configure 

switches and generate debugging events. NDB then acts as a proxy intercepting 

OpenFlow messages between switches and the controller. The debugger relies on 

OpenFaucet python module implementing OpenFlow v1.0. 

 

i) Wireshark: The popular network analyser Wireshark can be deployed on the 

controller or Mininet host to view OpenFlow exchange messages between the 

controller and individual switches. The OpenFlow dissector is available in the 

current Wireshark release [114]. OpenFlow control packets can be directly filtered 

while capturing using the TCP control channel traffic ports (6633 and 6653). The 



61 
 

captured packets provide a useful learning tool to understand switch-controller 

behaviour.  

 

2.7 SDN applications 

Software-defined networking has found a great deal of applicability in a wide range of 

networking avenues. Real-time programmability through the centralized controller has presented 

opportunities in data center networking, large campus environments as well as experimental 

designs focusing on enhancing end user experience and making residential networks more 

manageable. Furthermore, mobile operators have also shown keen enthusiasm in bringing the 

technology to 5G/ LTE mobile networks to allow simplified yet rapid development and deployment 

of new services. Some of the key applications of SDN are highlighted as follows. 

 

2.7.1 Data centers and cloud environments  

Optimal traffic engineering, network control, and policy implementation are absolute 

requirements when operating at large scales, as is the case for data centers. Increased latency, 

faults and prolonged troubleshooting may result not only in negative end user experience but 

significant cost penalties for operators. Data center (DC) SDN implementations, therefore, using a 

centralized control framework monitor and manage hundreds of network devices and services 

promising effective resource provisioning for operators. Google for example, has used SDN 

technology to connect its geographically dispersed data centers around the globe, allowing 

increased resilience and manageability [38].  

 

Cloud computing has also seen the integration of SDN based traffic engineering solutions to 

increase service scalability and automated network provisioning. A notable example is the 

Microsoft public cloud [201]. The study highlights SDN based load balancing solution Ananta, a layer 

4 load balancer employing commodity hardware to provided multitenant cloud management. Using 

host agents, packet modification is localized enabling high scalability across the DC. The project has 

seen a significant level of deployment in the Microsoft Azure public cloud, allowing high throughput 

for several tenants allocated a single public IP address. Another SDN deployment in cloud 

environment is NTT's software-defined edge gateway automation system [314]. The gateway uses 

OpenFlow protocol for maximum flexibility in network provisioning and evaluates possible 
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extension to existing OpenFlow features, baselining the SDN stack to allow robust cloud gateway 

deployment.   

 

On a slightly separate strand, reducing energy consumption in data centers has also been an area of 

focus for operators to reduce operational costs. Since most DCs are overprovisioned for peak traffic, 

the energy efficiency during periods of underutilization is minimal. SDN technologies such as 

ElasticTree allow network wide power management by switching off redundant switches from the 

controller side during low traffic demand [39]. DC network environments to-date remains one of 

the primary beneficiaries of the SDN framework. 

 

2.7.2 Campus and high speed networks  

Enterprise networks may show a great deal of variability in traffic patterns requiring 

proactive management to adjust network policies and fine tune performance using a 

programmable SDN framework. A centralized control plane may also aid in effective monitoring and 

utilization of network resources for re-adjustment. An additional benefit may be to eliminate 

middle boxes providing services such as NAT, firewalls, access control and service differentiation 

solutions and load balancers [41-43]. With increasing use of fibre technologies in enterprise 

networks, the  Optical  Transport  Working  Group  (OTWG)  created  by  the  Open  Network  

Foundation  (ONF) envisions applying southbound protocols such as OpenFlow to improve optical 

network management flexibility. Inclusion of an SDN controller for optimal network provisioning, 

while offering simplicity, also allows external third-party network administration of the enterprise 

network and added support for visualization [44]. 

 

The integration of heterogeneous networking technologies using OpenFlow enabled network 

elements and a centralized controller has seen a great deal of applicability in optical high-speed 

networking. High speed optical communications require an appreciation of the existing OpenFlow 

framework and possible extensions to achieve a higher level of integration [316]. Using centralized 

real-time programmability, SDN enabled hardware from multiple vendors and optical packet based 

as well as circuit-switched networks can be placed under the SDN controller. Gudla et. al [315], for 

example used NetFPGA [16] along with Wavelength Selective Switching (WSS) for packet and circuit 

switching facilitated using the OpenFlow protocol. Liu et. al. [317] used virtual Ethernet based 

interfaces to demonstrate OpenFlow based wavelength path controlling in optical networking. A 

commodity SDN controller such as NOX, POX, etc., can operate the optical light paths using 

OpenFlow by mapping virtual Ethernet interfaces to physical ports of an optical cross-connect node. 
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The evaluation of network performance metrics included in the study detailed promising results in 

reducing latency of path setup and verification of routing and wavelength assignment allocation 

using dynamic node control providing paving the way for future software defined optical 

networking (SODN). In comparison with the typical distributed GMPLS protocol, SDON using a 

unified control protocol for QoS metrics offers greater capacity and performance optimization in 

optical burst switching [318]. The application of SDN, and in particular OpenFlow based controls in 

high speed and campus networking, therefore, continues to grow resulting in new as well as hybrid 

solutions to achieve greater network programmability. 

 

2.7.3 Residential networks 

Software defined networking has also been considered as an efficient means to manage 

residential and small office home office networks. Management of residential networks presents a 

key challenge for residential users and service providers alike, including the benchmarking of home 

user activities through collection of traffic metrics and the setup involved. One of the fundamental 

benefit of such networks is that operators and residential users are provided with a greater degree 

of visibility into network usage through effective monitoring using the SDN framework [45-47].  To 

relieve the burden of network management on residential gateways, Dillon and Winters [49] 

proposed the introduction of virtual residential gateways (data plane) using software defined 

networking controller(s) at the service provider side to allow providers remote management 

flexibility as well as innovative service delivery to homes. The residential router or gateway may be 

controlled and managed remotely via an SDN controller at the service provider premises, with the 

latter being responsible for fine tuning and troubleshooting the residential network [46][48-50]. 

Some contrasting schemes propose giving users more control and incorporating SDN based 

monitoring in the residential environment to change network policies [49][51][52].  

 

From a security perspective, it has been argued that an SDN based anomaly detection system in a 

residential SDN environment provides more accuracy and higher scalability than intrusion detection 

systems deployed at Internet service provider side [48]. Feamster in [46], proposed completely 

outsourcing residential network security utilizing programmable network switches at the customer 

premises to allow remote management. By employing the outsourced technical expertise, 

management and running of tasks such as software updates and updating anti-virus utilities may be 

done more effectively as the external operator also has a wider view of network activity and 

emerging threat vectors. The privacy of end users where technical operations related to residential 

network management are outsourced also requires consideration [47]. The inclusion of SDN 
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framework in residential networking, given its benefits to end users, remains an active area of 

academic and industry research. 

 

2.7.4 Wireless communications 

Due to the real-time programmability and potential to seamlessly introduce new services 

and applications to consumers, the SDN paradigm has also been ported to mobile communication 

networks. A programmable wireless data plane, offering flexible physical and MAC address based 

routing in comparison to the layer 3 logical address based traffic forwarding, allowed developers to 

fine tune mobile communications performance [53][56]. Using the control plane, user traffic can be 

segregated and routed over different protocols such as WiMAX, 3GPP or advanced LTE.  

 

Furthermore, there have been growing efforts to include the SDN layering model in the upcoming 

5G mobile communications realm and move from a flat topology, which increasingly relies on the 

core, to a more modular control and traffic forwarding framework. Similar to information-centric 

networking, data may be cached locally at certain points within the 5G network, as coordinated by 

the SDN controller, to reduce latency in service delivery to end users [54-55].  

 

Finally, within 5G networks, efficient resource management is essential to allow maximum 

utilization, network slicing, and guaranteeing fairness among several QoS classes [319]. Using SDN 

to maximize energy efficiency in 5G networking has, therefore, been the subject of investigation in 

several studies. SDN has also been test-implemented in 5G to allow rapid application service 

provisioning while adhering to stringent QoS requirements. At the more local level such as Wi-Fi 

access networks, SDN could be used to offer a great deal of ubiquity in connecting to different 

wireless infrastructures belonging to different providers using user device identity management 

which is in turn coordinated and proactively managed by the SDN controller [57]. 

 

2.8 Research challenges 

Increasing application of SDN framework in several network settings have also highlighted areas 

of concern ranging from application performance to security inadequacies inherent in the present 

architecture, briefly detailed in chapter 1. The present section discusses the major investigations 

and research advances made in several SDN areas in detail. A summary of the key areas of research 

and subsequent initiatives in software defined networking is presented in Table 2.7. 
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2.8.1 Controller scalability and placement  

The SDN controller is responsible for managing data plane switches and providing traffic 

forwarding rules that affect individual packet behaviour. In larger network environments, the 

placement of the SDN controller is highly pertinent in achieving optimized network connectivity 

[135]. The connections between controller(s) and switches in the data plane require low latency for 

seamless operation [136]. To address scalability concerns, having more than one controller serving 

the data plane are, therefore, usually required. In critical network infrastructures, multiple 

controllers, may also be required in order to offer a greater level of redundancy. Prevalent research 

in this area seeks to deploy multiple controllers in several network locations and consequentially 

determining the exact point of controller placement is critical [135-139].  

 

The controller placement problem was first identified by Heller et. al. in [136] as an NP-hard 

problem focusing on the determination of exact number and optimal location for SDN controllers. 

The study highlighted that the best controller placement solution should minimize the controller to 

switch control traffic latency. Similarly, Sallahi et. al. [137] considered the placement problem from 

an operational perspective discussing the cost involved in deploying and installing controllers and 

connecting these to the wider network fabric. Both studies used traversal search algorithms 

perusing through the best solutions to find an optimal candidate, a time consuming process 

proportional to the size of the network. Some of the topologies took an order of magnitude greater 

than 30 hours to find a satisfactory placement solution. From a controller workload standpoint, Yao 

et. al. [138] highlighted the fact that the placement solution should also consider the workload for 

each controller and that it does not exceed controller capacity. The proposed placement solution 

used k-center algorithm [140] to minimize the value of k (controllers) that meet the workload and 

capacity requirements. In a similar work, Yao et. al. [141], discussed placing controllers at network 

hotspots where switches carry most of the traffic. The switches in the proposed solution may utilize 

less overloaded controllers, migrating from one to another with changing traffic demand. 

 

Ros et. al [142] focused on network reliability, highlighting a positive correlation between fault 

tolerance and controller placement. The study used heuristic algorithms to compute controller 

placement and the maximum number of controllers which may be deployed to meet network 

reliability. Zhang et. al [135] used the min-cut method discussed in [143] to separate the network 

into smaller networks, each having its own controller. Similarly Guo et. al. [144] generated a 

hierarchical tree [145] of network nodes, dividing it into k clusters or subnetworks. Nodes with 

maximum closeness to other nodes were selected for controller deployment.  In [146], a greedy 
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Table 2.7. Summary of SDN Research Initiatives 

Area of 
concentration 

Brief description Research initiatives 

Controller 
scalability and 
placement 

Controller placement in large 
SDN environments offers a 
complexity optimization 
problem affecting latency, 
capacity and fault tolerance. 
The design of the control 
plane remains a multi-faceted 
topic of several research 
studies. 

 Reducing latency by solving optimal 
controller placement problem (NP-hard).  

 Solutions minimizing controller workload with 
respect to controller placement.  

 Placement schemes offering greater 
reliability using heuristic and greedy 
algorithms to refactor larger network into 
smaller (separate controller) sub-networks. 

 Combinatorial approaches optimizing 
multiple network performance metrics in 
relation to controller placement, providing a 
trade-off between performance gains and 
operational requirements. 

 Distributed control architectures considering 
hierarchical controller clusters to address 
scalability issues.  

Switch and 
controller 
design 

Studies aimed at improving 
northbound API 
standardization among 
multiple application 
platforms, level of control 
delegation appropriate for 
data plane elements and 
optimal hardware 
architectures.  

 Standardization of the northbound API, 
involving studies in designing a policy 
abstraction language compatible with several 
platforms and offering vertical and horizontal 
integration with parallel services and 
underlying network fabric. 

 Greater level of control delegation to network 
switches aimed at reducing controller 
overhead and increasing fail-safe redundancy. 

 New architectures for controller and switch 
design. 

Security SDN due to centralized 
network control creates 
potential security challenges 
directed at control plane 
(traffic) and data plane 
elements including network 
appliances and middle boxes. 

 Designing SDN security reference models 
focusing on securing the control plane to 
avoid network disruption and security 
compromise. 

 Control channel and application-controller 
traffic monitoring and anomaly detection. 

 Network /state information storage and 
retrieval for post-even and forensic 
examination.  

Application 
performance 

Improving the performance of 
individual network 
applications and services in 
the SDN framework using 
novel optimization techniques 
in wired, wireless and 
heterogeneous settings.  

 Increasing SDN application-awareness and 
optimizing time-critical application services 
using flow metering. 

 Development of SDN monitoring tools for 
evaluating performance gains in 
heterogeneous network environments. 

 Embedding network services such as 
authentication, firewalls, proxies, etc. in the 
data plane fabric. 

 Information-centric approaches exploiting 
location-based data caching. 
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algorithm was used to enhance controller placement reliability in the event of network state 

changes as well as single link failures in tandem with the optimal controller placement. Hu et. al 

[147] used multiple algorithms including l-w greedy, and simulated annealing and brute force 

searching with brute force offering the best optimal solution. 

 

Other notable works such as Onix [65], HyperFlow [66] and Kandoo [67] propose a distributed 

control architecture allowing a significant level of scalability and reliability in large SDNs. HyperFlow 

details a flat or horizontal scaling of controllers, while Kandoo and Onix use a hierarchical structure. 

The schemes allow multiple controllers to manage the data plane. The distributed architecture 

comprises of root and localized controllers each control-level having a different view of the 

underlying network. Another category of distributed controller design includes Difane [148] and 

DevoFlow [149] which delegate some control functions to the SDN switches to reduce the 

controller overhead. Offloading workload helps in improving network scalability, however, requires 

significant modifications in switching hardware to accommodate functional requirements. SDN 

controller placement, therefore, remains an active area of research with several solutions and 

approaches pursued to achieve a greater deal of scalability allowing greater network performance. 

 

2.8.2 Switch and controller design 

Innovations and proposals in controller and switch design seek to circumvent some of the 

problems associated with policy implementation while simultaneously addressing additional areas 

needing improvement including controller and switch scalability. Although controller-switch 

interaction is served by standard southbound APIs such as OpenFlow [17], XMPP [20] or ForCES [8], 

as mentioned earlier, a similar level of standardization is not available at the application-controller 

northbound interface. Since the northbound interface purely relies on the application logic, the 

supporters of non-standardization (of northbound API) argue that the present framework allows for 

greater degree of innovation with custom northbound communication fitting the application or 

service using the SDN. A number of controller utilities and platforms described earlier in the 

chapter allow applications to interact with each other as well as the underlying network elements 

for traffic engineering purposes. The application developer, however, needs an in-depth knowledge 

of the controller implementation to deploy application APIs. 

  

A few proposals have highlighted the need for network configuration language that can seamlessly 

express the administrator policies seamlessly on the underlying controller implementation [150-

153]. Policy description language such as Procera [150] and Frenetic [151] build a policy layer on 
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existing controllers, interfacing with configuration, graphical interfaces and other network monitors 

to translate administrator defined policies to flow level details which can be used by the controller. 

Other examples exploring network configuration languages include FML [152] and Nettle [153]. 

Feamster and Kim [107], propose using policy definitions for network configuration and 

management according to changing network conditions. The northbound communication API may 

be further used in such cases to allow the SDN to apply segregated policies on same application 

flows based on destination or source IP address. Monsanto et. al [154] on the other hand introduce 

the concept of modularized policy implementation which ensures that flow rules for one network 

application task do not interfere or replace rules for other tasks. As mentioned earlier, the chances 

of ONF or the industry standardizing the northbound API look slim and operators will continue to 

develop and deploy custom Pro-active implementation of policies in the switches lead to a 

substantial lowering of control overhead generated during real-time operation [148][149]. 

 

In terms of switch design innovation, Luo et. al [156] discuss the replacement of ASIC based 

counters for rule-matching in switches to ones processed in the CPU. Other technologies such as 

FLARE [155] allow for complete programmability of not only the data and control planes but also 

the control channel between them. A single controller may be able to handle up to 6 million to 12 

million flows per second [157][75]. However, lowering propagation latency and increasing fault-

tolerance and robustness also requires controller architectures using horizontal and hierarchical 

clusters [65-67]. 

 

2.8.3 Security 

The increasing interest in SDN in the networking community also initiated a significant debate 

highlighting the inherent security challenges of an SDN framework. The OpenFlow switch 

specification [86] includes relatively basic security incorporation in SDNs using optional transport 

layer security (TLS) allowing mutual controller-switch authentication without specifying the exact 

TLS standard. TLS although, has not been given much thought in Several open source controller and 

switch platforms, however, have not implemented TLS, which may lead to anomalous rule insertion 

in flow tables [299]. Centralized control makes the scheme vulnerable to attacks directed at the 

control plane which may disrupt the entire network. The intelligence in the centralized control 

plane may offer hackers the opportunity to explore security vulnerabilities in the controller and 

take over the entire network [64][158]. On the positive side, it is argued that the information 

generated from traffic analysis or anomaly detection in the network can be regularly transferred to 



69 
 

the SDN controller, having a global network-wide view to analyse and correlate feedback for 

efficient security [307]. 

 

In addition to securing the controller, targeted attacks on the network (e.g. DDoS) and subsequent 

controller failure may result in substantial network service downtime until the controller is up and 

running and the threat has been mitigated. The control channel between the controller and 

network devices has to be secure enough to reject anomalous injection; the same is true for 

application-controller communication. Effectively establishing trust among all the network devices 

and the applications on top are considered a key security concern. Vulnerability analysis, mitigation 

studies and a standardized framework for SDN security has therefore, been the focus of multiple 

deliberations [308-311] with a great deal of focus in the security domain laid on controller-switch 

and inter-controller communication. Shin and Gu [308] for example, undertake vulnerability 

evaluation of SDN by evaluating the feasibility of fingerprinting attacks. The study fingerprinted the 

SDN equipment such as OpenFlow switches and targeted the respective elements with denial of 

service (DoS) attack on the controller via control channel and on the data plane elements by 

exploiting flow tables. Both entities are identified as significant areas of SDN vulnerability. Similarly, 

Smeliansky [309] discussed communication protocol security with consideration for infrastructure 

and software services, concluding that control-data plane and control to control plane 

communication requires substantial hardening to mitigate security threats. Some of the solutions in 

controller-switch communication challenges propose replication of SDN controllers and network 

applications to provide redundancy and fail-safe operations, which may arise due to 

misconfigurations and software bugs [312]. Other investigations propose service mobility, to 

counter security threats [299]. The controller functionality for example, could be continuously 

shifted across several network elements making targeted attacks on the controller more 

challenging for those seeking to exploit the control-plane. 

 

SDN security has also been the subject of work in particular avenues including wireless 

communications and cloud computing, for the technology to gain wider acceptance in 

[310][311][313]. Schehlmann et. al in [310] discuss potential improvements in network 

management costs, as well as attack detection and mitigation by using SDN framework itself as a 

potential barrier to security vulnerabilities. SDN enables the incorporation of certain security 

functionalities through decoupling of network control from forwarding logic where traffic filtering 

can be achieved using key traffic (packet) identifiers usually requiring dedicated firewalls and 

intrusion detection/ preventions systems in legacy networking. Additional security layers may be 
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added on top of existing SDN layers as well as by the introduction of agents in data plane elements 

to incorporate granular traffic filtering in heterogeneous wireless networks [311]. Security 

approaches may focus on securing the network itself by embedding intelligent security alarms in 

the network elements such as switches and controllers or include SDN oriented security utilities in 

the functional entities such as application servers and storage clusters. Similarly, in SDN-enabled 

cloud computing, additional security may be introduced at each SDN layer based on underlying 

operational requirements to make intra and inter-cloud communication more secure [313].   

 

In addition to specific application avenues real-time SDN monitoring has to be robust enough to 

offer timely detection of anomalous network events and containment [48]. The monitoring 

information not only provides insight into traffic but quite similar to the case of legacy network 

systems, may also have enough storage capacity system to satisfy technical (forensic) as well as 

legal requirements [43]. Organizations such as OpenFlowSec [159] focus on security challenges 

presented by the SDN paradigm and OpenFlow enabled devices. Development work has considered 

designing reference implementations of security features at different layers of the OpenFlow stack. 

A detailed taxonomy of security threats in the SDN paradigm is presented in [160]. Beyond the basic 

SDN architecture, the deployment of robust security in the SDN paradigm is still very much an area 

requiring further study. It is however, a widely held belief that without a significant increase in 

focus on SDN security, the paradigm may not see adoption beyond private DC infrastructures or 

autonomous organizational deployments. 

 

2.8.4 Application performance 

Application performance improvement has been the primary area of focus in a number of SDN 

related studies ranging from application-aware SDNs, utilizing the framework for optimizing time-

critical applications to the development of novel application performance monitoring solutions. The 

following sub-sections discuss the studies carried out in this regard. 

 

a) Application-awareness in SDN 

 
Traffic optimization carried out on the basis of network applications to a significant extent 

focuses on increasing specific service performance(s) in SDN. Supporters of ‘application-aware’ SDN 

infrastructure consider the benefits the framework brings in offering enhanced performance for 

specific applications. While southbound APIs such as OpenFlow are capable of Layer-2/3/4 based 

policy enforcement they lack high level application awareness and are mainly responsible for 
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configuring the underlying network elements. Network management primitives are, therefore, 

employed which customize traffic forwarding policies for individual applications and  the SDN 

controller translates these into device configuration using a southbound API such as OpenFlow. The 

concentration in this domain has seen several studies particularly concentrating on video streaming 

(IPTV, YouTube, P2P video, etc.) and voice communications (VoIP), using the SDN architecture to 

improve the respective application quality of service. Qazi et. al [60] in one such ‘application-aware’ 

SDN work discuss Atlas, a crowd sourcing approach which deploys software agent on user devices 

and collects the netstat logs, in turn exported to the SDN control plane. Using the exported logs in 

tandem with machine learning classification the scheme identifies approximately forty applications 

(from Google Play Store). The SDN controller in turn applies pre-defined policy actions to the 

respective flows as well as collects flow statistics per application for monitoring purposes. Mekky et. 

al [115] proposes a similar per application flow metering approach using the SDN framework. 

Applications are identified in the data plane and the relevant policies applied using individual 

application tables. The proposed scheme minimizes SDN control channel overhead. The study 

showed significantly good application forwarding performance with low overhead when tested and 

implemented using a content-aware server selection application along with multiple virtual IP pool 

of services. 

 

b) Video streaming and real-time communication 

 
Focusing on video streaming applications, Egilmez et. al [116], devised an analytical framework 

for traffic optimization at the control layer offering dynamic and enhanced Quality of Service (QoS). 

The study reported significant improvement for streaming of encoded videos under several coding 

configurations and congestion scenarios. Jarschel et. al [61] instead focused specifically on 

improving YouTube streaming experience for end users. The study used Deep Packet Inspection 

(DPI) and demonstrated how application detection along with application state information can be 

used to enhance Quality of Experience (QoE) and improve resource management in SDN. Ruckert et. 

al [117] developed Rent a Super Peer (RASP), a peer-to-peer (P2P) streaming mechanism using the 

OpenFlow network. RASP employs a cross-layered approach, allowing service providers to facilitate 

P2P based live video streaming over two OpenFlow-based service components: a network proxy 

application and software defined multicast (SDM) application, while the controller is responsible for 

integrating components and providing an interface to RASP functionality. The proposed 

methodology results in efficient delivery of P2P video streaming traffic to be used in future service 

provider networks. Another example of video streaming optimization is the CastFlow [118] which 
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proposes a prototype aimed at decreasing latency for IPTV using a multicast approach, logically 

centralized and based on OpenFlow networks. During multicast group setup all possible routes are 

calculated in advance to reduce the delay in processing multicast group events (joining and leaving 

hosts and source changes). Using Mininet based emulation the reported results showed satisfactory 

performance gains and the time to process group events appeared to be greatly reduced. Noghani 

and Sunay [119], also utilize the SDN framework in allowing the controller to not only forward IP 

multicast between the video streaming source and destination subscribers but also manage the 

distributed set of sources where multiple description coded (MDC) video is available. For medium 

to heavy loads, the SDN based streaming multicast framework resulted in enhanced quality of 

received videos. Some related studies seek to substantiate the importance that the underlying test-

beds may have on any evaluations reporting perceived improvements in video streaming quality 

using SDN. Panwaree et. al in [120], for example, benchmark the packet delay and latency 

performance of videos tested on Mininet as well as actual physical PC clusters using Open vSwitch. 

It was noted that the packet delay and loss in the PC-cluster testbed was higher than the  Mininet-

emulated  testbed  suggesting careful interpretation of performance expectations in realistic 

environments.   

 

In terms of industry efforts in promoting application performance using SDN, the Microsoft Lync 

platform [62] offers a prominent test case example of an application using SDN based network 

abstraction to optimize real-time messaging, video and voice communication among Lync clients. 

Microsoft released a purpose built Lync northbound API for SDN that gives administrators visibility 

in to voice, video and media stream metrics deployed in enterprise environments. Lync SDN API, as 

per Microsoft can immediately enhance the diagnostic capability of monitoring Lync 

communication in SDN as well improve QoS. The effects of Lync and other similar targeted specific 

service improvement on other applications in the enterprise network and the resulting overall 

experience of end users remains to be considered.  

 

c) Information-centric application delivery models 

 
Another category of work in application performance improvement proposes an information-

centric approach for achieving optimized service delivery in software defined networking. The 

motivation behind the studies is the fact that while the present Internet usually exploits location-

based addressing and uses host to host communications, addressing of data by name (Named Data 

Networking) and distribution over dispersed locations may offer enhanced application content 
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delivery to end users. Information-centric content delivery mechanisms may then be combined 

with SDN to allow greater deal of network programmability and serve as a key enabler for content 

distribution. Studies including [125-130] propose the use of SDN and OpenFlow protocol to support 

customized matching of packet headers for service delivery to end users from content servers with 

significant performance gains. 

 

d) Data center solutions 

 

Traffic measurements in data centers, however, show signification variation in network 

workload hosting multiple applications on the same physical or virtual network fabric [5]. The SDN 

paradigm as mentioned in the earlier in section 2.7.1, brings automation and on-demand resource 

allocation in data center networking [1][2]. Using SDN, the DC environment can afford faster state 

changes, a fundamental necessity of modern data centers [38][286]. Several prior works have 

discussed the improvement of individual applications and services in the DC network environment. 

Application connectivity models were used in [289] and [21] to allocate per-application network 

bandwidth. However, application delivery constraints are prevalent in data centers where virtual 

machines from several applications may be simultaneously competing for resources. To address 

bandwidth contention, Kumar et. al [38] employed user space daemons running on application 

servers to predict anticipated traffic and  assigning forwarding paths to applications using operator-

configured policies. Fang et. al [286] proposed implementing host congestion controls to prevent 

excessive traffic influx into the network and multipath selection to achieve optimal network 

resource utilization. Jeyakumar et. al [290] viewed application bandwidth guarantees to be too 

stringent and proposed a weighted bandwidth sharing model among nested service endpoints 

allocating resources hierarchically at core fabric, rack, and individual machine level. The resulting 

operator defined per-application bandwidth sharing schemes are, however, highly dependent on 

the stability of application demands for long enough periods to optimize network traffic.  

 

Efforts to relieve bandwidth contention from a topology perspective have seen the deployment of 

Clos networks gain momentum which counters link oversubscription by using large number of 

smaller switches, making failures much more localized and architecture more cost-effective [291]. 

Greenberg et. al [287] proposed VL2, a data center framework using 3-layer Clos topology with de-

centralized load balancing to spread traffic across all available paths but instead of using per-

application bandwidth allocation heavily relied only on TCP windowing to rate limit flows. Data 

center for the Facebook social networking website also reported using Clos topology to cope with 
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substantially high internal data center traffic [288]. Despite clustering per-application servers in 

proximity, the resulting Clos topology and cabling was considered to be incredibly complex. High-

end network vendors propose similar solutions recommending unification of services to improve 

performance [292]. However, the application differentiation available at system and network level 

to assign machine limits and create end-to-end network topology per application does not explicitly 

consider user’s application trends. Resource provisioning on a per-application basis, therefore, 

leads operators to pre-set network provisioning models dictating end-user experience regardless of 

real-time network conditions. A more user-centric approach where user requirements and activities 

are captured may present a resource abstraction model, which could offer service providers the 

ability to fine tune network resource share on the basis of user traffic classes in view of business 

and user requirements instead of isolated applications. 

 

e) Application performance monitoring 

 
Recent advances in virtualization and technologies have seen a range of application being 

hosted on multiple servers in cloud environments and private data centers. Monitoring and 

improving the performance of hosted applications requires the development of niche tools able to 

monitor the application traffic in virtual platforms and apply traffic management policies. SDN again 

due to decoupling of control logic from forwarding elements is seen as a key enabling technology in 

this domain. Liu G. and Wood T. [121] describe NetAlytics, a platform for large scale performance 

analysis which uses NFV technology to deploy software-based packet monitors in the network and 

an SDN management overlay to direct packets (flows) to these monitors. The system aims to 

diagnose application performance issues and the collected statistics also offer administrators an 

insight into application popularity. Maan et. al [122] developed a system for monitoring network 

flows at the edge, closer to the users in cloud based data centers. The work explores enabling flow 

monitoring in virtual switches in servers and proposes EMC2, a scalable network monitoring utility 

in cloud data centers to be used for performance evaluation of switch flow accounting methods. 

The evaluation recommends NetFlow [123], providing good network coverage with minimal use of 

computing resources to monitor application traffic in virtual environments and cloud based data 

centers. Hwang et. al [124] in addition to application monitoring, propose NetVM, providing 

customizable data plane processing services including firewalls, proxies and routers to be 

embedded with virtual servers. The authors highlight the benefits achieved in dynamically scaling, 

deploying and reprogramming of the embedded network applications using the SDN control plane. 
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f) Service improvement in heterogeneous network environments  

 
Application delivery and service improvement to a significant extent also depends on the 

architecture and suitability of network elements in the data plane to efficiently implement 

customized traffic forwarding policies. The present and future trends in networking highlight the 

fact that heterogeneous networks ranging from wired, wireless, cellular, ad-hoc to vehicular 

environments and their inter-connection capability, together exponential growth in data usage [131] 

will play a crucial part in application delivery. SDN therefore, may offer operators the ability to 

integrate and share capacity on different shared physical media, a substantially challenging task 

with legacy networking infrastructure [132]. Applications and networks services can potentially use 

the SDN paradigm for routing and resource allocation in networks with heterogeneous 

characteristics such as different topology, physical medium and stability of connections. A few 

studies [55], [133] and [134] have, therefore, examined the scope of application delivery in 

different infrastructures including WiMAX, Wi-Fi access, etc. using SDN with satisfactory results. The 

OpenRoads [55] project for example, discusses seamless user service delivery between multiple 

wireless infrastructures. Other efforts carried out in [130], [133] and [134] offer enhanced 

application performance in wireless mesh environments using OpenFlow.  

 

2.8.5 Limitations of current work 

The majority of studies highlighted in the above discussion offer promising performance gains 

for individual applications utilizing a range of network management models ranging from a more 

‘application-aware’ SDN paradigm to the use of novel SDN based monitoring techniques allowing 

performance measurement and QoS guarantees for certain services. The prevalent work in SDN 

based traffic optimization, therefore, focuses on improving the quality of individual applications 

and services such as video streaming or voice communications in several different network 

environments ranging from typical residential and enterprise networks to data centers. Other 

studies involving information-centric networking focus on bringing the data sources closer to the 

network edge, to again improve traffic conditions for the hosted application(s). Existing studies, 

however, do not specifically consider the impact that prioritising specific applications may have on 

other application traffic traversing the SDN fabric. Regardless of whether the network comprises of 

compatible or heterogeneous networking components, the end users in realistic environments may 

frequent a range of applications albeit in different proportions. SDN based traffic engineering 

schemes, therefore, need to consider the mix of user applications, which may result in several 
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workload profiles in the network, and the performance caveats the end users may experience as a 

consequence of individual service improvement.  

 

This thesis seeks to highlight the effects isolated application performance models may have in SDN 

environments where users are frequenting a diverse range of applications. The presented research 

further aims to investigate methods for accurately capturing and incorporating user application 

trends in any subsequent SDN based traffic-engineering solution.  

 

2.9 Conclusion 

The present chapter considered the software defined networking technologies in detail. The 

northbound and southbound communication interfaces allow for several key protocols to be used 

in the SDN framework. Protocols such as OpenFlow on the southbound and RESTful API on the 

northbound controller interfaces, however, have seen significant adoption in both academic and 

industry research. In addition to communication protocols, recent years have also seen the 

development of several key controller platforms aimed at furthering the SDN paradigm and 

bringing substantial technical variety for researchers and operators to experiment and explore. 

Implementation of the SDN framework has seen production and test deployments in a range of 

avenues from data centers to residential premises. The SDN framework remains the subject of 

several research studies ranging from improving individual application and service performance to 

scalability studies finding an optimal solution to the controller placement problem in large networks. 

This thesis focuses on investigating the adverse impact that prioritising isolated application 

performance in SDN environments may have on users employing a mix of applications. The 

presented research further seeks to develop novel SDN traffic management solution, which 

accounts for user application trends in the network. The following section of the thesis (Part I) 

builds on this narrative and presents a feasibility study evaluating individual application usage ratios 

among residential users and also discusses the effects isolated application performance may have 

on the end users in an SDN framework. Furthermore, the section also discusses a profiling based 

traffic management scheme to be used in an SDN residential framework.  
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PART I – Residential Traffic Management 
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Chapter 3          Profiling User Application Trends 

 

3.1 Introduction 

Traffic classification and statistical trend analysis remain vital ingredients for designing effective 

traffic engineering and efficient resource management solution in computer networks. Previous 

studies highlighted several application classification techniques from packet and flow level network 

measurements and compared the accuracy evaluations of a number of approaches [161][163]. 

Application classification although, is only the first step in evaluating user network behaviour to 

create network management policies. Classified data flows are usually further subjected to QoS 

policies and the underlying network resources provisioned according to business requirements. 

However, as discussed previously in chapter 2, implementing QoS guarantees for individual 

application basis may not suit all the end users, especially those users frequenting a diverse range 

of applications. The present chapter details the utilization of profiling based traffic engineering as a 

substitute, employing actual network behaviour rather than individual services for implementing 

traffic management policies The derived profiling scheme offers operators a viable means of 

allocating network resources in view of actual user workload. 

 

The remainder of this chapter is organized as follows. Section 3.2 compares typical QoS based 

traffic engineering model with a profiling based network management approach. Section 3.3 briefly 

highlights traffic classification challenges. Section 3.4 explores methods of characterizing user traffic 

behaviour by grouping user Internet activity attributes. Section 3.5 details the design methodology 

followed in the present chapter for extracting user traffic profiles. Section 3.6 discusses data 

collection methodology, inherent limitations and evaluates the resulting profiles. Section 3.7 

further elaborates the proposed architecture and the potential application of utilizing the extracted 

user traffic profiles in software defined networks. Section 3.8 draws final conclusions. 

 

3.2 QoS and Profiling based Traffic Engineering 

Quality of service (QoS) aims at allocating priorities to different application flows to offer a 

certain level of network performance for the respective traffic. QoS policies may guarantee 

parameters such as data (bit) rate, delay, packet loss and jitter for individual services. In a typical 

SDN framework as depicted in Fig. 3.1, applications request connectivity between network 
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elements (NEs) through a centralized control plane and define individual QoS requirements per 

application. In view of limited network capacity, QoS policies implemented by the control plane for 

popular applications such as streaming, VoIP, interactive games, etc. ensure improved performance 

for the respective service. QoS schemes may rely on using legacy approaches such as Differentiated 

services (DiffServ) utilizing a prioritized model, marking packets according to the desired type of 

service (ToS). The centralized network controller or traffic management application, in response to 

these markings, can implement various queueing strategies in the data plane to offer isolated 

performance for the respective application traffic. Additionally, the SDN controller can also reserve 

resources such as the per-application routing paths and allocate bandwidth to reduce the effects of 

(any) network congestion on individual services. Application-awareness in SDN therefore, as 

highlighted earlier in chapter 2, allows the creation of forwarding policies offering performance for 

typical time-critical applications [58-61][167]. However, allowing one or more applications to 

control traffic forwarding by a forwarding construct that requires the use of new or existing 

resources may adversely affect other users who might be using an entirely different subset of 

applications. This would have a significant impact when, due to network congestion, applications 

such as VoIP or video conferencing would usually take priority over non time-sensitive services. For 

example, users frequenting applications such as web browsing and social networking may 

experience degraded performance during periods of peak traffic or perhaps due to prevalent 

constraints in networking resources as opposed to users watching live video streams due to 

network policy primitives favouring streaming applications.  

 

Traffic profiling based policy implementation follows a relatively different network management 

approach. Meaningful statistical traffic patterns depicting user behaviour (profiles) can be extracted 

from classified traffic to be used in multiple areas, ranging from capacity planning, trend analysis to 

hardening network security [164][165]. User traffic profiles based on segregation of application 

usage data offer a detailed insight into traffic patterns and user behaviour and can be utilised for 

real-time workload characterisation and network management. However, integration of profiling 

controls in traditional fixed topology networks has remained substantially challenging. As discussed 

in [166], the sheer amount of network-wide flow data, summarised in network accounting schemes 

such as NetFlow or IPFIX records, remains largely unexplored for introducing user behaviour 

profiling based network intelligence and control. One of the primary reasons of lack of profiling 

based real-time service provisioning models is that due to change in traffic usage patterns, user 

traffic profiles may also change over time and the number of users in each derived profile is also 

subject to real-time variation. Consequently, traffic trend predictions based on lower layer network 
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Figure 3.1. Individual application flows metering in SDN 

 

parameters such as available bandwidth and packet loss statistics are usually considered enough for 

producing network control configurations in fixed hardware deployments that require repeated 

manual interventions for any policy update. Software defined networks (SDN) due to centralized 

control and real-time programmability may offer a greater potential to harness application level 

user traffic profiles for network control. Developing user traffic profiles based on actual network-

wide user activity gives a thorough picture of application traffic trends and identifies resource 

heavy user classes. By calculating anticipated traffic based on user traffic profiles and the actual 

number of connected users per profile, an attempt can be made to allocate resources while 

accounting for a user-centric mix of applications in real-time in SDNs. A profiling based traffic 

engineering mechanism may provide operators the ability to allocate network resources based on 

real-time profile memberships and according to prevailing business requirements as opposed to 

individual application based QoS.  

 

To this end, the present chapter evaluates the effectiveness of developing meaningful user traffic 

profiles from flow data collected from a residential hall for students comprising of 250 (single-

tenant) studio flats over a thirty-day period between 01/11/2014 – 30-11/2014. Once the user 

traffic profiles are derived, the study further explores the potential advantage of integrating these 

user profiles in an SDN control framework to allow improved network management, accounting for 

a specific mix of applications. 
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3.3 Traffic classification challenges 

User traffic classification methods have been extensively researched, with a common 

denominator being the fact that detecting individual application packets is not an easy task in both 

conventional and software defined networks. Port based application classification is prone to errors, 

as most Internet applications use dynamic ports, with some using tunnelling via HTTP/S and SRTP 

which makes classification virtually impossible. Standard QoS requirements embedded in packet 

headers are also often ignored [60]. Deep packet inspection (DPI) is useful, however, owing the 

computational cost associated with this technique, especially in real-time traffic identification, 

somewhat limits its wide adoption. Other methods for traffic classification include crowdsourcing 

based machine learning, application state analysis using DPI and DNS rendezvous classification 

[168]. Application traffic classification based on payload analysis or using other novel techniques is 

a research problem on its own and even crude classification can provide a great deal of insight even 

if based on port-based classifications from flow logs [166]. In order to satisfy the scalability issues, 

this chapter proposes a simple methodology of examining destination ports and IP addresses to 

identify application traffic from raw flow records. The presented work focuses on extracting 

meaningful user traffic profiles from readily available Netflow logs, ubiquitous in both legacy and 

SDN-based networking equipment and their viability in making potential traffic management 

decisions, specifically in the SDN. The approach integrates well with conventional and OpenFlow 

compliant hardware and software switches (e.g., Open vSwitch), which can collect/export NetFlow 

records for use in traffic analysis [123]. 

 

3.4 User traffic characterization  

A number of features can characterize network traffic behaviour at varying levels of network 

hierarchy. For example, traffic characterization at the network prefix level considered in [166], 

presented a detailed overview of traffic characteristics at an ISP/backbone level using various 

features such as daily aggregate traffic, frequently used application ports and flow size distribution 

for traffic projection. Humberto et. al. in [169] characterized broadband user behaviour by 

analysing flow records and employed consumer behavioural modelling graphs (CBMG) to 

understand state transitions between application usage, while using k-means algorithm to classify 

residential and SOHO customers as per their usage trends. The present study intended to 

characterize traffic behaviour and associated flow statistics at user level by analysing user Internet 

activity or application usage. However, instead of focusing on destination port numbers and generic 
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characterization based on IANA allocated ports, real world applications and websites were grouped 

into specific tiers and user traffic behaviour was studied in relation to their corresponding usage of 

these grouped applications. After collecting the statistical data for these applications, users were 

also grouped into unique classes using machine learning techniques (clustering) based on similarity 

in application usage ratios. The concept of correlating variables by using clustering algorithms for 

pattern extraction is not new and has been previously used in numerous contexts. Heer and Chi in 

[170] used similar clustering for classifying web user traffic composition for three specific websites 

for capacity analysis. Yingqiu, Wei and Yunchun in [171] employed both supervised and un-

supervised machine learning techniques on flow data to classify application level traffic and 

reported an accuracy of over 90% using k-means algorithm. However, these studies focused on 

application classification from flow records using clustering, while this study seeks to utilize the k-

means algorithm for segregating users into classes based on their application trends. The next 

section examines the study design including categorization of network traffic and cluster analysis 

steps. 

 

3.5 Profiling design 

This study is based on the premise that per-user application level traffic and associated lower 

layer statistics can provide a thorough, discriminative measure of user activity. The defined user 

activity can, in turn, be used to implement user-centric traffic engineering solutions in SDNs, 

instead of formulating network policies around specific applications or lower layer network 

statistics. The profiling design therefore, seeks to satisfy the following objectives: (a) To 

discriminate among user activities, the application flows generated per user premises are collected 

and cluster analysed to derive user profiles for the observation period. (b) Depending on the 

diversity of user activities recorded in the resulting profiles, the study would aid in understanding 

the mix of user applications for subsequent utilization in designing profiling based traffic controls in 

SDN.  

 

In order to determine short and medium variations of user activity in the present study, traffic from 

a residential student hall having 250 studio flats was collected over a 30 day period [01/11/2014 – 

30/11/2014] and analysed to view the diversity in application usage captured in resulting user 

profiles. Each flat consisted of a single user, and the traffic collected per user premise presented an 

aggregation of multiple device activity (between 1-3 devices). The following sub-sections describe 

the design considerations and the k-means clustering algorithm used during the study.  
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3.5.1 Defining application tiers 

The Office of National Statistics in the UK broadly grouped online user activities into eleven 

different categories ranging from sending and receiving emails to attending an online course [172]. 

A great degree of behavioural replication and similarity in traffic characteristics, however, usually 

exists among users’ online activities and isolating each individual activity or application usage for 

user profiling would be counterintuitive. For example, online video streaming websites like 

YouTube and Netflix fall under the same umbrella of activity with rather similar traffic signature and 

can be tiered together under one category of user activity. Similarly Yahoo Mail, Gmail, Hotmail and 

traffic originating via POP3, SMTP protocols can be grouped as Email traffic without compromising 

the projection of actual activity. The motivation to use such a categorization technique is the fact 

that, besides reducing the computational cost of the clustering algorithm, the use of representative 

application tiers leads to fewer variables in corresponding feature vector for building meaningful 

traffic classes. For the purpose of this study, using typical internet usage applications/web 

visitations as presented in [52], user activity was broadly grouped in the following tiers: general 

web browsing (w), emailing (e), socializing (s), downloading (d), video streaming (v), gaming (g), 

communications (c) along with typical destination web sites and protocols, summarised in Table 3.1. 

On average, approximately forty popular applications or websites were included in the application 

groupings. Separate groups were created to account for any unknown traffic (t) originating outside 

the defined application tiers as well as network utilities (z) running in the background such as DNS. 

 

3.5.2 Analysing user activity – feature vector design 

Grouping applications into specific tiers, as per Table 3.1, results in defining a session of online 

activity per user by vector ui [wi, ei, si, di, vi, gi, ci, ti, zi]. Constituent application traffic parameters of  

vector ui are unique website visits identified based on destination of user traffic, i.e. the destination 

IP address and protocol (with port number). The destination IP addresses of applications included in 

Table 3.1 were collected by running DNS queries on websites of interest repeatedly and in different 

time frames to accredit round-robin webserver load-balancing techniques employed by major 

websites which change destination IP addresses. These mappings were further cross referenced 

against mappings pre-configured in commercial network analysis tools like NetFlow Analyzer and 

[173] PRTG Network Monitor [174] for greater accuracy.  
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Table 3.1. Application Groups 

Application Tier Sample Popular Websites, Destination Port 

Web browsing(w) General browsing using http(s) except below categories 

Emailing(e) Gmail, Ymail, AOL, Outlook.com, SMTP, POP3, IMAP 

Socializing (s) Facebook, Twitter, Blogger, WordPress, Tumblr, LinkedIn 

Downloading(d) BitTorrent, VUZE, uTorrent, FTP, SmartFTP, FileZilla, CoreFTP 

Video Streaming(v) YouTube, Netflix, Lovefilm, Megavideo, Metacafe, DailyMotion 

Games (g) n4g, uk-ign, freelotto, 8-ball pool, Warcraft, Team Fortress 

Communication (c) Skype, Net2Phone, MSN Messenger, Yahoo Messenger, GTalk 

Unknown Traffic (t) Unaccounted TCP and UDP traffic 

Network utility  (z) DNS queries, Multicast traffic 

 

3.5.3 K-means clustering algorithm 

The primary aim of using clustering in the present study was to derive a meaningful set of 

user traffic profiles by partitioning users into different groups based on their application usage, 

which would give a complete overview of all user activities across the entire subscriber base. This 

required designing a computationally efficient clustering technique. As discussed earlier in section 

3.2.3, k-means is a prominent clustering algorithm previously used in similar network related 

studies. The profiling methodology in the present chapter therefore, primarily used k-means 

clustering algorithm which aims at minimizing a given number of vectors by choosing k random 

vectors as initial cluster centers and assigning each vector to a cluster as determined by a distance 

metric comparison with the cluster center (a squared error function) given in Eq. (3.1). Cluster 

centers are then recomputed as the average (or mean) of the cluster members. This iteration 

continues repeatedly, ending either when the clusters converge or a pre-defined number of  

iterations have passed [175]. Compared to other methods such as hierarchical clustering, k-means 

works well with a large number of variables and produces tighter clusters. 

 

               𝐽 =  ∑ ∑ ||𝑥𝑖
𝑗

− 𝑐𝑗||2𝑛
𝑖=1

𝑘
𝑗=1                                    (3.1) 

 

In the above equation, ||𝑥𝑖
𝑗

− 𝑐𝑗||2  is distance between individual values in a given vector and the 

cluster center cj, n equals the size of the sample space (number of users) and k is the chosen value 

for number of unique clusters (centroids). Hence, using k-means, n entities can be partitioned into k 

groups. Choosing a value of k is of significant importance as it directly influences the number of 

resulting groups i.e. derived user traffic profiles in the present case. As evident from Eq. 3.1, the 

closer the value of k (number of centroids) to the number of users n, the greater will be the 

resemblance between adjacent user traffic profiles rendering them meaningless, whereas a smaller 
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value would reduce the internal cohesion among members of a profile and over-generalize the 

uniqueness of users. This particular aspect will be discussed later in detail in section 3.6.2 while 

examining results. 

 

3.6 Evaluation 

3.6.1 Data collection 

The study used flow records collected from a residential hall for students comprising of 250 

studio flats. Each of the flats had an independent user CPE (router) connected via LAN to central 

switches and Netflow logs were collected at the building default gateway (router) for all outbound 

traffic originating from each customer router. Each studio flat comprised a minimum of one and a 

maximum three user devices. For the purpose of user traffic profiling, the study primarily 

concentrated on outbound user generated flows as these give an accurate representation of user 

actions, however, total traffic transferred for both inbound and outbound traffic was still collected 

to further examine the traffic distribution per user profile. NetFlow logs were concatenated every 

24 hours over 30 days and parsed [Appendix – 1.1], to calculate the application traffic composition 

vector per user as depicted in Table. 3.2 (truncated due to space). Network traffic for a user u1 on a 

specific day [30/11/2014] can therefore, be represented by vector as given in Eq. 3.2. Each entity in 

Eq. 3.2 represents the percentage of flows generated by the user u1 towards each of the application 

tiers given in Table 3.1, for the given day. 

 

              u1 [30/11/2014] = [83 0.5 1.7 1.8 2 0.1 0.7 9.9 0.1]        (3.2) 

 

To account for limitations of the previously discussed technique for mapping IP addresses to 

website domains, individual user traffic vectors were excluded from subsequent profiling where 

these mappings were unsuccessful in identifying greater than 10% user traffic (ti > 10%). As a whole 

this did not significantly reduce the sample space (number of users for effective traffic profiling). 

The percentage of users that were excluded due to unaccounted application level traffic was always 

Table 3.2. Traffic Composition Vectors [30/11/2014] 

ui = [wi, ei, si, di, vi, gi, ci , ti , zi] 

i User router 
IP  

Flows  w % e % s % d % v % g % c % t % z % 

1 10.0.1.22  115 83 0.5 1.7 1.8 2 0.1 0.7 9.9 0.1 

. … … … … … … … … ... .... .... 
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considerably less than a maximum observed value of 12% over any consecutive 24 hours during the 

30-day data collection time span. 

 

3.6.2 Clustering users 

A total of 7594 unique user traffic distribution vectors for the user were examined comprising 

approximately 50.3 million flows. Once flow records were concatenated for each day k-means 

clustering algorithm was implemented on resulting vectors (Table 3.2) using R script [176][Appendix 

– 2.1]. Since user traffic profiling was based on application usage, the assigned source IP addresses 

of user CPE (routers) and numeric value of total flows were scalar entities for this analysis and 

ignored from a clustering perspective. In addition, since general network service traffic (zi) such as 

DNS queries are not a user-triggered application but a functional one and technically generated by 

other application traffic, it was also excluded while clustering users and later separately calculated 

as a percentage of total network flows generated per profile.  

 

As previously mentioned, the primary aim of the clustering algorithm was to identify a smaller 

number of anticipated usage patterns (defining for user traffic profiles) that can cover the complete 

subscriber base. The profiles had to be meaningful enough to reflect user activities without 

compromising on the mutual exclusivity of the profiles. Therefore, using values of k starting from 

k=2, the size of the clusters and number of users per cluster was analysed as given in Table 3.3. 

Choosing a lower value k resulted in a substantial membership size per profile but the ratio of 

application traffic distribution per profile showed a great deal of over fitting of users in resulting 

profiles to give a useful perspective. With higher values of k >4, profiles were too refined with the 

majority of users only falling in particular profiles, rendering the number of users and traffic 

distribution among other groups negligibly small. For example, k=6, resulted in six unique profiles 

 

Table 3.3. Clusters vs Membership Size 

Number of clusters k 

(profiles) 

Cluster Membership Size 

(number of users in respective profiles) 
2 6866, 728 

3 6089, 1018, 487 

4 5913, 1143, 283, 255 

5 3949, 2837, 781, 17, 10 

6 4280, 2198, 726, 350, 26, 14 

7 3915, 2473, 793, 373, 17, 14, 9 
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with significant number of users in four profiles (4280, 2198, 726 and 350). However, in the 

remaining two profiles total number of users (26 and 14) accounted for less than 0.01% of total 

members. The corresponding application traffic distribution ratios for these two profiles were also 

found to be insignificant to be considered meaningful at this stage. The same trend continued up to 

the tested k=7. As a result, for the time period under consideration and the combined traffic flows 

captured per user premises, k=4 was considered to give a balance between these two extremes 

catering for both heavy membership profiles as well as lower ones without compromising too much 

on mutual exclusivity between profiles. The resulting profiles not only segregated the users into 

different profiles based on the variation in their respective application usage but also had 

considerable mermbership size. For k=4, the user traffic profiles are further analysed in the 

following subsection. 

 

3.6.3 Results 

The resulting traffic profiles (k=4), are given in Fig. 3.2, detailing application traffic distribution 

among user traffic profiles, reflecting the different classes of users present in the network. Users 

falling in profile 1 concentrated on web browsing with minimal usage of other applications. Profile 2 

represented lower web browsing (only 7.09%) with slightly more usage of emails and socializing 

than profile 1 but downloading from torrents and file sharing via FTP stands out from other 

attributes and forms major bulk of these users (45.7%). User profile 3 also included web browsing 

(50.07%), but the distribution of other activities such as emails, downloads, streaming and games is 

slightly higher than the one in profile 1. The users falling in this profile were using a somewhat 

greater amount of all the applications compared to other profiles. Finally, user profile 4 clustered 

users for which communication applications form a large portion of their traffic (56.07%), with 

corresponding DNS connections also significantly higher than rest of the profiles. Network traffic 

statistics detailing data transfer, number of flows and size of clusters per user traffic profile are 

presented in Table 3.4. The number of connected users per profile remained relatively static over 

the 30 day evaluation as depicted in Fig. 3.3 (a) with profile 1 accounting for the highest number of 

users per 24 hour time period whereas the lowest number of users relates to profile 4. The total 

traffic volume, the sum of incoming and outgoing bytes per day for each of the traffic profiles is 

given in Fig. 3.3 (b). Profile 1 had the highest amount of data transfer both for the incoming as well 

as outgoing traffic. This was followed by profile 3 and profile 2. The lowest amount of traffic 

generated was in profile 4 comprising users who were mainly using communication related 

applications such as real-time messaging and communication. The cluster size varied considerably 
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between profiles with the bulk of users falling in profile 1 (5913), followed by profile 3 (1143) while 

profile 2 (283) and profile 4 (255) accounted for the smallest number of users. 

                                

 

                                               Figure 3.2. User Traffic Profiles 

                                                    

Table 3.4. Traffic Statistics per Profile 

Stats. Profile 1 Profile 2 Profile 3 Profile 4 

Avg. outgoing bytes per day (GB) 17.40 

 

1.61  

 

 2.87  

 

0.19 

 
Avg. incoming bytes per day (GB) 292.02  

 

10.18  

 

47.40  

 

1.27  

 
Avg. total traffic per day (GB) 309.42 11.79 50.26 1.46 

Total  traffic per month (GB) 9282.99  354.42  1508.48  22.84  

Total traffic per day per user 1.57  1.31 1.32 0.09 

Avg. users per day 197 9 38 8 

Avg. % flows per day  57.74% 30.43% 11.80% 0.014% 

Cluster size 5913 283 1143 255 
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Figure 3.3. (a) Aggregate traffic distribution per profile and (b) Users per traffic profile (30 days) 
 

3.7 Applicability in software defined networking  

From the user traffic profiling analysis, a significant degree of variation can, therefore, be 

observed among users’ activities. While the majority of users fall within one user traffic profile (i.e., 

profile 1), there were however, a significant portion of subscribers who differed from the 

mainstream in terms of their application usage ratios, and the amount of data transferred. 

Implementing isolated application performance controls on users with such varying application 

trends depicted in the extracted traffic profiles may definitely result in adverse performance for 

some traffic classes. For example, improving performance of communication related applications 

such as Skype in an SDN based environment by creating favourable flow forwarding constructs may 

be of benefit to users in profile 4. During periods of high traffic which may lead to temporal 

congestion due to constrained capacity, profile 4 users may continue to experience reasonable 

performance due to VoIP QoS guarantees. However, other users in profile 1 and profile 3 who are 

mainly engaged in web browsing activities may experience poor performance. Profiling user traffic 

therefore gives network operators additional insight into user activities and resource utilization to 

design and implement necessary network policies.  

 

Extending the above rationale to the context of software defined networks, there is a potential to 

employ user traffic profiles for effective traffic management. A diagram illustrating the 

incorporation of profiling based controls in the SDN is presented in Fig. 3.4. The framework 

comprises of a traffic profiling mechanism and a traffic manager. The traffic profiling framework 

may collect flow measurements from the data plane, which are pre-processed and subjected to 

cluster analysis to extract user traffic profiles. Utilizing the profile statistics as depicted earlier in 

Table 3.4, the traffic manager gains a predictive view of traffic by monitoring number of connected 
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Figure 3.4. Incorporating User Profiling Controls in SDN Framework  
 

users of each profile in real-time. The traffic profiles and incorporated statistics, can thereafter be 

used for implementing profiling based traffic engineering such as the rate limiting of traffic flows 

per user profile via flow tables in individual network elements, which are readily modifiable by the 

controller using a southbound API such as the OpenFlow protocol. 

 

Traffic could also be effectively load-balanced by the controller so that resource intensive traffic 

profiles are off-loaded to high speed layer 1 links (e.g., optical cables) while others may be 

redirected to or continue using relatively slower links as applicable based on the network topology. 

Commercially, SDN controllers have already been developed to offload network traffic from specific 

applications generating big data sets to optical networks in cloud data center environments for 

improved efficiency [177]. User traffic profiling, however, employs actual user activities and 

changing traffic conditions to balance network resources rather than rely on specific applications or 

other L2/L3 criteria such as Differentiated Services Code Point (DSCP) for traffic management. An 

operator using the SDN controller(s) may define policy control based on user profiles and 

underlying network conditions to fully exploit real-time configuration capability of the data 

forwarding plane by defining action sets, modifying flow entries and selecting outgoing ports/links 

in NEs based on an accurate estimation and distribution of user traffic to balance or optimize 

certain user classes. 
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Additionally, from a network monitoring perspective, once user traffic profiles have been derived, 

the number of users and their respective data transfer trends, as depicted in Fig. 3.3 (a) and 3.3 (b), 

reduce the need and frequency of profile re-computations, leading to only incremental adjustments 

over time. For example, user traffic profiles may be computed in the offline mode once every 

month, in a round-robin fashion, to avoid temporary overload while the total number of users and 

their traffic volume (total data transfer) are monitored in real-time every 24 hours to check if these 

conform to the expected values and match the profiles. If anomalies are observed (such as a 

significant number of users falling out of trend with respect to total data transferred), the profiles 

and relevant policies may be updated or re-evaluated. 

 

3.8  Conclusion 

This chapter proposed a method to derive user traffic profiles by extracting aggregate 

application level data per user premises from NetFlow records and then clustering users together 

based on their respective application usage trends. The resulting traffic profiles showed a 

considerable degree of variation in user Internet activities and associated attributes such as average 

number of flows, average data transferred and the distribution of users per profile. While prior 

studies have offered isolated application level traffic engineering in SDNs, such methods may result 

in inferior performance for a subset of users who combine a different range of applications or even 

those using same applications with divergent usage ratios as evident from the derived profiles. 

Integrating such user traffic profiles for traffic optimization is challenging in conventional fixed 

topology networks due to ever-changing user activities and the manual interventions required in 

updating policies. Software defined networks, however, through a centralized control framework 

make real-time programmability of network elements much easier. The present chapter therefore, 

proposed implementing flow metering and rate limiting based on user traffic profiles instead of 

applications and also re-routing resource intensive traffic profiles over alternate links as applicable 

depending on actual network topology. This would provide a much more comprehensive traffic 

optimization solution in SDNs while accounting for a user-centric mix of applications.  

 

Furthermore, the preliminary profiling investigation carried out in this chapter used aggregate 

traffic from each of the residential housings comprising of multiple users /devices. The following 

chapter explores profile extraction for each user device independently per customer premises, 

employed in the present study. Profile derivation in multi-device user environments (such as 
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residential networks) provides further insight into user behaviour for designing and deploying 

subsequent user-centric SDN based solutions in residential networking. 
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Chapter 4             Evaluating User Traffic Profile Stability  

 

4.1 Introduction 

User traffic characterization is of fundamental importance in modern networking environments 

for understanding user behaviour that assists administrators and service providers in traffic 

optimization, capacity planning, and improving security. Analysing network workload usually 

requires collecting statistics around multiple traffic features, ranging from total traffic volume, 

number and duration of user connections to application usage per consumer and provides network 

managers the ability to anticipate both business and technological updates [169][178-183]. 

Proliferation of high speed residential broadband access over recent years, coupled with the 

growing number of devices per household have compelled providers to seek ways of modelling and 

understanding user behaviour for improved service differentiation and context based charging 

[179][180]. As examined earlier in chapter 3, the segregation of users into traffic classes or profiles 

as per their application usage simplifies the understanding and visualizing of user behaviour in the 

context of network policy management. User traffic profiling in current residential and enterprise 

networks, however, is no longer limited to a single device but multiple devices. Effective network 

management particularly in modern networks, for example, residential premises where customers 

usually have more than one device sharing a common internet connection, requires an 

understanding of traffic patterns at the local level, inside the network as much as externally 

[179][182]. Investigating and evaluating the frequency of profile transitions among multiple devices 

per individual residential premises may give additional insight into user behaviour for subsequent 

utilization in a residential SDN traffic management solution. This chapter, therefore, extends the 

profiling methodology examined earlier to multiple users (devices) in each residential premises, 

considered in chapter 3. Furthermore, three different clustering algorithms, the k-means, 

hierarchical agglomerative technique and density-based spatial clustering (DBSCAN) are compared 

to explore the resulting profiles and evaluate the technique which provides more meaningful 

results. The derived profiles are benchmarked for stability and inter-profile transitions per user 

device also studied, to ascertain the frequency of user behaviour changes with respect to each 

device. 

 

The profiling methodology follows (a) grouping popular internet applications into distinct categories 

and classifying traffic using destination web server IP addresses and port numbers, (b) developing 

device traffic profiles based on application usage trends using unsupervised cluster analysis and (c) 
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evaluating the probability of inter-profile changes among devices per premises to establish 

transition trends and re-profiling frequency. Finally, the derived profile baselines are further 

analysed for possible use in an SDN traffic monitoring and management solution targeting 

residential networks. 

 

The rest of this chapter is organized as follows. Section 4.2 highlights user behaviour 

characterization in multi-device environments. Section 4.3 presents the technique used for data 

collection of each user device from the respective residential CPE (routers), and feature based 

clustering techniques. Section 4.4 evaluates the resulting traffic profiles and investigates profile 

stability over the duration of the study as well as an analysis of inter-profile correlations. Section 

4.5 discusses the incorporation of extracted profiles in residential SDN environments. Final 

conclusions are drawn in section 4.6.  

 

4.2 Multi-device user environments 

The proliferation of high-speed residential broadband and increase in the number of devices 

per household has highlighted the need to understand device traffic from inside the network for 

effective network management and improved security. The predominant method of characterising 

user behaviour in both enterprise and residential networks has been to cluster users based on 

peculiarities in traffic features, using flow and packet based measurements or report these as 

standalone attributes for monitoring overall network traffic as highlighted in [179], [181], [169] and 

[182]. Xu. et. al [179], used IANA assignment of port numbers as the primary feature for clustering 

device traffic inside user residences and identifying internet malware. To understand variations in 

application usage among residential and SOHO broadband consumers, Humberto et. al [169] 

employed k-means clustering and state transition graphs to depict the relationship between users’ 

Internet activities. Similarly, Jinbang et. al [182] studied user traffic profiling in modern enterprise 

networks to  understand the contrast  between external  and  internal activities being carried out in 

the network. From an external, service provider perspective, Jiang et. al [181] used k-means 

clustering and aggregate consumer traffic flow to profile users on a number of traffic features 

including application usage as well as flow-level parameters.  

 

Profiling individual user devices in modern residential premises having multiple devices, as 

illustrated in Fig. 4.1, presents an interesting avenue for understanding the temporal nature of user  
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Figure 4.1. A typical multi-device user network (residential) 
 

activity per device. The profiling of application trends inside such multi-device environments aids in 

determining whether the derived traffic classes lend considerable consistency over time to serve as 

an effective tool for network monitoring and management. In residential SDN based traffic 

engineering, for example, the enhanced trend visualization and application usage offered by traffic 

profiles could aid in the creation of per profile dynamic resource allocation policies, according to 

the requirements of the residential subscribers or externally by the service provider.  

 

The primary necessity in user traffic profiling, however, remains, the need to classify application 

traffic. As highlighted in chapter 3, novel methods such as machine learning classification 

algorithms or deep packet inspection techniques either involve substantial processing overhead or 

highly sanitized and pre-processed records for getting meaningful results as detailed in [183-186]. 

Service providers and network administrators have an imminent need for extrapolating subscriber 

application usage and rely on commodity tools like NetFlow Analyser [173] and PRTG Network 

Monitor [174] which partially circumvent the traffic identification problem by including pre-defined 

customisable webserver IP addresses of frequently used applications and websites, matching these 

to user requests for accounting. This scheme may seem limited but with careful planning and 

continuous updating can be effectively used to report top applications and website visitations. The 

present chapter, therefore, continued to utilize the IP address and port mapping method previously 

employed from chapter 3 for identifying user application traffic. The next section discusses the 
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methodology employed for data collection as well as the different clustering techniques used for 

user traffic profiling. 

 

4.3 Profiling implementation 

The present study, building on the preliminary investigation carried out in chapter 3 aimed 

at profiling user devices in each residential premises based on the respective devices’ application 

trends. The frequency of change in user activity was further assessed by observing profile 

transitions per user-device to evaluate if derived profiles granted significant stability over time to 

serve as benchmarks for formulating network management policies. The following subsections 

detail the updates to application groupings and the monitoring setup employed for per device 

profile derivation and describe the clustering algorithms used. 

 

4.3.1 Application categorization  

User traffic was classified by matching user requests (NetFlow records) against destination IP 

addresses and ports used by popular internet applications as mentioned earlier. These were further 

cross-referenced against commercial tools such as NetFlow Analyser [173] and PRTG Network 

Monitor [174] for greater accuracy [Appendix – 1.1]. To account for replication in nature of user 

activities, applications were once again grouped into distinct categories as depicted in Table 4.1. 

Given the replication of traffic footprint between social tier and the web browsing tier observed 

during the profiling analysis in chapter 3, the social tier was merged with browsing to concise the 

application groupings and the resulting profiles. A unique website visitation or application usage on 

user device could, therefore, be defined by the updated vector uij given in Eq. 4.1. 

 

uij = [wij, eij, dij, vij, gij, cij , tij , zij]           (4.1) 

 

In equation 4.1 above, i and j are unique per user premises and user device respectively and 

remaining entities represent the application usage percentage in accordance with the updated 

application group given in Table 4.1.  

 

4.3.2 Monitoring setup 

The study used NetFlow records exported from the default gateway of a residential student 

complex housing 250 user premises (studio flats) over a span of four weeks from 01/02/2015 to 
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28/02/2015. Each flat comprised a single user, having their CPEs such as home routers for 

connecting multiple devices to the Internet. Each user had between one and three devices and all 

user (premises) routers connected to the dedicated ports on two distribution switches, responsible 

for forwarding and receiving traffic from the default gateway as shown in Fig 4.2. The SNMP 

instances running on the distribution switches were used to report the IP address of each user 

device connected to each customer router (mapped to the respective distribution switch port), to 

account per device traffic flows. 

 

4.3.3 Data Collection and Pre-processing 

NetFlow records collected by the central collector were concatenated and customised 

every 24 hours to build flow records incorporating traffic statistics. The resulting logs were 

processed to quantize user device activity (flows) as a percentage of application usage in 

accordance with Table 4.1. Afterwards, SNMP monitoring information from access switches was 

used to associate the individual devices to user premises. Table 4.2 depicts a snapshot of the traffic 

Table 4.1. Updated Application Groups 

Application Tier Sample Popular Websites, Destination Port 

Web browsing(w) Web browsing: http(s) except below groups 

Emailing(e) Gmail, Ymail, AOL, Outlook.com, SMTP, POP3, IMAP 

Downloading(d) BitTorrent, VUZE, uTorrent, FTP, SmartFTP, FileZilla, CoreFTP 

Video Streaming(v) YouTube, Netflix, Lovefilm, Megavideo, Metacafe, DailyMotion 

Games (g) n4g, uk-ign, freelotto, 8-ball pool, Warcraft, Team Fortress 

Communication (c) Skype, Net2Phone, MSN Messenger, Yahoo Messenger, GTalk 

Unknown Traffic (t) Unaccounted TCP and UDP traffic 

Network utility  (z) DNS queries, Multicast traffic 

 

 

Figure 4.2. Network monitoring setup 
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composition matrix for a single day. Network activity for a user device u1,1 on a specific 24hour 

interval, e.g. [01/02/2015], could therefore be represented by the application distribution vector 

given in Eq. 4.2. In Eq. 4.2 each quantity represents the percentage of flows generated by the user’s 

device towards the application tiers given in Table 4.1. 

 

u1,1 [01/02/2015] = [76 0.2 1.1 1.4 7 0.3 1.8 12.2]                   (4.2) 

 

Once application distribution vectors per user device were collected, traffic profiling was done 

using both agglomerative hierarchical clustering as well as Hartigan and Wong implementation of k-

means [189] and DBSCAN [209], using R [176] [Appendix - 2.1, 2.2, 2.3]. To gain a better overall 

understanding of the different users, unidentified traffic (z) was not excluded during cluster analysis 

(as done previously in chapter 3), but included as a feature during clustering. The resulting traffic 

profiles and associated analysis is detailed in the following section.   

 

4.3.4 Traffic profiling 

The objective of this profiling study is to seggregate user devices from the user premises into 

unique profiles. Furthermore, the profiling scheme has to extract profile clusters, ideally eliminating 

or minimizing outlier groups to a minimum. Eliminiation of outliers would contribute to having a 

reasonable membership size (e.g., 10-20 members) for even a minimal activity profile. The 

extracted device profiles may then be accordingly used to define user-centric network management 

primitives in a residential SDN framework.  

 

To achieve the above objectives in terms of profile extraction, three prominent un-supervised 

clustering techniques were employed: hierarchical agglomerative clustering [187], k-means [175], 

and density-based spatial clustering of applications with noise (DBSCAN) [209]. Hierarchical 

clustering puts each observation in its own cluster and then calculates the distances between all  

Table 4.2. Traffic Composition Statistics [01/02/2015] 
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 observations, pairing the closest two in a recurring fashion. The linkage function between the (pair-

wise) sets of observations may use the maxmimum distance (or complete linkage) or the more 

advanced Ward’s method, which uses the decrease in variance for the respective clusters being 

merged. K-means on the other hand, as mentioned earlier minimizes a given number of vectors by 

choosing k random vectors as initial cluster centers and assigning each vector to a cluster as 

determined by distance metric (Euclidean) comparison with the cluster center (a squared error 

function) as given in Eq. 3.1, earlier in chapter 3. Cluster centers are then recomputed as the 

average of the cluster members and the iteration continues repeatedly, ending either when the 

clusters converge or after performing a specified number of iterations [175]. In Eq. 3.1, with respect 

to multi-device user environments, cj continues represents the cluster center, n the size of the 

sample space and k the chosen value for number of unique clusters (centroids). Hence, using k-

means, n entities, translating for user devices in the present case, can be partitioned into k groups 

or profiles. The value of k is of significant importance as it directly influences the number of traffic 

profiles and affects over-fitting of users into profiles. Rather than relying exclusively on manual 

examination of trends in each cluster, as used earlier, the optimal value of k was calculated using 

the automated Everitt and Hothorn technique [188], in tandem with manual examination of 

derived profiles. The technique aims at finding the curve in cluster convergence with respect to 

increasing k, with only minor variation beyond a certain level i.e the knee of the plot suggesting a 

suitable value for cluster numbers.  

 

In addition to k-means and hierarchical cluster analysis, the DBSCAN algorithm is among the 

common techniques used in unsupervised cluster analysis. Given a set of data points in space, the 

algorithm groups points that are closer together (having many neighbours). Data points falling in 

low-density regions with minimum nearby neighbours are classified as outliers. As with all data 

mining techniques, DBSCAN also requires prior parameter estimation for successful clustering. 

However, unlike k-means, DBSCAN does not require an identification of the number of clusters in 

the data a priori. The algorithm requires two parameters: ε, the size of the epsilon neighbourhood, 

and minPts, the number of minimum data points that are required to define a dense region. 

DBSCAN starts by selecting an arbitrary data point not visited before and computes its ε-

neighbourhood leading to the start of a cluster if the value conforms to the minPts defined by the 

user. If the data point is found to be dense enough (according to ε and minPts), data points within 

ε-neighbourhood also form a part of this cluster. The process continues until all the density-

connected points are found resulting in a complete cluster. If, however, the value of data points 

within ε is below minPts, the selected data point is labelled as noise, which may or may not be 
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made a part of a cluster in subsequent iterations. The process continues with the selection of a new 

un-visited data point. With regards to parameter estimation, the value of ε may be computed using 

a k-distance graph (k-NN plot), where the curve in the graph points to an appropriate value of ε 

[266]. A very small value may result in a great deal of noise points and unclustered data, while a 

large value may result in majority of data points being under the same cluster. The minPts 

parameter may be computed according to minPts ≥ D + 1, where D is the dimension of the data 

points to be clustered. Again, a minimum value for minPts such as 1 would result in each data point 

forming a cluster, while a very large value may result in the merging of otherwise independent 

clusters. Parameter estimation and resulting clusters, translating in user traffic profiles in the 

present case for the respective clustering algorithms will, therefore, be considered in detail to 

derive meaningful user profiles during evaluation in section  4.4. 

 

4.4 Evaluation 

4.4.1 Cluster Analysis 

A total of 10095 unique traffic distribution vectors for user devices were examined comprising 

approximately 178.21 million flows. The resulting vectors were subjected to hierarchical and k-

means clustering and cluster memberships were evaluated for cluster sizes ranging between 2 to 10 

as depicted in Table 4.3. Using the default maximum distance linkage (or complete) method in 

hierarchical clustering, profile membership numbers resulted in minimal number of observations in 

some clusters. The more advanced Ward’s method and k-means, however, resulted in much more 

significant membership numbers across all the derived clusters. The next step was finding the 

optimal number of clusters (translating for traffic profiles) that would appropriately reflect user 

activities. Clusters derived using k-means were examined starting from k=2, using Everitt and 

Hothorn technique given in [188]. This technique aims to find the curve in plot of ‘within groups 

sum of squares distance’ per observation in each cluster against k for suggesting an appropriate 

number of profiles that fit the input data. The corresponding plot for the present data is given in Fig. 

4.3 where a significant drop can be seen up to a cluster size k=6, with minimal variations up to k=15, 

which indicates an optimal value of 6 profiles. Application distribution ratios for profiles derived 

using both hierarchical clustering (Ward’s method) and k-means were afterwards, compared to 

ascertain which set presented meaningful results. While profile membership numbers per cluster 

using either method were quite similar, profiles derived using k-means gave a much clearer 

segregation of user activities. For example, for six profiles, hierarchical clustering resulted in three 
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Table 4.3. Profile Membership Distribution per Cluster (hclust and k-means) 

# 
Clusters 

Hierarchical Clustering 
(method= max) 

Hierarchical Clustering 
(method=ward) 

k-means 

2 10094, 1 6316, 3779 

 

8236, 1859 

 3 10002, 92, 1 6316, 2365, 1414 

 

6172, 2576, 1347 

 4 9742, 260, 92, 1 6316, 2365, 1216 , 198 

 

5013, 2642, 1272, 1168 

 5 9742, 255, 92, 5, 1 3904, 2365, 2412, 1216 , 198 

 

6339, 2473, 970, 228, 85 

 6 8815, 927, 255, 92, 5, 1 3904, 2412, 2365, 687, 529, 
198 

 

5013, 2644, 1249, 880, 
224, 85 

 7 7868, 947, 920, 255, 
92, 5, 1 

3904, 2412, 1253, 1112, 687, 
529, 198 

 

3965, 2660, 1538, 828, 
224, 795, 85 

 
8 7868, 947, 920, 255, 

90, 7, 5, 1 
3904, 2412, 1253, 1022, 687, 
529,  198, 90 

 

3736, 2607, 1574, 765, 
693, 417, 218, 85 

 9 7868, 947, 920, 255, 
90, 7, 5, 2, 1 

3904, 2412, 1253, 757, 687, 
529 , 265, 198, 90 

4318, 2637, 944, 699, 602, 
439, 222, 180, 54 

 10 7868, 920, 905, 255, 
90, 42, 7, 5, 2, 1 

2412, 2186, 1718, 1253, 757, 
687, 529, 265, 198, 90 

3623, 2399, 1018, 856, 
667, 626, 359, 248, 214, 85 

 

 

 

Figure 4.3. Identifying correct number of clusters (wss vs. k) 
 

profiles having similar web-browsing ratios of 92.26 %, 83.45% and 77.39% compared to only two 

profiles with high web-browsing and well-parted usage ratios of 90.04 % and 62.84 % derived by k-

means. This trend continued up until the maximum examined value of ten profiles. 

 

To calculate an approximate value for the eps value (ε) to be used in DBSCAN clustering, a k-

distance graph was plotted (using k= ‘dimension of data D’ +1 =9), based on the 8-dimensional 

application tiers given in Table 4.1 [266]. The relevant 9-NN distance vs data points plot is depicted 

in Fig. 4.4. The ‘knee of the curve’ in the graph provides an approximation of the eps (ε) distance to 

be around 8, 10 or 12. Additionally, as discussed earlier, selection of the second minPts parameter 

is equally important in dictating the efficacy of the resulting clusters. Therefore, three different 
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values were chosen to be used with each approximate eps (ε) value. A relatively smaller value of 5 

(default in R dbscan package) [210] was selected to generate the maximum number of clusters and 

analyse their respective membership and noise. Afterwards higher values of minPts (minPts ≥ D + 

1) i.e. 10 and 50 were chosen to reduce the total number of clusters and observe the variation in 

resulting per-cluster membership. The derived clusters for each eps (ε) and minPts combination are 

given in Table 4.4. As with hierarchical clustering, the DBSCAN clusters depicted in Table 4.4 

showed a great deal of over-fitting of data points. For the smaller value of minPts=5 or minPts=10, 

for each selected ε value, DBSCAN clustering resulted in a large number of clusters (between 7 to 

17). However, significant variation in membership distribution of the data points was observed in 

the derived clusters. While a few clusters comprised the majority of data points, remaining had 

substantially low membership rendering them meaningless for profiling purposes. Relatively larger 

value of minPts=50, resulted in far fewer clusters (3 to 4). However, it was again noted that either 

one or two clusters contained the majority of the data points with remaining clusters having 

minimum membership. The number of outliers for minPts=50 was also quite high, ranging between 

244-1060, and denoting that a significant number of data points did not associate with any of the 

derived clusters and were considered as noise. This did not fit well with the earlier stated 

requirement of reducing outliers to a minimum. Despite using different minPts values with each ε 

approximation, the clusters derived using DBSCAN did not therefore present satisfactorily 

expressive results, when compared to the clusters derived using k-means. The profiles  derived 

using k-means (k=6), in the present case, represented a more meaningful balance catering for both 

heavy membership profiles as well as lower ones without compromising too much on mutual 

exclusivity or overfitting of users. The application usage per profile derived using k-means clustering 

is analysed in the following sub-section. 

 

 

                                      Figure 4.4. K-distance graph (ε- eps estimation) 
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Table 4.4. Profile Membership Distribution per Cluster (DBSCAN) 

# Clusters ε- eps minPts Membership Size Noise Points 

17 8 5 9396, 183, 47, 36, 23, 13, 13, 7, 7, 7, 7, 5, 5, 5, 5, 
4, 4  

327 

10 8 10 9152, 130, 176, 36, 36, 23, 14, 13, 13, 12 490 

4 8 50 8169, 621, 132, 113 1060 
15 10 5 9530, 186,  51,  37, 23,  13,  13, 9, 6, 6, 8, 7,  6, 

6, 4 
190 

7 10 10 9457, 184, 39, 37, 23, 13, 13 329 

3 10 50 9079, 124, 168 724 
11 12 5 9621, 195, 74, 28, 19, 17, 11, 6, 5, 5, 3   111 
5 12 10 9571, 186, 63, 17, 14 244 

3 12 50 9241, 124, 177 553 

 

 

4.4.2 Results 

The application usage distribution for each of the six derived traffic profiles is given in Fig. 4.5. 

Compared to the profiles derived in chapter 3, the updated design accounting for individual user 

devices in each customer premises as well as the inclusion of unidentified traffic flows resulted in 

the addition of two more profiles. The corresponding graphs illustrating per-profile membership 

and flow statistics over the observed duration are presented in Fig. 4.6 – Fig. 4.7.  

 

Profile 1 concentrated mainly on web browsing (68.92%), with minimal usage of other applications, 

including downloads (3.46%), streaming (1.29%), communications (1.67%) and significant unknown 

traffic (8.68%). The devices in this profile may therefore, be summarized as high intensity web-

surfers. Profile 1 also had the highest number of device membership. Moving on, profile 2 also 

concentrated on heavily  on web browsing, and although the browsing component was significantly 

higher (>90%) as compared to high intensity surfers, other application usage was minimum, apart 

from unknown traffic flows (2.06%). The devices in profile 2 could be labelled as low-intensity web 

surfers, having a comparatively lower traffic volume than profile 1 and second highest number of 

profile membership. Profile 3 also inclined towards web browsing, but traffic distribution among 

other activities such as emails (2.19%), downloads (3.59%), streaming (1.60%) and games (2.19%) 

was slightly higher than both high and low intensity surfers. The unknown traffic flows in this profile 

were substantial (23.25%). Closer examination of the unknown traffic samples revealed that 

approximately 57%-59% of traffic flows targeted online gaming servers. Due to their proportional 

use of many applications in addition to gaming such as communications and streaming, devices in 

this profile can be categorized under all-rounders (or gamers). User devices in Profile 4 were heavily  
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Figure 4.5. User Traffic Profiles 
 

biased towards communication related applications (88.01%), with negligible traffic in any other 

tier and were, therefore, labelled as communicators. Unknown or concealed traffic accounted for 

most of Profile 5 at 66.92%. The traffic identification scheme discussed earlier fell considerably 

short of identifying the applications or website visitations for devices in this profile. Closer analysis 

of source and destination ports revealed that concealing devices were randomly using un-assigned 

ports with the majority of traffic attributed to P2P applications (approximately 55%). Devices in this 

category can be categorized as concealers or P2P users having a major P2P usage profile. 

Furthermore, due to the low percentage of unidentified application traffic in other profiles in 

comparison to concealers, unknown network traffic did not significantly influence the overall results 

(other profiles), apart from addition of one new cluster incorporating devices with significant P2P 

usage. While P2P is most likely to represent background activity, the policing of such a profile 

within SDN may or may not focus on P2P but on the rest of the traffic generated by the user as 

determined appropriate by the administrator. Lastly, profile 6 mainly focused on file downloads 

(83.02%) from the internet using FTP and other download applications and had the lowest number 

of devices and users. The primary traffic flows in this category used FTP based FileZilla video 

streaming (server) connecting to user VLC player (client). Profile 6 users could consequentially be 

names as downloaders with a significant online streaming component. Since, video streaming may 

include an underlying rate limit, downloading files via FTP usually have rate bounded only by the 
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access/uplink speed. To summarize, each device per user premises represented a significant 

discrimination towards a certain mix of user activity. In the next section, the consistency of device 

membership in the derived traffic profiles is evaluated to comprehend changes in user behaviour in 

terms of their respective device usage. 

 

 

Figure 4.6. (a) Number of devices per profile, (b) Number of User premises per profile  and                             
(c) Averange household devices per profile 

 
 

 

 

 Figure 4.7. (a) Average duration of transmitted flows and (b) Average duration of received flows  
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Figure 4.8. (a) Total number of flows per profile and (b) Total data volume per profile (Bytes) 
 

 

4.4.3 Profile Consistency 

Profile consistency emphasises the importance of gaining a better insight to changes in user 

activity per device as well as requirements or frequency for re-profiling. A user that browses for one 

hour on a particular day might be clustered in a different profile if using a range of applications for 

a much longer duration (e.g, 10 hours) on a different day due to bigger overall traffic/activity. To 

determine the number of devices per profile and their mutual correlations, the Pearson’s 

correlation coefficient [190] was used with the results given in Fig. 4.9. A negative correlation co-

efficient would indicate an inverse relationship with one profile gaining more devices and the other 

losing, however, not necessarily among the same profile pairs. Positive values refer to an increase 

in devices for both pairs. Values closer to zero represent no meaningful relationship, translating for 

minimal increase or decrease in devices per profile pair. As shown in Fig. 4.6, there is a blend of 

both negative and positive correlations representing changes in number of devices per profile. 

Using Fisher’s transformation, the average value of correlation co-efficient was calculated to be -

0.0931 [191]. The relatively low average indicates no significant change in device numbers per 

profile, with a slight bias towards an inverse relationship between each profile pair. To further 

evaluate, the user device profile retention, the average probability of change in device profiles per 

subsequent day of study was computed and is given in Table 4.5. Downloaders showed the highest 

consistency in retaining profiles at 97% while all-rounders showed lowest at 81%. The probability of 

a profile gaining or losing a device every 24 hours is also highlighted in Table 4.5 The downloaders 

had the highest probability of gaining a device (60%) with high intensity web surfers having highest 

probability of losing a device  (59%).  
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Where devices did change profiles, the average probabilities of inter-profile transitions every 24 

hours are given in Table 4.6. It was observed that where devices transitioned to a different profile, 

it was always to profiles having somewhat similar application usage ratios to their own. For 

example, low surfers would transition to high surfers (8%) compared to other profiles. Concealers 

did not show any significant change in profile, except to all-rounders which was also quite minimal 

(5%). This further emphasized the fact that majority of devices within this group more closely 

followed an application dictated pattern of behaviour mainly due to P2P activities. Downloaders 

seldom changed profiles highlighting that the small number of devices in this profile were also 

being dedicatedly used for streaming videos from the internet-based servers. Hence, where there 

was a transition observed among the traffic profiles, it was only due to variation in the same user 

activity rather than a complete change of role per device. Users, therefore, continued to use the 

same devices for same kind of activity albeit in varying proportions rather than showing drastic 

changes in their normal routine. 

 

 

 

Figure 4.9. Pearson Correlation Co-efficient between Device Profiles 
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Table 4.5. Average Probability of Profile Change (/24 Hrs) 

User Profiles Probability of 
No Change 

Probability of Change 

Change Prob. Device Gain Prob. Device Loss 

H. Int Surfer 0.87 0.13 0.40 0.59 

L. Int Surfer 0.88 0.11 0.46 0.53 

All-rounder 0.81 0.18 0.42 0.57 

Comms. 0.84 0.15 0.57 0.42 

Concealers 0.87 0.12 0.48 0.52 

Downloaders 0.97 0.03 0.60 0.40 

Table 4.6. Average Probability of Inter-Profile Transition (/24 Hrs) 

User Profiles High Int.  
WS Surf 

Low Int.  
WS 

All-
rounders 

Commmunicators Concealers Downloaders 

High Int. WS 0.87 0.08 0.03 0.0015 0.007 0.001 

Low Int. WS 0.08 0.88 0.01 0.01 0.008 0.002 

All-Rounders 0.11 0.03 0.82 0.003 0.032 0.0005 

Communicators 0.09 0.06 0.05 0.84 0.001 0.001 

Concealers 0.03 0.03 0.05 0.0006 0.87 0.002 

Downloaders 0.0005 0.001 0.0001 0.0004 0.0005 0.97 

 

4.5 Effective network management in residential SDN 

The derived traffic profiles showed a high level of consistency in terms of membership numbers. 

Hence, once the traffic profiles have been derived based on application usage ratios, the baselines 

of network traffic per profile as depicted in Fig. 4.6 - Fig. 4.7 provides an intuitive means to monitor 

the residential network. Daily aggregate traffic can be effectively examined by analysing value 

changes in traffic metrics per profile with any anomalies serving as an advisory to trigger a re-

evaluation of profiles and identify network abnormalities. For end users wanting to better manage 

their data usage, service providers may employ traffic profiling to place users into correct 

subscription models while also providing them with their daily traffic projections through service 

provider portals or customer home gateways.  

 

Traffic profiling therefore, provide administrators with enhanced capability to monitor network 

activity and update capacity based on anticipated user behaviour for achieving better quality of 

experience. It may also aid in protecting users from security threats or in enforcing policies. For 

example, in the present case concealers (P2P users) either could be rate-limited or blocked by 

making provisions in the individual customer routers shown in Fig. 4.2 to enforce the underlying 

network usage policy. 
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Furthermore, despite growing Internet speeds, the last mile access infrastructure of the service 

provider remains a source of network contention due to an ever-increasing range of greedy, 

bandwidth demanding applications. By using an SDN based traffic engineering framework between 

the residential gateway and the service provider, provisions may be made that allow residential 

users to prioritize certain user profiles within their network to better manage the last mile 

bandwidth. The utilization of policy primitives that dictate the distribution of available bandwidth 

among different profiles, may allow fine-tuning the resource (bandwidth) allocation among multiple 

residential users with relative ease. The next chapter presents an SDN based traffic management 

application to this effect. 

 

4.6 Conclusion 

The present work focused on profiling multi-device user traffic in a residential network based 

on application usage using three different analysis techniques i.e. k-means, hierarchical and 

DBSCAN unsupervised clustering. The profiles derived using k-means presented a more meaningful 

view of application usage among different classes. The six unique user profile extracted were 

further benchmarked every 24 hours to ascertain their stability. Over the four-week observation 

period, the analysis indicates that the number of users and devices per profile remained fairly 

consistent. Any inter-profile transitions were mainly due to proportional variation in same kind of 

user activity triggering a device profile change (to a somewhat similar profile in terms of application 

usage). The overall high rate of profile consistency reported even in this multi-device environment 

enhances the feasibility of validates using the extracted profiles for effective network management 

and defining and implement network policies.  

 

Despite recent improvements in the Internet broadband speed, residential users often experience 

bandwidth contention, especially when several users are simultaneously using bandwidth intensive 

applications. As a test case, the following chapter utilizes the extracted profiles in a custom 

designed SDN application to effectively manage the residential network. The framework allows 

residential users to create network policy primitives which define the bandwidth allocation priority 

among different user profiles when several users are simultaneously connected to the Internet. The 

application is tested in a simulation environment to validate the employability of traffic profiles in 

residential based SDN for network monitoring and management purposes. 
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Chapter 5        User-Centric Residential Network Management 

 

5.1 Introduction 

Residential networks are getting increasingly difficult to manage due to the ever-growing 

number of devices, diversity in application usage and evolving traffic patterns of end users. A typical 

residential network incorporates several end user devices sharing the same Internet connection, 

each with varying application usage [192][193]. Despite a substantial increase in internet uplink and 

downlink speeds [194], managing uplink and downlink bandwidth, a finite resource, among several 

users in the same premises is a challenging task [47][49][107]. Changing traffic patterns in 

residential networks may require repeated manual interventions to adjust policies at the residential 

router to satisfy individual user requirements, coupled with the fact that there is seldom a clear 

understanding of the application usage mix of all users to correctly implement user based rate-

limiting or bandwidth capping [195]. Real-time re-programming provided by SDN may significantly 

improve flexibility in resource management inside the service provider’s network [51], but equally 

important is the effective allocation of resources for users residing towards the edge, more 

specifically users inside the residential network. Prior studies such as [49], proposed virtualization 

of residential gateways and their inclusion into the service provider SDN framework for simplifying 

administration. Other approaches suggest reactive traffic shaping based on performance 

monitoring of data retrieved from residential gateways and managing bandwidth usage by 

allocating data usage caps to each device [107]. While this reduces the burden of residential 

network management from the end user, such an arrangement also raises user privacy concerns 

and presents scalability issues for the service provider SDN controller in managing routers for 

individual end users. To allow greater user control over their network, Mortier et al. in [47] 

proposed a similar strategy leveraging SDN technology for managing residential routers while 

Chetty and Feamster in [195] argued for better user interfaces allowing users to accurately set up 

network policies based on usage quotas. Existing approaches of controlling network congestion 

through dynamic queue management in both SDNs and legacy networks look promising in 

mitigating latency and packet loss at the application level [197-199].  

 

The refactoring of the residential network through abstracted high level policy based management 

via a software defined networking framework although appears to be a viable choice 

[47][49][51][52][196], it raises prioritization issues to determine which user devices to cap and what 

applications to expedite. As identified in chapter 4, per user application usage ratios may vary 
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significantly within residential networks. Employing the default method of flow metering specific 

applications to control forwarding constructs in SDNs or using advanced congestion control 

adaption schemes such as active queue management [197-199], to better manage packet queueing 

may fall short of satisfying individual user requirements in terms of real-time resource allocation.  

 

In this context, it is vital to understand the users’ behaviour inside the residential network to 

accurately define and apply any such resource allocation policies in the first place. Instead of using 

individual applications, user traffic profiling can be used to derive different user classes present in 

the network on the basis of actual application usage while also providing an estimation of per-

profile bandwidth consumption to achieve better traffic management schemes catering to all users 

[200]. As previously discussed in chapter 3 and chapter 4, user traffic profiles may be derived based 

on the percentage of generated flows (NetFlow records) per user for each pre-defined application 

tier and further subjected to unsupervised k-means clustering to derive unique user traffic classes. 

Characterizing network workload using per-user application distribution ratios (user profiles) 

accurately expresses user activities and aids in implementing user-centric traffic engineering 

solutions. The present chapter, therefore, proposes and develops a dynamic queueing based user-

centric traffic optimization scheme utilizing the extracted user traffic profiles and user defined 

profile priorities to effectively manage the allocated downlink and uplink bandwidth among several 

users in a residential SDN. As part of the validation phase, an SDN application is designed for 

allocating per profile bandwidth among residential users, and tested in a Mininet based simulation 

environment under different traffic scenarios to evaluate its effectiveness.  

 

The remainder of this chapter is organized as follows. Section 5.2 details the traffic management 

design, highlighting user profile prioritization and the queue assignment algorithm for per-profile 

resource allocation. Section 5.4 evaluates the proposed design and resulting improvements, and 

conclusions are drawn in Section 5.5. 

 

5.2 Design 

The user-centric traffic management design proposed in the present chapter employs a Ryu 

SDN controller [30] supporting OpenFlow architecture [17] and utilizes egress QoS queueing for 

rate-limiting per-profile traffic and allocating of link capacity to individual user flows. The design 

comprises of two components (i) a profile derivation framework and (ii) an SDN based traffic 
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management application. The details of each component are further discussed in the following sub-

sections. 

 

5.2.1 Profile derivation framework  

Due to their scalability of use, NFV and SDN technologies such as Open vSwitch as well as many 

vendor hardware switches and OpenFlow ports on other platforms (OpenWRT, Pantou, etc.) 

support flow-based monitoring and are capable of exporting NetFlow logs [48]. As previously 

discussed in chapter 4, NetFlow can be used to derive user traffic profiles based on the percentage 

of generated flows per user for each pre-defined application tier and further subjected to 

unsupervised k-means clustering to derive unique user traffic classes. Applications can be identified 

using destination webserver IP addresses or using other Layer 7 classifiers. A typical residential 

router is, therefore, able to export NetFlow logs either by default or by operating system updates. 

The resulting flow records can be cluster analysed internally in the residential gateway (provided an 

enough memory and CPU resource is available) or exported to an external server for profile 

derivation, which may also act as the network attached SDN controller.  

 

An architectural view of the profiling engine designed based on studies in earlier chapters for 

deriving profiles of user devices connected to the residential gateway of an OpenFlow capable 

switch (e.g. OpenWrt) [15][17][200] is given in Fig. 5.1 [Appendix – 2.4]. Individual applications can 

be identified using reverse DNS lookup on destination webserver IP addresses or other Layer 7 

classifiers. The resulting profiles are stored and continuously monitored with any flight from 

benchmarked baselines triggering re-profiling.  

 

 

5.2.2 Traffic management application 

The traffic management application employs the Ryu SDN framework. Ryu provides several 

software modules with well-defined APIs making it possible to create real-time network monitoring 

and control applications with ease [30]. The controller component has built-in support for 

managing network devices, using the popular southbound OpenFlow protocol. The Ryu framework 

provides three primary methods for QoS prioritization of flows: ingress policing of incoming flows 

via rate-limiting, egress traffic shaping by associating outgoing flows to assigned queues and lastly 

by meter tables [17]. The first two schemes have been implemented in OpenFlow compatible 

switches such as the Open vSwitch [86]; however, meter tables, although a part of the OpenFlow 
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Figure 5.1. Traffic Profiling Engine 
 

 

specification, have not been enabled in Open vSwitch, with only a few vendor hardware switches 

supporting their use. To keep the proposed approach applicable to all software switch variants, the 

present work primarily used egress QoS queueing to rate-limit per-profile traffic.   

 

The traffic management application follows a two tiered approach as shown in Fig. 5.2. To make 

provisions for Linux HTB functionality [202], the standard layer2 Ryu switching application is 

modified to support the retrieval and submission of HTB QoS rules per switch by using RESTful calls 

to the controller [Appendix – 5]. The SDN controller is, therefore, able to assign HTB queues 

dynamically for each switch-port as required without manually adjusting these on each port 

individually. The number of active Internet user connections is monitored by using a real-time flow 

count threshold per switch-port. Any change in user connections is communicated by the switch-

port monitoring module to the queue calculator. Based on the user-defined profile priorities and 

the current as well as predicted traffic per profile, the queue calculator computes the optimal 

queue rate per user. The computed queues are thereafter, applied to the residential router uplink 

and the service provider gateway downlink interface via the controller and the process is iterated 

tracking the number of real-time user connections. The application aims at managing the last mile 

bandwidth between the residential router and the service provider gateway through the residential 

SDN controller, using a typical residential broadband budget (e.g. up to 2Mbps upstream and 

20Mbps downstream) when the total bottleneck bandwidth is higher or lower than the sum of the 

clients. 
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Figure 5.2. Traffic Monitoring and Control 
 

5.2.3 Test Profiles 

In order to ensure that the proposed method matches a real network scenario, the present 

study utilized profiles derived earlier in chapter 4, from a residential network housing 

approximately 250 user premises. The unknown traffic flow component for each derived profile 

was accounted using offline destination IP and port address analysis. User profiles and traffic 

statistics were accordingly updated. Identification of unknown traffic (z), merging of browsing (w) 

and Email tiers (e) resulted in the application tiers being reduced to five to better reflect the user 

activities. Fig. 5.3 summarizes the application usage for each profile as a percentage of user 

generated flows. Profile 1 concentrated mainly on web browsing (85%) with limited usage of other 

applications and remained as high intensity web-surfers. Profile 2 also concentrated on web 

browsing (95%); however, with extremely limited usage of any other application and also lower 

data usage as compared to high intensity surfers, hence users in this profile were called low-

intensity web surfers. Profile 3 inclined towards online video streaming via FileZilla FTP server, and 

traffic distribution among other activities (emails, downloads and games) was relatively lower than 

both high and low intensity surfers. These users were therefore, accordingly named streamers. User 

devices in Profile 4 heavily tilted towards using communication related applications (88%), and 

therefore, labelled as communicators. Online games traffic accounted for most of Profile 5 at 60%. 

Users in this profile were categorized as gamers. Profile 6 mainly focused on downloading using P2P 

clients. A substantial proportion of traffic flows in this profile comprised of unknown traffic that 

was attributed to P2P usage (55%), as examined earlier in chapter 4 and, therefore, named as P2P 

users in the present work. Additionally, to account for guest users, representing one-off network 

users or users not having any statistical usage information for profile derivation, a guest profile was 

created. Table 5.2 represents the average upload and download rate per profile and total data 
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consumption every 24 hours. Streamers had the highest average data transfer rates having 270kbps 

upstream and up to 6300kbps downstream. This was followed by P2P users and communicators. 

Low intensity web surfers accounted for lowest data rates at 75kbps upstream and up to 175kbps 

downstream per user. Hence, the average data rates varied for each user category with some users 

such as low intensity web surfers only consuming a small proportion of bandwidth compared to 

others and residential users may want to prefer certain user categories over others when multiple 

users are connecting to the internet and simultaneously competing for bandwidth. 

 

5.2.4 Setting User Profile Priority  

Traffic congestion in residential networks can cause performance degradation for users even 

with a decent speed connection depending on other users’ activities [203][204]. The derived user 

traffic profiles provide residential users with a useful insight into the mix of user classes, their 

application trends and resource consumption to help alleviate network management difficulties. To 

give the residential users control over which users to prioritize in terms of bandwidth allocation the 

proposed policy language uses a prioritization value associated with each derived profile to 

coordinate the challenges of managing shared network bandwidth. Table 5.1 depicts a sample 

priority level for queue assignment and the corresponding required data transfer (queue) rates per 

user. Low-intensity web surfers (with minimal bandwidth footprint) have been allocated the highest 

priority while guest users are allotted the lowest priority and placed in the default root queue (q0). 

However, this is to be used as an example and the priority policy can be set by the home user on 

demand. The profiles may be further benchmarked for stability and continuously monitored, with 

any deviation from baseline values triggering re-profiling using the automated traffic profiling 

engine/ script [Appendix – 2.3]. The traffic management scheme, therefore, removes the burden of 

continuously reconfiguring the network from the user with input required only following any profile 

re-evaluation or priority updating. As evident from the Table 5.1, depending on number of user 

connections, only a subset of profiles (in order of priority) may be allocated their required upstream 

and downstream data (queue) rates. The subsequent queue calculation algorithm for this purpose 

is detailed in the next section. 
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                                          Figure 5.3. User Traffic Profiles 
 

Table 5.1. Average Data Transfer Rates and Sample Profile Priority Level 

User Profile (i) Avg. Data Transfer Rate 
(kbps)|| Queue (µ) 

Protocol 
Ratio   
TCP: UDP 

Data 
vol./24 
hours (GB) 

Sample 
Priority Level 

Up. Dn. 

WebSurf (L) 75 175  3:2 0.05 – 1.1 1 (High) 

WebSurf (H) 300  500  3:2 0.15 – 1.42 2 

Comms. 500  650  5:1 0.3 – 2.1 3 

Streamers 270 6300  2:1 1.9 – 3.5 4 

Gamers 400  500  1:4 0.25 – 1.8 5 

P2P Users 1450  2000  8:1 1.5 – 3.9 6 

Guest Users def:q0 def:q0 - - 7 (Low) 

 

5.2.5 Queue computation and re-evaluation 

The queue assignment algorithm follows the bandwidth division and re-allocation approach 

given in Fig. 5.4(a). If the sum of required queue rates µ of n connected users from all m profiles is 

less than or equal to the respective available uplink or downlink bandwidth (Σi=1,m Σj=1,n µij ≤ β) then 

all the users are allocated their required queue rates as given in Table 5.1. If however, the available 

bandwidth is less than the sum of required user bandwidth, queues are assigned based on the 
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user’s profile priority and for multiple users from the same profile on a first come first serve basis. 

Once the total available bandwidth has been allocated any remaining users (profiles) are allocated 

the default queue (q0). Despite using the HTB primitive (performing hierarchical rate distribution 

among configured queues), per-profile queue re-evaluation is required to accommodate changing 

real-time profile memberships and to resolve the resulting bandwidth contention in an optimal 

fashion. To reduce the subsequent SDN controller management overhead, queue re-evaluation 

triggered by an update to user connections only requires the flows (queues) of the respective 

profile and any subsequent users in lower priority profiles to be updated. As depicted in Fig. 5.4(b), 

addition or deletion of active users in profile k will result in queue re-assignment of profiles k, l and 

m leaving pre-installed flows of profile i and j in force.  

 

 

          

 

 

 

 

 

 

   

  

 

 

 

 

 

 

 

 

 

 

Figure 5.4. (a) Queue calculation algorithm and (b) re-evaluation schedule  

m = number of profiles, n = number of users per profile, 
β = uplink || downlink bandwidth 
µij = required queue rate per user j for profile i 
qij =assigned queue rate per user j for profile i, q0 = default root queue 
 
if [Σi=1,m Σj=1,n µij ≤ β ] 
     all n users per profile i are allocated their required queue rates;          
end if 
 
else 
   for (i=1; i≤m; i++); 
       for (j=1; j≤n; j++); 
          if β ≥ µij 
            qij += µij; 
            β = β - qij; 
          end if 
          else 
             ∀ qi = q0; 
           end else 
        end for 
   end for 
end else 
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5.3 Evaluation 

The proposed design was evaluated on the profiles depicted in Fig. 5.3 using Mininet topology 

which is shown in Fig. 5.5, and Ostinato software was used for traffic generation [103][205]. The 

network comprised 10-18 user machines and 5-10 web servers added at different stages to observe 

variation in traffic statistics, along with two switches (s1 and s2) representing the home-gateway 

and ISP side router [Appendix – 4.1]. To model an average broadband connection, the effective 

uplink and downlink bandwidth between the home gateway (s1-eth1) and the Internet service 

provider (ISP) edge (s2-eth1) were limited to the maximum of 2Mbps and 20Mbps respectively 

using the root queue class (q0) on the respective interfaces. The flow threshold was set to one flow 

per user in the simulation to identify active Internet users. In order to comparatively test the impact 

of the traffic management algorithms, the following three scenarios were sequentially enabled.  

 

1) When the sum of client transfer rates both upstream and downstream was less than the 

service provider allocated budget, i.e. 2Mbps upstream and 20Mbps downstream [0:tA].  

2) When upstream data transfer rates exceeded the uplink bandwidth and downstream was 

within assigned limit [tA:tB], and  

3) When both upstream and downstream data rates were breached causing congestion at 

both ends of the service provider to residential gateway link [tB:tC].  

 

The relevant time intervals and user connections for each scenario are given in Table 5.2. Iperf 

utility was used to measure the TCP bandwidth from the user clients to the servers over each time 

interval. To gain packet loss information Iperf UDP tests were done between the users and web 

servers over the same intervals while network latency (RTT) was measured by observing PING 

responses.  

 

 

Figure 5.5. Mininet Home Network Topology 
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During [0:tA], users were randomly selected from different profiles such that the sum of their 

upstream and downstream traffic remained within the budget. For a total of five users, the total 

uplink and downlink traffic was 1.550Mbps and 8.125Mbps respectively. As given in the Fig. 5.6, the 

packet loss and network latency observed per profile during [0:tA] was minimal regardless of 

variation in individual data transfer rates per user. However, with a P2P user connecting to the 

internet during [tA:tB], the upstream transfer rate of 2.7Mbps exceeded the allocated bandwidth 

causing reduction in average bandwidth per user (0.465Mbps) and increase in both the packet loss 

(12.52%) and the latency (275ms). Addition of more users during the time interval [tB:tC] resulted 

in traffic on the downstream (25.875Mbps) also exceeding the allocated bandwidth causing both 

downstream and upstream link congestion and a further decrease in available bandwidth 

(0.035Mbps) per user with a corresponding spike in the packet loss (49.93%) and latency (525ms). 

As a minimum requirement for maintaining good link quality, the packet loss should not go over 1%. 

A high packet loss rate results in the generation of a lot of TCP segment retransmissions which will 

in turn affect the bandwidth. During the total duration [0:tC], as long as data transfer rates 

remained within available bandwidth i.e. [0:tA], there was minimal packet loss and latency per user 

regardless of the number of connections and a traffic management scheme was not needed. 

However, in instances where either the uplink or downlink bandwidth was breached, a substantial 

decrease in per user bandwidth and an increase in packet loss and latency were observed. The 

absence of a traffic management framework in such cases required all users to compete for last 

mile bandwidth resulting in high packet losses and latency despite the nature of their online activity 

or how crucial it may be from an end user’s perspective.  

 

Table 5.2. Traffic Generation Scheme 

Time Seq. Connected Users Uplink 
Traffic 
(Mbps) 

Downlink 
Traffic (Mbps) 

Avg. pkt. 
loss/  user 

Avg. BW /  
user (Mbps) 

0:tA 

 
1 High Int web surfer 
1 Low Int web surfer 
1  Communicator 
1  Streamer 
1  Gamer 

1.550 8.125 0% 1.464 

tA:tB + 1  P2P User 2.700 10.125 12.52% 0.465 

tB:tC +1 Streamer 
+1 Communicator 
+1 P2P User 
+2 Guests 

5.500 25.875 46.23% 0.035 
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To evaluate the results of dynamic bandwidth allocation based on user-defined profile priorities 

employing the proposed design, it can be assumed that the residential network chooses to 

prioritize traffic as per the profile priority table depicted earlier in Table 5.1. This would accord low 

intensity web surfers highest priority and guest users the lowest. The priority table is however, an 

example and the end home user can set a different priority policy as required. The uplink queue 

assignments required to balance the uplink bandwidth among eleven connected users (between 

0:tC), based on their respective profile priorities are given in Table 5.3. The first four profiles were 

allocated their required queue rates. For one gaming user requiring 400kbps and two P2P users 

requiring 2900kbps, however, the remaining bandwidth β = 35kbps, was insufficient and these user 

profiles along with guest users were, therefore, allocated the default queue on the uplink interface. 

Limiting upstream traffic from residential router is relatively inconsequential in controlling the  

           

 

                                                                             (a) 

 

                                     (b)                                                                                                   (c)  

Figure 5.6. (a) Available Bandwidth (b) Packet Loss (%) and (c) Network Latency per User Profile 
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downlink congestion from the service provider’s gateway requiring additional downlink control. Any                               

Ingress policing at the residential router’s uplink interface is also relatively insignificant as by the 

time packets arrive there from the provider side, the last mile bandwidth has already been 

consumed and dropping packets might lead to further congestion, for example by generating more 

repeat requests in the case of TCP traffic. En-queueing traffic per profile at service provider 

downlink interface, however, may more effectively mitigate downlink saturation. To implement 

downlink queues, a separate control queue may be created to facilitate in-band OpenFlow 

communication between the residential SDN controller and the service provider router. The service 

provider’s centralized controller(s) may employ customer identification schemes such as VLAN 

tagging and a dedicated in-band TLS control channel (to accommodate security implications of the 

control delegation), and authorize residential SDN controller in managing the OpenFlow compliant 

service provider downlink (switch port) interface leading to additional bandwidth control for 

residential users [49]. In accordance with the profile priority given in Table 5.1 earlier, a scheme of 

downlink queue assignments per user profile is also given in Table 5.3. The uplink queue 

assignments also remain in force. The sum of download data rates for all eleven users (19.075Mbps) 

was less than the downlink budget (20Mbps). Hence, all user profiles were allocated downlink 

queues according to their required average download rates with the exception of guest users who 

were placed in the default queue. The corresponding changes in average bandwidth, packet loss 

and latency for each user profile after uplink and downlink queue assignments [tC:tD] are given in  

Table 5.3. Uplink and Downlink Queue Assignments [TC:TD] 

Sample 

Priority 

Usert traffic 

profile 

User 

membership 

Req. BW per user 

(kbps) 

Queue Assignments 

(kbps) 

Uplink Downlink Uplink Downlink 

1 Low Int web 

surfers 

1 75  175 q1:75  q1:175  

2 High Int web 

surfers 

1 300  500 q2:300  q2:500  

3 Communicators 2 500  650 q3:1000  q3:1300  

4 Streamers 2 270  6300 q4:540  q4:12600  

5 Gamers 1 400  500 q0:400  q5:500  

6 P2P Users 2 1450  2000 q0:2900 q6:4000  

7 Guests 2 - - q0:Def. q0:Def. 

- In-band Control - 50 - qCTRL:50 - 
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Fig. 5.7. Due to guaranteed queue rates, the available bandwidth per profile was more consistent as 

shown in Fig. 7(a), resulting in reduced packet loss for higher profile users. Users in profiles 1-4 

were no longer competing for shared bandwidth but remained within their allocated queues. At the 

lower end, profiles such as gamers experienced higher packet loss than the first four profiles due to 

having default queue allocation on the uplink. Similarly, other profiles without committed uplink 

queues such as P2P users having high data rate requirement, the average available bandwidth on 

the uplink did not improve. However, allocation of dedicated downlink queues and reduced 

bandwidth deviation, resulted in reduced packet loss (11%) and latency (300ms). For two guest 

users having a streamer and gamer profile (data transfer rate) respectively, the latency increased to 

750ms due to further reduction in available bandwidth in the default queue and inconsistent data 

transfer rates on the uplink as well as downlink. 

              

(a) 

 

                                (b)                                                                                                  (c) 

 
   Figure 5.7. (a) Available Bandwidth (b) Packet Loss (%) and (c) Network Latency per User Profile  
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5.3.1 Discussion 

Prior to enabling the queue scheduling algorithm, light web users suffered approximately 15% 

of UDP packet loss and average bandwidth fluctuated from 800kbps to 200kbps during [tA:tB] 

almost similar to other profiles. The adaptive nature of many applications, the vast majority of 

which (including streaming etc.) use TCP would mean that such inconsistent bandwidth range and 

high probability of packet loss would lead to substantial TCP segment re-transmissions and the light 

web users would struggle to see web pages. Adequate queue bandwidth allocations that take user 

profiles with typical traffic requirements into account can benefit the performance of high priority 

users   witnessed during [tC:tD]. Additionally, the queue scheduling algorithm ensures that any 

further addition or disconnection of users, for example, beyond [tC:tD] only results in updating of 

assigned flows to the respective user profile and any users in lower profiles as per the hierarchy 

given in Table 5.1, minimizing queue management and associated computational overhead. While 

the residential router without having an SDN controller in place could also measure RTT etc. and 

then apply a scheduling algorithms such as HTB by itself to the individual flows going through it, this 

would only allow upstream traffic management on the uplink. Implementing a queueing scheme 

employing OpenFlow protocol and SDN architecture allows controlling bandwidth of application 

flows based on user's profile from both the residential router and the service provider gateway. 

Additionally, in contrast to previously proposed approaches of the ISP SDN controller steering 

millions of residential gateways raising significant scalability and user privacy concerns. Having 

residential-based SDN controller ensures that profiling and queue computations are done locally. 

An in-band OpenFlow channel from the controller is responsible for directly updating flows in the 

service provider downlink interface thereby, reducing ISP controller workload.  

              

 

5.3.2 Perspective on additional controls 

The derived user traffic profiles and the SDN traffic management application designed can be 

put to use to apply additional controls both in terms of time of the day usage as well as total data 

usage per profile on a monthly by users at home. Several priority tables similar to Table 5.1 can be 

constructed in order to prioritize traffic for a different profile of users. For example, to give 

streamers or gaming users more bandwidth allocation later in the day, the relevant profile priority 

can be moved up via the traffic management application at a specified time and then re-adjusted 

again during the day. Additionally, the switch monitoring application may monitor and profile the 

total data usage per user, then implement further automated rate-limiting for certain user profiles 
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to avoid going beyond the total allocated data package. The real-time programmability offered by 

the SDN framework therefore, allows network policy controls at a much more granular level 

compared to the relatively stagnant control primitives used at present in residential networking.  

 

5.4 Conclusion 

The present chapter evaluated the use of a dynamic queue rate calculation and 

implementation mechanism for efficiently distributing last mile bandwidth between multiple 

residential users using profile priority levels. Instead of using a per-application rate-limiting 

approach the proposed profiling scheme accounted for a user-centric mix of applications to 

facilitate meaningful controls for the end users using an SDN framework. Utilizing user-defined 

profile priorities for bandwidth allocation through hierarchical token bucket queue assignments at 

the residential and service provider gateway resulted in a significant improvement in packet loss 

and network latency for selected high priority users during simulation tests. Compared to 

previously proposed approaches of integrating SDN controllers on the service provider side driving 

millions of residential gateways, the present work evaluated the use of a local profiling engine and 

controller incorporated in the residential network itself offering greater design scalability. The 

chapter also proposed some additional controls, such as temporal profile priorities and data usage 

allocations per profile that may be implemented to allow residential users more control over their 

network usage.   

 

The work so far has discussed the derivation of user traffic profiles in residential networks, 

investigated a SDN based traffic engineering framework utilizing user traffic profiles for resource 

provisioning (bandwidth allocation) in residential networking and derived a flow-based application 

classifier. Furthermore, the residential user traffic profiling investigated in chapter 3 and chapter 4 

and further utilized in an experimental residential SDN framework in the present chapter relied on 

using IP address mappings of popular applications to classify user traffic flows. The approach 

presented a scalable and computationally effective solution to traffic classification, leading to the 

derivation and analysis of user traffic profiles. Traffic identification using IP address and port 

mappings is well-suited for environments where a more accurate data source addressing scheme is 

available to network administrators (e.g., enterprise servers, data centers), to accurately map user 

flows to service usage. For residential networks, however, and enterprise environments where 

users are frequenting a range of Internet services, traffic classification using IP address and port 

numbers is far from an ideal solution. As examined during chapter 4, the IP and port addressing 
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used for traffic identification scheme fell short of classifying P2P and gaming traffic. The respective 

unknown traffic flows had to be manually examined by reverse DNS lookups on destination IP 

addresses and port mappings to estimate representative application usage.  

 

Part 2 of this thesis therefore, starts by investigating and designing an automated flow based traffic 

classification approach employing two popular machine learning techniques used in tandem. The 

proposed per-flow classification method aims to yield highly accurate classification results and can 

be used for Internet application identification in real-time, for user traffic profiling in residential as 

well as enterprise environments. Additionally, part 2 also investigates and analyses the benefits of 

using profiling based SDN traffic management in enterprise environments, offering operators 

increased level of granularity in provisioning network resources through the centralized SDN 

control plane. 
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PART II – Enterprise Traffic Management 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



131 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



132 
 

Chapter 6                Classification of Internet Traffic Flows 

 

6.1 Introduction 

Traffic classification methods using flow and packet based measurements have been 

previously researched using various techniques ranging from automated machine learning (ML) 

algorithms to deep packet inspection (DPI) for accurate application identification. Port and protocol 

analysis, once the default method for traffic identification, is now considered obsolete as most 

applications use dynamic ports, employ HTTPS or encrypted SRTP, or use tunnelling, which makes 

classification close to impossible. Deep packet inspection (DPI) is useful, however, the 

computational overhead and additional hardware required for packet analysis severely limits its 

practical implementation for network operators [211]. Moreover, aggregation based traffic 

monitoring techniques using flow measurements have proliferated in recent years due to their 

inherent scalability and ease of implementation as well as compatibility with existing hardware 

using standardized export formats such as NetFlow and IPFIX [12]. However, despite an increase in 

use, flow based network monitoring also encountered traffic classification challenges mainly due to 

frequent obfuscation and encryption techniques employed by many applications [213-215]. Most 

automated machine learning classification algorithms utilizing NetFlow involve significant 

processing overhead and sometimes employ sanitized input requiring simultaneous computations 

on flow records and packet traces to obtain meaningful results [213][216-217]. Additionally, 

popular Internet applications generate convoluted sets of flows representing content specific and 

auxiliary control flows, making application identification on a per-flow basis even more challenging. 

Accurate traffic classification of user traffic flows however, is fundamental to user profiling and 

achieving greater precision in understanding user trends for subsequent integration in an SDN 

based traffic engineering framework. 

 

The present chapter, therefore, proposes a per-flow C5.0 decision tree classifier by employing a 

two-phased machine learning approach while solely utilizing the existing quantitative attributes of 

NetFlow records. Flow records for fifteen popular internet applications were first collected and 

unique flow classes were derived per application using k-means clustering. Based on these pre-

classified flows (the ground truth data), the C.50 classifier is subsequently trained for highly 

granular per-flow application traffic classification. The classified applications include YouTube, 

Netflix, Daily Motion, Skype, Google Talk, Facebook video chat, VUZE and Bit Torrent clients, 
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Dropbox, Google Drive and OneDrive cloud storage, two interactive online games, and the 

Thunderbird and Outlook email clients.   

 

The remainder of this chapter is organized as follows. Section 6.2 presents related background work 

in traffic classification and gives an overview of k-means clustering along with C.50 algorithm with 

respect to flow based application classification. Section 6.3 elaborates on data collection, pre-

processing and feature selection methodology. Section 6.4 details flow clustering using k-means 

and discusses the derived flow classes. Section 6.5 evaluates the accuracy of the resulting C5.0 

classifier while section 6.6 compares the performance and computation overhead of the proposed 

approach with state of the art ML based classification schemes. Final conclusions are presented in 

section 6.7. 

 

6.2 Background 

The following subsections present a comprehensive overview of state of the art in traffic 

classification as well as consider related work in addressing flow level classification 

challenges using supervised, unsupervised and cascaded ML techniques. A brief outline of 

k-means clustering and C5.0 machine learning techniques in the context of traffic 

classification is detailed afterwards.  

 

6.2.1 Traffic classification methodologies and related work 

Traffic classification serves as a fundamental requirement for network operators to differentiate 

and prioritize traffic for a number of purposes, from guaranteeing quality of service to anomaly 

detection and profiling user resource requirements. Consequentially a large body of research 

focused on traffic classification, such as [218-223], along with comprehensive surveys [224-226], 

which reflect the interest of the networking community in this particular area. From a high-level 

methodology perspective, traffic classification research can be broadly divided into port and packet 

payload based classification, behavioural identification techniques and statistical measurement 

based approaches [226]. A summary of the prevalent classification approaches, their traffic feature 

usage and associated algorithms is given in Table 6.1. While port-based classification techniques are 

now considered obsolete given the frequent obfuscation techniques and dynamic range of ports 

used by applications, packet payload inspection methods remain relevant primarily due to their 

high classification accuracy. Payload based classifiers inspect packet payloads using deep packet 
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inspection (DPI) to identify application signatures or utilize a stochastic inspection (SPI) of packets 

to look for statistical parameters in packet payloads. Although the resulting classification is highly 

accurate, it also presents significant computational costs [226-228] as well as being error-prone in 

dealing with encrypted packets. In comparison, behavioural classification techniques work higher 

up the networking stack and peruse the total traffic patterns of the end-points (hosts and servers) 

such as the number of machines contacted, the protocol used and the time-frame of bi-directional 

communication to identify the application being used on the host [229-232]. Behavioural 

techniques are highly promising and provide a great deal of classification accuracy with reduced 

overhead compared to payload inspection methods [218][223]. However, behavioural techniques 

focus on end-point activity and require parameters from a number of flows to be collected and 

analysed before successful application identification. With increasing ubiquity of flow-level network 

monitoring which presents a low-cost traffic accounting solution, specifically utilizing NetFlow due 

to scalability and ease of use, statistical classification techniques utilizing flow measurements have 

gained momentum [212][218-222][233]. Statistical approaches exploit application diversity and 

inherent traffic footprints (flow parameters) to characterize traffic and subsequently derive 

classification benchmarks through data mining techniques to identify individual applications [234]. 

Statistical classification is considered lightweight and highly scalable from an operational point of 

view, especially when real-time or near real-time traffic identification is required. While traffic 

classification in the network core is increasingly challenging and seldom implemented, application 

flow identification at the edge or network ingress, as detailed in [226], allows operators to shape 

the respective traffic further upstream. Statistical flow based traffic classification however, due to 

minimal number of available features in a typical flow record such as NetFlow, leads to low 

classification accuracy and increasingly rely on additional packet payload information to produce 

effective results [218-222]. The present work picks up from this narrative and solely utilizes 

NetFlow attributes using two-phased machine learning (ML), incorporating a combination of 

unsupervised k-means based cluster analysis and C5.0 based decision tree algorithm to achieve high 

accuracy in application traffic classification. 

 

Typical statistical flow-level classification can be further sub-divided based on the type of ML 

algorithm being used i.e. supervised or unsupervised. Unsupervised methods alone do not rely on 

any training data for classification and, while being time and resource efficient, especially with large 

data sets, encompass significant limitations hampering their wider adoption. Firstly, cluster analysis 

is mostly done offline and relies on evaluating stored flow records in statistical applications for 
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Table 6.1. Traffic Classification Approaches 

Category Classification 
Methodology 

Attribute(s) Used Granularity Processing 
time 

Sample Tools/ ML 
Techniques 

Port based Protocol port Protocol ports High Low Any (custom), PRTG 
network monitor 
[174], Nagios [284], 
Wireshark[256] 

Payload 
Inspection 

Deep packet 
inspection 

Payload inspection 
of e.g., first n 
packets, first packet 
per direction 

High High OpenDPI [211], 
nDPI [253], L7 (TIE) 
[245] 

Stochastic 
packet 
inference 

Statistical 
properties inherent 
in packet header 
and payload 

High High Netzob [282], 
Polyglot [283], 
KISS[222]  

Behavioural 
techniques 

End-point 
behaviour 
monitoring 

Identifying host 
(communication) 
behaviour pattern 

Low Moderate BLINC [251], SVM 
[271], Naïve Bayes 
[267] 

Traffic 
accounting  

Heuristic analysis of 
inspected packets, 
flows  

High High ANTCs [281], Naïve 
Bayes [267], 
Bayesian Network 
[274] 

Statistical 
approaches 

Packet based Packet and payload 
size, inter-packet 
arrival time 

High Moderate kNN [266], Hidden 
Markov/ Gaussian 
Mixture Models 

Flow based Duration, 
transmission rate, 
multiple flow 
features 

Low Low k-Means/ 
Hierarchical 
clustering [237], 
J48 [240], C5.0 
[241], BFTree [269],   
SVM [271] 

 

cluster learning and traffic identification [235][236]. Secondly, unsupervised clustering quite often 

also requires additional information from packet level traces requiring specialized hardware and is 

therefore considered an expensive option for network operators [237][238]. Lastly, once traffic 

records have been clustered, defining optimal value ranges of classification attributes for real-time 

systems is seldom easy and highly dependent on the dataset used [239].  

 

Supervised ML algorithms, in contrast, require a comprehensive training dataset to serve as primary 

input for building the classifiers; the completeness of the dataset, together with the ability of the 

method to discriminate between classes, is the decisive factor for the accuracy of the method. 
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Although considered favourable in terms of presenting a discrete rule set or decision tree for 

identifying applications, supervised training also falls short of presenting a complete solution to 

classification challenges, as a highly accurate training/test data set (also referred to as ground-truth 

data) is required prior to further use. To aid in obtaining accurate ground-truth data, several ideas 

have been explored. Separate offline traffic identification systems were used to pre-process and 

generate training data for online classifiers in [240]. Custom scripts were employed in [241] on 

researcher machines to associate flow records and packets with application usage. Deep packet 

inspection was used to obtain application names for labelling training data in [242]. However, 

obtaining accurate ground-truth data considering only singular application class labels for 

subsequent training of the supervised ML classifier falls significantly short of recognizing the 

different flows generated per application [235-242]. Internet applications generate a convoluted 

set of flows, including both application initiated content-specific or auxiliary control flows as well as 

other functional traffic such as DNS or multicasts. Per-flow traffic classification hence requires a full 

appreciation of the peculiar traits and types of flows (classes) generated per application to 

eliminate the classification system relying on time window analysis or packet derivative information 

to achieve higher classification accuracy. 

 

To increase the flow classification accuracy, cascaded classification methodologies employing a 

combination of algorithms as well as semi-supervised ML approaches have also been previously 

explored. Foremski et. al [243] combined several algorithms using a cascaded principle where the 

selection of the algorithm to be applied for each IP flow classification depends on pre-determined 

classifier selection criteria. Jin et. al [233] combined binary classifiers in a series to identify traffic 

flows while using a scoring system to assign each flow to a traffic class. Additionally, collective 

traffic statistics from multiple flows were used to achieve greater classification accuracy. Similarly, 

Carela-Espanol et. al [244] used k-dimensional trees to implement an online real-time classifier 

using only initial packets from flows and destination port numbers for classification. Donato et. al 

[245] introduced a comprehensive traffic identification engine (TIE) incorporating several modular 

classifier plug-ins, using the available input traffic features to select the classifier(s), merging the 

obtained results from each and giving the final classification output. A similar approach was 

followed in Netramark, [248] incorporating multiple classifiers to appraise the comparative 

accuracy of the algorithms as well as use a weighted voting framework to select a single best 

classification output. Another prominent ML tool used in traffic classification studies is Weka [249], 

incorporating a java-based library of supervised and unsupervised classifiers, which can be readily 

implemented on test data-set to evaluate the accuracy of the results from each methodology. Using 
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multiple classifiers and selecting the best choice for classifying each traffic flow through voting or 

even combining the results for a final verdict, however, does not specifically consider refining the 

ground-truth data to fully account for the multiple flow classes (per application) and their 

subsequent identification. Additionally, merging multiple instances of classifiers raises scalability 

issues with regards to their real-time implementation.  

 

Semi-supervised learning techniques on the other hand, use a relatively small amount of labelled 

data with a large amount of unlabelled records to train a classifier [278]. Two ML algorithms, 

unsupervised and supervised, were combined in [279] and the scheme used a probabilistic 

assignment during unsupervised cluster analysis to associated clusters with traffic labels. Zhang et. 

al [280] proposed using a fractional amount of flows labelled through cluster analysis to train and 

construct a classification model specifically focusing on zero-day application identification. The sole 

use of cluster analysis to serve as a means for identifying applications and generating training data 

without either additional manual or automated validation may, however, lead to incorrect traffic 

labelling. Unmapped flow clusters from unsupervised learning were for example, attributed to 

unknown traffic in [279]. Error-prone labelling of flows through cluster analysis using semi-

supervised approaches may therefore result in significant misclassification penalties.    

 

Sub-flow qualification is paramount to fully apply network policies such as guaranteeing application 

QoS, profiling user activity and accurately detecting network anomalies. Furthermore, correct sub-

flow identification aids in reducing the over-time degradation of supervised algorithms by 

accounting for the multiple types of flow classes and their respective parameters per application, 

reducing the unseen examples. The approach presented in this chapter refines the acquired 

ground-truth data by segregation of pre-labelled application flows through independent 

unsupervised clustering, thereafter used to train a supervised C5.0 decision tree. The resulting 

classifier is hence, able to recognize the multiple flow classes even from the same application 

without combining the results from multiple classifiers or using popular voting. This also increases 

the scalability of the final decision tree which can be implemented as a stand-alone system at 

suitable traffic aggregation points in the network capable of real-time traffic classification.  

 

Finally, as noted in [246], [247], and [235], given the variety of classification methodologies, 

dissimilar traffic traces as well as the diversity in flow classification features,  benchmarking the 

performance of classification algorithms is a difficult undertaking. In the present work, the widely 

used classification tool Weka [249] was employed to yield a qualitative comparison in terms of the 
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accuracy and computational overhead of the proposed design against some state of the art 

classification methods. 

 

6.2.2 K-Means clustering 

Flow-level clustering requires partitioning the collected flows per application into groups based 

on exported NetFlow attributes. Based on the computational efficiency documented in several 

recent traffic classification studies the present scheme uses the prominent unsupervised k-means 

clustering for unsupervised segregation of traffic flows from each examined application. The k-

means clustering algorithm is preferred over other methods such as hierarchical clustering due to 

its enhanced computational efficiency [219][242]. As observed during the profiling evaluation study 

carried out in chapter 4, k-means led to producing tighter and more meaningful profile clusters 

compared to other techniques. In the present context, using k-means clustering Eq. 3.1., cj 

represents cluster centre, n equals the size of the sample space (collected flows) and k is the chosen 

value for number of unique clusters (flow classes). Hence, using k-means, n flows can be partitioned 

into k classes. To calculate the optimal number of clusters, the previously tested Everitt and 

Hothorn graphical approach [188],is utilized. 

 

6.2.3 C5.0 machine learning algorithm 

The C5.0 algorithm and its predecessor C4.5 described in [240], attempt to predict a 

dependent attribute by finding optimal value ranges of an independent set of attributes. At each 

stage of iteration, the algorithm aims to minimize information entropy by finding a single attribute 

that best separates different classes from each other. The process continues until the whole sample 

space is split into a decision tree isolating each class. Hence, in a sample space comprising n 

application flow classes, if training data is given by pre-classified samples given by vector S, Eq. 6.1. 

Each sample flow fn may consists of a j-dimensional vector, Eq. 6.2, where, zj represents 

independent attributes which are used to identify the class in which fn falls. 

 

                                                               S = [f1, f2, f3, fn]                              (6.1) 

                                                               fn = [z1, z2, z3, zj]                               (6.2) 

 

C5.0 could therefore, be used to build a decision tree utilizing flow attributes zj of each sample fn 

from pre-classified training data. C5.0 also includes advanced options for boosting, pruning and 

winnowing to enhance accuracy and computational efficiency of the resulting decision-tree 
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classifier [241]. The adaptive boosting proposed in [32] generates a batch of classifiers instead of a 

single classifier and uses vote count from each classifier on every examined sample to predict the 

final class. Advanced pruning options remove parts of the classification tree representing relatively 

high error rate at every stage of iteration and once finally for the complete tree to reduce 

performance caveats. Finally enabling winnowing reduces the feature-set required for classification 

by removing covariates with low predictive ability during classifier training and cross validation 

stage.  

 

6.3 Methodology 

To address the challenges of obtaining high quality ground truth data incorporating flow class 

segregation and identification in each of the examined applications, the proposed classification 

technique utilizes unsupervised cluster analysis and supervised classifier training in tandem. A high 

level overview of the traffic classification scheme is shown in Fig. 6.1 with a description of principal 

steps as follows.  

 

 Pre-processing: Internet traffic is collected from end-user machines and marked with 

application labels accordingly (e.g. Skype, YouTube, etc.) using a localized operational 

packet level classifier. Application labelled traffic is afterwards exported as flows using a 

flow exporting utility for unsupervised cluster analysis. 

 

 Cluster analysis: Using unsupervised k-means, flows belonging to individual applications are 

separately cluster analysed to extract unique sub-classes per application, offering a finer 

granularity of the classification (e.g. YouTube and Netflix flows would be classed as 

Streaming and Browsing).  

 

 Classifier training: Flows marked with their k-means clusters, indicating the sub-class they 

belong to, are afterwards fed to a C5.0 classifier for supervised training, leading to a 

decision tree.  

 

 Evaluation: A separate data set is used for testing the accuracy of the algorithm. For each 

NetFlow record the trained C5.0 classifies the application and the sub-class of the flow 

based on their respective attributes, ingrained during decision tree creation.  
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Figure 6.1. Traffic classification scheme 
 

The following subsections detail the methodology used for collecting NetFlow records from user 

machines, flow customization, k-means clustering and designing feature-sets for the C5.0 classifier. 

 

6.3.1 Data collection 

To increase the scalability of the resultant classifier in identifying traffic from different 

network settings, NetFlow records were collected from two environments (i) a typical residential 

premises using broadband connection and (ii) an academic setting using corporate Internet as 

depicted in Fig 6.2. In order to accurately isolate traffic for each of the fifteen examined 

applications, a localized extension of packet-level classifier nDPI [253] was used on the researcher’s 

machines excluding references to application data or the end-point identity of users for anonymity 

similar to [250] and [251]. The nDPI is based on the libcap and OpenDPI library [46] and is 

continuously updated to increase the number of applications and protocols that can be successfully 

identified. Once the traffic from the examined applications was identified and marked with 

application names, it was converted to the NetFlow format using the softflowd utility [252]. A total 

of approximately 13.6 million flows were collected and marked with application labels. Table 6.2 

presents a summary of collected flows including the bytes, flows, timeframe of the traffic collection 

and the duration associated with each application. The NetFlow records were afterwards subjected 

to further pre-processing i.e. feature-set expansion using the nfdump utility [255] and creation of 

bi-directional flows before being exported to individual application storage filers as detailed in the 

following section. 
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Figure 6.2. Data collection and pre-processing workflow 

 

 

6.3.2 Customising NetFlow records 

NetFlow by default outputs 5-tuple address, port and protocol connection information 

<SrcIP, DstIP, SrcPo, DstPo., Proto.> along with  the timing and interface relating to each flow. 

Transmitted and received flows are, however, not correlated by default. Generally considered as 

lacking an extensive set of attributes, it further extrapolates the use of packet traces for traffic 

identification as highlighted in [239-239]. To fully explore the prediction ability of NetFlow 

attributes with the proposed methodology, nfdump [255] was used to expand the NetFlow output 

to display flow duration, number of packets, data rate (bits per second), packet transfer rate (pps) 

and output bytes per packet (Bpp) for each flow, then transmitted and received flows were 

correlated to output a 17 tuple bi-directional flow as shown by the snippet in Fig. 6.3. 
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Table 6.2. Traffic Collection Summary 

 
Traffic Class 

 
Application 

 
Bytes (x106) 

 
Flows 

 
Dates 

 
Duration  

(hrs) 
 

Video streaming YouTube 16093.87 879641 [09-12]/09/2015 6.89 

Netflix 11586.61 454985 [08-09]/09/2015 5.65 

DailyMotion 11258.12 398412 [15-16]/03/2016 5.31 

Video Chat/ VoIP Skype 6251.06 1492380 [08-17]/10/2015 9.45 

Gtalk 4584.02 1025260 [14-18]/03/2016 4.25 

Facebook Messenger 7824.13 1158302 [15-21]/03/2016 3.28 

P2P Torrent VUZE Torrent 131611.31 1318749 [20-23]/09/2015 4.28 

Bit Torrent 154138.97 1308881 [20-23]/09/2015 3.56 

Cloud Storage Drop Box 211833.57 408677 [11-23]/09/2015 1.56 

Google Drive 158923.52 358426 [20-23]/03/2016 2.31 

OneDrive 186358.21 325854 [21-27]/03/2016 1.81 

Online Games 

 

 

8ball Pool 953.91 1358425 [10-13]/10/2015 0.35 

Treasure Hunt 1158.28 1592362 [15-22]/03/2016 2.11 

Email Client Thunderbird 1401.36 821484 [15-31]/08/2015 2.21 

Outlook 1854.54 698722 [19-31]/03/2016 3.55 

 

 

 

 

Figure 6.3. 17-tuple bi-directional NetFlow records 
 

6.3.3 Extracting flow classes (k-means clustering) 

Popular applications such as YouTube or Skype generate an intricate set of flows between 

various web servers and the client depending on their underlying content distribution, load 

balancing and authentication schemes [256-259]. While DPI based traffic classification is useful in 

identifying the respective applications, it does not specifically segregate different flows generated 

per application attributed to the primary application content or control signalling, session 

establishment, embedded webpage advertisements, etc. Per-flow classification consequently 
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requires a separation of content specific and supplementary flows to retrieve the different flow 

classes generated per application for subsequently training and testing the classifier. Flow 

classification is not possible using supervised ML alone due to lack of information about the flow 

classes generated by an application, requiring an independent technique for per-application flow 

segregation. The K-means algorithm was therefore, independently applied on paired bi-directional 

flows generated per application in order to retrieve the respective flow classes. Due to extensive 

repetition of source and destination IP addresses, port numbers and protocol information in the 

collected data, these were deemed scalar entities for analysis and excluded while clustering. The 

remaining attributes chosen to isolate application specific flows from auxiliary data per application 

for further analysis comprise the following: 

 

(i) Transmitted/Received bytes Tx.(B)|| Rx.(B): The traffic volume (bytes) that is 

transmitted/received per flow. 

(ii) Transmitted/Received packets Tx.(pkt)||Rx.(pkt):  The number of packets per flow. 

(iii) Transmitted/Received flow duration Tx.s|| Rx.s: The total flow duration. 

 

The clustering vector per application could therefore, be represented by the following Eq. 6.3.  

 

                  Fij = [Tx.Bij, Tx.pktij, Tx.sij, Rx.Bij, Rx.pktij, Rx.sij]        (6.3) 

 

In Eq. 6.3 above, i and j are unique per application and per flow respectively. Additionally, using the  

per-flow measurements given in Eq. 6.3, the data rate (bits and packets per second) and  packet 

size (bytes per packet) can be output from the nfdump utility. The bidirectional flows represented 

by vector Fij once split into k clusters represent the types of flows per application. Once segregated, 

the flows per application were subsequently labelled with the respective flow class before datasets 

for all the fifteen examined applications were combined and split in equal proportions (~50%) for 

training and testing the C5.0 ML classifier. 

 

6.3.4 Feature selection 

Feature set selection is of paramount importance for training the classifier, given that these 

should be predictive and must correctly classify the application traffic. The selected features must 

also closely link to the flow classes derived from k-means clustering and utilize their NetFlow values 

to discriminate between different application flows. NetFlow attributes can be broadly grouped by 

transport layer parameters and network layer traffic statistics for each flow. Both groups were 
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studied for classifier training individually and in combination to examine their efficiency for 

classification. Additionally, minimizing the set of features for traffic classification also minimizes the 

processing overhead involved in creating decision trees and reduced classification time. Four sets of 

features sets were, therefore, devised around transport and network layer features translating for 

the independent attributes zj, given in Eq. 6.2 as shown in Table 6.3. Set 1 included source and 

destination port numbers along with protocol information. Set 2 used source and destination ports 

but, rather than using actual port numbers these were labelled as Known (0-1023) and 

Registered/Unknown (>1023) aiming to evaluate classification accuracy on basic port information 

alone. Set 3 included 12 flow attributes excluding source and destination IP addresses, port and 

protocol information while Set 4 represented the same as ratios thereby, reducing the feature set 

to 6 covariates with the intention of compressing the size of resulting decision tree even further.   

 

6.4 Unsupervised flow clustering 

6.4.1 Calculating flow classes per application – value of k 

A total of 6.8 million bi-directional flows were cluster analysed independently for each 

application using the computationally efficient Hartigan and Wong implementation of k-means in R 

[175]. Since the value of k influences directly the number of flow clusters (classes) per application, 

the Everitt and Hothorn method was employed to determine the k number per application [188]. 

This graphical technique plots within cluster sum of square values (wss) against the number of 

clusters k, with the curve in plot signifying an appropriate number of clusters that fit the input data. 

The plot of wss vs. k of flow records for each application is given in Fig 6.4 - 6.8 [Appendix – 3.1]. 

The maximum within-cluster variance between successive values was calculated according to 

Everitt and Hothorn criteria in reaching the optimal cluster number per application. The respective 

flow records were afterwards marked with the individual cluster colour. Table 6.4 details the 

optimal number of clusters translating for different types of flows classes determined per 

application along with the ‘within sum of squares’ per cluster to ‘total sum of square distance’ 

between clusters (wss / total_ss) representing the tightness of these clusters in covering the entire 

sample space i.e. flow records. A small sample set comprising approximately 1K bi-directional flows 

from each cluster was afterwards analysed offline to assign the respective flow labels as detailed in 

the following section.  
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Table 6.3. NetFlow Feature Sets for C5.0 Classifier Training 

Set 1 Set 2 

Protocol and Port information: 

• Source and Destination Port Num 

• Protocol (TCP, UDP) 

 

Protocol and Port information: 

• Source and Destination Port Labels 

• Protocol (TCP, UDP) 

Set 3 Set 4 

Flow Parameters:  
• Received and Transmitted Packets (Rx.Pkts, 
Tx.Pkts) 

• Received and Transmitted Packet Rate (Rx.pps, 
Tx.pps) 

• Received and Transmitted Data Rate (Rx.bps, 
Tx.bps) 

• Received and Transmitted Bytes per Packet 
(Tx.Bpp, Rx.Bpp) 

• Received and Transmitted Data (Rx.B, Tx.B) 

• Received and Transmitted Flow Duration (Tx.s, 
Rx.s) 

Flow Parameter Ratios: 
• Received Packets to Transmitted Packets 
(Rx.Pkts/Tx.Pkts) 

• Received to Transmitted Packet Rate 
(Rx.pps/Tx.pps) 

• Received to Transmitted Data Rate (Rx.bps/Tx.bps) 

• Received to Transmitted Bytes per Packet 
(Rx.Bpp/Tx.Bpp) 

• Received to Transmitted Data (Rx.B/Tx.B) 

• Received to Transmitted Flow Duration (Rx.s/Tx.s) 
 

 

 

 

Figure 6.4. Inner-cluster variance vs. k – (a) YouTube, (b) NetFlix and (c) DailyMotion 

 

 

Figure 6.5. Inner-cluster variance vs. k – (a) Skype, (b) GTalk and (c) Facebook (Messenger) 
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Figure 6.6. Inner-cluster variance vs. k – (a) DropBox, (b) GoogleDrive and (c) OneDrive 
 

 

Figure 6.7. Inner-cluster variance vs. k – (a) VUZE, (b) BitTorrent and (c) 8-ball Pool 
 

    

Figure 6.8. Inner-cluster variance vs. k – (a) TreasureHunt, (b) Thunderbird and (c) Outlook 

 

6.4.2 Analysis 

 YouTube access seemed to be solely used for streaming (and not content upload) in the 

present case and the corresponding clusters indicated 3 unique flow classes generated as shown by 

the graph in Fig 6.4(a). According to YouTube traffic analysis studies carried out in [256][257], these 

were narrowed to three unique flow classes and attributed to content-streaming, website browsing 

(or video searches) and redirections between YouTube and other Google content distribution 

servers. Netflix and Daily Motion video streaming, similarly showed three flow classes, two for 

video content-streaming having different download rates corresponding to start of video succeeded 
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by steady buffering stage and a third for user searches. For these applications, video streaming 

flows were labelled as ‘streaming’ while website searches and server redirections as ‘browsing’. 

 

The Skype client was used for video with voice communication rather than file sharing or instant 

messaging. Subsequent clustering produced two highly discriminate clusters given by the knee-

point of the graph in Fig 6.5(a). Skype stores user information in a decentralized manner with Skype 

clients acting has host nodes that initiate connections with super nodes for registering with a Skype 

login server and exchanging continuous keep-alive messages [258]. The resulting overlay peer to 

peer network employs both TCP and UDP connections both for communication between host and 

super nodes as well as between two hosts running the client application [259][260]. One flow 

cluster was hence, determined to be directly associated with control features servicing connections 

and authentication between host and super nodes, having a much lower data volume and receiving 

rate and a significant number of unidirectional flows compared to the second group. The second 

flow cluster comprised of video calls between Skype clients having substantially higher data rate  

 

Table 6.4. Segregated Flows per Application 

Traffic Class Application Cluster (k) wss/ total_ss Content 
Specific 
Flows 

Auxiliary Flows 

Streaming YouTube 3 87.3% Streamin

g 

Browsing 

Netflix 3 94.6% Streamin

g 

Browsing 

DailyMotion 3 95.1% Streamin

g 

Browsing 

Comms./VoIP Skype 2 98.8% Comms. Comm. Ctrl 

Gtalk 2 97.21% Comms. Comm. Ctrl. 

Facebook 
Messenger 

3 92.12% Comms. Comm. Ctrl., 

Browsing Torrents/P2P VUZE 3 97.9% Torrent  Torr.Ctrl. 

Bit Torr. 3 91.2% Torrent Torr.Ctrl. 

Cloud Storage DropBox 3 89.2% Up/Dwnl

d. 

Browsing 

Google Drive 3 88.15% Up/Dwnl

d 

Browsing 

OneDrive 3 92.14% Up/Dwnl

d 

Browsing 

Gaming 8ballPool 2 88.4% Game ctrl Game Setup 

TreasureHun
t 

2 91.98% Game ctrl Game Setup 

Email Thunderbird 2 99.14% Email 

msg 

Dir. Lookups 

Outlook 2 97.45% Email 

msg 

Dir. Lookups 
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and total data volume. The respective flows were labelled as ‘Comms. control’ and ‘Comms.’ 

accordingly. The same number of clusters were observed for Gtalk attributed to voice 

communication and control signalling with the Google content server with the later having a lower 

traffic footprint with respect to flow transmission duration and the average bit rate of the flows 

compared to the former. For Facebook messenger, however, three optimal clusters were observed, 

one with a high bit rate and duration similar to the VoIP calls observed in Skype and Gtalk, one for 

connection establishment and lastly one for the background live newsfeed being continuously 

updated on the Facebook page. The clusters were, thus accordingly labelled under ‘Comms’, 

‘Comms. Control’ and ‘Browsing’ classes. 

 

For online cloud storage, usually requiring low user interactivity as highlighted in [261], Drop box, 

Google Drive and OneDrive were examined. The applications employed file transfers ranging in size 

from 25KB to 1.5 GB, frequently in batches of 1, 5 and 10 files. Cluster analysis on generated traffic 

featured around 3 optimal flow clusters as represented by Fig 6.6. The three distinct flow clusters, 

after analysis were labelled as one each for file ‘uploads’ and ‘downloads’ and a third for interaction 

with the hosting website tagged ‘browsing”.  

 

To examine torrent applications, the original Bit Torrent and VUZE derivative client were used on 

researcher machines’ to search and download different combinations of files with sizes ranging 

from 25 MB to over 1 GB. Cluster analysing these torrent flows resulted in three distinct clusters 

representing actual file download labelled as ‘torrent’ and later two as ‘torrent control’ responsible 

for further seeding of downloaded files and communication with other peers. 

 

For online interactive Macromedia Flash player based pool and treasure hunt game, two clearly 

distinct flow classes as depicted in Fig. 6.7(c) and Fig. 6.8(a), responsible for initial ‘game setup’ and 

continued interactive ‘game control’ constituted all flows.  

 

Lastly the email clients Thunderbird and Outlook were used with three distinct email accounts, 

Yahoo, Gmail and a corporate account. Cluster analysis revealed two discrete types of flows shown 

in Fig 6.8 (b) and (c). One flow cluster comprised sending and receiving email messages which in 

this case could also be easily identified by looking at well-known destination port assignments for 

SMTP, POP and IMAP protocols. The second flow class represented ‘directory lookups’ by the client 

using HTTP and SSL having significantly lower total data volume per flow compared to email 

messages.  
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Segregated flows of all applications were labelled with flow classes and combined into a single data 

set. The next section details the splitting of training and testing data and evaluates the C5.0 ML 

classifier. 

 

 

6.5 C5.0 Decision tree classifier 

 Approximately 6.8 million flows were labelled with appropriate flow classes as a result of k-

means cluster analysis, in accordance with Table 6.3. In order to comprehensively test classifier 

accuracy, the data set was further split in almost equal percentages (~50%) per flow class for 

training and testing purposes. 

 

6.5.1 Classifier evaluation 

C5.0 ML was applied on the training data set using feature sets 1 to 4, with alternate pruning 

and boosting options [Appendix – 3.2, 3.3]. As mentioned earlier, enabling pruning removes parts 

of the decision tree representing relatively higher error rates than others while adaptive boosting 

generates a batch of classifiers and uses voting on every examined sample to predict the final class. 

Classifiers were derived by enabling both options to analyse improvements in accuracy using the 

feature sets in Table 6.3. The resulting prediction accuracy for each attribute set is reported in 

Table 6.5. Set 1 included source and destination port numbers along with protocol information and 

resulted in in a maximum accuracy of 41.97% with the maximum allowed boosting factor of 100 

and could easily be ruled out for use as standalone feature-set for classification. Set 2 used port 

name labelling instead of actual numbers and protocol information, resulting in considerably low 

accuracy even when compared to set 1 with uniformity in values regardless of boosting at 24.29%. 

Set 3 included twelve flow attributes and resulted in a significantly improved accuracy of 84.97% 

with a 10 boost. Finally, set 4 incorporating only flow ratio parameters led to a maximum accuracy 

of 75.03% with 100 times boost. In this particular instance disabling pruning resulted in a more 

accurate classifier at 75.70%. When used in combinations sets 2 and 4 presented lowest accuracy 

peaking at 77.42% while sets 1 and 4 as well as 2 and 3 resulted in reasonable level of classifier 

accuracy at 86.79% and 86.91% respectively. Set 1 and 3 combined showed a considerable 

improvement with classification accuracy peaking at 96.67% with a 100 boost while even with a 10 

boost or a single classifier (no boost) the prediction results were 94.52% and 92.37% respectively. 
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The misclassification table, generated during training stage for this best combination (set 1 and 3) 

classifier is presented in Table 6.6 The highest number of discrepancies was observed between 

‘game setup’ and ‘torrent control’ classes (229 flows). Estimated low in predictive ability, only one 

attribute, received packets per second (Rx.pps) was winnowed during training stage. The remaining 

14 attributes used to build the resulting classifier along with their percentage use are given in Table 

6.7. 

 

Table 6.5. Feature Sets vs. Classifier Accuracy 

Feature Set Pruning = FALSE 

 

Pruning = TRUE 

No Boost Boost 10  Boost 100 No Boost Boost 10 
 

Boost 100 

Set 1 39.58 40.01  41.34 39.44 40.48  41.97 

Set 2 24.29 24.29  24.29 24.29 24.29  24.29 

Set 3 82.29 83.24  84.29 82.20 84.97  83.95 

Set 4 73.18 75.51  75.70 73.18 72.62  75.03 

Set 1 + 3 91.37 94.39  95.98 92.37 94.52  96.67 

Set 1 + 4 84.48 87.47  86.47 84.48 86.42  86.79 

Set 2 + 3 84.90 86.91  85.71 84.90 85.00  85.61 

Set 2 + 4 74.37  77.07  77.21 74.37 76.83  77.42 

 

Table 6.6. Misclassification Table for Best Feature-Set Combination (Training Stage) 

Application 

Classified: 

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) 

(a) Game_set. 156432          229  

(b) Game_ctrl  257707           

(c) Browsing 32  932493           

(d) Stor_dnld    63212         

(e) Stor_upld     56613        

(f) Email_mssg      257707       

(g) Email_dir       122343      

(h) Comms        257552     

(i) Comms_ctrl        87 561432  157  

(j) Streaming    35      77343   

(k) Tor_ctrl           203764  

(l) Torrent 89           453142 
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Table 6.7. Flow Attribute Usage  

Flow Attribute Usage in Selected C5.0 Classifier 

Category Attribute Percentage Use 

Protocol and Port Protocol 80.62% 

Destination Port 100% 

Source Port 100% 

Transmitted Flow (Tx) Attributes Bytes [Tx.B] 100% 

Packets [Tx.Pkt] 100% 

Bits per second [Tx.bps] 100% 

Packets per sec [Tx.pps] 96.25% 

Bytes per package [Tx.Bpp] 100% 

Duration [Tx.s] 95.48% 

Received Flow (Rx) Attributes Bytes [Rx.B] 100% 

Packets [Rx.Pkt] 100% 

Bits per sec [Rx.bps] 100% 

Bytes per package [Rx.Bpp] 100% 

Duration [Rx.s] 98.61% 

 

6.5.2 Confusion matrix analysis 

The confusion matrix for selected classifier specifying cross-tabulation of predicted classes and 

observed values with associated statistics between different flow classes is given in Table 6.8. The 

highest errors occurred between ‘game control’ and ‘browsing’ flows (60114 or 1.76% of total 

tested flows), while no misclassification errors were observed between ‘game setup’ and ‘torrent 

control’ flows as witnessed during training cross-validation stage. The overall accuracy statistics are 

presented in Table 6.9. The value for the kappa co-efficient [262][263], which takes into account 

occurrences of accurately classified flows and is generally considered a more robust measure than 

simple percent agreement calculation, was also significantly high at 95.31%. The overall accuracy 

rate was also computed along with a 95 percent confidence interval (CI) for this rate (0.9364, 0.956) 

and a one-sided test to see if the accuracy is better than the ‘no information rate,’ which is taken to 

be the largest class percentage in the data (P-Value: Accuracy > NIR : < 2.2e-16) [264]. McNemar's 

test p-value however, was not available due to sparse tables (bi-directional flow vectors having very 

low or zero attribute values for some flow classes i.e. Skype control, etc.). 
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Table 6.8. Confusion Matrix Calculation for Optimal Classifier (Evaluation Stage) 

Application 

Classified: 

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) 

(a) Game_setup 156435            

(b) Game_ctrl  257718 60114          

(c) Browsing 632 25481 932494   4006        

(d) Stor_dnld    63208         

(e) Stor_upld     56611        

(f) Email_mssg      257710       

(g) Email_dir  3981 2561    122346      

(h) Comms        257552     

(i) Comms_ctrl   4587      561433    

(j) Streaming    1335      77341   

(k) Torrent          2078 453143  

(l) Tor_ctrl  5843 6154         203766 

 

Table 6.9. Overall Statistics 

Statistical Property Value 

Classifier Accuracy 96.67% 

95% Confidence Interval (CI) (0.9364, 0956) 

No Information Rate 0.3332 

P-Value (Acc > NIR) < 2.2e-16 

Kappa 0.9531 

McNemar’s Test P-value NA 

 

6.5.3 Sensitivity and specificity factor 

       For a given flow, the classifier’s ability to accurately predict the flow class is characterized by 

the classifier sensitivity factor and to differentiate this flow from other flow classes, by its specificity 

factor. Both parameters are of significant importance an ascertaining a classifier’s suitability for 

both flow identification and discrimination. The sensitivity and specificity bar graph for each flow 

class for the selected classifier are given in Fig. 6.9. Lowest sensitivity was recorded for cloud 

storage flows (87.67-89.89%) among all classes, also evident from Fig. 6.9 due to a higher mismatch 

between storage download and streaming (1335 or 0.039%) as well as storage upload and browsing 

flows (4006 or 0.11% of total tested flows). The corresponding specificity values for both storage  
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Figure 6.9. Classifier Sensitivity and Specificity Factor per Traffic Class  

 

flow classes, however, being significantly high indicated correct differentiation ability of the 

classifier for this application and lower sensitivity factor accredited to other application flows being 

misclassified under this class. Communication and bit torrent traffic classes showed high sensitivity 

and specificity values. The selected classifier also showed high accuracy in detecting and 

differentiating between Email messages and directory lookups. The classification accuracy reported 

per flow class was also greater than 90% for all applications apart from Drop box which showed 

87.67% accuracy due to mismatch with streaming and browsing flows. The specificity values, 

however, were substantively high without exception across all flow classes ranging between 98.37–

99.57%. The results represent a highly granular classifier with ability to accurately identify 

application traffic as well as discriminate between flows generated by same application without 

employing any complex time window flow and packet analysis. As an added advantage, the 

approach only used a minor change in output formatting of NetFlow attributes together with basic 

scripting for creating bi-directional flows. The next section considers some alternate approaches for 

machine learning based traffic classification and compares their accuracy and computational 

overhead with the derived classifier.  

 

6.6 Qualitative comparison 

        To undertake a comprehensive qualitative evaluation of the two-phased ML approach, 

alternate ML classifiers were appraised for their viability of use in per-flow traffic classification in 

relation to the proposed technique. Weka machine learning software suite (version 3.6.13), was 

employed to evaluate the eight most commonly utilized supervised machine learning algorithms in 

comparison with the proposed two-phased approach. The comparison evaluated (i) the 

classification accuracy of each algorithm, (ii) the computational overhead including the training and 

testing times to validate the results from each classification technique, and (iii) provide 
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perspectives on the scalability of the two-phased machine learning classifier. The classifiers used 

the same ratio of training and testing data set pools (marked with respective application class), 

where 50% of the flows were used for training the respective classifier and the remaining 50% flows 

were used for testing purposes. The machine learning algorithms evaluated are briefly described as 

follows. 

 

J48/C4.5 decision tree,  constructs a tree structure, in which each node represents feature tests, 

each branch represents a result (output) of the test, and each leaf node represents a class label i.e. 

application flow label in the present work [240][265]. In order to use a decision tree for 

classification, a given tuple (which requires class prediction) corresponding to flow features, walks 

through the decision tree from the root to a leaf. The label of the leaf node is the classification 

result. The algorithm was enabled with default parameters (confidence factor of 0.25 and reduced-

error pruning by 3 fold) in the WEKA implementation of the present experiment to optimize the 

resulting decision tree. 

 

K-nearest neighbours (KNN), computes the distance (Euclidean) from each test sample to the k 

nearest neighbours in the n-dimensional feature space. The classifier selects the majority label class 

from the k nearest neighbours and assigns it to the test sample [266]. For the present evaluation 

k=1 was utilized.   

 

Naïve Bayes (NB), considered a baseline classifier in several traffic classification studies selects 

optimal (probabilistic) estimation of precision values based on analysis of training data using Bayes’ 

theorem, assuming highly independent relationship between features [267][268].  

 

Best-first decision tree (BFTree), uses binary splitting for nominal as well as numeric attributes and 

uses a top-down decision tree derivation approach such that the best split is added at each step 

[269]. In contrast to depth-first order in each iterative tree generation step [61][62], the algorithm 

expands nodes in best-first order instead of a fixed order. Both the gain and gini index are utilized in 

calculating the best node in tree growth phase. The algorithm was implemented with post-pruning 

enabled and with a default value of 5 folds in pruning to optimize the resulting classifier.  

 

Regression tree representative (REPTree), is a fast implementation of decision tree learning which 

builds a decision/regression tree using information gain and variance with reduced-error pruning 

along with back fitting. Reptree uses regression tree logic to create multiple trees and selects the 
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best from all the generated trees. The algorithm only sorts values for numeric attributes once. It 

was implemented with pruning enabled with the default value of 3 folds.  

 

Sequential minimal optimization (SMO), a support vector classifier trained using a sequential 

minimal optimization algorithm by breaking optimization problem into smaller chunks, solved 

analytically. The algorithm transforms nominal attributes into binaries and by default normalizes all 

attributes [271][272]. It was implemented using WEKA with normalization turned on along with the 

default parameters (the complexity parameter C=1, and polynomial exponent P=1).  

 

Decision tables and naïve bayes (DTNB), is a hybrid classifier which combines decision tables along 

with naïve bayes and evaluates the benefit of dividing available features into disjoint sets to be 

used by each algorithm respectively [65]. Using a forward selection search, the selected attributes 

are modelled using NB and decision table (conditional probability table) and at each step, 

unnecessary attributes are removed from the final model. The combined model reportedly [273] 

performs better in comparison to individual naive Bayes and decision tables and was implemented 

with default parameters. The final classifier selected and used 5 attributes (out of 16 using 

backward elimination and forward selection search).  

 

Bayesian network (BayesNet), an acyclic graph (directed) that represent a set of features as its 

vertices, and their probabilistic relationship as the graph edges [274]. While using the Bayes' rule 

for probabilistic inference, under invalid conditional independence assumption (in Naïve Bayes) 

BayesNet may outperform NB and yield better classification accuracy [275]. The default parameters 

i.e. SimpleEstimator was used for estimating the conditional probability tables of a BN in the WEKA 

implementation of BN on the training set. 

 

The following sub-sections highlight a qualitative comparison between the above machine learning 

classification techniques and the proposed two-phased approach. 

 

 

6.6.1 Comparative accuracy 

       The respective accuracy of each examined traffic class for multiple classifiers is given in Fig. 6.10. 

Overall, the two-phased approach surpassed or equated in per-flow classification with the alternate 

classification techniques. The algorithm achieved the highest accuracy for the game setup class of 

flows. For game control flows, alternate approaches such as kNN and REPTree provide a better 
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percentage of correctly identified flows. Comparatively lower accuracy reported for game control 

flows was considered earlier while evaluating the sensitivity of two-phased classifier, and was 

mainly due to misclassification errors (of game control) with the web-browsing flows. kNN and 

REPTree, however, provide a lower accuracy than two-phased ML for browsing and streaming flows. 

Similarly, for the streaming application tier, SMO based approach yielded highly accurate results 

when compared to the two-phased machine learning approach and minimal accuracy for the Email 

flows. For the communication application flows, almost all classifiers apart from NB (~63%) 

provided correct classification results (~80%). This was primarily due to the predictive ability of flow 

parameters for this set of applications. For torrent based flows, J48 decision tree along with BFTree 

provided almost 99.99% classification results, with BFTree (97.25%) exceeding the two-phased 

classifier which gave approximately 90.02% capability for flow identification of torrent control 

traffic due to mismatch with game control and browsing flows. In conclusion, different applications 

seem to be most accurately identified by different classifiers. In terms of overall accuracy, however, 

two-phased ML provided a much more coherent and applicable result at 96.67%, with the lowest 

accuracy attributed to SMO at approximately 53.2% correctly classified records. 

 

 

Figure 6.10. Comparative and average overall accuracy of machine learning algorithms for each 
traffic class 
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6.6.2 Computational performance 

To evaluate the computational performance of the classifiers, each was independently 

implemented on a test machine (PC), an Intel based i54310-M processor chipset with two 2.70 GHz 

CPUs and 16GB of memory. The operating system used a GNU/Linux kernel (3.14.4 x64) and it was 

verified that no other user processes (apart from the WEKA software suite) were consuming CPU 

cycles or any of the operating system processes were CPU or I/O intensive. The two-phased ML 

evaluation included the combined cluster analysis and subsequent C5.0 training phase from 

labelled flows. This was done solely to examine the computational requirements of the 

unsupervised and supervised machine learning ensemble, excluding the ground-truth acquisition 

and refinement (i.e. DPI based application flow perusal and sub-class marking) which can be done 

offline and continuously on much greater data-sets in a practical network implementation. To give a 

realistic comparison, the alternate classifiers used the same application labelled flows (ground-

truth). The average CPU utilization for each classifier in terms of the flow records and bytes 

processed (testing) are given in Fig. 6.11. A linear relationship was observed between the CPU 

utilization and the amount of records processed for all classifiers followed by a steady-state pattern 

albeit different consumption footprints. The kNN classifier had the highest CPU usage at up to 5.32% 

with a gradual decrease steadying at 4.21%. NB classifier had the lowest consumption at 1.61% 

while two-phased ML reported around 4.31% usage. Similarly the average memory usage per 

classifier in processing flow records and bytes of data are provided in Fig. 6.12. The BFTree 

algorithm had the highest memory usage at 190.28MB with the two-phased ML at 175.31MB. 

BayesNet had the lowest memory footprint with a steady-state value of approximately 50.14MB.  

 

The average training and testing times with respect to three different sizes of flow sets (1000, 1 

million and 3 million) for each classifier are depicted in Fig. 6.13. The training time for two-phased 

classifier was significantly high compared to other classifiers for flow-record size of 1000 flows. This 

was due to the in tandem processing of the two embedded algorithms used. The training-time 

relationship for most classifiers with respect to the size of training data at larger values of the latter 

was, however, non-linear. The training time for J48 for example, for both 1M and 3M flows was 

approximately the same averaging at around 59.35 minutes. Similarly, BFTree approximated at 

60.12 minutes for 1M to 63.45 minutes for 3M flows respectively. The two-phased classifier also 

reported between 80.87 minutes to 84.51 minutes for the respective flow records in the training 

phase. This yields approximately on average 0.88 seconds spent training around 1K flows with a 

standard deviation (σ) of 1.137 between 1M and 3M flows. Hence, the proposed technique results 

in better performance in terms of training times in the steady-state with relatively larger data-sets. 
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However, as noted above it does not specifically consider the time duration involved in offline 

analysis of optimal cluster labelling following examination of different types of traffic generated per 

application. The SMO classifier accounted for the highest training times with larger flow records 

requiring around 140.35 minutes of training 3M flows. Given the lowest reported accuracy, the 

algorithm performed minimal in terms of resource consumption and the reported classification 

results.  

 

Considering the testing timelines, NB followed by J48 classifiers were the most efficient in 

classifying flows at approximately 6.3 minutes and 8.12 minutes respectively. Two-phased recorded 

a linear relationship between the flows tested and the respective processing time-frame. 

Approximately 15.17 minutes were spent in classifying 3M flows, averaging at 0.30 seconds for 

processing 1K flow records with a standard deviation (σ) of 0.071between 1M and 3M flows. Thus, 

given the high accuracy of the two-phased approach the computation performance seems highly 

applicable in realistic traffic classification scenarios. BN reported the highest 16.91 minutes in 

testing 3M flows albeit average overall classification performance as depicted in Fig. 10. The two-

phased approach therefore, yields better accuracy across all traffic classes with a comparably 

smaller computational cost when considered in relation to the examined alternate classification 

approaches implemented using the WEKA platform. However, it may be noted that since WEKA is a 

java-based implementation of the classifiers, the exact computational overhead reported might be 

different when a stand-alone classifier utility for each approach is applied resulting in a more 

efficient performance. 
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Figure 6.11. Classifier CPU Utilization (%) (a) flow records processed and (b) bytes processed 
 

 

 
Figure 6.12. Classifier Memory Usage (MB) (a) flow records processed and (b) bytes processed 
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      Figure 6.13. Classifier timeframes for (a) training and (b) processing time 
 

6.6.3 Scalability  

Given the classification accuracy comparisons among several classifiers, it is apparent that 

the prediction ability of a scheme is highly dependent on analysing a correct measure of variation 

between the selected flow attributes for each traffic class. Traditionally the bi-directional flow 

features utilized in the present research have shown considerable applicability in multiple classifiers 

to attain a (somewhat) acceptable degree of traffic identification. However, as highlighted in [224] 

and [226] the wide majority of the classification algorithms are infeasible with respect to their 

application in the network backbone by ISPs. The reasons for this lack of applicability range from 

the tremendous amount of traffic generated in the network core to the actual methodology of the 

approach, for example, sometimes requiring analysis of end-point behaviour for classification 

[226][276]. In addition flow-based techniques often rely on statistical information from bi-

directional traffic (specifically TCP), and placing the traffic measurement or collection point as close 

to the ingress or the edge of the network as possible to collect the necessary features from 

outbound as well as inbound flows. An alternate approach to address this limitation is provided by 
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[69], which introduces an algorithm for predicting the inbound traffic flow attributes based on the 

unidirectional transmitted TCP flows. However, the present approach proposes using the former 

technique of placing flow-measurements as close to the ingress or edge of the network to 

corroborate the relation between upstream and downstream flows per host to generate bi-

directional flow features and keep the operational and computational cost of implementing the 

two-phased approach to a minimal. 

 

The proposed two-phased approach is significantly reproducible due to the utilization of NetFlow, 

ubiquitous in present ISP networking equipment, network edges such as residential routers in home 

based networks and the edge (gateway) switches in enterprise networks. Additionally, the derived 

classifier reported high efficiency in dealing with large data (flow records) with high level of 

accuracy, again a basic traffic classification requirement in user traffic profiling. The synergetic 

combination of classifiers, in the present case produced comprehensive traffic classification results 

and a comparatively lower processing overhead while using non-specialized hardware. The 

classifier can therefore, be put to use in the traffic classification phase during user traffic profiling 

resulting in greater accuracy of user trend depiction as compared to the previously used technique 

of IP address and port mappings based application classification.  

 

 

6.7 Conclusion 

     The present chapter used a twofold machine learning approach for traffic classification on a per-

flow basis by solely using NetFlow attributes and without depending on packet derivatives or 

complex time window analysis. During the unsupervised phase, approximately 6.8 million bi-

directional flows for all applications were collected and cluster analysed resulting in 12 unique flow 

classes. The supervised phase used four different feature-sets of NetFlow attributes from the 

derived flow classes to test and train the C5.0 ML decision tree classifier. The foremost feature-set 

comprising 14 NetFlow attributes, reported an average prediction accuracy of 92.37% increasing to 

96.67% with adaptive boosting. The sensitivity factor of the classifier was also exceedingly high 

ranging above 90% with only cloud storage flows (file upload and downloads) reporting relatively 

low values between 87.67% - 89.89% due to misclassification with general web browsing and 

streaming flows. The corresponding specificity factor, indicating classifier flow discrimination ability 

ranged between 98.37% – 99.57% across all applications. Furthermore, the substantive accuracy of 

the presented approach in achieving highly granular per-flow application identification and the 

computational efficiency in comparison with other machine learning classification methodologies 
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paves way for future work in extending this method to include other applications for real-time or 

near real-time flow based classification. 

 

The following chapter investigates and evaluates the use of OpenFlow protocol features for traffic 

profile derivation in campus based SDN environments. The study assesses OpenFlow protocol 

based flow monitoring information to derive user traffic profiles for visualization of user traffic 

trends in campus network environments. The proposal seeks to eliminate reliance on external flow 

accounting methods (such as NetFlow) for recording user traffic information in larger campus 

environments where networking devices may be geographically dispersed and operators can 

benefit from a low cost centralized user profiling mechanism.  
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Chapter 7       OpenFlow-Enabled User Profiling in Enterprise Networks 

 

 

7.1 Introduction 

The OpenFlow protocol [17] provides flow monitoring and management of OpenFlow compliant 

SDN switches through a sophisticated set of controller to device message exchanges. The OpenFlow 

protocol also offers individual service improvement by guaranteeing quality of service through 

isolated application flow metering. Existing OpenFlow based traffic monitoring solutions are 

therefore, inclined towards using the protocol for flow monitoring and control, while aiming to 

keep the associated management overhead to a minimum. Studies such as [300], [301] and [302] 

have sought to establish the trade-off between resource consumption, control channel traffic load 

and monitoring accuracy by changing switch flow idle time out, using adaptive switch polling 

frequency and varying the time interval between configuration messages sent to switches. Prior 

work has also focused on highlighting the benefits of using asymmetric OpenFlow control messages 

to reduce the overall control channel overhead [303], as well as employing OpenFlow monitoring 

information along with anomaly and intrusion detection algorithms to harden SDN security [304]. 

However, no previous work has specifically focused on leveraging OpenFlow based monitoring 

information to profile user behaviour in an SDN framework. As evaluated in earlier chapters, user 

traffic profiling aims to understand real-time user behaviour and to help network administrators in 

visualizing user trends in subsequently implementing user-centric policies. Profiling user traffic 

based on application trends may more accurately express user activities and aid administrators in 

aligning optimization solutions to the inherent campus user classes instead of individual 

applications [200]. The implementation of user profiling controls, in larger campus and enterprise 

SDN environments, however, may require exporting flow measurements externally from dispersed 

network switches resulting in a substantial management overhead. The present chapter proposes 

profiling user application trends solely employing OpenFlow based monitoring information. The 

proposed approach accounts user-generated flows (application usage) towards the campus servers, 

using the OpenFlow counters in network switches polled via the SDN controller. Using the existing 

OpenFlow control channel between the edge switches and the SDN controller, flow measurement 

as well as profile extraction remains centralized eliminating requirement for external flow 

accounting (NetFlow, IPFIX, etc.) and dedicated monitoring overlays. Furthermore, the design 

focuses on retrieving traffic statistics nearer to the user i.e. the edge or access switches to account 

for any local service (or application server) traffic which may not traverse the campus core. The 
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extracted profiles subsequently serve as a means to characterize and monitor the campus workload. 

Utilizing per-profile traffic statistics, the SDN controller can anticipate real-time traffic conditions 

based on changing profile memberships, assisting operators in implementing user-centric policies.  

 

To validate the feasibility of the proposed approach, the study collected traffic statistics from a 

virtual Open vSwitch [86] and Ryu SDN controller [70] instance connected to a realistic campus 

edge to profile user activity. User statistics were monitored over a two-week time frame and 

subjected to unsupervised k-means cluster analysis to segregate users into different classes based 

on their application trends. The scalability of the design was further evaluated by simulating several 

user profile loads in Mininet [103] to benchmark the monitoring message overhead as well as the 

computational cost associated with user profiling.  

 

The remainder of this chapter is organized as follows. Section 7.2 details the proposed user profiling 

method using OpenFlow protocol. Section 7.3 discusses the derived profiles, also highlighting the 

scalability evaluation of the design. Section 7.4 gives a perspective on profiling based traffic 

engineering and final conclusions are drawn in section 7.5. 

 

7.2 Design 

The proposed traffic profiling methodology comprises of two main components (i) OpenFlow 

traffic monitor and (ii) the traffic profiling engine.  

 

The traffic monitor utilizes five primary OpenFlow message types presented earlier in Table 2.3 to 

record the individual application usage of users connected to an OpenFlow compliant switch (such 

as Open vSwitch) [Appendix – 5.5]. The resulting monitoring information collected per flow is a 

seven-tuple record including the source and destination IP address and ports, duration of the flow, 

the number of packets matching the flow and the total bytes transferred before flow termination 

<SrcIP, DstIP, SrcPort, DstPort, Duration, Packets, Bytes>.  

 

Following record collection, the profiling engine collates traffic composition statistics per user as a 

percentage of user generated flows towards campus data sources, mapped according to their 

respective destination IP address(es). The aggregate traffic composition vectors are afterwards fed 

to a k-means clustering module, segregating users into different classes (profiles) based on their 

application trends. The resulting profiles are stored in a central database and continuously           
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monitored to benchmark their stability with any deviation from pre-determined baseline values 

triggering re-profiling [Appendix – 2.4]. The following sub-sections discuss the data collection setup, 

the traffic monitor and the profiling engine in detail.  

 

7.2.1 OpenFlow traffic monitor 

To determine the feasibility of present traffic profiling approach, traffic records were collected 

from a realistic academic network segment consisting of approximately 42 users in the computing 

and engineering departments over a two week duration between 15/02/2016 and 29/02/2016. 

Each user had a single computer, being used to connect to campus application servers. In order to 

eliminate the impact of this study on production traffic, the setup used a Linux monitoring machine 

(VM1) running an Open vSwitch (SW1) and Ryu SDN controller instance connected to the 

departmental LAN as shown in Fig. 7.1. Port monitoring was enabled at the default gateway (SW2) 

to replicate all traffic to and from each user to the VM1 interface (virtual switch SW1). The mirrored 

traffic was processed through the Open vSwitch (SW1), however, not forwarded to any outside port, 

since the objective was solely the collection of user traffic statistics. The traffic monitoring 

application running on VM1 polled Open vSwitch (SW1) counters by issuing RESTful calls to the Ryu 

controller to collect per user flow statistics. All user machines used static IP addressing scheme to 

simplify accounting per user application usage from the collected OpenFlow records. Steps 

describing the installation of flows in SW1, their subsequent updating, and user statistics collection 

are detailed as follows. 

 

1) Flow installation: Standard Ryu based layer3 routing function and the traffic monitor 

application was implemented using the default OpenFlow behaviour with customized flow 

routing as shown in Fig. 7.2. The first packet of incoming (mirrored) traffic on SW1 port1, 

was matched against existing table0 entries for processing. In case of a table_miss, an 

OpenFlow packet_in message consisting of the first packet of the flow was created and sent 

to the controller. On receiving packet_in, the controller created a packet_out message 

instructing SW1 to forward upstream LAN traffic via OpenFlow table1 and downstream 

traffic (from campus servers and the internet) via table2 out port2. Since, the purpose of 

the experiment was data collection and not actual flow forwarding, and OpenFlow does not 

prevent flow installation towards a blocked port, virtual port2 on SW1 was set to blocking 

mode (sink). This resulted in the installation of respective flows in SW1 with subsequent 

flow packets negotiating table1 or table2 out port2, without consequences for live user 

traffic and generating per user flow statistics. The Open vSwitch SW1, therefore, installed 
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and updated OpenFlow entries in each flow table as would be the case if directly connected 

as the LAN default gateway to forward user traffic. 

 

2) Statistics collection: The traffic monitor made RESTful calls to the Ryu controller to 

determine the statistics for table1 and table2 entities. The controller, in turn, fulfilled these 

polling requests by issuing OpenFlow flow_stats and table_stats messages to SW1, with the 

respective counter for each flow and table entry sent to the traffic monitor. Since RESTful is 

a non-subscription based API, the polling frequency of RESTful calls was manually set to 30 

seconds, approximately half of the default idle_timeout value (60 seconds) to regularly 

generate statistics. In addition to frequent polling, flow completion and idle_timeout 

expiration triggered asymmetric flow_rem event message by SW1 to the controller, in turn 

updating the traffic monitor. The monitor collected per user seven-tuple record entries, 

collated every 24 hours and fed to the profiling engine to extract user profiles. The profiling 

engine design is discussed in next subsection. 

 

 

 

 

Figure 7.1. Data collection setup: campus network segment 
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Figure 7.2. Traffic monitoring schematic 
 

7.2.2 Traffic profiling engine 

The profiling engine design is depicted in Fig. 7.3. User traffic collected by the traffic monitor 

was classified by matching seven-tuple traffic records against source and destination IP addresses 

and ports used by the respective users and campus servers [Appendix – 1.3]. To further account for 

replication in nature of user activities, and derive meaningful profiles, services were tiered into 

distinct categories depicted in Table 7.1. A unique webpage visit or service usage on a user machine 

could therefore, be defined by the vector ui given in Eq. 7.1. In Eq. 7.1, each entity represents the 

percentage of user flows generated towards the application tiers given in Table 7.1. 

 

  ui = [ei, gi, vi, ci , pi, hi, ri, wi , zi]                                    (7.1) 

 

In equation (7.1) above, i uniquely identifies the user machine and the remaining entities represent 

the service usage percentage in accordance with Table 7.2. Network activity for a user u1 over any 

given 24 hour time-bin, e.g. [29/02/2016], could therefore be represented by the application 

distribution in Eq. 7.2. 

 

   u1 [29/02/2016] = [43.2 15.1 0.2 9.6 4.1 2.1 17.4 4.4 2.9]                                        (7.2) 
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Figure 7.3. Traffic profling engine 
 

Once application distribution vectors per user machine were collected, the traffic profiling engine 

implemented an R programming library of the Hartigan and Wong k-means function [18], to extract 

user classes based on the application trends as used in earlier chapters (Eq. 3.1). Furthermore, to 

benchmark the stability of the profiles, user profile transitions were evaluated every 24 hours over 

the two weeks of study. The extracted user profiles, profile stability evaluation, and computational 

cost of the design are described in the following section. 

 

Table 7.1. Application Tiers 

Application Tier Website, Destination Port 

Emailing (e) Outlook, SMTP, POP3, IMAP 

Storage (g) Central storage (://Z Drive, FTP) 

Streaming (v) Podcasting, video content 

Communications (c) Office communications server 

Enterprise (p) Corporation information system, staff portal 

Publishing (h)  Content management system (document, print) 

Software (r) Software distribution service 

Web browsing (w) External Internet traffic 

Network utility (z) DNS queries, Network Multicasts 
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7.3 User traffic profiles 

A total of approximately 7.8 million records were collected over the two week study and the 

corresponding user traffic composition vectors were afterwards subjected to k-means clustering. 

The plot of wss vs. k of the user traffic composition vectors is given in Fig 7.4. The profiling engine 

calculated the maximum within-cluster variance between each successive value of k, examined up 

to k=20 to evaluate the optimal cluster number. As shown in Fig. 7.4, the variance between 

individual values is maximum until k=6, however, subsequent values of k (≥6) show minimum 

change in the successive overall variance (<0.05%). Therefore, for the present study, k=6 provided 

an optimal number of user profiles fitting the sample space used for further analysis. The profiling 

engine correspondingly marked the daily user traffic records with the individual cluster (profile) 

colour. The next subsection examines the resulting six user traffic profiles. 

 

7.3.1 Extracted profiles 

The extracted user traffic profiles (for clusters k=6), highlighting the application trends as a 

percentage of user generated flows are depicted in Fig. 7.5. From a monitoring and network 

management perspective, the derived user profiles showed significant variation in activities among 

the derived traffic classes. For example, Profile 1 concentrated mainly on web browsing (39%) with 

relatively limited usage of other applications apart from the corporate information (20.5%) and 

content management services (12.4%). Profile 2 focused on using office instant messenger and VoIP 

largely (64.5%) with limited use of content management applications and web browsing (12.2%). In 

comparison with other profiles, Profile 3 users heavily interacted with corporate information 

services (50.3%) with a significant use of email service (10.1%). Profile 4 users concentrated on 

document utilities and print content creation (57.7%) as well as using centralized storage (11.3%).  

 

 

Figure 7.4. Optimal cluster determination – wss. vs. k 
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Figure 7.5. User traffic profiles 
 

 

Profile 5 mainly used central storage filer (60.1%) with small use of content and corporate 

information server. Profile 6 was a mix of web browsing, email usage, file storage and the staff 

portal along with streaming (20.8%). Each of the derived campus user profiles, therefore, 

represented a significant discrimination towards a certain mix of applications and services. The use 

of software distribution was, however, significantly low compared to other applications among all 

user profiles with profile 4 showing the highest proportion of software downloads (5.9%) from the 

campus software store. To benchmark the traffic baseline for each profile, the maximum 

probability for the number of users, total traffic volume along with upstream and downstream flow 

rates and flow statistics was calculated and is given in Figs. 7.6-7.8. Profile 1 had the highest 

number of users (10-14 users) during office hours (09:00-17:00hrs) followed by profile 3 (6-8 users) 

while profile 6 membership increased during the evening. Despite having the lowest number of 

users (1-5), profile 6 accounted for the greatest traffic volume, primarily due to the greater usage of 

streaming application in this traffic class compared to other profiles. Minimum profile memberships 

(active users) were recorded between 03:00-06:00hrs. Fig. 7.8 represents the corresponding upload 

and download rate per user profile including per application and consolidated average data rates 

(x). In terms of individual application tiers, storage (g) had the highest upstream and downstream 

rates (4-5Mbps), followed by streaming (s) downloads (up to 5Mbps). Web browsing had the 
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minimum data rate footprint for both upstream (0.2Mpbs) as well as downstream (0.6Mpbs) traffic. 

The minimum flow rate was due to web browsing generating low overall speeds, particularly when 

using an HTTP1.1 connection (so the connection remains open between pages or the browser sends 

keepalives for a while after the actual data transfer finished). The average data rates (x) remained 

consistent across all profiles ranging between 1-1.5Mbps for the upstream compared to 1.8-2Mbps 

on downloads. The corresponding inter-flow arrival times per profile (for active users) on an hourly 

basis are given in Fig. 7.8. Profile 1 had the highest amount of flows generated and received (240-

260 flow) per hour for active users, again due to the greater profile membership attributed to this 

user class. The lowest flow generation was for users in profile 2 (80-100 flows) mainly constituting 

communication service usage. Similarly profile 4 had the minimum inter-flow arrival duration 

(575ms) for transmitted flows, showing quick use of print services when active. Profile 6, 

concentrating on streaming had the minimum inter-flow arrivals for downstream traffic (275ms) 

mainly attributed to dynamic download of streaming content from multiple sources i.e. load-

balanced video servers. In view of the discriminative application trends, profile memberships and 

associated flow measurements for the evaluated campus network segment depicted in the derived 

user profiles, operators may want control over which users to prioritize in terms of bandwidth 

allocation as well as select optimal routes for resource intensive profiles. An overview of integrating 

profiling based controls in campus SDN is discussed further in section 7.4. 

 

 

 

 

Figure 7.6. Probability distribution: (a) profile memership and (b) traffic volume 
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Figure 7.7. Flow transfer rates: (a) upstream traffic and (b) downstream traffic 
 
 

 

 

Figure 7.8. Flow statistics: (a) flow inter-arrival time and (b) total flows (hourly) 
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7.3.2 Profile stability  

 Profile consistency highlights the significance of gaining a better insight to changes in user 

activity as well as benchmark the stability of the extracted profiles and re-profiling frequency. 

Therefore, to evaluate user profile retention, the average probability of profiles change for the 

same users for each subsequent day of study was computed and is presented in Table 7.2. Profile 5 

users showed the highest consistency in retaining profiles at 99.1% followed by profile 4 at 99% 

while profile 6 showed the lowest at 96.1%. The reported profile retention of campus users was 

greater in comparison with a similar study (chapter 4) aimed at evaluating profile stability for multi-

device residential users reporting the lowest profile consistency at 81% [293]. Campus users hence 

showed a significantly greater degree of consistency in daily application usage in relation to 

residential users. The probability of a profile gaining or losing a device every 24 hours is also given 

in Table 3. Profile 1 had the highest probability of gaining users (93%) profile 6 had highest 

probability of transitioning users (80%). The average probabilities of inter-profile transitions every 

24 hours are given in Table 7.3. Profile 6 users showed a tendency (up to 3%) to transition to profile 

1, the primary difference between the two profiles being proportional changes in streaming and 

publishing tier respectively. Similarly, profile 1 users tilted towards profile 3 (1.1%) having greater 

corporate information system and staff portal usage. Profile 4 with heavy publishing inclined 

towards profile 1 (at 0.6%) having higher web access. It was therefore, noted that where users 

transitioned to a different profile, it was always to profiles having somewhat similar application 

usage ratios to their own. Inter-profile transitions were mainly due to proportional variation in the 

same kind of user activity rather than a complete change of user roles, increasing the applicability 

of derived profile baseline in campus network monitoring. 

 

Table 7.2. Average Probability of Profile Change (/24 Hours) 

User Profiles Probability of No Change Probability of Change 

Change: Gain Loss 

Profile 1 0.981 0.019 0.93 0.07 

Profile 2 0.970 0.03 0.44 0.56 

Profile 3 0.985 0.015 0.92 0.08 

Profile 4 0.990 0.01 0.55 0.45 

Profile 5 0.991 0.009 0.49 0.51 

Profile 6 0.961 0.039 0.20 0.80 
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Table 7.3. Inter-Profile Transition Probability (/24 Hours) 

User Profiles P1 P2 P3 P4 P5 P6 

Profile 1  0.981 0.001 0.011 0.002 0.004 0.001 

Profile 2 0.009 0.970 0.017 0.001 0.001 0.002 

Profile 3 0.008 0.001 0.985 0.003 0.002 0.001 

Profile 4 0.006 0.001 0.001 0.990 0.002 0.001 

Profile 5 0.001 0.003 0.001 0.002 0.991 0.002 

Profile 6 0.03 0.0091 0.001 0.0004 0.0003 0.961 
 

 

7.3.3 Profiling computational cost 

To evaluate the computational cost of the traffic profiling mechanism, memory and CPU 

utilization were recorded during the profiling workload completion. The purpose of this exercise 

was to appreciate the amount of computational resource needed in profiling user traffic from a 

practical campus network setting. The test machine (PC) used an Intel based i54310-M processor 

chipset with two CPUs, each at 2.70 GHz and 16GB of RAM. The operating system used a GNU/Linux 

kernel (3.14.4 x64) and it was verified that no other user processes (apart from the profiling engine) 

were consuming CPU cycles or any of the inherent operating system processes were CPU or I/O 

intensive. Fig. 7.9 illustrates the memory and CPU utilization vs. the number of records processed. 

The initial spike observed in CPU and memory utilization during  start-up was followed by a brief 

linear curve for both resources in relation to the number of flow records processed. However, with 

continued increase in the number of records (≥1 million records) memory utilization reached a 

steady-state pattern having a maximum observed value of 335MB. CPU utilization on the other 

hand continued to increase with maximum value of 41.63% for the total 7.8 million records. 

Similarly, the time duration involved in processing the records is given in Fig. 7.10. 

 

 

Figure 7.9. Profiling overhead: (a) memory and (b) CPU utilization 
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Figure 7.10. Traffic profiling duration vs. traffic records processed 
 

As evident from the graph a substantial portion of the total time was spent in clustering compared 

to pre-processing (collating) per user statistics. The total duration for processing 7.8 million records 

was approximately 103 minutes. The observed CPU and memory footprint required in processing 

an order of x106 monitoring records highlight the viability of the proposed profiling mechanism in 

an online campus implementation. A dedicated server with relatively additional memory, 

particularly CPU power may be employed for profiling which may further expedite the clustering 

process and reduce the total profiling duration.  

 

7.3.4 Control-channel overhead 

In addition to the profiling resource computation cost, it is important to consider the traffic 

workload added to the OpenFlow control channel as a result of the statistics collection required for 

traffic profiling. To evaluate the load attributed to the control channel due to the proposed 

customization i.e. profiling traffic from an edge switch, the experimentation workload was 

emulated in Mininet using Ostinato traffic generator utility [205]. The analysis of the workload 

accounted (i) the monitoring information required for traffic profiling including the packet_in, 

packet_out and flow_rem messages, and (ii) the polling of flow tables via flow_stat and table_stat 

messages at regular 30s intervals. Fig. 7.11 presents the topology and the related traffic simulation 

parameters are given in Table 7.4. The topology comprised of 12 user machines, six representing 

each of the derived profile users and the remaining six sourcing campus server traffic. The traffic 

load was gradually increased starting from 10 users per profile up to a maximum of 100 users per 

profile to measure the control channel overhead generated by the edge switch. Employing the 

default OpenFlow behaviour, packet_in messages included the first complete packet of incoming 

flows as opposed to the alternate option of buffering the packet in the switch and sending buffer_id 

with routing request to the controller which requires considerably greater switch memory [17]. 

Using default OpenFlow option ensured the evaluation scaled to typical switch configuration. The 

resulting control channel traffic with varying workload is given in Fig. 7.12. The bulk of the traffic 
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comprised of flow control packet_in and packet_out messages from the controller with minimum 

traffic attributed to statistics collection (flow_stat, table_stat, flow_rem) messages. This was 

primarily due to the relative size of packet_in and packet_out messages compared to counter 

polling messages. At the maximum user load of 600 users (100 users per profile), a total of 697 

upload packets and control traffic rate of 326kbps was observed. On the downstream, the packet 

rate remained lower due to absence of switch-controller flow_rem messages, peaking at 676 

packets. Downstream traffic rate was approximately 353kbps suggesting swifter processing on the 

controller side than upstream. The present scenario considered the messaging overhead of traffic 

monitor in addition to the forwarding control messages, presenting majority of the edge switch 

bound control traffic. Any additional flow control traffic, i.e. flow_mod messages sent to 

intermediate campus switches, would be distributed depending on the underlying network 

topology. For an edge switch catering to approximately 600 users, the maximum bi-directional 

packet overhead (4.02%) and control traffic rate (4.96%) due to flow statistics collection alone 

poses no significant impact on existing OpenFlow channel traffic. Operators may therefore, utilize 

the existing network fabric (depending on capacity) to monitor edge switch user traffic from a 

central controller without requiring additional monitoring overlay. The next section highlights some 

of the applications of the proposed OpenFlow traffic monitoring solution. 

 

 

 

Figure 7.11. Control channel overhead evaluation – Mininet topology 
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Table 7.4. Traffic Configuration Parameters of Simulation 

Parameter Value Remarks 

SDN related OpenFlow: v1.4  
 
Default behaviour; idle_timeout 60s; traffic monitor 
polling 30s 
 

Open vSwitch: v1.3.1 

Ryu Controller: v3.3 

Mininet: v2.21 

Ostinato: v0.7.1 

Workload  10-100 users per 
profile 

Min: 60, Max: 600 users 

Runtime 15 minutes per 
workload 

- 

Flow duration 5.61-31.13s Source: user profile flow statistics 

Flow 
frequency 

190-527 per hour Source: user profile flow statistics 

Packet size 64-1480 Bytes Random variation by Ostinato generator  

 

 

 

 

Figure 7.12. Control channel (a) control packets (b) control traffic rate (kbps) 
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7.4 Application: campus traffic management 

The extracted user traffic profiles from the campus network segment represent varying user 

application trends, giving network administrators an intuitive means to monitor an SDN based 

environment. User profiling gives administrators the ability to appreciate user tendencies and 

design user-centric solutions rather than focusing on individual applications as well as plan for 

future updates. Three important avenues for integrating user profiling controls in the campus SDN 

framework are highlighted in this regard. 

 

1) Real-time network monitoring: User traffic profiles may provide a real-time visualization of 

user activity to monitor the campus network. The six extracted profiles in Fig. 7.5 showed 

considerable stability and consistency. Baseline of traffic profiles depicted in Fig. 7.6 – 7.8 

including the time of the day profile memberships, traffic volume, the respective flow rates 

as well as flow generation frequency may aid the network administrator in monitoring the 

campus traffic in real-time via the proposed traffic monitor. Additionally, baseline statistics 

associated with each profile could serve as an input for timely anomaly detection, with any 

variation from anticipated trends triggering an alarm as well as serve as an indication for re-

evaluation of the derived profiles. 

 

2) Link management: The extracted profiles assist in the identification of resource heavy from 

lighter profiles. Implementation of a profile optimization scheme may allow operators to 

rate-limit as well as balance selected profile traffic on the available links between several 

departments. A similar profile prioritization and per profile traffic queueing approach 

tested in residential SDN to rate-limit user to service provider traffic in chapter 5, yielded 

greater bandwidth availability for high priority users under network congestion [305]. 

Furthermore, profile prioritization may also allow improved external campus-data center 

route selection to minimize server switch (ToR) oversubscription effects on priority users.  

 

3) Energy conservation: A growing number of energy conservation techniques in SDN rely on 

switching off network components using customized controller-switch OpenFlow 

implementations. Determining which device subsets to dynamically switch off, as well as 

consolidating virtual machines to minimize active server instances, however, remains 

challenging [306]. Time of the day variation in profile membership, and flow statistics offers 

enhanced user traffic visualization which may aid operators in reducing energy 

consumption at the network and server level. Using profile statistics, operators could 



180 
 

design optimal server placement algorithms according to real-time resource requirements 

and in tandem reduce the number of active devices (and ports), to conserve energy 

through efficient network provisioning. 

 

7.5 Conclusion 

The present work derived six unique user traffic profiles from a campus network segment 

while solely using OpenFlow traffic monitoring attributes. The extracted profiles showed significant 

application usage discrimination among users. Furthermore, the six profiles remained largely 

consistent showing minimum user profile transitions over the two weeks of observation, making 

them viable for intuitive real-time monitoring and management of the campus SDN. Additionally, 

the low profiling computational cost and control channel overhead of the proposed design even at 

high user loads offers increased scalability for campus-wide deployment. The integration of 

OpenFlow-enabled user profiling controls may further allow operators to implement SDN specific 

user-centric traffic engineering solutions, maximize link and server utilization as well as derive 

energy efficient network provisioning models.  

 

The next chapter discusses user traffic profiling in enterprise environments and presents a novel 

traffic management framework, using operator defined global profile and application hierarchy to 

dedicate network resources in data center software defined networks.  
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Chapter 8   User-Centric Network Provisiong in Data Center  Environments 

 

 

8.1 Introduction 

Service providers depend on rapid application deployment to maintain business agility, 

requiring frequent network provisioning updates in data centers. Swift coordination of changes for 

service provisioning in conventional data center networking, however, is incredibly complex 

involving the implementation of distributed protocols on network devices to facilitate multiple 

services for traffic routing, switching and guaranteeing application quality of service [285]. The SDN 

paradigm offers automated on-demand resource allocation in data centers, a significant 

improvement over manually intensive conventional configuration techniques [1][2]. SDN affords 

state changes much faster than distributed protocols, a fundamental necessity in modern data 

centers [38][286]. As depicted in Fig. 8.1., using a southbound protocol, such as the OpenFlow, the 

centralized SDN controller can communicate with DC switches to customize real-time flow 

forwarding constructs [17]. Furthermore, deriving network abstraction models and subsequently 

allocating resources in the DC is quite frequently based around individual application requirements. 

Traffic measurements in data centers, however, show tremendous volatility in workload when 

multiple applications are hosted on the same physical or virtual fabric [5]. Both enterprise users as 

well as cloud subscribers may comprise of several user traffic classes representing varying 

application trends sharing the same data center infrastructure. Using stringent application 

bandwidth guarantees to optimize traffic utilizing conventional technologies such as spanning tree 

protocol (STP) or dynamic equal cost load balancing over multiple paths (ECMP) does not fully 

account for real-time application usage diversity among users often resulting in service trampling 

with over use of one application affecting others [287][200]. Furthermore, chained service delivery 

architecture of some applications necessitate communication between multiple servers to enable 

user request fulfilment causing traffic fluctuations, rendering per-application bandwidth allocation 

impractical [288]. For example, big data applications like MapReduce, requiring large data set 

movements, may consume a substantial portion of the available network bandwidth, leaving users 

frequenting basic tasks like accessing document management systems struggling for resources. Per-

application bandwidth guarantees and weighted bandwidth sharing models, therefore, fail to 

provide operators the desired granularity to fully optimize real-time network provisioning in view of 

actual user workloads. Seamless application delivery in data centers, therefore, demands a more 

user-centric approach accounting for real-time user application trends and accurate customization 
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of prerequisite virtual and physical resources using SDN technology to meet user requirements. The 

present chapter proposes profiling user application traffic in the data center and employing the 

derived traffic classes to accurately assign network resource share among users. Understanding the 

real-time application diversity among users through traffic profiling and subsequent prioritization of 

profiles allows refined network policies offering balanced real-time resource distribution according 

to internal and external data center traffic. To this end, the present chapter contributes as follows.  

 
1) Improving workload characterization in data centers by deriving user traffic profiles based 

on application trends captured using generic flow measurements and further allowing 

operators to define global profile and application hierarchy for computing and assigning 

network routing paths between service endpoints.  

 
2) A traffic management algorithm employing the profile and application hierarchy along with 

anticipated profile traffic statistics in computing and assigning external traffic routes 

between users and front-end servers as well as internal inter-server traffic routes in the DC.  

 
The remainder of this chapter is organized as follows. Section 8.2 gives the design overview, while 

the profile derivation methodology is highlighted in section 8.3 and the network management 

algorithms in section 8.4. Section 8.5 details the simulation environment and evaluates the 

proposed design with a discussion of the resulting improvements and the associated management 

overhead. Final conclusions are drawn in section 8.6. 

 

 

Figure 8.1. Schematic representing centralized control in SDN based DC 
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8.2 Design overview 

The proposed design comprises of two components a) a traffic profiling scheme used to 

discriminate user classes based on application trends and b) a traffic management mechanism 

utilizing the derived profiles to define and implement network provisioning policies as illustrated in 

Fig. 8.2.  

 

 The traffic profiling scheme constitutes the measurement and application classification of 

user-generated flow records (NetFlow) exported at the data center edge and subjected to 

un-supervised cluster analysis to segregate users into traffic classes (profiles). The extracted 

user profiles record application usage ratios along with anticipated user bandwidth 

requirements which are used by the traffic manager (via the SDN controller) in computing 

and provisioning network resources.  

 

 The traffic management algorithm allocates real-time network resources per-profile 

according to operator defined user profile priority (table) while keeping track of the real-

time profile memberships. External traffic routes to and from front-end application servers 

are computed in order of profile priority by monitoring the available link bandwidths 

between network edge (core) and top of the rack (ToR/access) switches utilizing the pre-

logged inbound and outbound data transfer rates per profile. Internal server-server routes 

are computed as per a global application prioritizing scheme derived according to 

application usage weighting per profile, starting with the highest priority profile.  

 

The computed flows for both external and internal traffic are installed and updated in individual 

network elements (access, aggregate and edge switches) using OpenFlow protocol. Additionally 

OpenFlow flow and table statistics serve to monitor real-time traffic, aiding the administrator in 

detecting anomalous (out-of-profile) traffic and determining profile regeneration frequency. Since 

user profiles are generated using aggregate flow exports (NetFlow) directly from the data plane 

(core switches), the profiling scheme does not add additional workload on the SDN controller or 

contribute to the existing control channel overhead. The specifics of profiling methodology and 

traffic management scheme are detailed in the following sections. 
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                                 Figure 8.2. Traffic profile derivation and network management 

8.3 User traffic profiling methodology 

User profiling requires recording of user traffic traversing the data center network and the 

identification of per user flows. For this purpose, aggregate flow records are collected at traffic 

admission points i.e. the edge routers. Following flow collection, the application usage trends are 

quantized based on number of user-generated flows towards each subscribed data center 

application (front-end servers). To measure the total number of user flows per application, the 

number of flows α destined to each front-end server need to be accounted as shown in Fig. 8.3. For 

user flows αs towards front-end application server (s), the total flows per application are given by 

Σαs. The corresponding traffic composition vector depicting the total application usage as a function 

of all user u generated flows having n application subscriptions is given in Eq. 8.1. 

  

                                         u = [α1 /∑ α𝑛
𝑠=1 s, α2 / ∑ α𝑛

𝑠=1 s … αn / ∑ α𝑛
𝑠=1 s]                                                (8.1) 

 

 Once traffic composition vectors have been derived, users need to be partitioned into groups 

based on proportional variation in application usage. For this purpose, the present work employs 

the un-supervised k-means clustering algorithm [187][189][166][293], given in Eq. 3.1. To find the 

optimal number of clusters (user profiles) reflecting user activities the profiling scheme uses Everitt 

and Hothorn technique given in [188]. The derived profiles segregate users in to different classes 

according to their application trends. Additionally the traffic statistics generated per profile provide 

a means to collect and measure per-profile bandwidth requirements. 
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Figure 8.3. User generated traffic flows per application 
 

 

8.3.1 Flow statistics 

      Implementing per-profile traffic policies requires determining the projected flow rates between 

a) users and front-end application servers per profile as well as b) internal intra-server traffic 

generated per application in response to each user request. A list of flow parameters used for real-

time traffic management and monitoring profile stability are summarised in Table 8.1. Given the 

per-profile transmitted and received data transfer rate z for each front-end application server 

collected over time t, the maximum probability for data rate z to take on a given value using the 

density function given by Eq. 8.2.  

 

                 Pr [ x ≤ z ≤ y ] = ∫ 𝑓
𝑦

𝑥 Z (z) dz                                 (8.2) 

 
The probability of z falling within a particular range of values is given by the integral of density of z 

between the lowest and greatest values of the range (x, y). The maximum probability of z is 

measured for both inbound and outbound traffic per profile for each subscribed application 

independently The respective data transfer rates for inbound and outbound flows for application αi 

belonging to profile Pk can therefore be given by Prmax [z in||out (Pk, αi)] and the corresponding flow 

inter-arrival times by Prmax [Δtin||out (Pk, αi)]. While the external traffic between users and front-end 

servers is relatively easy to measure and record, the internal flows generated between the 

application servers are subject to significant variation and greatly depend on the application logic as 
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well as the respective server connectivity model. A maximum threshold value is therefore, defined 

for the inter-flow arrival time Δtinternal and the respective data rate zinternal between internal servers 

per-application in response to each user (profile) connection. To evaluate the proposed traffic 

management scheme discussed later in section 8.5, flow rates were generated up to pre-set 

threshold to understand the effects of varying inter-server traffic on the viability of proposed 

approach. 

 

8.3.2 Profile stability and regeneration 

The baselines of network traffic per profile i.e. flow inter-transmission times and data transfer 

rates summarised in Table 8.1 provide an intuitive means to continuously monitor profile 

consistency via OpenFlow flow counters in DC core switches using multi-part flow_stat and 

table_stat messages. Abnormalities in anticipated aggregate flow statistics with respect to real-time 

profile memberships triggers as an advisory for network administrators to re-evaluate the profiles. 

It also dictates the efficacy of the clustering algorithm and the subsequent traffic forwarding 

performance. Additionally, real-time monitoring of out-of-profile traffic anomalies via OpenFlow 

allows dynamic management of the respective flows. The real-time monitor and traffic manager in 

the present context allow for a place holder profile (the guest profile) for policing out-of-profile 

user traffic to minimize impact on existing flows until administrators can evaluate the respective 

anomalies and regenerate the profiles. The introduction of new profiles or updating of existing 

profiles may result in operators re-evaluating network policies in view of updated requirements. 

  

8.4 Traffic Management Approach 

This section describes the proposed traffic management scheme, comprising of five 

procedures: profile and application hierarchy derivation, external flow management between users 

and front-end application servers, internal flow forwarding between application servers, installation 

of calculated per profile routes in individual switches (using the OpenFlow protocol) and finally the 

scheduling management of the respective traffic management algorithms. 

8.4.1 Profile priority and application hierarchy 

Conventional Ethernet uses best effort delivery of traffic which is prone to dropping of frames 

in face of network congestion in the data center. While technologies such as equal cost multipath 

(ECMP) promise higher throughput by distributing traffic over multiple links over the legacy 
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spanning tree protocol (STP), these alone are inadequate in policing traffic in view of the inherent 

mix of user classes present in the data center environment [286]. To account for the real-time 

traffic load and different priority flow-forwarding requirement per user profile, the present design 

proposes using operator-defined profile priority tables as shown in Fig. 8.4. The priority list aims to 

reduce the effects of network congestion for user categories (in order of hierarchy) by routing flows 

on different paths between the core, aggregate and access switches for external traffic between 

the user and application servers. Based on the application usage weighting per-profile, a global 

application hierarchy table is also derived. The table is used to create flow forwarding constructs 

using multiple routes (in order of application hierarchy) to facilitate inter-server traffic between 

application servers connected to different access switches. Applications higher up the chain 

therefore, benefit in using lesser-congested links for internal internal data center traffic. The 

approach translates operator defined priority per user profile to provision routes aimed at 

increasing throughput and reducing the effects of network congestion, on not only external but also 

internal flows which form the bulk of traffic within the data center. For example, resource intensive 

profiles having higher business productivity may be placed at the top priority while the guest profile 

comprising of out-of-profile and anomalous user traffic placed at the bottom. The proposal allows 

operators greater leverage in defining network provisioning policies according to real-time user 

application trends captured in user profiles instead of relying on isolated applications and services.  

 

Table 8.1. User profiles and inter-server flow parameters 

Entity Parameter  Usage Technology 
Implementation 

User traffic 
profiles 

Flow rate (inbound and 
outbound) zin || zout 

Aggregate value: Real-
time profile monitoring   

Per subscribed 
application: External 
route construction 

User traffic profiling:    
NetFlow: core switch 
export  

Real-time monitoring: 
OpenFlow: flow_stats, 
table_stats message 

Route construction: 

OpenFlow: flow_mod 
message 

Flow arrival (inbound and 
outbound) Δtin || Δtout            

Application 
servers  

Inter-server data rate 
zinternal 

 

Internal route 
construction Inter-server flow arrival 

threshold Δtinternal  
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Figure 8.4. Profile and application hierarchy 

 

 

 

Figure 8.5. Three layer data center topology 
 

8.4.2 External route construction 

A three-layer inter-connected network topology prevalent in modern data center architectures 

to model and evaluate the proposed design is represented in Fig. 8.5. The network provisioning 

algorithm used for optimizing external user flows is given in Fig. 8.6. The algorithm computes the 
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inbound and outbound forwarding links per profile for each front-end application server before 

moving to the next, in order of profile and application hierarchy. A link threshold lT gives the 

maximum available βmax bandwidth per link. If lT is greater than the required inbound or outbound 

flow rate for u profile users (lT > u.z), the link is selected for forwarding. Otherwise users are split 

between alternate routes with flows equating lT/z using the selected link and the rest (u=u- lT/z) 

split over alternate links as computed during the subsequent iteration. The available bandwidth per 

link is correspondingly updated (βl(E,D)|| (D,A)  = βl(E,D)|| (D,A)  – u.z inbound||outbound). The resulting flow 

configurations are pushed via OpenFlow flow_mod messages to switches using the SDN controller 

[1][17]. The same process is repeated as long as there exists at least one link between two nodes 

with lT > 0, and for instances where all links are at full capacity, the respective flows are forwarded 

via the last installed route, i.e. link used by preceding application/profile. The algorithm ensures 

that higher priority profiles continue to experience higher throughput in the event of network 

congestion by routing lower priority profile flows over links with relatively higher congestion. 

Conventional load balancing schemes over multi paths (ECMP, DLMBP, etc.) split traffic flows at 

frame level and each path having a different delay causes out-of-order frame delivery. This results 

in TCP interpreting these reordered frames as a sign of congestion which ultimately results in 

degraded performance [294][295]. Our proposed approach ensures that all frames per flow (for 

each user) are forwarded over the same links to preserve ordered delivery and any splitting of user 

traffic only occurs at the flow level.  

 

8.4.3 Internal route construction 

Similar to external traffic the proposed internal route construction algorithm given in Fig. 8.6 

uses the available bandwidth β per link to optimize internal traffic between constituent application 

servers. Application servers residing on adjoining pods are linked by same set of aggregation 

switches (D) requiring route computation over links l(A,D), while communication between servers on 

disjoint pods also requires route computations for  flows traversing the core switches i.e. over links 

l(D,E). The derived application hierarchy table utilizing the profile priority and respective application 

weightage given in Fig. 8.4 determines the application precedence in assigning forwarding paths 

between servers. Applications having greater weightage in higher priority profiles therefore, get 

preference in using forwarding paths experiencing higher throughput and lesser congestion. The 

maximum available bandwidth βmax over each link is given by the respective link threshold lT. If the 

pre-set internal flow rate threshold zinternal per application for u users is greater than the link 

threshold lT, the route is selected for flow forwarding. If however, lT < u.zinternal, then lT/zinternal flows 

are forwarded through the link with the remaining flows split over alternate links determined by 
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the iteration. The process continues for each application as long as there exist one route with lT >0 

between the respective switch pairs, otherwise the last installed route (link) is used for forwarding 

traffic. The scheduling frequency of this route construction scheme to minimize the computational 

and controller management overhead is presented in the next sub-section. Furthermore, since the 

respective traffic management algorithms work in online mode, the time complexity for 

implementation in realistic scenarios is considered during evaluations. 

 

8.4.4 OpenFlow route installation scheme 

To effectively split traffic according to the calculated flow forwarding constructs, network 

address translation (NAT) is used to place users into segregated subnets each identified with a 

VLAN ID. In view of limited switch memories (TCAM) [296][297], the scheme also results in 

minimizing the OpenFlow table sizes despite substantial per profile user connections. An example 

schematic representing OpenFlow pipeline processing of network traffic towards application server 

through individual switches is depicted in Fig. 8.7. Table 0 in S1 (edge/core switch) translates and 

sets NAT IP addresses to profile users and forwards processing to table 1. Flow table 1 assigns a 

VLAN ID per subnet and the output port for outbound flows. Identification of per-profile flow traffic  

(as well as distributed traffic from same profile) towards the application server can, in turn, be 

identified only by the destination address and the VLAN ID to select subsequent outgoing ports in 

each intermediate switch along the path. As seen in flow table 0 of switches S2 and S3, outgoing 

traffic is now referred to by the destination server and VLAN IDs to select the outgoing port, 

substantially reducing the forwarding tables for external flows. Internally within the DC, internal 

server traffic, the respective server MAC addresses are used for traffic forwarding in respective 

switch tables to further reduce latency and achieve traffic transfer close to line rate. Inter-server 

traffic for same application or service in the implemented prototype during evaluation (section 8.6) 

is therefore, split at the individual server level over multiple links using per server MAC addresses. 
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start function path_selection (external) 

   for (profile priority P=1, P<=n; P++) 

       for (application priority α=1; α <= n; α++) 

        #Path selection inbound & outbound traffic, *=last used link 

         do 

             for ∀ l(E,D)||(D,A) 

                lT (E,D)||(D,A)* = β l(E,D)||(D,A)*                

                umax(E,D)||(D,A)  lT / z inbound||outbound  

                if umax(E,D)||(D,A) ≥ u && lT >0 

                   flow_mod [l(E,D) , l(D,A)];    

                   βl(E,D)|| (D,A)  = βl(E,D)|| (D,A)  – u . z inbound||outbound;                         

                end if                          

                else if umax(E,D)||(D,A) < u && lT >0 

                    flow_mod (l(E,D), l(D,A))max_users;    

                    βl(E,D)|| (D,A)  = βl(E,D)|| (D,A)  – u . z inbound||outbound;                         

                    u = u – umax;   

                end else  

                else if lT <0 

                    flow_mod (l(E,D)*||l(D,A)*);    

                 end else 

             end for 

          while  u> 1;      

      end for 

   end for 

end function 

 

 

start function path_selection (internal) 

for (application priority α=1; α <= n; α++) 

   #Path selection internal server-server traffic, *=last used link   

   do 

        for ∀ l(A,D)||(D,E)                     

           lT (A,D)||(D,E)* = βl(A,D)||(D,E)* 

           flowmax = βl(A,D) || βl(D,E) 

           if lT(A,D)||(D,E) ≥ zinternal . u && lT >0 

              flow_mod [l(A,D) , l(D,E)]; 

              βl(A,D) ||(D,E) = βl(A,D) ||(D,E) - zinternal . u; 

           end if 

           else if  lT(A,D)||(D,E) < z internal . u && lT >0       

              flowmax = βl(A,D)max || βl(D,E)max / zinternal; 

              flow_mod [lT(A,D) , lT(D,E)];  

              u = u -  flowmax . z; 

              βl(A,D) ||(D,A) = βl(A,D) ||(D,E) - zinternal . u;                                        

           end else   

           else if lT <0 

              flow_mod (l(E,D)*||l(D,E)*);    

           end else 

        end for 

      while u>1;        

  end for     

end function 

 

 

Figure 8.6. External (external) route construction algorithm Internal (internal) route construction 

 

 

 

Figure 8.7. OpenFlow pipeline processing –flow installation and route implementation in switches 
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8.4.5 Real-time route scheduling frequency 

Each installed route, by default can accommodate additional users dictated by flow inter-

arrival times Δt on each selected path. The external flow construction algorithm in Fig. 8.6 installs 

flows per link utilizing zin||out flow rates, however, flow inter-arrival time of Δtin||out allows the 

selected link to accommodate users equalling u(ED||DA) given by Eq. 8.3. Similarly, for inter-server 

routes with flow inter-arrival time threshold Δtinternal, the selected link is capable of handling flows 

flow(AD||DE) given by Eq. 8.4. 

 

     u(ED||DA) = umax / (1- Δtin||out )                          (8.3) 

 

                  flow(AD||DE) = flowmax / (1- Δtinternal)                                              (8.4) 

 

High inter-arrival times, therefore, translate into a higher tolerance of the installed flows to user 

connection updates requiring less frequent re-evaluation. The SDN controller monitors real-time 

user via edge/core switch port monitoring using an average flow threshold to track new/existing 

and stale user connections. The controller periodically re-computes external and internal 

forwarding over a link following additional user connections when u(ED||DA) > umax or 

flow(AD||DE) > flowmax, and immediately on disconnections. Furthermore, re-evaluation of prior 

installed routes only requires the forwarding routes of the respective profile (with user update) and 

any subsequent routes in lower priority profiles to be updated. As depicted in Fig. 8.8, addition or 

deletion of active users in profile k will result in re-computation and assignment of queues in 

profiles k, l and m and associated inter-server links, leaving pre-installed flows of profile j in force. 

Reducing control plane overhead remains an avenue of increasing research concentration as 

highlighted in [297], [298] and [65], and the present flow scheduling scheme aims at decreasing the 

relative management workload of the SDN controller to improve real-time design scalability. 

 

 

Figure 8.8. Route update scheduling scheme 
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8.5 Evaluation 

To evaluate the effectiveness of proposed traffic management method in an actual network 

scenario, user traffic profiling was carried out in a realistic campus network segment, part of a 

larger academic environment. The network comprised of 42 users from computing and engineering 

departments. Each user had one computer and all user machines in the department connected to 

local data center servers via the campus network to access hosted applications and services. The 

user traffic profiles derived from this network segment were used in a simulated data center 

network using Ryu SDN framework to optimize external traffic between users and the front-end 

application servers as well as inter-server traffic within the data center. The derived user traffic 

profiles, data center simulation topology and traffic optimization results are presented in the 

following sections.  

 

8.5.1 Traffic profile derivation 

The profile derivation scheme used NetFlow records exported from the edge of the 

departmental network, transmitted between user machines and consolidated application servers in 

the data center over a span of ten weeks from 01/12/2015 to 15/02/2016. A total of approximately 

72.2 million flows were examined. To account for replication in nature of user activities, 

applications were further grouped into distinct categories as depicted in Table 8.2. User traffic was 

classified by matching user flows against destination IP addresses and ports used by servers and the 

resulting flows were concatenated every 24 hours [Appendix- 1.2]. The corresponding traffic 

composition vector depicting application usage distribution as percentage of generated flows for a 

user u1 as per Eq. 8.1, for one day of activity (01/12/2015) is given in Eq. 8.5 as follows. 

 

                                           u1 [01/12/2015] = [2.3 8.4 25.6 23.1 11.2 10.3 15.5 2.2 1.4]                    (8.5) 

 

The resulting traffic composition vectors for all users were subjected to k-means cluster analysis Eq. 

3.1 to determine the optimal number of clusters (translating for traffic profiles) appropriately 

reflecting user activities, the derived clusters were examined starting from k=2, using Everitt and 

Hothorn technique described earlier. The corresponding plot of ‘within groups sum of squares 

distance’ per observation in each cluster against k for present data is given in Fig. 8.9  where a 

significant drop can be seen up to a cluster size k=6, and minimal subsequent variations up to k=20, 

indicating an optimal value of 6 profiles for the entire subscriber base. The resulting traffic profiles  
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Table 8.2. Application Tiers 

Application Tier Applications 

Web browsing (w) Internal and external website  

Email (e) Webmail, Outlook, SMTP, POP3 

Storage (g) Centralized storage, FTP 

Streaming (s) Podcasting, video content 

Communication (c) Office communications server 

Enterprise (p) Corporate information system, staff portal 

Publishing (h) Content management system (document, print) 

Software (r) Software distribution service 

Network utility (z) DNS queries, network multicast 

 

 

 

Figure 8.9. Application clusters (k): wss vs. k graph 
 

(k=6), detailing the application trends among user traffic profiles as a percentage of user generated 

flows are given in Fig. 8.10. Since general network service traffic (z) such as DNS and multicast 

traffic is not a user-triggered application but a functional one, hence, it was excluded while 

clustering users and later separately calculated as a percentage of total network flows generated 

per user profile. From a network management perspective the resulting profiles showed significant 

variation in user activity. For example, Profile 1 concentrated mainly on web browsing (53.2%) with 

relatively limited usage of other applications apart from the corporate information and content 

management services. Profile 2 focused on using communication utilities i.e. the instant messenger 

and VoIP with limited use of content management applications and minimal use of others. Profile 3 

heavily inclined towards corporate information service (65.2%) with significant use of email service 
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(10.3%) compared to other profiles. Profile 4 heavily tilted towards document and print content 

creation and using centralized storage facility (11.8). Profile 5 mainly used centralized storage 

server with small use of content and corporate information server. Profile 6 was a mix of web 

browsing, emails, storage and corporate applications. Hence, each enterprise user profile 

represented a significant discrimination towards a certain mix of services. The use of software 

distribution was, however, significantly low compared to other applications among all user profiles. 

Fig. 8.11 (a) represents the upload and download rate per profile derived using the probability 

density function given in Eq. 8.2. The corresponding inter-flow arrival times per profile are given in 

Fig. 8.11 (b). In view of the discriminative application trends depicted in the derived user profiles 

and varying flow rates, operators may want control over which users to prioritize in terms of 

network bandwidth allocation. Furthermore, the stability of the derived profiles over 24 hour time-

bins and frequency of outliers in the respective flow statistics may aid administrators in triggering 

real-time filtering of irregular traffic and minimizing consequences on priority user traffic. Profile 

stability evaluation and threshold setting to filter out-of-profile flow frequency are discussed in 

detail in the following section. 
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Figure 8.10. User traffic profiles 
 
 

                 

                    

         Figure 8.11. Flow rates per profile (zin||out) and (b). Flow inter-arrival time per profile (Δtin||out) 
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8.5.2 Profile Stability 

Profile stability highlights the significance of gaining a better insight to change in user 

activities and to benchmark the consistency of the extracted profiles and the re-profiling frequency. 

The average stability of the six profiles derived earlier with respect to application trends over 24 

hour time-bins are given in table 3. Profile 5 users showed the highest consistency in retaining 

profiles at 99.8% followed by profile 4 at 99.4% while profile 6 showed the lowest at 96.9%. The 

reported profile retention of campus users was greater in comparison with a similar study aimed at 

evaluating profile stability for multi-device residential users reporting the lowest profile consistency 

at 81%, undertaken in chapter 4 [293]. Campus users hence, showed a significantly greater degree 

of consistency in daily application usage in relation to residential users. It was also noted that the 

minimal irregularity observed was due to inter-profile transitions among users mainly due to 

proportional variation in the same kind of user activity rather than a complete change of user roles 

or introduction of new profiles. The consolidated inter-flow arrival times and flow rates per profile 

are given in Fig. 8.12. As depicted in Table 8.1, from a network management perspective, 

consolidated per-profile flow statistics aid administrators in setting a threshold to identify real-time 

anomalous (out-of-profile) traffic for subsequent filtering and for profile regeneration. For example, 

configuring the traffic manager to monitor real-time flow statistics according to per profile 

aggregate flow statistics would result in automatically placing flows exceeding the threshold in the 

guest profile to reduce consequence on priority profile traffic.  

 

Table 8.3. Average probability of profile regularity (/24 hour time-bins) 

User Profiles No Change Change (Outliers) 

Profile 1 0.983 0.017 

Profile 2 0.975 0.025 

Profile 3 0.987 0.013 

Profile 4 0.994 0.006 

Profile 5 0.998 0.002 

Profile 6 0.969 0.031 
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Figure 8.12. Aggregate flow rate and inter-arrival time threshold per profile 

 

8.5.3 Simulation environment 

The simulation environment comprised of a DC topology, traffic generation scheme and sample 

profile and application hierarchy to empirically evaluate the results of the proposed traffic 

management design. The respective set of parameters and utilities used to this effect are detailed 

as follows. 

 

 DC topology: The proposed design was evaluated using Mininet network emulator [103] 

utilizing Ryu SDN framework [26] and the derived user traffic profiles simulated in a DC 

topology comprising a total of eighty servers (ten per pod), ten per application tier as 

shown in Fig. 8.13. The servers for each application were dispersed between disjoint pods 

to evaluate the traffic management design under a high inter-server traffic scenario 

[Appendix – 4.2].  

 

 Traffic generation: Ostinato traffic generation utility [205] was used for modelling external 

and internal flow rates according to the derived statistics as per Fig. 8.11 with an effective 

flow threshold set to one flow per user in the simulation to identify active users. Given the 
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enormity of inter-server traffic within the DC compared to external traffic as discussed in 

[286], [288] and [21], the threshold for internal flow rates between each pair of application 

servers (zinternal) was set to randomly transmit at up to four times the external outbound 

flows rates per-profile given in Fig. 8.11 (a). Correspondingly the flow inter-arrival time 

(Δtinternal) for internal traffic between servers per application tier depicted in Fig. 8.11 (b) 

was proportionally reduced to analyse the effects of network congestion on high and low 

priority profiles with increasing user connections. To account for anomalous (out-of-profile) 

traffic, percentage of user traffic per profile was varied in accordance with table 3, 

exceeding the thresholds given in Fig. 12 at each simulated user load. 

 

 Sample profile and application hierarchy: A sample profile priority table was used with the 

corresponding application hierarchy based on application usage weighting starting with 

highest profile represented in Table 8.4.   

 

 Traffic management: Using Table 8.4, along with the current as well as predicted traffic per 

profile, the SDN traffic manager computed the optimal user to front-end server routes 

along with the flow forwarding constructs for inter-server traffic. The computed flows were 

afterwards installed in network switches via the controller using OpenFlow protocol and 

the iteration continued tracking the number of real-time user connections [Appendix – 5.4]. 

 

 

Figure 8.13. Simulated data center environment 
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Table 8.4. Sample profile priority table 

Profile priority Profiles Application Hierarchy 

1 Profile 3       Enterprise 
       Email 
       Communication 
       Streaming 
       Software 
       Publishing 
       Web-browsing 
       Storage 

2 Profile 2 

3 Profile 1 

4 Profile 6 

5 Profile 4 

6 Profile 5 

7 Guest 

 

8.5.4 Throughput and bandwidth results 

The simulation results measured the effectiveness of the proposed profiling based real-time 

traffic optimization against conventional traffic management schemes i.e. ECMP and STP. 

Employing ECMP or STP to optimize a specific application in isolation would result in improved 

performance of the respective application, in relation to other data center hosted services. The 

present simulation, however, provisioned DC links among all applications equally using the 

conventional schemes to provide an overall comparison of the results against the proposed 

profiling mechanism. The simulation therefore, aims to evaluate the benefit of profiling based 

traffic management over individual application weightage models, regardless of the particular 

application being optimized by ECMP or STP, using the SDN framework. Furthermore, to monitor 

the traffic statistics varying user loads, effective throughput between users and front-end servers 

(SW[1-2], SW[11-18]) as well as between individual application servers (SW[11-18]) residing on 

disjoint pods was recorded using OpenFlow switch port statistics.  

The first test  compared STP, ECMP and the proposed profiling-based scheme frame delivery ratio 

and throughput (total received frames) performance for the external inbound traffic for the top 

priority profile 3 and lowest priority profile 5, for highest priority application (Enterprise) while 

increasing user loads across all profiles. The corresponding parameters are given in Tables 8.5-8.8. 

As shown in Fig. 8.14(a) and (b) profile 3 users consistently experienced high frame delivery and 

throughput using profiling based optimization compared to the ECMP and STP scheme. STP used a 

loop free environment limiting utilization of all available links while ECMP equally balanced the 

traffic across all links. The absence of profiling-based forwarding, resulted in profile 3 users 

experiencing significantly lower frame delivery (≤ 21%) and throughput (≤ 35%) with increasing user 

loads (> 300 users per profile) despite being high priority users. Similarly, profiling based traffic 

optimization of the lowest priority profile 5 resulted in improved frame delivery (~39%) and 
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throughput (~37%) using the profiling scheme shown in Fig. 8.14(c) and (d). The resulting 

improvement was due to the higher application priority of the enterprise tier despite sharing links 

with other lower priority application servers on adjacent pods (i.e. the publishing tier) at increasing 

user loads (≥ 300 users per profile) As evident from the profile 5 routing paths given in Table 8.7, at 

very high user loads (≥ 600 users per profile), profiling based optimization ensured profile 5 traffic 

continued to use the SW1:SW6:SW14 path. The effects of oversubscription were hence, localized 

on the alternative SW2:SW6:SW14 path, mainly carrying internal inter-server traffic using the 

profile prioritization scheme. 

Table 8.5. Basic Parameters – Profile 3  Enterprise Front-end 

Name Value 

Profile 3 zin 0.214Mbps 

Profile 3 zout 1.134Mbps 

Profile 3 Δtin 857ms 

Profile 3 Δtout 952ms 

 

Table 8.6. Basic Parameters – Profile 5  Enterprise Front-end 

Name Value 

Profile 5 zin 0.581Mbps 

Profile 5 zout 0.612Mbps 

Profile 5 Δtin 3200ms 

Profile 5 Δtout 2400ms 

 

Table 8.7. Profile 5 Routing Path: User  Enterprise Front-end 

User load Inbound Traffic Scheme Route 

Pod4 

(Gbps) 

Pod3+4 

(Gbps) 

P5 Entp. 

(Gbps) 

Preceding 
P5, Entp. 

(Gbps) 

600 users 

 

14.889 38.568 0.348 3.144 Profiling SW1:SW6:SW14 

ECMP SW[1-2]:SW[5-6]:SW14 

STP SW1:SW6:SW14 

700 users 

 

17.369 44.996 0.406 3.668 Profiling SW1:SW6:SW14 

ECMP SW[1-2]:SW[5-6]:SW14 

STP SW1:SW6:SW14 
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Figure 8.14. Frame delivery ratio and throughput measurement 
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Figure 8.14. Frame delivery ratio and throughput measurement (continued) 
 

Table 8.8. Basic Parameters – Profile 1  Streaming Front-end 

Name Value 

           Profile 1 zin 0.212Mbps 

           Profile 1 zout 2.21Mbps 

Profile 1 Δtin 2539ms 

 Profile 1 Δtout 1454ms 

 

Table 8.9. Profile 1 Routing Path: Streaming Front-end  User 

User load Outbound Traffic Scheme Route 

Pod3 

(Gbps) 

Pod3+4 

(Gbps) 

P1 Stream 

(Gbps) 

Preceding 
P1, Stream. 

(Gbps) 

300 users 

 

20.736 32.142 1.326 5.868 Profiling SW13:SW5:SW1 

ECMP SW13:SW[5-6]:SW[1-2] 

STP SW13:SW5:SW1 

500 users 

 

34.561 41.471 2.212 9.181 Profiling SW13:SW[5-6]:SW1 

ECMP SW13:SW[5-6]:SW[1-2] 

STP SW13:SW5:SW1 

 

 

After analysing the top and bottom priority profile external traffic performance, in the second test, 

frame delivery ratio and throughput were measured for medium priority profile 1 users from the 

front-end server to the user i.e. outbound traffic. The performance was measured for the lowest 

used profile 1 application i.e. streaming, also having medium application priority. The 

corresponding traffic parameters are given in Tables 8.8-8.9. The relevant frame delivery and 
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throughput statistics are given in Fig. 8.14 (e) and (f) respectively. It was observed that the that 

profiling-based optimization significantly outperformed ECMP and STP (≥ 300 users per profile) due 

to ECMP load-balancing traffic over all links as shown in routing paths depicted in Table 8.8 while 

profiling scheme routing profile 1 traffic over the first path [SW13:SW5:SW1] and forwarding the 

subsequent lower priority traffic over alternate links. For 300 users per profile, the total traffic out 

of pod 3was 20.736Gbps, the external priority traffic preceding profile 1 streaming users around 

5.868Gbps and profile 1 streaming users at 1.326Gbps. The two outbound links (20Gbps) from the 

access switch SW13, the first link [SW13:SW5:SW1] therefore, carried outbound profile 1 streaming 

traffic without penalty. ECMP in comparison load-balanced traffic over all paths resulting in 

decreased frame delivery ratio (98.16%) and throughput (0.314 million frames). The trend scaled 

well up to 500 users, where traffic out of pod 3 increased to  34.561Gbps with profile 1 streaming 

traffic accounting for approximately 2.21Gbps and the priority traffic  preceding profile 1 being 

around 9.18Gbps. Hence, of two links out of pod 4, profile 1 traffic was split over first link 

(0.82Gbps) and second link (0.39Gbps). Since the second path [SW13:SW6:SW1], also carried inter-

server traffic and was oversubscribed, the frame delivery ratio using profiling management, 

dropped to approximately, 81.34%. The trend continued further, with increasing user connections 

(in higher priority profiles), and users in profile 1 pushed to the second link, closing the gap 

between ECMP and profiling based optimization up to 700 users per profile. Hence, even for 

medium priority profile and mid-tier application, the performance throughput was considerably 

better even with substantially high user loads when compared with conventional load-balancing 

techniques. 

 
To evaluate inter-server traffic performance between same application servers residing on disjoint 

pods, throughput for the Email tier closer to the top of the global application hierarchy table and 

web-browsing towards the bottom was tested and is given in Fig.8.14 (g) and (h). The 

corresponding traffic parameters are given in Tables 8.10-8.11. For the Email tier, the throughput 

was measured between switches SW12 and SW17 (pods 2 and 7) and for web browsing servers 

between SW11 and SW18 (pods 1 and 8), owing the location of the respective servers. Profiling 

optimization gave improved overall throughput between pods 2 and 7 for Email traffic even at 

maximum user load of 700 per profile, owing higher priority among other applications traversing 

the same links i.e. web-browsing, software and storage tiers via the aggregate and core switches. At 

a load of approximately 600 users per profile, the external outbound traffic preceding inter-pod 

Email traffic forced Email traffic to split over two paths SW17:SW9 the primary and SW17:SW10 the 

alternative with the later carrying remaining application traffic from software tier. As observed  
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Table 8.10. Basic Parameters – Inter-server Traffic 

Name Value 

Inter-server Email traffic (e) zinternal 1.528– 6.112Mbps 

Email (e) Δtinternal            0 - 125ms 

Inter-server Browsing traffic (w) zinternal 1.134 – 4.536Mbps 

Browsing (w) Δtinternal            0 - 625ms 

 

Table 8.11. Routing Path: Web browsing [Pod8:Pod1] 

User load 

 

Outbound Traffic Scheme Route 

Pod8 

(Gbps) 

Browsing  

(Gbps) 

Preceding 
Browsing 

(Gbps) 

400 users 

 

 

23.218 1.143 7.332 Profiling SW18:SW10:SW1:SW3 

ECMP SW18:SW[9-10]:SW[1-2]:SW3 

STP SW18:SW10:SW1:SW3 

500 users 

 

29.023 1.429 9.165 Profiling SW18:SW9:SW1:SW3 

SW18:SW10:SW1:SW3 

ECMP SW18:SW[9-10]:SW[1-2]:SW3 

STP SW18:SW10:SW1:SW3 

 

during external traffic management, any increase in preceding (priority) traffic, low priority 

application traffic may fully shift to secondary links that may be oversubscribed without substantial 

consequence for high priority Email tier. For web-browsing server tier, both profiling and ECMP 

based traffic management perform equally up until the maximum user load of 700 users per profile. 

For 400 users per profile, browsing server traffic from pod 8 to pod2 was around 1.143Gbps carried 

over path SW18:SW10, preceding priority traffic out of pod8 being 7.332Gbps out of pod8 and 

remaining inter-server traffic (mainly storage tier) approximating 14.743Gbps was split over both 

SW18:SW10 and SW18:SW9 paths. Since the total outward traffic exceeded the combined link 

capacity (20Gbps), uniform load balancing across all links using ECMP resulted in lower throughput 

performance for browsing than the devised profiling based management scheme. 

 

At 500 user load of users per profile, external pod8 traffic having higher priority than browsing 

traffic approximated at 9.165Gbps. The web browsing server traffic reaching 1.429Gbps, was, split 

into using the SW18:SW10 path (0.715Gbps) with remaining (0.714Gbps) routed over the 

oversubscribed SW18:SW9 path carrying approximately 19Gbps traffic. The trend continued with 

further increase in preceding traffic resulting in web-tier shifting to oversubscribed links resulting in 
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a marginal decrease in throughput compared to ECMP at 700 user connections per profile. Profiling 

based throughput reduced below ECMP as with the latter browsing traffic was still being load 

balanced using all links, however profiling scheme forced inter-server browsing traffic on the last 

oversubscribed link.  

 

As evident from the above examples, profiling based traffic management forwards priority traffic 

over links with higher available bandwidth forcing succeeding profiles and applications on tertiary 

links reducing the effects of network congestion on high priority traffic due to oversubscription. 

However, the effectiveness of the proposed traffic forwarding design, relies on relieving adverse 

network performance due to link oversubscription at the expense of low priority users and (or) 

applications. In comparison, weighted bandwidth sharing models utilizing technologies such as 

ECMP, or conventional schemes like STP fall short of delivering for high priority users, and at best 

allow network fabric provisioning uniformly or only at the application level. The proposed user 

traffic profiling integration methodology in the traffic optimization framework accounts for the mix 

of application trends making user-defined traffic optimization possible. The next section examines 

the frequency of flow updating schedule as well as the management overhead associated with the 

simulated DC traffic optimization. 

 

8.5.5 Flow management overhead  

The effects of profiling based route installation and the flow update scheduling frequency 

are empirically evaluated at the simulated user loads to evaluate the scalability of the proposed 

approach. The present simulation therefore, monitored (i) the average number of flow entries at 

switch level using the VLAN tagged routes discussed in section 8.4.4 as well as (ii) the reduction in 

real-time flow updating frequency employing the per profile flow inter-arrival duration and flow 

rate computations highlighted in section 8.4.5. The respective numbers of flow entries were 

monitored using table_stat while the percentage of flows updated were observed at each user load 

simulation (duration: 60s) using flow_stat OpenFlow messages. The cumulative distribution of total 

flow entries per switch employing the profile route installation (ri) schema as well as the expected 

number of entries without the proposed approach at varying user loads are presented in Fig.8.15(a). 

Using profile based route installation (VLANs) the average number of entries at each switch level is 

only fractional compared to the substantial flow table sizes required otherwise. As mentioned 

earlier, a large number of flow entries in switches present a challenge given the limited memory 

available in OpenFlow compliant devices [26][27]. The major proportion of flows (80%) per switch 

using VLAN route installation remains within 100 table entries despite the simulated users loads of                                   
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up to 700 users per profile. The core switches comprise of smallest forwarding table sizes with 

maximum of 97 entries (excluding the NAT functionality) compared to access and distribution table 

sizes recording a maximum of 106 and 119 entries per switch respectively. The expected flow table 

sizes without profiling route installation scheme, however, are considerably larger with maximum 

core switch table size of around 2320 entries per switch and distribution and access switches going 

beyond 250 entries per switch. The potential reduction in table sizes using the route installation 

scheme therefore, presents a saving of approximately 23% - 95% entries in the DC switches at 

simulated user loads. Since, most SDN compatible hardware the flow tables need to be 

implemented in TCAM, relatively expensive and larger than standard memory (RAM) and therefore, 

reducing the average flow entries per switch scales well in SDN based DC.  

 

The cumulative distribution of the total flow updates to varying user load ratio, using the route 

scheduling (rs) scheme is given in Fig. 8.15(b). The flow update frequency at the core switch level 

was lowest followed by access and the distribution switches. Minimum updating at the core level 

was due to the minimum and less frequent changes required in the core switches with variation in 

user loads. The management overhead saving of the route scheduling (rs) scheme utilizing flow rate 

and inter-arrival interval computations to accommodate a greater number of users on installed 

routes and thereby reduce flow modifications was substantial. The frequent updating of installed 

flows via the SDN controller increases the OpenFlow control channel overhead (traffic) increasing 

latency involved in implementing updated rules and subsequently affecting real-time traffic 

forwarding [297-298][65]. The potential decrease in overhead ranged between 18% - 31% using 

intelligent route scheduling compared to the lack of an efficient updating scheme. Furthermore, to 

visualize the result of the flow scheduling on profile traffic, three profiles and three application tiers 

were selected from the top, medium and bottom of the respective hierarchies, depicted in Fig. 8.15 

(c) and (d). The medium priority profile6 showed maximum flow update frequency followed by core 

and guest profiles. For the highest priority profile3 the saving in flow updates due to route 

scheduling ranged between 49% - 64%. Guest profile accounting for out-of-profile traffic showed 

the lowest flow updates mainly attributed to the minimum total flow installations catering 

anomalous traffic. Among the applications, total potential savings in route updates due to the route 

scheduling scheme ranged between 39% - 55% at varying user loads, the highest reduction 

recorded for the highest priority communications tier. Profiles and applications higher up the 

priority table therefore, showed a lower flow update frequency compared to lower priority traffic 

as due to route scheduling scheme, the former remain relatively unaffected by updates further 
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down the hierarchy. The latency and controller overhead reduction achieved due to profiling based 

route scheduling are considered in the following subsections. 

 

8.5.6 Time complexity analysis 

Further to improvements in the management overhead using reduced tables and scheduling 

it is also important to evaluate the time complexity benefit of the approach. The average latency 

involved in computing routes and completing flow installations in individual switches was therefore, 

calibrated and illustrated in Fig. 8.15(e). The analysis considered the total duration of OpenFlow 

flow_mod message generation via the controller and respective flow activation in the switch. To 

measure the processing of flow_mod messages, an OpenFlow barrier_request was sent after 

sending all flow_mod messages per switch [Appendix – 5.4]. The OpenFlow barrier_request 

message ensures that the switch completes processing of all sent messages before issuing a 

barrier_reply, indicating the flow-mod message has been fully processed at the switch. The results 

show that minimal flow update frequency employed by the route scheduling scheme (rs) translates 

into comparatively lower latency in creating flow constructs in switches. The highest average 

latency was observed in updating access switch routes approximating at 2248ms. Access switches 

serve both internal and external traffic and therefore, the average computational and processing 

latency attributed to the lowest level in the switch hierarchy was greater than the aggregate and 

core level. The average maximum recorded per core and distribution switch approximated at 

2120ms and 1998ms respectively. The overall reduction in latency due to route scheduling ranged 

between 23% - 41% (135ms-725ms) per switch level at varying user loads. The route computation 

and installation duration comprised 0.67% - 3.6% of the total simulation duration (60s) per user 

load across the entire DC switching fabric. The route scheduling scheme therefore, showed 

considerably reduced dynamic route construction latency following profile membership updates. 

 

In addition to the flow update latency involved at switch level, the time complexity involved in 

detecting and re-routing of the simulated anomalous traffic is also considered. The latency 

measurement comprises of the traffic monitor detecting the anticipated profile flow threshold 

violation(s) followed by flow_mod message processing to route traffic under the lowest priority 

guest profile. As depicted in Fig. 8.15(f), the detection latency remained largely within 1000ms and 

the installation (or updating) of flows ranged between 1185ms - 1400ms. The total timespan of 

detection and re-routing of anomalous flows under lowest guest priority therefore, averaged at 

approximately 2293ms, or 3.8% per simulation duration at varying loads. From a real-time traffic 

management perspective, the recorded latency presents swift real-time re-routing of out-of-profile 
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traffic minimizing the adverse consequences on remaining flows, until the network manager can 

examine the anomalies; possibly re-evaluate the user profiles or the existing profile prioritization.  

 

 

 

 

 

 
Figure 8.15. Flow statistics and latency measurement 
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8.5.7 OpenFlow control traffic 

The average OpenFlow control channel traffic generated between the controller and DC 

switches as a result of OpenFlow monitoring and flow installation/update messages is measured at 

each simulated user load and illustrated in Fig. 8.16. Using the route scheduling scheme, the 

maximum upstream and downstream traffic recorded at the core switch ranged at 187kbps and 

789kbps respectively. Higher core switch control traffic using route scheduling at core switches was 

due to the VLAN addressing functionality generating a significantly greater amount of flow_mod 

messages downstream and corresponding flow_stat and table_stat message replies upstream 

tracking the increase in profile memberships. The distribution control traffic recorded a maximum 

of 87kbps upstream and 412kbps downstream. The average access switch control traffic, however, 

remained comparatively low with the uplink maximum at 67kbps and downlink at 235kbps despite 

the greater share of total inter-server traffic routes carried by access switches. Lower average 

control traffic overhead per access switch was attributed to uneven distribution of the total access 

switch control traffic, with few switches having bulk of the control traffic share in relation to a more 

uniform division at aggregation points higher up the DC switch hierarchy. At each level of switch 

hierarchy except the core the total upstream and downstream traffic remained significantly lower 

employing the profile route scheduling. The average reduction in control traffic across access and 

distribution DC switches due to profile route scheduling switches ranged between 7-16% on the 

upstream and 21%-46% on the downlink respectively. To further streamline and balance the control 

traffic, operators may utilize several controllers each catering to particular switch subset(s) for 

improved redundancy. However, the placement of the controllers as well as the employability of in-

band or an external overlay for carrying the OpenFlow controller-switch traffic would greatly 

depend on the DC topology and the prevailing traffic conditions. In the present scenario, however, 

decreased flow update frequency resulted in significant reduction in the control overhead at the 

distribution and access levels while using a single controller. 

 

 



211 
 

 

Figure 8.16. Average OpenFlow control channel traffic (kbps) 
 

8.6 Conclusion 

The enterprise network used in the study comprised of diverse application trends with varying 

traffic statistics per profile. Implementing isolated application performance in consolidated DC 

utilizing conventional load-balancing methods for the extracted user profiles would lead to 

degraded performance for users requiring optimal forwarding. The benefits of profiling based 

resource provisioning are of particular significance at higher user loads, where high priority profiles 

experience improved throughput and frame delivery ratio compared to the conventional load-

balancing techniques. It is however, noticeable that due to greater link oversubscription at higher 

loads only a subset of profiles and applications may be allocated optimal paths for both external 

and internal DC traffic, the selection depending on administrator-assigned priority to user profiles 

and the subsequently derived application hierarchy. Using SDN based traffic engineering allows the 

dynamic implementation of constructed routes with changing user connections, a significant 

improvement over present manually intensive network provisioning techniques. Furthermore, the 

relatively lower flow update scheduling frequency and subsequent reduced overhead of control 

traffic inherent in the design offers high scalability for real-time implementation. 
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To conclude the work of this thesis, the following chapter provides a summarization of the research 

project including key achievements, limitations and scope for future work in the SDN traffic 

engineering domain. 
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Chapter 9    Conclusions and Future Work 

 

 

The present chapter summaries the thesis by reviewing the main achievements of this 

research and discussing its limitations. The chapter also highlights future research directions within 

user-centric traffic engineering solutions in software defined networking. 

9.1 Achievements of the research 

Overall, the project has achieved all the objectives initially set out in chapter 1, with a series of 

investigations and experimental simulations undertaken towards the development of a user traffic 

profiling mechanism to be used in the SDN framework. The full achievements are listed as follows. 

 

1. An experimental investigation of the feasibility of user traffic profiling through flow-based 

measurements (chapter 3 and chapter 4). An experimental study was conducted on real 

user application usage from a residential building housing around 250 users. Firstly, by 

utilising the k-means clustering algorithm, traffic profiles were derived based on user 

generated traffic over a one-month time frame. The resulting profiles presented significant 

discrimination in user activity, from a network management perspective. The profile 

derivation method was further compared to other popular clustering algorithms 

(hierarchical clustering and DBSCAN) and the stability of profiles was benchmarked to 

ascertain their suitability for integration in a real-time SDN traffic management solution 

(chapter 4). Since each residential user premises during the study consisted of multiple 

devices (mobiles, laptops, etc.), the work also evaluated the inter-profile migration for each 

user device. The extracted traffic profiles per user premises show a great deal of stability 

over the examined 24-hour time-bins, showing a probability of profile change varying 

between 3-19%. Any inter-profile transition for a specific user device is mainly attributed to 

proportional variation in the same activity rather than a complete change of roles. This high 

level of profile stability, even in a multi-device user environment, successfully demonstrates 

the potential of user traffic profiling based controls for creating user-centric network policy 

primitives in SDN.  

 

2. The design and evaluation of a novel traffic engineering framework integrating user traffic 

profiling controls in residential SDN (chapter 5). Software defined networking (SDN) 

provides a centralized control framework with real-time control of network components 
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including residential customer routers to allow automated per-user bandwidth allocation. 

However, employing dynamic traffic shaping for efficient bandwidth utilization among 

residential users is a challenging task. In this context, user traffic profiling was employed in 

residential networking to understand application usage requirements for each individual 

user and translating them into network policies. The proposal is implemented using the 

previously derived user traffic profiles (chapter 4) and an SDN traffic monitoring and 

management application is designed for implementing hierarchical token bucket (HTB) 

queues customized for individual user profiles in real-time, according to user-defined 

profile priorities. The traffic management scheme scales well under both upstream and 

downstream network congestion simulations by dynamically allocating dedicated 

bandwidth to users based on their profile priority, resulting in a decreased packet loss and 

latency for a selected set of high priority users. Compared to previously proposed 

approaches of integrating SDN controllers on the service provider side driving millions of 

residential gateways, the use of a local profiling engine and SDN controller incorporated in 

the residential network offers greater design scalability. The proposed framework can also 

easily provide additional controls, such as temporal profile prioritization and data usage 

allocations per profile, allowing residential users more control over their network usage.   

 

3. The investigation and design of a machine learning based traffic flow classifier for use in 

real-time application identification and subsequent profiling in practical settings (chapter 6). 

IP address and port based traffic classification although scalable and computationally 

efficient remains far from an ideal solution, especially in environments where users are 

frequenting a range of Internet services as opposed to locally hosted data sources (servers). 

Despite widespread use, flow accounting methods are considered inadequate for 

classification purposes or require additional packet and host behaviour information limiting 

their practical adoption. To overcome these challenges, a per-flow classification mechanism 

was proposed using a two-phased machine learning approach incorporating k-means and 

C5.0 algorithms, with flow records (NetFlow) as input. The individual flow classes were 

derived per-application through k-means and then further used to train a C5.0 decision tree 

classifier. As part of validation, the initial unsupervised phase used flow records of fifteen 

popular Internet applications collected and independently subjected to k-means clustering 

to determine unique flow classes generated per application. The derived flow classes were 

then used to train and test a supervised C5.0 based decision tree. The resulting classifier 

presented an average accuracy of 92.37% on approximately 3.4 million test cases, 
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increasing to 96.67% with adaptive boosting. The classifier specificity factor, which 

accounts for differentiating content-specific from supplementary flows ranged between 

98.37–99.57% for the analysed dataset. Furthermore, the computational performance and 

accuracy of the proposed methodology in comparison with similar machine learning 

approaches led to recommending its extension to other applications in achieving highly 

granular real-time traffic classification, to be used in subsequent user traffic profiling. 

 

 

4. The investigation, integration and evaluation of user traffic profiling based controls in data 

center SDN (chapter 7). Existing data center (DC) resource provisioning schemes are 

investigated which predominantly rely on conventional load-balancing technologies 

utilizing application performance models for traffic optimization. Through profiling user 

application trends in an enterprise network, it was determined that the diversity in 

application usage can be extended beyond residential networks towards data center 

networking and individual application prioritization through conventional load balancing 

remains a performance caveat for users with varying application trends. Integration of user 

traffic profiling was, therefore, proposed to capture user application trends within the DC 

by measuring user traffic flows at the DC edge switches. The resulting profiles were 

subsequently used to create forwarding policies for external and internal DC traffic. The 

proposed network-provisioning scheme further allows operators to define a global profile 

and application hierarchy to prioritize the extracted user traffic classes. The associated 

traffic management framework uses software defined networking paradigm with OpenFlow 

protocol to dynamically configure the individual network elements, while tracking real-time 

profile memberships. Using a sample profile and application priority table and high user 

load simulations, the design led to superior results when compared to conventional traffic 

management schemes, offering significantly higher frame delivery ratio (21-39%) and 

effective throughput (35-37%) for sample priority profiles, despite the inherent link 

oversubscriptions in the DC. Furthermore, the reduced real-time flow installation and 

update frequency of the proposed approach offered a substantial decrease in the overall 

SDN control channel overhead and high design scalability. 

 

 

5. Investigation and evaluation of an OpenFlow based user traffic profiling solution for 

campus and enterprise environments (chapter 8). Present studies in SDN primarily employ 
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the control-data plane OpenFlow protocol for real-time reconfiguration and monitoring of 

SDN switches. In order to allow the use of OpenFlow protocol for enhanced network 

monitoring and visualization via user traffic profiling, an investigation was undertaken to 

evaluate whether OpenFlow protocol features may be used to derive per application user 

traffic flow statistics. A test campus network access switch was used for collection of 

OpenFlow based traffic statistics and fed into the previously derived traffic profiling 

mechanism, using k-means cluster analysis for derivation of user profiles based on user 

generated flow statistics. The derived profiles indicate significant separation among user 

application trends divided into six user traffic classes which report high level of stability 

(96.1-99%), making them viable for monitoring purposes. Additional simulation tests at 

varying user loads attribute minimum computational cost and low additional OpenFlow 

control overhead (less than 5%) to the proposed approach. While flow records such as 

NetFlow are directly exported from the networking appliances, the use of OpenFlow 

enabled traffic profiling results in elimination of separate traffic accounting mechanism 

using monitoring information directly from the SDN control plane (controller). This is 

especially of relevance in campus networking where networking devices may be 

geographically dispersed and can benefit from the centralized user profiling demonstrated 

offering increased scalability and low management overhead for real-time monitoring and 

resource provisioning. 

 

A number of papers related to the research project have been presented and published in refereed 

journal and conferences (Appendix 6). In particular, the author was awarded a best research paper 

award at the 6th Internet Technologies and Applications Conference (ITA’15). The research 

presented by this thesis may, therefore, be deemed to have strengthened the SDN traffic 

engineering domain, especially in the field of user-centric network optimization. 

 

9.2 Limitations of the research project 

Despite the research objectives stated above having been met, a number of limitations 

associated with the project can be identified. The key limitations of the research are summarised as 

follows. 

 

1. The traffic profiling carried out in chapter 3 and chapter 4 primarily relied on application 

identification through IP address and port mappings. This resulted in a portion of user 
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application flows in each derived residential user profile falling in the unknown traffic tier. 

Although the overall percentage of unknown traffic was low in comparison with accurately 

identified application usage ratio per profile, the resulting user traffic classes could have 

matched user activities more closely if using layer 7 classification. In order to alleviate the 

limitations of IP/port classification, manual examination and labelling of unknown traffic 

flows in the profiling studies was used to improve the accuracy. Furthermore, an 

independent flow level classifier (chapter 6) was designed and evaluated for future use in 

practical environments where data sources could not be identified merely by relying on IP 

address and port mappings.  

 

2. The time-frame for traffic flow collection as part of user traffic profiling studies in 

residential and enterprise environments comprised of durations ranging from a maximum 

of approximately ten weeks to a minimum of two weeks. Although the collected user traffic 

statistics contained a significant number of application activities, investigation over a longer 

profile period accounting for changes in user behaviour, for example, due to vacation or 

episodes of lower employee attendance in the campus coupled with an understanding of 

user demographics (age, sex, etc.) would have provided much more insight into the derived 

user profiles. Such detailed profile analysis may further contribute in aiding operators to 

design and implement user-centric network policies as well as assess technological and 

business requirements. 

 

3. The residential SDN traffic management framework (chapter 5) utilized average profile flow 

statistics in computing the required queue rates for per profile bandwidth allocation. While 

the results reported by the SDN traffic management application offered significant 

improvement for the chosen profile priority table (sample), a more accurate estimation of 

queue rates could be obtained by using a probability density function to compute per 

profile bandwidth utilization and requirement. Therefore, the traffic management 

application in data center simulations used the maximum probabilities of per profile 

statistics as a metric in creating external and internal flow constructs tracking real-time 

profile connections.   

 

4. The test simulations focused on evaluating the core function of network provisioning and 

performance for the end users allowed by the respective SDN applications. This 

demonstrated the benefits of user traffic profiling integration in residential, data center 



218 
 
 

and campus networking controls. However, a more realistic incorporation of the profiling 

controls in traffic management may require the designed SDN applications to integrate at 

multiple levels with existing network services. User profile identification in the test 

simulations, for example, was achieved by allocating respective users known IP address 

ranges in each profile. The deployed SDN applications could, therefore, track real-time 

profile memberships by monitoring IP addresses of the respective users. In a realistic 

implementation, user to profile mapping (owing dynamic IP allocation) would need to be 

tracked and tied to either existing or new authentication systems (usernames, accounts, 

Active Directory, LDAP, etc.) or perhaps utilize the tracking of DHCP IP allotments starting 

from service initiation/ profile derivation. The implementation of the appropriate user 

identification scheme would depend significantly on the deployed operational setting. 

 

9.3 Suggestions and scope for future work 

The research presented by this thesis strengthens the domain of user-centric traffic 

engineering in software defined networking. Nonetheless, there are a number of areas in which 

future work could be carried out to further advance upon the findings of this research. The details 

of future work are listed as follows.  

 

1. Design a modular user-centric SDN application software collection package compatible with 

multiple controller platforms. This would enable the deployment of user traffic monitoring, 

profiling and integration of user profiling based controls as a monolithic, yet customizable 

application ready to be utilized in SDN technology.  

 

2. Extension of the devised flow-based traffic classifier to include more applications by the 

collection of respective application traffic flows, unsupervised cluster labelling and 

subsequent employment in classifier training. This would further aid in increasing the real-

time user traffic profiling accuracy, especially in residential networking where IP address 

and port mapping of data sources may not yield a high level of accuracy in identifying user 

traffic flows. Traffic classification, user profiling and subsequent deployment of user 

profiling based controls in a live environment would also allow a comprehensive evaluation 

of the profiling technique based on collecting real participant feedback.  
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3. Further investigation of the data storage and computational resources required for the user 

traffic profiles. As the profile derivation was carried out offline on an average machine (PC), 

the recorded computational cost and storage consumed by the traffic records and 

subsequent profile statistics did not pose any issue. However, the storage space in 

residential routers and even carrier grade switches has to be taken into consideration if 

embedding the respective profiling algorithm and in network appliances. Whilst this is not a 

particular problem for scenarios where traffic flow measurements utilize an external 

collector (server) machine also serving as a monitoring station, the storage of traffic profiles, 

retention of historical statistics, and privacy need to be considered.  

 

4. While the present research mainly concentrated on wired network communication for user 

traffic profiling and SDN based traffic management, the scheme can be equally 

implemented in upcoming wireless environments such as 5G mobile networks. 

Identification of application traffic trends and consequently the derivation of mobile user 

profiles can help operators in optimizing the traffic of certain user profiles based on 

business requirements as well as allow a greater range of subscription models targeting 

user requirements capture through traffic profiling features.  

 

9.4 The future of traffic engineering in SDN 

The popularity and development of software defined networking has been steadily increasing 

since the inception of the paradigm a couple of years ago. An increasing number of operators and 

organizations are seeking SDN traffic management solutions to meet scalability due to the inherent 

ease of deploying services owing the real-time network programmability and centralized controlled 

offered by SDN. As evaluated during user traffic profiling, however, the application diversity among 

the end users in residential as well as enterprise environments is significant and a fundamental 

requirement of dynamic service provisioning and resource allocation remains end user satisfaction. 

Typical traffic engineering in legacy networking as well as SDN though, concentrates on isolated 

application improvement. A substantial number of earlier studies have hence targeted network 

optimization of typical time critical applications such as video streaming, VoIP, or generic real-time 

communication. The traffic management framework and network policies, therefore, lack the level 

of granularity required to define and construct network policies catering to a wider range of users 

depicted in the derived traffic profiles.   
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As the SDN technology progresses and the centralized control framework is extended to other 

areas, such as high speed mobile services and other legacy installations, the trend to isolate 

individual services for prioritization will continue to exist. The lack of a standardized northbound 

SDN control interface means that network control applications continue to be offered and designed 

as standalone modules that may or may not have any horizontal integration with other SDN 

services or applications and would therefore make it more difficult for operators to define network 

policies. However, the performance degradation associated with standalone service optimization 

may be more significant if the chosen application or service does not comply with end user 

application trends. In this current context and the foreseeable future, as the technology sees 

further adoption, the requirement for understanding and capturing user trends for SDN solutions 

remains significant. 

   

Despite many studies currently undertaken to optimize application traffic flows in SDN, this thesis 

emphasises the need for a robust and reliable user behaviour profiling mechanism which integrates 

with SDN technology and offers network administrators in fine tuning resource provisioning 

according to end user requirements. To this end, this research project investigated the derivation of 

user traffic profiles in residential as well as enterprise networks and carried out experimentation 

using several simulation tests to evaluate the viability of incorporating user profiling based resource 

allocation policies in SDN. The observed results demonstrated significant improvement in network 

performance metrics for prioritized users (profiles) allowing network administrator to go beyond 

individual application optimization. 

 

To conclude, understanding user behaviour by profiling users’ application trends will be crucial in 

the near future as more applications and services emerge and the SDN technology matures and 

finds greater deployment in present network infrastructures. It is envisaged the ever-growing 

breadth of applications available to end users could become the primary motivation for network 

administrators to investigate and focus on user trends as a means to design and automate network 

policy controls.  
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APPENDIX – 1 

 

 

 

1. Traffic Classification Script (IP/DNS) 

1.1 Traffic Classification Script for Residential Users 

1.2 Traffic Classification Script for Enterprise Environment 
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1.1 IP address Lookup Traffic Classification Script (Residential Users – Chapter 3 and Chapter 4) 

 

 

#! /bin/awk -f 

BEGIN { 

FS=" "; 

} 

{ 

 

if ($2 !~ /224.0/) { 

 

ips[$1]=$1; 

#ipd[$1]=$2; 

flows[$1]++; 

bytes_as_source[$1]+=$6; 

bytes_as_dest[$1]+=$12; 

duration_as_source[$1]+=$8; 

duration_as_dest[$1]+=$14; 

bps_t[$1]+=$9; 

bps_r[$1]+=$15; 

 

#General Distribution 

if ($5 == 53 ) {dnss[$1]++;} 

if ($5 ==80 || $5 ==443 || $5 ~ /8170/ || $5 ~ /8171/) {http[$1]++;} 

 

if ($5 ==20) {ftp[$1]++;} 

if ($5 ==21) {ftpc[$1]++;} 

 

#Email 

 

if ($2 ~ /207.46.96.145/ || /209.191.93.53/ ||  /209.131.36.159/ || 

/69.147.114.224/ || /74.125.45.100/ || \ 

/216.239.34.10/ || /216.239.38.10/ ||  /207.46.105.172/ ) 

{email_ip[$1]++;} 

if ($5 ~ /25/ || $5 ~ /110/ || $5 ~ /587/ || $5 ~ /465/ || $5 ~ 

/995/ || $5 ~ /993/ || $5 ~ /8089/ || $5 ~ /8096/ ) 

{email_port[$1]++;} 

 

email[$1] = email_ip[$1]+email_port[$1]; 

 

#Social 

 

#if ($2 ~ /^199.16.156/      || /^199.16.159/      || /^31.13.93/ 

|| /69.63.187.1[6-9]/ || \ 

#        /69.63.187.2[0-9]/ || /69.63.187.3[0-9]/ || /69.63.189.40/     

|| /69.63.176.188/ || \ 

#       /69.63.178.40/     || /69.63.178.62/     || /69.63.180.4[0-

9]/ || /69.63.180.50/  || /69.63.184.142/    || \ 

#     /69.63.181.1[0-9]/ || /69.63.181.2[0-9]/ || /69.63.181.3[0-

9]/ || /69.63.181.4[0-9]/ || /69.63.181.50/  ||\ 

#      /69.63.181.10/     || /74.125.91.191/    ||  

/74.125.127.191/  ||  /74.125.159.191/ || /63.135.80.49/   || \ 

#    /216.178.38.116/   || /168.143.171.84/   || /168.143.161.20/   

|| /128.121.146.228/ || /168.143.162.68/ || \ 
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#  /128.121.243.228/  || /128.121.146.100/  ||  /168.143.162.52/  

|| /168.143.162.116/ || /168.143.162.36/ || \ 

#   /209.237.233.34/   || /68.142.214.24/ ) {social_ip[$1]++;} 

#if ($5 ~ /5010/ || $5 ~ /5190/ || $5 ~ /5222/ || $5 ~ /5269/ || $5 

~ /3920/ || \ 

#         $5 ~ /5190/ || $5 ~ /532/ || $5 ~ /119/ || $5 ~ /2195/ || 

$5 ~ /5678/) {social_port[$1]++;} 

 

#  social[$1] = social_ip[$1]+social_port[$1]; 

 

#Stream 

 

if ($2 ~ /^173.194.112/       || /^54.244.221/        || 

/74.125.127.100/    || /216.178.40.84/      || /199.181.132.250/    

||  /206.220.42.32/ || \ 

/209.85.227.10[0-2]/ || /209.85.225.10[0-2]/ || /66.102.9.10[0-2]/  

|| /216.239.59.10[0-2]/ || /74.125.159.10[0-2]/ || \ 

/64.233.169.10[0-2]/ || /209.85.135.10[0-2]/ || /74.125.19.10[0-2]/ 

|| \ 

/149.126.74.140/     || /82.221.111.20/      ||  /178.236.6.207/    

|| /178.236.7.162/      || /176.32.109.244/     || /104.20.5.77/   

|| \ 

/104.20.6.77/        || /104.20.4.77/        || /104.20.7.77/       

|| /104.20.31.76/       || /81.17.18.254/       || /69.167.127.57/ 

|| \ 

/69.167.127.59/      || /23.61.255.243/      || /23.61.251.99/      

|| /195.8.215.137/      || /195.8.215.136/      || /195.8.215.138/ 

||\ 

/195.8.215.139/      || /23.61.251.8/        || /23.61.255.241/     

|| /2.20.183.162/       || /2.20.183.160/       || /104.28.7.65/   

|| /104.28.6.65/   ||\ 

/54.175.9.128/       || /104.28.20.16/       || /104.28.21.16/      

|| /5.79.78.78/         || /74.113.233.128/     || /^216.58.208/   

|| /216.58.208.46/ || \ 

/62.212.83.1/        || /141.0.174.3[4-9]/   || /141.0.174.4[0-4]/  

|| /31.192.117.132/     || /31.192.112.104/     || /64.188.63.185/ 

|| /31.192.116.179/ ) {stream_ip[$1]++;} 

if ($5 ~ /8554/ || $5 ~ /1755/ || $5 ~ /7007/ || $5 ~ /1090/ || $5 

~ /1900/ || $5 ~ /7070/ || $5 ~ /554/ || $5 ~ /1935/ ||\ 

$5 ~ /697[0-9]/ || $5 ~ /698[0-9]/ || $5 ~ /7000/ || $5 ~ /5353/ || 

$5 ~ /3689/ || $5 ~ /8088/ || $5 ~ /42000/ || $5 ~ /42999/ ) 

{stream_port[$1]++;} 

stream[$1] = stream_port[$1]+stream_ip[$1]; 

 

 

 

 

#Comms 

 

if ($2 ~ /212.8.163.94/   || /157.56.114.105/ || /91.190.218.46/  

|| /91.190.216.21/  || /46.105.44.115/  || /54.235.93.201/  || 

/50.16.213.80/ || /86.64.162.35/ || \ 

/63.111.29.132/  || /198.41.176.169/ || /198.41.180.169/ || 

/198.41.178.169/ || /198.41.179.169/ || /198.41.177.169/ || \ 
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/69.65.41.15/    || /184.173.191.49/ || /173.239.38.100/ ) 

{comms_ip[$1]++;} 

if ($5 ~ /5060/  || $5 ~ /33033/ || $5 ~ /5351/ || $5 ~ /5050/ || 

$5 ~ /1863/ || $5 ~ /6801/ || \ 

$5 ~ /10200/ || $5 ~ /1034/ || $5 ~ /1035/ || $5 ~ /2644/ || $5 ~ 

/8000/      || $5 ~ /9900/      || $5 ~ /9901/      || $5 ~ /8443/ 

|| \ 

$5 ~ /2074/  || $5 ~ /2076/ || $5 ~/5061/  || $5 ~/1720/  || $5 ~ 

/1638[4-9]/ || $5 ~ /1639[0-9]/ || $5 ~ /1640[0-3]/ || $5 ~ /2427/ 

|| $5 ~ /2944/ || \ 

$5 ~ /3478/  || $5 ~ /4379/ || $5 ~ /4380/ || $5 ~ /1500/ || $5 ~ 

/3005/      || $5 ~ /3101/      || $5 ~ /28960/ ||\ 

$5 ~ /500/   || $5 ~/4500/  || $5 ~ /5060/ || $5 ~ /506[1-9]/ || $5 

~ /5070/  || $5 ~/8008/  || $5 ~ /123/ ) {comms_port[$1]++;} 

 

comms[$1]= comms_ip[$1]+comms_port[$1]; 

 

 

#Download 

 

if ($2 ~ /87.248.210.253/ || /87.248.210.254/ || /94.242.253.64/ || 

/94.242.253.65/ || /94.242.253.66/ ||  \ 

/^108.160.165/   || /154.53.224.142/ || /205.196.120.6/ || 

/205.196.120.8/ || /78.46.142.98/  || \ 

/144.76.0.3/     || /188.40.125.151/ || \ 

/109.163.227.73/ || /78.138.99.144/  || /195.3.147.99/   || 

/95.215.61.203/  || /62.210.141.210/ || /178.73.214.217/ || 

/162.159.253.82/ || \ 

/162.159.254.82/ || /162.159.254.81/ || /162.159.255.81/ || 

/162.159.252.82/ || /91.233.116.126/ || /185.61.148.120/ ||\ 

/195.85.215.50/  || /82.146.44.36/   || /109.74.151.239/ || 

/95.215.45.119/  || /91.219.238.121/ || /185.25.51.66/   || 

/46.41.129.5/ || \ 

/151.236.23.10/  || /193.169.189.220/ || /89.46.101.100/ || 

/104.28.29.41/   || /104.28.28.41/   || /198.41.190.233/ || 

/198.41.189.233/ || \ 

/31.7.59.14/     || /87.248.214.58/  ||\ 

/188.92.20.182/  || /46.38.62.42/    || /94.242.57.26/   || 

/80.92.65.144/ || /198.41.201.25/ || /198.41.200.25/   || \ 

/67.23.44.19/    || /31.7.59.14/     || /67.212.76.52/   || 

/5.45.73.241/  || /104.28.27.77/  || /104.28.26.77/    || 

/88.80.6.5/ || \ 

/198.72.123.87/  || /185.37.100.119/ || /104.28.6.59/    || 

/104.28.7.59/  || /5.45.72.88/    || /195.189.227.28/  || \ 

/69.172.201.208/ ||  /199.27.135.71/ || /199.27.134.71/  || 

/46.105.165.17/|| /104.28.18.42/   || \ 

/104.28.19.42/   || /50.56.218.189/  || /72.52.4.120/    || 

/141.101.118.[30-31]/ || /198.41.202.40/ || /198.41.203.40/ || \ 

/95.215.60.87/   || /66.135.33.31/   || /104.28.10.73/   || 

/104.28.11.73/ || /141.8.225.72/    || /64.182.240.12/ || \ 

/82.80.246.51/   || /217.70.184.38/  || /104.28.10.69/  || 

/104.28.11.69/  || \ 

/198.41.200.25/  || /198.41.201.25/  || /198.41.200.42/  || 

/198.41.203.40/  || /67.212.76.52/  ||\ 

/5.45.72.88/     || /5.45.73.241/ ) {dload_ip[$1]++;} 
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if ($5 ~ /688[1-9]/  || $5 ~ /20/ || $5 ~ /21/  || $5 ~ /6346/ || 

$5 ~ /39720/ || $5 ~ /8530/ || \ 

$5 ~ /5223/ || $5 ~ /69/ || $5 ~ /115/ || $5 ~ /139/  || $5 ~ 

/7777/ || $5 ~ /548/   || $5 ~ /2336/ || $5 ~ /3004/ || \ 

$5 ~ /2703[1-9]/ || $5 ~ /2704[0-9]/ || $5 ~ /27050/  || $5 ~ 

/6881/ || $5 ~ /6459[1-9]/ || $5 ~ /6457[1-9]/ || $5 ~ /6454[1-9]/ ) 

{dload_port[$1]++;} 

 

dload[$1]=dload_ip[$1]+dload_port[$1]; 

 

 

 

#Gaming 

if ($2 ~ /^199.108.4/    || /^199.108.5/    || /210.175.169.130/ || 

/^198.107.156/    || /^203.105.76/   || \ 

/23.61.255.224/ || /23.61.255.216/ || /64.30.228.84/    || 

/64.30.228.81/    || /185.31.18.129/ || /185.31.19.192/   || 

/173.192.10.254/ || \ 

/166.78.41.198/ || /166.78.34.229/ || /166.78.40.244/   || 

/174.143.185.146/ || /162.209.67.97/ || /216.168.44.139/  || 

/64.30.228.82/ ||\ 

/195.13.205.17/ || /195.13.205.11/ || /89.167.143.67/ || 

/89.167.143.66/   || \ 

/89.167.143.46/ || /89.167.143.47/ || /67.228.244.148/  || 

/209.34.224.72/   || /166.78.40.244/ || \ 

/162.209.67.97/ || /166.78.41.198/ || /166.78.41.198/   || 

/64.30.228.82/  || /216.69.227.108/  || \ 

/195.93.85.49/  || /195.13.205.24/ || /195.13.205.19/   || 

/209.114.51.96/   || /50.19.100.226/ || /74.86.58.192/    ||\ 

/195.13.205.9/  || /195.13.205.19/ || /64.64.12.224/    || 

/192.33.31.51/    || /104.20.4.17/  || /104.20.5.17/     || \ 

/173.255.217.211/ || /54.148.109.249/  || /108.162.206.85/ || 

/108.162.205.85/ || \ 

/104.28.26.119/   || /104.28.27.119/   || /66.216.14.131/  || 

/54.243.154.238/ || /54.208.208.217/ || /88.221.39.235/ || \ 

/209.200.152.198/ || /134.170.29.210/  || /134.170.29.82/  || 

/64.14.48.177/   || /69.172.201.47/  || /23.46.124.9/ || \ 

/184.169.130.235/ || /54.195.250.211/ || /54.195.250.208/ || 

/54.248.80.100/  || /184.169.136.110/ || \ 

/46.30.212.169/ || /194.97.109.24[2-3]/ || /84.45.254.106/ || 

/213.208.119.44/ || /194.105.226.147/ || /84.142.85.2/ || 

/54.248.91.3/ || /174.129.20.105/ ) {game_ip[$1]++;} 

if ($5 ~ /4871/ || $5 ~ /5090/ || $5 ~ /32887/ || $5 ~ /32019/ || 

$5 ~/2300/|| $5 ~/3074/ ||\ 

$5 ~ /1728/ || $5 ~/554/ || $5 ~/2300/ || $5 ~/1935/ || $5 ~/5550/ 

|| $5 ~/5555/ || $5 ~/18051/ || $5 ~/18055/ || \ 

$5 ~ /28960/|| $5 ~/6667/ || $5 ~/7777/ || $5 ~ /7778/ || $5 ~ 

/1640[3-9]/ || $5 ~ /1641[0-9]/ || $5 ~ /1642[0-9]/ ||\ 

$5 ~ /1643[0-9]/ || $5 ~ /1644[0-9]/ || $5 ~ /1645[0-9]/ || $5 ~ 

/1646[0-9]/ || $5 ~ /1647[0-2]/ || \ 

$5 ~ /4380/ || $5 ~ /27000/ || $5 ~ /2700[1-9]/ || $5 ~ /2702[0-9]/ 

|| $5 ~ /27030/ || \ 

$5 ~ /3478/ || $5 ~ /3074/ || $5 ~ /3479/ || $5 ~ /3480/ || $5 ~ 

/9293/ ) {game_port[$1]++;} 
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game[$1]=game_ip[$1]+game_port[$1]; 

 

 

#Browsing 

 

if ($5 ==80 || $5 ==443 || $5 ~ /8170/ || $5 ~ /8171/) 

{web[$1]=http[$1]-game_ip[$1]-dload_ip[$1]-stream_ip[$1]-

email_ip[$1]-comms_ip[$1];} 

 

 

} 

} 

 

END { 

 

printf ("ipadd\t\tFlows dns web email dload stream games comms 

unknown\tTx(s)\tRx(s)\tTx(B)\tRx(B)\tTx(Bps)\tRx(Bps)\n"); 

 

for (i in ips) printf 

("%s\t%d\t%.1f %.1f %.1f\t%.1f\t%.1f\t%.1f\t%.1f\t%.1f\t%.3f\t%.3f\

t%d\t%d\t%.2f\t%.2f\n",\ 

ips[i], flows[i], \ 

dnss[i]/flows[i]*100,\ 

web[i]/flows[i]*100,\ 

email[i]/flows[i]*100,\ 

dload[i]/flows[i]*100,\ 

stream[i]/flows[i]*100, game[i]/flows[i]*100,\ 

comms[i]/flows[i]*100, \ 

unknown[i]=100-

((web[i]/flows[i]*100)+(email[i]/flows[i]*100)+(dnss[i]/flows[i]*10

0)+(game[i]/flows[i]*100)+(dload[i]/flows[i]*100)+(comms[i]/flows[i

]*100)+(stream[i]/flows[i]*100)),\ 

duration_as_source[i]/flows[i], 

duration_as_dest[i]/flows[i],bytes_as_source[i], bytes_as_dest[i], 

bps_t[i]/flows[i]/8,bps_r[i]/flows[i]/8); } 

 

1.2 Traffic Classification Script (Enterprise Environment – Chapter 7 and Chapter 8) 

 

#! /bin/awk -f 

BEGIN { 

       FS=" "; 

       } 

 

{ 

# As Destination flows, destination IP is inside subnet, source IP 

is external 

if ($2 ~ /^192.168.200/ && $1 !~ /^192.168.200/) 

                        { 

                        ipd[$2]=$2; 

                        flows_as_dest[$2]++; 

                        bytes_as_dest[$2]+=$6; 

                        if ($4 ~ /53/ ) {dnsd[$2]++;} 

                        if ($4 ~ /80/ || $4 ~ /443/ ) {wwwd[$2]++;} 
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                        } 

 

# As Source FLows, source IP inside, destination IP outside subnet 

else if ($1 ~ /^192.168.200/ && $2 !~/^192.168.200/ ) { 

        ips[$1]=$1; 

        flows_as_source[$1]++; 

        bytes_as_source[$1]+=$6; 

         

#General Distribution 

if ($5 ~ /53/ ) {dnss[$1]++;} 

if ($5 ~ /80/ || /443/ ) {http[$1]++;}  

if ($5 ~ /20/)  {ftp[$1]++} 

 

     

#Emailing (MS Office Outlook, SMTP, POP3, IMAP) 

if ($2 ~ /141.163.66.145/ ||  /141.163.66.98/ || /141.163.66.99/ || 

$5 ~ /25/ || $5 ~ /110/ || \ 

         $5 ~ /110/ || $5 ~ /465/ || $5 ~ /995/) {email[$1]++;} 

 

 

#Storage Services (Virtual Sever Instances, Windows Sever, DB 

Storage) 

if ($2 ~ /141.163.159.151/ ||  /141.163.159.152/ || 

/141.163.159.153/ || /141.163.159.154/ || /141.163.159.155/ || \ 

         /141.163.159.161/ ||  /141.163.159.161/ || 

/141.163.159.162/ || /141.163.159.163/) {sts[$1]++;} 

 

 

#Video Streaming (Online Training, AV and Media Management, AV 

Content Capture) 

if ($2 ~ /141.101.127.128/ ||  /141.163.10.6/ || /141.163.1.250/ || 

/141.163.159.150/ || /141.163.79.196/ || \ 

         /141.163.79.197/  ||  /141.163.79.199/) {vds[$1]++;} 

 

#Communications (Office Communications Services) 

if ($2 ~ /141.163.159.33/   ||  /141.163.159.8/   || 

/141.163.160.3/   || /141.163.161.2/   || /141.163.161.3/ || \ 

         /141.163.163.171/  ||  /141.163.163.241/ || 

/141.163.201.221/ || /141.163.201.222/ || /141.163.222.100/) 

{comms[$1]++;} 

 

#Enterprise (Corporate Information Systems, Staff Portal, E-

Portfolio) 

if ($2 ~ /141.163.222.101/ || /141.163.222.102/ || 

/141.163.222.112/|| /141.163.222.14/ || /141.163.222.160/ || \ 

         /141.163.222.166/ || /141.163.222.33/  || /141.163.222.43/ 

|| /141.163.222.91/ || /141.163.231.102/ || \ 

   /141.163.231.198/ || /141.163.231.241/ || 

/141.163.231.93/ || /141.163.231.94/ || /141.8.226.14/ || 

/141.85.216.241/) {etp[$1]++;} 

 

#Publishing (Content Management System, Document Scanning and 

Printing) 

if ($2 ~ /141.163.231.96/ || /141.163.236.221/ || 

/141.163.246.123/|| /141.163.246.124/ || /141.163.254.160/ || \ 
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         /141.163.66.102/ || /192.168.135.122/  || 

/192.168.135.127/) {pub[$1]++;} 

 

#Software Services (Software Distribution Service, Specialist 

Software Services) 

if ($2 ~ /141.163.66.130/ || /141.163.66.131/ || /141.163.66.132/|| 

/141.163.66.134/) {sfs[$1]++;} 

 

#Web Browsing (Internet Traffic) 

if ($5 ==80 || $5 ==443 && http[$1] > email[$1] && http[$1] > 

sts[$1] && http[$1] > vds[$1] && http[$1] > comms[$1] && http[$1] > 

etp[$1] && http[$1] > pub[$1] && http[$1] > sfs[$1] ) 

{web[$1]=http[$1]-email[$1]-sts[$1];} 

 

#Internal,external website 

#if ($2 ~ / 141.163.1.14/ || / 141.163.1.15/ || / 172.20.0.97/|| / 
#172.20.4.9/ || / 172.20.7.2/) {web[$1]++;} 
 

 

} 

} 

 

END { 

 

printf ("ipadd\t\tflows dns web email sts vds comms etp pub sfs\t 

Tx(s)\tRx(s)\tTx(B)\tRx(B)\tTx(Bps)\tRx(Bps) \n"); 

 

for (i in ips) printf 

("%s\t%d\t%.1f %.1f %.1f\t%.1f\t%.1f\t%.1f\t%.1f\t%.1f\t%.1f\t%.1f\

t%.1f\t%.1f\t%.1f\t%.1f\n",\ 

ips[i], flows[i], dnss[i]/flows[i]*100, 

web[i]/flows[i]*100,email[i]/flows[i]*100, sts[i]/flows[i]*100, 

vds[i]/flows[i]*100, comms[i]/flows[i]*100, etp[i]/flows[i]*100, 

pub[i]/flows[i]*100, sfs[i]/flows[i]*100, \ 

duration_as_source[i]/flows[i], 

duration_as_dest[i]/flows[i],bytes_as_source[i], bytes_as_dest[i], 

bps_t[i]/flows[i]/8, bps_r[i]/flows[i]/8);  

} 
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APPENDIX – 2 

 

 

 

2. Cluster Analysis Scripts 

2.1 K-Means Cluster Analysis (R-Code) 

2.2 Hierarchical Cluster Analysis (R-Code) 

2.3 DBSCAN Clsuter Analysis (R-Code) 

2.4 Automated Profiler (BASH) 
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2.1 K-Means Clustering (Chapter 3  and Chapter 4) 

 

***Calculating correct value of k*** 

 

analysis.features <- scale (analysis.features) #Optional 

wss <- (nrow(analysis.features)-

1)*sum(apply(analysis.features,2,var)) 

for (i in 2:15) wss[i] <- 

sum(kmeans(analysis.features,centers=i)$withinss)  

plot(1:15, wss, type="o", xlab="Number of Clusters(k)", 

ylab="Within groups sum of squares(wss)", lty=3, cex =0.6, 

cex.axis=0.7, cex.main=0.7, cex.lab=0.7) 

 

***Deriving Clusters based on the graphical ‘knee in graph’ value 

of k *** 

 

analysis_month = 

read.csv("C:/Users/tbakhshi/Downloads/project2/Complete_Profiling/m

onth_report.csv") 

analysis.features= analysis_month 

analysis.features$date <- NULL 

analysis.features$time <- NULL 

analysis.features$srcip <- NULL 

analysis.features$dstip <- NULL 

analysis.features$srcp <- NULL 

analysis.features$dstp <- NULL 

analysis.features$In_dur <- NULL 

View(analysis.features) 

profiles <- kmeans (analysis.features, 6) 

profiles 

print ("***PROFILING WITH 6 CLUSTERS***") 

print (profiles) 

table1 <- table(analysis_month$ipadd, profiles$cluster, 

analysis_month$Date) 

print(table1) 

table2 <- table(analysis_month$User, profiles$cluster, 

analysis_month$Date) 

print(table2) 

 

sink("C:/Users/tbakhshi/Downloads/project2/clusters-flows_6.txt" , 

append=TRUE) 

 

 

 

2.2 Hierarchical Clustering (Chapter 4) 
 

applications = 

read.csv("C:/Users/tbakhshi/Downloads/Project2/v2/report_month_non_

neg.csv") 

View (applications) 

applications.features=applications 

applications.features$ipadds <- NULL 

applications.features$Flows <- NULL 
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applications.features$Tx.s. <- NULL 

applications.features$Rx.s. <- NULL 

applications.features$Tx.B. <- NULL 

applications.features$Rx.B. <- NULL 

applications.features$Tx.Bps. <- NULL 

applications.features$Rx.Bps. <- NULL 

applications.features$dns <- NULL 

applications.features$Date <- NULL 

applications.features$Port <- NULL 

applications.features$Gateway <- NULL 

applications.features$User <- NULL 

View (applications.features) 

library (cluster) 

applications.features.dist=dist(applications.features) 

applications.features.hclust = hclust(applications.features.dist, 

method=ward) 

plot(applications.features.hclust,labels=applications$ipadds,main='

Default from hclust') 

groups.6 = cutree(applications.features.hclust,6) 

sapply(unique(groups.6),function(g)applications$ipadds[groups.6 == 

g]) 

aggregate(applications.features,list(groups.6),median) 

 

***To check what would be the potential cluster sizes between 2 and 

6*** 

counts = 

sapply(2:6,function(ncl)table(cutree(applications.features.hclust,n

cl))) 

names(counts) = 2:6 

counts 

 

2.3 DBSCAN Clustering (Chapter 4) 
 

library("dbscan", lib.loc="~/R/win-library/3.2") 

library (fpc) 

kNNdistplot(d, k = 5) 

abline(h=10, col = "red", lty=2) 

abline(h=12, col = "red", lty=2) 

abline(h=8, col = "red", lty=2) 

res <- dbscan(d, eps = 8) 

 

DBSCAN clustering for 10095 objects. 

Parameters: eps = 8, minPts = 5 

The clustering contains 17 cluster(s) and 327 noise points. 

   0    1    2    3    4    5    6    7    8    9   10   11   12   

13   14   15   16   17  

 327 9396  183   47   23    4   36   13    5   13    7    7    5    

7    5    5    7    5 

 

res <- dbscan(d, eps = 10) 

res 

DBSCAN clustering for 10095 objects. 

Parameters: eps = 10, minPts = 5 

The clustering contains 15 cluster(s) and 190 noise points. 
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   0    1    2    3    4    5    6    7    8    9   10   11   12   

13   14   15  

 190 9530  186   51   23    9   37    6    6   13   13    8    6    

7    6    4  

 

Available fields: cluster, eps, minPts 

 

 

res <- dbscan(d, eps = 12) 

res 

DBSCAN clustering for 10095 objects. 

Parameters: eps = 12, minPts = 5 

The clustering contains 11 cluster(s) and 111 noise points. 

 

   0    1    2    3    4    5    6    7    8    9   10   11  

 111 9621  195   74   28   17   19   11    3    6    5    5  

 

Available fields: cluster, eps, minPts 

 

Changing minPts: 

 

> res <- dbscan(d, eps = 12, minPts = 10) 

> res 

DBSCAN clustering for 10095 objects. 

Parameters: eps = 12, minPts = 10 

The clustering contains 5 cluster(s) and 244 noise points. 

 

   0    1    2    3    4    5  

 244 9571  186   63   17   14  

 

Available fields: cluster, eps, minPts 

 

> res <- dbscan(d, eps = 12, minPts = 50) 

> res 

DBSCAN clustering for 10095 objects. 

Parameters: eps = 12, minPts = 50 

The clustering contains 3 cluster(s) and 553 noise points. 

 

   0    1    2    3  

 553 9241  124  177  

 

Available fields: cluster, eps, minPts 

 

 

> res <- dbscan(d, eps = 8, minPts = 10) 

> res 

DBSCAN clustering for 10095 objects. 

Parameters: eps = 8, minPts = 10 

The clustering contains 10 cluster(s) and 490 noise points. 

 

   0    1    2    3    4    5    6    7    8    9   10  

 490 9152  130  176   36   23   36   14   13   13   12  

 

Available fields: cluster, eps, minPts 
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> res <- dbscan(d, eps = 8, minPts = 50) 

> res 

DBSCAN clustering for 10095 objects. 

Parameters: eps = 8, minPts = 50 

The clustering contains 4 cluster(s) and 1060 noise points. 

 

   0    1    2    3    4  

1060 8169  113  621  132  

 

Available fields: cluster, eps, minPts 

 

> res <- dbscan(d, eps = 10, minPts = 10) 

> res 

DBSCAN clustering for 10095 objects. 

Parameters: eps = 10, minPts = 10 

The clustering contains 7 cluster(s) and 329 noise points. 

 

   0    1    2    3    4    5    6    7  

 329 9457  184   39   23   37   13   13  

 

Available fields: cluster, eps, minPts 

 

> res <- dbscan(d, eps = 10, minPts = 50) 

> res 

DBSCAN clustering for 10095 objects. 

Parameters: eps = 10, minPts = 50 

The clustering contains 3 cluster(s) and 724 noise points. 

 

   0    1    2    3  

 724 9079  124  168  

 

Available fields: cluster, eps, minPts 

 

 

2.4 Automated Profiler (BASH Scripts) 
 
(a) Flow Records Concatenation Script 

 
[Input: NetFlow, OpenFlow statistics. Output: Application Usage Report Per User] 
 
#!/bin/bash 

 

 

for dom in {01..31};  

do  

flow-cat ft-v05.2015-01-$dom.* > ftlog01$dom.dat;  

ft2nfdump -r ftlog01$dom.dat | nfdump -w nflog01$dom.dat; 

nfdump -r nflog01$dom.dat -o 

"fmt:%sa %da %pr %sp %dp %byt %pkt %td %bps %pps %bpp %fl" -q > 

raw_data01$dom.dat 

cat raw_data01$dom.dat| awk -f bytes.awk | sed "s/M//g" | column -

t > fmt_data01$dom.dat 

cat fmt_data01$dom.dat| awk '$2 ~ /^192.168/ && $1 !~ /^192.168/ 

{print $0}' > incoming$dom.dat 
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cat fmt_data01$dom.dat | awk '$1 ~ /^192.168/ && $2 !~/^192.168/ && 

$2 !~ /^224.0/ {print $0}' > outgoing$dom.dat 

awk 

'NR==FNR{a[$2,$1,$5,$4]=$20FS$6"\t"$7"\t"$8"\t"$9"\t"$10"\t"$11\t"$

12";next}{$21=a[$1,$2,$4,$5];print}' OFS=' ' incoming$dom.dat 

outgoing$dom.dat | column -t > flowrecords$dom.dat 

 

#using the application identifaction script from appendix: 1.1, 1.2. 

 

cat flowrecords$dom.dat | awk -f nfprofiler.awk | column -t > 

report01_$dom;  

rm ftlog01$dom.dat nflog01$dom.dat raw_data01$dom.dat 

fmt_data01$dom.dat incoming$dom.dat outgoing$dom.dat 

flowrecords$dom.dat; 

 

done; 

 

cat report01_$dom | awk '$10 <= 10.50 && $10 > 0 {print $0}' | tr 

'\t' ',' > log$dom.csv 

cat log$dom.csv >> data.csv # (Application Usage Report) 
 

 
(b) K-Means Cluster Analysis Script(s) 

 
[Input: Application Usage Report. Output: Clusters (profiles) and Flow Statistics] 
 
wss.sh 

#!/bin/bash 

./wss_calculator.r > wss_file.raw 

cat wss_file.raw | awk '{print $2" "$3" "$4" "$5" "$6" "$7}' | 

xargs > wss_file.new 

awk '{for (i=1;i<=NF;i++) {print $i}}' wss_file.new > wss_file.dat 

awk '{print NR, $0}' wss_file.dat > wss_plot.dat 

rm wss_file.raw wss_file.new wss_file.dat 

gnuplot plotscript 

 

 

wss_calculator.r 

#!/usr/bin/env Rscript 

# R code goes here 

d = read.csv ("data.csv") 

#View (d) 

d.app <- d[4:11] 

#View (d.app) 

wss_app <- (nrow(d.app)-1)*sum(apply(d.app,2,var)) 

for (i in 2:20) wss_app[i] <- sum(kmeans(d.app, centers=i, 

iter.max=30)$withinss) 

wss_app 

./cluster_calculator.r > profiles.dat 

cat profiles.dat 

 

 

plotscript 
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# Scale font and line width (dpi) by changing the size! It will 

always display stretched. 

set terminal svg size 400,300 enhanced fname 'arial'  fsize 10 butt 

solid 

set output 'out.svg' 

# Key means label... 

set key inside bottom right 

set xlabel 'k' 

set ylabel 'wss. vs. k' 

set title 'Wss vs. k' 

plot  "wss_plot.dat" using 1:2 title 'wss. vs k' with lines 

pause -1 "Hit any key to continue" 

 
 
profiler.sh 

#!/usr/bin/bash 

./cluster_calculator.r > cluster.raw 

 

cat cluster.raw | sed -n -e '/Cluster/,$p' | sed -e 

'/Clustering/,$d' > /home/controller/results/cluster_result.dat; 

cat cluster.raw | grep between_SS >> 

/home/controller/results/cluster_result.dat; 

cat cluster.raw | sed -e '1,/table/d' | sed -e '/>/,$d' | sed 

'/^\s*$/d' | sed  '1s/^/ipadd /' | column -t | tr -s ' ' ',' > 

/home/controller/results/clusteredfile.csv; 

done; 

 

echo 

=================================================================== 

echo "CLUSTERS:" 

echo 

=================================================================== 

cat /home/controller/results/cluster_result.dat 

 
awk 'NR==FNR{a[$1]=$19FS$2","$3;next}{$17=a[$1];print}' FS=','  

/home/controller/results/clusteredfile.csv report.csv | tr -s ' ' 

',' > complete_report.csv 

 
 
cluster_calculator.r 

#!/usr/bin/env Rscript 

d=read.csv ("data.csv") 

d.app <- d[4:11] 

app_cluster_k = kmeans (d.app, 4)# sample for four profiles 

app_cluster_k 
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APPENDIX – 3 

 

 

 

 
3. Machine Learning based Traffic Classification 

 
3.1 K-Means Cluster Analysis (wss. Vs. k) per application (R-Code)  

3.2 C.50 Classifier Training (Chapter 6) 

3.3 C.50 Classifier Decision Tree Derivation (R-Code) 
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3.1 Machine Learning based Traffic Classification (Chapter 6)  
 

***Calculating clusters vs. wss graph for each application *** 

 

analysis_month = 

read.csv("C:/Users/tbakhshi/Downloads/Project3/email.csv") 

View (analysis_month) 

email.features = analysis_month 

email.features $sno <- NULL 

email.features $SrcIP <- NULL 

email.features $DstIP <- NULL 

email.features $SrcPo <- NULL 

email.features $DstPo <- NULL 

email.features $Prot. <- NULL 

View (email.features) 

 

email.features .features <- scale (email.features) #Optional 

wss <- (nrow(email.features)-1)*sum(apply(email.features ,2,var)) 

for (i in 2:10) wss[i] <- 

sum(kmeans(email.features,centers=i)$withinss)  

plot(1:10, wss, type="o", xlab="Number of Clusters(k)", 

ylab="Within groups sum of squares(wss)", lty=3, cex =0.6, 

cex.axis=0.7, cex.main=0.7, cex.lab=0.7) 

 

analysis_month = 

read.csv("C:/Users/tbakhshi/Downloads/Project3/game.csv") 

View (analysis_month) 

game.features = analysis_month 

game.features$sno <- NULL 

game.features$SrcIP <- NULL 

game.features$DstIP <- NULL 

game.features$SrcPo <- NULL 

game.features$DstPo <- NULL 

game.features$Prot. <- NULL 

View (game.features) 

 

game.features <- scale (game.features) #Optional 

wss <- (nrow(game.features)-1)*sum(apply(game.features,2,var)) 

for (i in 2:10) wss[i] <- 

sum(kmeans(game.features,centers=i)$withinss)  

plot(1:10, wss, type="o", xlab="Number of Clusters(k)", 

ylab="Within groups sum of squares(wss)", lty=3, cex =0.6, 

cex.axis=0.7, cex.main=0.7, cex.lab=0.7) 

 

analysis_month = 

read.csv("C:/Users/tbakhshi/Downloads/Project3/stream1.csv") 

View (analysis_month) 

stream1.features = analysis_month 

stream1.features$sno <- NULL 

stream1.features$SrcIP <- NULL 

stream1.features$DstIP <- NULL 

stream1.features$SrcPo <- NULL 

stream1.features$DstPo <- NULL 

stream1.features$Prot. <- NULL 

View (stream1.features) 
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analysis_month = 

read.csv("C:/Users/tbakhshi/Downloads/Project3/storage.csv") 

View (analysis_month) 

storage.features = analysis_month 

storage.features$sno <- NULL 

storage.features$SrcIP <- NULL 

storage.features$DstIP <- NULL 

storage.features$SrcPo <- NULL 

storage.features$DstPo <- NULL 

storage.features$Prot. <- NULL 

View (storage.features) 

 

dropbox.features <- scale (storage.features) #Optional 

wss <- (nrow(storage.features)-1)*sum(apply(storage.features,2,var)) 

for (i in 2:10) wss[i] <- 

sum(kmeans(storage.features,centers=i)$withinss)  

plot(1:10, wss, type="o", xlab="Number of Clusters(k)", 

ylab="Within groups sum of squares(wss)", lty=3, cex =0.6, 

cex.axis=0.7, cex.main=0.7, cex.lab=0.7) 

 

 

analysis_month = 

read.csv("C:/Users/tbakhshi/Downloads/Project3/torrents.csv") 

View (analysis_month) 

torrents.features = analysis_month 

torrents.features$sno <- NULL 

torrents.features$SrcIP <- NULL 

torrents.features$DstIP <- NULL 

torrents.features$SrcPo <- NULL 

torrents.features$DstPo <- NULL 

torrents.features$Prot. <- NULL 

torrents.features$Tag <- NULL 

View (torrents.features) 

 

torrents.features <- scale (torrents.features) #Optional 

wss <- (nrow(torrents.features)-

1)*sum(apply(torrents.features,2,var)) 

for (i in 2:10) wss[i] <- 

sum(kmeans(torrents.features,centers=i)$withinss)  

plot(1:10, wss, type="o", xlab="Number of Clusters(k)", 

ylab="Within groups sum of squares(wss)", lty=3, cex =0.6, 

cex.axis=0.7, cex.main=0.7, cex.lab=0.7) 

 

analysis_month = 

read.csv("C:/Users/tbakhshi/Downloads/Project3/comms.csv") 

View (analysis_month) 

comms.features = analysis_month 

comms.features$sno <- NULL 

comms.features$SrcIP <- NULL 

comms.features$DstIP <- NULL 

comms.features$SrcPo <- NULL 

comms.features$DstPo <- NULL 

comms.features$Prot. <- NULL 

comms.features$Tag <- NULL 

View (comms.features) 
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comms.features <- scale (comms.features) #Optional 

wss <- (nrow(comms.features)-1)*sum(apply(comms.features,2,var)) 

for (i in 2:10) wss[i] <- 

sum(kmeans(comms.features,centers=i)$withinss)  

plot(1:10, wss, type="o", xlab="Number of Clusters(k)", 

ylab="Within groups sum of squares(wss)", lty=3, cex =0.6, 

cex.axis=0.7, cex.main=0.7, cex.lab=0.7) 

 

 

***Run clusters <- kmeans (k, Application_Data)for each set of 

application flows as per computation of k*** 

 

 

3.2 C.50 Classifier Training (Chapter 6) 

 

****IMPLEMENTING C50 IN R**** 

***IN R AFTER ADDING FUNCTION C5.0.GRAPHVIZ AND LIBRARY(C50) 

applications = 

read.csv("C:/Users/tbakhshi/Downloads/applications.csv") 

View (applications) 

X <- applications[,1:15] #Feature Set 

Y <- applications[,16]   #Comparison/Classification Vector 

treeModel <- C50::C5.0(X, Y, control= C5.0Control(minCases = 1, 

fuzzyThreshold = TRUE, noGlobalPruning = FALSE)) 

summary (treeModel) 

C5.0.graphviz(treeModel, 

"C:/Users/tbakhshi/Downloads/Project3/c50.txt") 

***IN LINUX*** 

ubuntu@ubuntu:/mnt/hgfs/Downloads$ dot -Tpng c50.txt > output.png 

****Analysing Confusion Matrix**** 

 

applications = 

read.csv("C:/Users/tbakhshi/Downloads/Project3/dataset3.csv") 

X <- applications[,3:17] #Feature Set 

Y <- applications[,18]   #Comparison/Classification Vector 

trainx <- X[1:210600,] 

trainy <- Y[1:210600] 

testx <- X[210700:421300,] 

testy <- Y[210700:421300]  

treeModel <- C50::C5.0(trainx, trainy, control= 

C5.0Control(minCases = 1, fuzzyThreshold = TRUE, noGlobalPruning = 

FALSE, winnow=TRUE)) 

summary (treeModel) 

 

p <- predict(treeModel, testx, type="class" ) 

sum( p == testy ) / length( p ) 

 

confusionMatrix (p, testy) 

 

Case 1 

treeModel <- C50::C5.0(trainx, trainy, control= 

C5.0Control(minCases = 1, fuzzyThreshold = TRUE, noGlobalPruning = 

FALSE, winnow=TRUE)) 
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p <- predict(treeModel, testx, type="class" ) 

sum( p == testy ) / length( p ) 

Case 2 

treeModel <- C50::C5.0(trainx, trainy, trials=10, control= 

C5.0Control(minCases = 1, fuzzyThreshold = TRUE, noGlobalPruning = 

FALSE, winnow=TRUE, earlyStopping=TRUE)) 

p <- predict(treeModel, testx, type="class" ) 

sum( p == testy ) / length( p ) 

Case 3 

treeModel <- C50::C5.0(trainx, trainy, control= 

C5.0Control(minCases = 1, fuzzyThreshold = TRUE, noGlobalPruning = 

TRUE, winnow=TRUE)) 

p <- predict(treeModel, testx, type="class" ) 

sum( p == testy ) / length( p ) 

Case 4 

treeModel <- C50::C5.0(trainx, trainy, trials=10, control= 

C5.0Control(minCases = 1, fuzzyThreshold = TRUE, noGlobalPruning = 

TRUE, winnow=TRUE, earlyStopping=TRUE)) 

p <- predict(treeModel, testx, type="class" ) 

sum( p == testy ) / length( p ) 

 

>  sensitivity <- senspec [,c(2)] 

>  specificity <- senspec [,c(3)] 

>  height <- rbind (sensitivity, specificity) 

> mp <- barplot(height, beside = TRUE, cex =0.8, cex.axis=1, 

cex.main=1, cex.lab=1, ylim = c(0, 1), xlab = "Flow Classes", ylab 

= "Sensitivity / Specificity Value", names.arg = senspec$FlowClass, 

legend.text =TRUE, args.legend = locator(1)) 

> applications = 

read.csv("C:/Users/tbakhshi/Downloads/Project3/dataset3.csv") 

> View (applications) 

> applications = 

read.csv("C:/Users/tbakhshi/Downloads/Project3/dataset2.csv") 

> View (applications) 

 

3.3 C.50 Classifier Decision Tree Derivation (Chapter 6) 

 

#---------------------------------------------------------# 

# This code implements C5.0.graphviz conversion routine   # 

#---------------------------------------------------------# 

 

C5.0.graphviz <- function( C5.0.model, filename, fontname 

='Arial',col.draw ='black', 

col.font ='blue',col.conclusion ='lightpink',col.question = 

'grey78', 

shape.conclusion ='box3d',shape.question ='diamond',  

bool.substitute = 'None', prefix=FALSE, vertical=TRUE ) { 

 

library(cwhmisc)   

library(stringr)  

treeout <- C5.0.model$output 

treeout<- substr(treeout, cpos(treeout, 'Decision tree:', 

start=1)+14,nchar(treeout)) 
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treeout<- substr(treeout, 1,cpos(treeout, 'Evaluation on training 

data', start=1)-2) 

variables <- data.frame(matrix(nrow=500, ncol=4))  

names(variables) <- c('SYMBOL','TOKEN', 'TYPE' , 'QUERY')  

connectors <- data.frame(matrix(nrow=500, ncol=3))  

names(connectors) <- c('TOKEN', 'START','END') 

theStack <- data.frame(matrix(nrow=500, ncol=1))  

names(theStack) <- c('ITEM') 

theStackIndex <- 1 

currentvar <- 1 

currentcon <- 1 

open_connection <- TRUE 

previousindent <- -1 

firstindent <- 4 

substitutes <- data.frame(None=c('= 0','= 1'), yesno=c('no','yes'), 

truefalse=c('false', 'true'),TF=c('F','T')) 

dtreestring<-unlist( scan(text= treeout,   sep='\n', what 

=list('character'))) 

 

for (linecount in c(1:length(dtreestring))) { 

lineindent<-0 

shortstring <- str_trim(dtreestring[linecount], side='left') 

leadingspaces <- nchar(dtreestring[linecount]) - nchar(shortstring) 

lineindent <- leadingspaces/4 

dtreestring[linecount]<-str_trim(dtreestring[linecount], 

side='left')  

while (!is.na(cpos(dtreestring[linecount], ':   ', start=1)) ) { 

lineindent<-lineindent + 1  

dtreestring[linecount]<-substr(dtreestring[linecount], 

ifelse(is.na(cpos(dtreestring[linecount], ':   ', start=1)), 1, 

cpos(dtreestring[linecount], ':   ', start=1)+4), 

nchar(dtreestring[linecount]) ) 

shortstring <- str_trim(dtreestring[linecount], side='left') 

leadingspaces <- nchar(dtreestring[linecount]) - nchar(shortstring) 

lineindent <- lineindent + leadingspaces/4 

dtreestring[linecount]<-str_trim(dtreestring[linecount], 

side='left') 

} 

if (!is.na(cpos(dtreestring[linecount], ':...', start=1))) 

lineindent<- lineindent +  1  

dtreestring[linecount]<-substr(dtreestring[linecount], 

ifelse(is.na(cpos(dtreestring[linecount], ':...', start=1)), 1, 

cpos(dtreestring[linecount], ':...', start=1)+4), 

nchar(dtreestring[linecount]) ) 

dtreestring[linecount]<-str_trim(dtreestring[linecount]) 

stringlist <- strsplit(dtreestring[linecount],'\\:') 

stringpart <- strsplit(unlist(stringlist)[1],'\\s') 

if (open_connection==TRUE) {  

variables[currentvar,'TOKEN'] <- unlist(stringpart)[1] 

variables[currentvar,'SYMBOL'] <- 

paste('node',as.character(currentvar), sep='') 

variables[currentvar,'TYPE'] <- shape.question 

variables[currentvar,'QUERY'] <- 1 

   theStack[theStackIndex,'ITEM']<-variables[currentvar,'SYMBOL'] 

theStack[theStackIndex,'INDENT'] <-firstindent  
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theStackIndex<-theStackIndex+1 

currentvar <- currentvar + 1 

if(currentvar>2) { 

  connectors[currentcon - 1,'END'] <- variables[currentvar - 1, 

'SYMBOL'] 

} 

   } 

connectors[currentcon,'TOKEN'] <- 

paste(unlist(stringpart)[2],unlist(stringpart)[3]) 

if (connectors[currentcon,'TOKEN']=='= 0')  

connectors[currentcon,'TOKEN'] <- 

as.character(substitutes[1,bool.substitute]) 

if (connectors[currentcon,'TOKEN']=='= 1')  

connectors[currentcon,'TOKEN'] <- 

as.character(substitutes[2,bool.substitute]) 

if (open_connection==TRUE) {  

if (lineindent<previousindent) { 

theStackIndex <- theStackIndex-(( previousindent- lineindent)  +1 ) 

currentsymbol <-theStack[theStackIndex,'ITEM'] 

} else 

currentsymbol <-variables[currentvar - 1,'SYMBOL'] 

} else {   

currentsymbol <-theStack[theStackIndex-((previousindent -

lineindent ) +1    ),'ITEM'] 

theStackIndex <- theStackIndex-(( previousindent- lineindent)    ) 

} 

connectors[currentcon, 'START'] <- currentsymbol 

currentcon <- currentcon + 1 

open_connection <- TRUE  

if (length(unlist(stringlist))==2) { 

 stringpart2 <- strsplit(unlist(stringlist)[2],'\\s') 

variables[currentvar,'TOKEN'] <- 

paste(ifelse((prefix==FALSE),'','Class'), unlist(stringpart2)[2])  

variables[currentvar,'SYMBOL'] <- 

paste('node',as.character(currentvar), sep='') 

variables[currentvar,'TYPE'] <- shape.conclusion 

variables[currentvar,'QUERY'] <- 0 

currentvar <- currentvar + 1 

connectors[currentcon - 1,'END'] <- variables[currentvar - 

1,'SYMBOL'] 

open_connection <- FALSE 

} 

previousindent<-lineindent 

} 

runningstring <- paste('digraph g {', 'graph ', sep='\n') 

runningstring <- paste(runningstring, ' [rankdir="', sep='') 

runningstring <- paste(runningstring, 

ifelse(vertical==TRUE,'TB','LR'), sep='' ) 

runningstring <- paste(runningstring, '"]', sep='') 

  for (lines in c(1:(currentvar-1))) { 

  runningline <- paste(variables[lines,'SYMBOL'], '[shape="') 

  runningline <- paste(runningline,variables[lines,'TYPE'], sep='' ) 

  runningline <- paste(runningline,'" label ="', sep='' ) 

  runningline <- paste(runningline,variables[lines,'TOKEN'], 

sep='' ) 
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  runningline <- paste(runningline, 

  '" style=filled fontcolor=', sep='') 

  runningline <- paste(runningline, col.font) 

  runningline <- paste(runningline,' color=' ) 

  runningline <- paste(runningline, col.draw) 

  runningline <- paste(runningline,' fontname=') 

  runningline <- paste(runningline, fontname) 

  runningline <- paste(runningline,' fillcolor=') 

  runningline <- paste(runningline, 

  ifelse(variables[lines,'QUERY']== 0 ,col.conclusion,col.question)) 

  runningline <- paste(runningline,'];') 

  runningstring <- paste(runningstring, runningline , sep='\n') 

  } 

  for (lines in c(1:(currentcon-1))) {  

  runningline <- paste (connectors[lines,'START'], '->') 

  runningline <- paste (runningline, connectors[lines,'END']) 

  runningline <- paste (runningline,'[label="') 

  runningline <- paste (runningline,connectors[lines,'TOKEN'], 

sep='') 

  runningline <- paste (runningline,'" fontname=', sep='') 

  runningline <- paste (runningline, fontname) 

  runningline <- paste (runningline,'];') 

  runningstring <- paste(runningstring, runningline , sep='\n') 

  } 

runningstring <- paste(runningstring,'}') 

cat(runningstring) 

  sink(filename, split=TRUE) 

cat(runningstring) 

sink() 

} 
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APPENDIX – 4 

 

 

 

4. Mininet Topologies 

4.1 Residential Network Topology 

4.2 Data Center Network Topology 

4.3 Campus Network Topology – Profiling Overead Computation 
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4.1 Residential Network Topology (Chapter 5) 

#!/usr/bin/python 

 

""" 

Script created by VND - Visual Network Description (SDN version) 

""" 

from mininet.net import Mininet 

from mininet.node import Controller, RemoteController, 

OVSKernelSwitch, IVSSwitch, UserSwitch 

from mininet.link import Link, TCLink 

from mininet.cli import CLI 

from mininet.log import setLogLevel 

 

def topology(): 

 

    "Create a network." 

    net = Mininet( controller=RemoteController, link=TCLink, 

switch=OVSKernelSwitch ) 

 

    print "*** Creating nodes" 

    s1 = net.addSwitch( 's1', listenPort=6673, 

mac='00:00:00:00:00:01' ) 

    s2 = net.addSwitch( 's2', listenPort=6674, 

mac='00:00:00:00:00:02' ) 

    h3 = net.addHost( 'h3', mac='00:00:00:00:00:03', 

ip='10.0.0.3/8' ) 

    h4 = net.addHost( 'h4', mac='00:00:00:00:00:04', 

ip='10.0.0.4/8' ) 

    h5 = net.addHost( 'h5', mac='00:00:00:00:00:05', 

ip='10.0.0.5/8' ) 

    h6 = net.addHost( 'h6', mac='00:00:00:00:00:06', 

ip='10.0.0.6/8' ) 

    h7 = net.addHost( 'h7', mac='00:00:00:00:00:07', 

ip='10.0.0.7/8' ) 

    h8 = net.addHost( 'h8', mac='00:00:00:00:00:08', 

ip='10.0.0.8/8' ) 

    h9 = net.addHost( 'h9', mac='00:00:00:00:00:09', 

ip='10.0.0.9/8' ) 

    h10 = net.addHost( 'h10', mac='00:00:00:00:00:10', 

ip='10.0.0.10/8' ) 

    c20 = net.addController( 'c20' ) 

    h22 = net.addHost( 'h22', mac='00:00:00:00:00:22', 

ip='10.0.0.22/8' ) 

    h23 = net.addHost( 'h23', mac='00:00:00:00:00:23', 

ip='10.0.0.23/8' ) 

    h24 = net.addHost( 'h24', mac='00:00:00:00:00:24', 

ip='10.0.0.24/8' ) 

    h25 = net.addHost( 'h25', mac='00:00:00:00:00:25', 

ip='10.0.0.25/8' ) 

 

    print "*** Creating links" 

    net.addLink(h25, s1, 0, 13) 

    net.addLink(h24, s1, 0, 12) 

    net.addLink(s1, h23, 11, 0) 
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    net.addLink(h22, s1, 0, 10) 

    net.addLink(s1, s2, 9, 3) 

    net.addLink(s2, h5, 2, 0) 

    net.addLink(s1, h10, 8, 0) 

    net.addLink(s1, h9, 7, 0) 

    net.addLink(s1, h8, 6, 0) 

    net.addLink(s1, h7, 5, 0) 

    net.addLink(s1, h6, 4, 0) 

    net.addLink(s1, h4, 3, 0) 

    net.addLink(s1, h3, 2, 0) 

    net.addLink(s1, s2, 1, 1) 

 

    print "*** Starting network" 

    net.start() 

    c20.start() 

 

    print "*** Running CLI" 

    CLI( net ) 

 

    print "*** Stopping network" 

    net.stop() 

 

if __name__ == '__main__': 

    setLogLevel( 'info' ) 

    topology() 

 

4.2 Data Center Network Topology (Chapter 7) 

#!/usr/bin/python 

 

""" 

Script created by VND - Visual Network Description (SDN version) 

""" 

from mininet.net import Mininet 

from mininet.node import Controller, RemoteController, 

OVSKernelSwitch, IVSSwitch, UserSwitch 

from mininet.link import Link, TCLink 

from mininet.cli import CLI 

from mininet.log import setLogLevel 

 

def topology(): 

 

    "Create a network." 

    net = Mininet( controller=Controller, link=TCLink, 

switch=OVSKernelSwitch ) 

 

    print "*** Creating nodes" 

    s1 = net.addSwitch( 's1', protocols='OpenFlow10', 

listenPort=6673, mac='00:00:00:00:00:01' ) 

    s2 = net.addSwitch( 's2', protocols='OpenFlow10', 

listenPort=6674, mac='00:00:00:00:00:02' ) 

    s3 = net.addSwitch( 's3', protocols='OpenFlow10', 

listenPort=6675, mac='00:00:00:00:00:03' ) 
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    s4 = net.addSwitch( 's4', protocols='OpenFlow10', 

listenPort=6676, mac='00:00:00:00:00:04' ) 

    s5 = net.addSwitch( 's5', protocols='OpenFlow10', 

listenPort=6677, mac='00:00:00:00:00:05' ) 

    s6 = net.addSwitch( 's6', protocols='OpenFlow10', 

listenPort=6678, mac='00:00:00:00:00:06' ) 

    s7 = net.addSwitch( 's7', protocols='OpenFlow10', 

listenPort=6679, mac='00:00:00:00:00:07' ) 

    s8 = net.addSwitch( 's8', protocols='OpenFlow10', 

listenPort=66710, mac='00:00:00:00:00:08' ) 

    s9 = net.addSwitch( 's9', protocols='OpenFlow10', 

listenPort=66711, mac='00:00:00:00:00:09' ) 

    s10 = net.addSwitch( 's10', protocols='OpenFlow10', 

listenPort=66712, mac='00:00:00:00:00:10' ) 

    s11 = net.addSwitch( 's11', protocols='OpenFlow10', 

listenPort=66713, mac='00:00:00:00:00:11' ) 

    s12 = net.addSwitch( 's12', protocols='OpenFlow10', 

listenPort=66714, mac='00:00:00:00:00:12' ) 

    s13 = net.addSwitch( 's13', protocols='OpenFlow10', 

listenPort=66715, mac='00:00:00:00:00:13' ) 

    s14 = net.addSwitch( 's14', protocols='OpenFlow10', 

listenPort=66716, mac='00:00:00:00:00:14' ) 

    s15 = net.addSwitch( 's15', protocols='OpenFlow10', 

listenPort=66717, mac='00:00:00:00:00:15' ) 

    s16 = net.addSwitch( 's16', protocols='OpenFlow10', 

listenPort=66718, mac='00:00:00:00:00:16' ) 

    s17 = net.addSwitch( 's17', protocols='OpenFlow10', 

listenPort=66719, mac='00:00:00:00:00:17' ) 

    s18 = net.addSwitch( 's18', protocols='OpenFlow10', 

listenPort=66720, mac='00:00:00:00:00:18' ) 

    s19 = net.addSwitch( 's19', protocols='OpenFlow10', 

listenPort=66721, mac='00:00:00:00:00:19' ) 

    s20 = net.addSwitch( 's20', protocols='OpenFlow10', 

listenPort=66722, mac='00:00:00:00:00:20' ) 

    s21 = net.addSwitch( 's21', protocols='OpenFlow10', 

listenPort=66723, mac='00:00:00:00:00:21' ) 

    s22 = net.addSwitch( 's22', protocols='OpenFlow10', 

listenPort=66724, mac='00:00:00:00:00:22' ) 

    s23 = net.addSwitch( 's23', protocols='OpenFlow10', 

listenPort=66725, mac='00:00:00:00:00:23' ) 

    s24 = net.addSwitch( 's24', protocols='OpenFlow10', 

listenPort=66726, mac='00:00:00:00:00:24' ) 

    h25 = net.addHost( 'h25', mac='00:00:00:00:00:25', 

ip='10.0.0.25/8' ) 

    h26 = net.addHost( 'h26', mac='00:00:00:00:00:26', 

ip='10.0.0.26/8' ) 

    h27 = net.addHost( 'h27', mac='00:00:00:00:00:27', 

ip='10.0.0.27/8' ) 

    h28 = net.addHost( 'h28', mac='00:00:00:00:00:28', 

ip='10.0.0.28/8' ) 

    h29 = net.addHost( 'h29', mac='00:00:00:00:00:29', 

ip='10.0.0.29/8' ) 

    h30 = net.addHost( 'h30', mac='00:00:00:00:00:30', 

ip='10.0.0.30/8' ) 
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    h31 = net.addHost( 'h31', mac='00:00:00:00:00:31', 

ip='10.0.0.31/8' ) 

    h32 = net.addHost( 'h32', mac='00:00:00:00:00:32', 

ip='10.0.0.32/8' ) 

    h42 = net.addHost( 'h42', mac='00:00:00:00:00:42', 

ip='10.0.0.42/8' ) 

    h43 = net.addHost( 'h43', mac='00:00:00:00:00:43', 

ip='10.0.0.43/8' ) 

    h44 = net.addHost( 'h44', mac='00:00:00:00:00:44', 

ip='10.0.0.44/8' ) 

    h45 = net.addHost( 'h45', mac='00:00:00:00:00:45', 

ip='10.0.0.45/8' ) 

    h46 = net.addHost( 'h46', mac='00:00:00:00:00:46', 

ip='10.0.0.46/8' ) 

    h47 = net.addHost( 'h47', mac='00:00:00:00:00:47', 

ip='10.0.0.47/8' ) 

    h48 = net.addHost( 'h48', mac='00:00:00:00:00:48', 

ip='10.0.0.48/8' ) 

    h49 = net.addHost( 'h49', mac='00:00:00:00:00:49', 

ip='10.0.0.49/8' ) 

    h50 = net.addHost( 'h50', mac='00:00:00:00:00:50', 

ip='10.0.0.50/8' ) 

    h51 = net.addHost( 'h51', mac='00:00:00:00:00:51', 

ip='10.0.0.51/8' ) 

    h52 = net.addHost( 'h52', mac='00:00:00:00:00:52', 

ip='10.0.0.52/8' ) 

    h53 = net.addHost( 'h53', mac='00:00:00:00:00:53', 

ip='10.0.0.53/8' ) 

    h54 = net.addHost( 'h54', mac='00:00:00:00:00:54', 

ip='10.0.0.54/8' ) 

    h55 = net.addHost( 'h55', mac='00:00:00:00:00:55', 

ip='10.0.0.55/8' ) 

    h56 = net.addHost( 'h56', mac='00:00:00:00:00:56', 

ip='10.0.0.56/8' ) 

    h57 = net.addHost( 'h57', mac='00:00:00:00:00:57', 

ip='10.0.0.57/8' ) 

    h58 = net.addHost( 'h58', mac='00:00:00:00:00:58', 

ip='10.0.0.58/8' ) 

    h59 = net.addHost( 'h59', mac='00:00:00:00:00:59', 

ip='10.0.0.59/8' ) 

    h60 = net.addHost( 'h60', mac='00:00:00:00:00:60', 

ip='10.0.0.60/8' ) 

    h61 = net.addHost( 'h61', mac='00:00:00:00:00:61', 

ip='10.0.0.61/8' ) 

    h62 = net.addHost( 'h62', mac='00:00:00:00:00:62', 

ip='10.0.0.62/8' ) 

    h63 = net.addHost( 'h63', mac='00:00:00:00:00:63', 

ip='10.0.0.63/8' ) 

    h64 = net.addHost( 'h64', mac='00:00:00:00:00:64', 

ip='10.0.0.64/8' ) 

    h65 = net.addHost( 'h65', mac='00:00:00:00:00:65', 

ip='10.0.0.65/8' ) 

    h66 = net.addHost( 'h66', mac='00:00:00:00:00:66', 

ip='10.0.0.66/8' ) 
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    h67 = net.addHost( 'h67', mac='00:00:00:00:00:67', 

ip='10.0.0.67/8' ) 

    h68 = net.addHost( 'h68', mac='00:00:00:00:00:68', 

ip='10.0.0.68/8' ) 

    h69 = net.addHost( 'h69', mac='00:00:00:00:00:69', 

ip='10.0.0.69/8' ) 

    h70 = net.addHost( 'h70', mac='00:00:00:00:00:70', 

ip='10.0.0.70/8' ) 

    h71 = net.addHost( 'h71', mac='00:00:00:00:00:71', 

ip='10.0.0.71/8' ) 

    h72 = net.addHost( 'h72', mac='00:00:00:00:00:72', 

ip='10.0.0.72/8' ) 

    h73 = net.addHost( 'h73', mac='00:00:00:00:00:73', 

ip='10.0.0.73/8' ) 

    h74 = net.addHost( 'h74', mac='00:00:00:00:00:74', 

ip='10.0.0.74/8' ) 

    h75 = net.addHost( 'h75', mac='00:00:00:00:00:75', 

ip='10.0.0.75/8' ) 

    h76 = net.addHost( 'h76', mac='00:00:00:00:00:76', 

ip='10.0.0.76/8' ) 

    h77 = net.addHost( 'h77', mac='00:00:00:00:00:77', 

ip='10.0.0.77/8' ) 

    h78 = net.addHost( 'h78', mac='00:00:00:00:00:78', 

ip='10.0.0.78/8' ) 

    h79 = net.addHost( 'h79', mac='00:00:00:00:00:79', 

ip='10.0.0.79/8' ) 

    h80 = net.addHost( 'h80', mac='00:00:00:00:00:80', 

ip='10.0.0.80/8' ) 

    h81 = net.addHost( 'h81', mac='00:00:00:00:00:81', 

ip='10.0.0.81/8' ) 

    h82 = net.addHost( 'h82', mac='00:00:00:00:00:82', 

ip='10.0.0.82/8' ) 

    h83 = net.addHost( 'h83', mac='00:00:00:00:00:83', 

ip='10.0.0.83/8' ) 

    h84 = net.addHost( 'h84', mac='00:00:00:00:00:84', 

ip='10.0.0.84/8' ) 

    h85 = net.addHost( 'h85', mac='00:00:00:00:00:85', 

ip='10.0.0.85/8' ) 

    h86 = net.addHost( 'h86', mac='00:00:00:00:00:86', 

ip='10.0.0.86/8' ) 

    h87 = net.addHost( 'h87', mac='00:00:00:00:00:87', 

ip='10.0.0.87/8' ) 

    h88 = net.addHost( 'h88', mac='00:00:00:00:00:88', 

ip='10.0.0.88/8' ) 

    h89 = net.addHost( 'h89', mac='00:00:00:00:00:89', 

ip='10.0.0.89/8' ) 

    h90 = net.addHost( 'h90', mac='00:00:00:00:00:90', 

ip='10.0.0.90/8' ) 

    h91 = net.addHost( 'h91', mac='00:00:00:00:00:91', 

ip='10.0.0.91/8' ) 

    h92 = net.addHost( 'h92', mac='00:00:00:00:00:92', 

ip='10.0.0.92/8' ) 

    h93 = net.addHost( 'h93', mac='00:00:00:00:00:93', 

ip='10.0.0.93/8' ) 
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    h94 = net.addHost( 'h94', mac='00:00:00:00:00:94', 

ip='10.0.0.94/8' ) 

    h95 = net.addHost( 'h95', mac='00:00:00:00:00:95', 

ip='10.0.0.95/8' ) 

    h96 = net.addHost( 'h96', mac='00:00:00:00:00:96', 

ip='10.0.0.96/8' ) 

    h97 = net.addHost( 'h97', mac='00:00:00:00:00:97', 

ip='10.0.0.97/8' ) 

    h98 = net.addHost( 'h98', mac='00:00:00:00:00:98', 

ip='10.0.0.98/8' ) 

    h99 = net.addHost( 'h99', mac='00:00:00:00:00:99', 

ip='10.0.0.99/8' ) 

    h10 = net.addHost( 'h10', mac='00:00:00:00:00:10', 

ip='10.0.0.10/8' ) 

    h10 = net.addHost( 'h10', mac='00:00:00:00:00:10', 

ip='10.0.0.10/8' ) 

    h10 = net.addHost( 'h10', mac='00:00:00:00:00:10', 

ip='10.0.0.10/8' ) 

    h10 = net.addHost( 'h10', mac='00:00:00:00:00:10', 

ip='10.0.0.10/8' ) 

    h10 = net.addHost( 'h10', mac='00:00:00:00:00:10', 

ip='10.0.0.10/8' ) 

    h10 = net.addHost( 'h10', mac='00:00:00:00:00:10', 

ip='10.0.0.10/8' ) 

    h10 = net.addHost( 'h10', mac='00:00:00:00:00:10', 

ip='10.0.0.10/8' ) 

    h10 = net.addHost( 'h10', mac='00:00:00:00:00:10', 

ip='10.0.0.10/8' ) 

    h10 = net.addHost( 'h10', mac='00:00:00:00:00:10', 

ip='10.0.0.10/8' ) 

    h10 = net.addHost( 'h10', mac='00:00:00:00:00:10', 

ip='10.0.0.10/8' ) 

    h11 = net.addHost( 'h11', mac='00:00:00:00:00:11', 

ip='10.0.0.11/8' ) 

    h11 = net.addHost( 'h11', mac='00:00:00:00:00:11', 

ip='10.0.0.11/8' ) 

    h11 = net.addHost( 'h11', mac='00:00:00:00:00:11', 

ip='10.0.0.11/8' ) 

    h11 = net.addHost( 'h11', mac='00:00:00:00:00:11', 

ip='10.0.0.11/8' ) 

    c30 = net.addController( 'c30' ) 

 

    print "*** Creating links" 

    net.addLink(s17, h11) 

    net.addLink(s17, h11) 

    net.addLink(s17, h11) 

    net.addLink(s17, h11) 

    net.addLink(s17, h10) 

    net.addLink(s17, h10) 

    net.addLink(s17, h10) 

    net.addLink(s17, h10) 

    net.addLink(h10, s16) 

    net.addLink(h10, s16) 

    net.addLink(h10, s16) 

    net.addLink(h10, s16) 
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    net.addLink(h99, s16) 

    net.addLink(h98, s16) 

    net.addLink(h10, s16) 

    net.addLink(h10, s16) 

    net.addLink(s16, s17) 

    net.addLink(s15, s17) 

    net.addLink(s15, s16) 

    net.addLink(s14, s17) 

    net.addLink(s14, s16) 

    net.addLink(s14, s15) 

    net.addLink(s13, s15) 

    net.addLink(s13, s14) 

    net.addLink(s12, s15) 

    net.addLink(s12, s14) 

    net.addLink(s11, s15) 

    net.addLink(s11, s14) 

    net.addLink(s12, s13) 

    net.addLink(s11, s12) 

    net.addLink(s10, s13) 

    net.addLink(s10, s12) 

    net.addLink(s10, s11) 

    net.addLink(s9, s13) 

    net.addLink(s9, s12) 

    net.addLink(s9, s11) 

    net.addLink(s8, s13) 

    net.addLink(s8, s12) 

    net.addLink(s8, s11) 

    net.addLink(s7, s13) 

    net.addLink(s7, s12) 

    net.addLink(s7, s11) 

    net.addLink(s6, s13) 

    net.addLink(s6, s12) 

    net.addLink(s6, s11) 

    net.addLink(s5, s13) 

    net.addLink(s5, s12) 

    net.addLink(s5, s11) 

    net.addLink(s4, s13) 

    net.addLink(s4, s12) 

    net.addLink(s4, s11) 

    net.addLink(s3, s13) 

    net.addLink(s3, s12) 

    net.addLink(s3, s11) 

    net.addLink(s2, s13) 

    net.addLink(s2, s12) 

    net.addLink(s2, s11) 

    net.addLink(s1, s13) 

    net.addLink(s1, s12) 

    net.addLink(s1, s11) 

    net.addLink(s16, s17) 

    net.addLink(s16, s17) 

    net.addLink(s24, s17) 

    net.addLink(s24, s16) 

    net.addLink(s23, s17) 

    net.addLink(s23, s16) 

    net.addLink(s23, s24) 
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    net.addLink(s22, s24) 

    net.addLink(s22, s23) 

    net.addLink(s21, s24) 

    net.addLink(s21, s23) 

    net.addLink(s21, s22) 

    net.addLink(s20, s22) 

    net.addLink(s20, s21) 

    net.addLink(s19, s22) 

    net.addLink(s19, s21) 

    net.addLink(s18, s22) 

    net.addLink(s18, s21) 

    net.addLink(h97, s20) 

    net.addLink(h96, s20) 

    net.addLink(h95, s20) 

    net.addLink(h94, s20) 

    net.addLink(h93, s20) 

    net.addLink(h92, s20) 

    net.addLink(h91, s20) 

    net.addLink(h90, s20) 

    net.addLink(h89, s19) 

    net.addLink(h88, s19) 

    net.addLink(h87, s19) 

    net.addLink(h86, s19) 

    net.addLink(h85, s19) 

    net.addLink(h84, s19) 

    net.addLink(h83, s19) 

    net.addLink(h82, s19) 

    net.addLink(h81, s18) 

    net.addLink(h80, s18) 

    net.addLink(h79, s18) 

    net.addLink(h78, s18) 

    net.addLink(h77, s18) 

    net.addLink(h76, s18) 

    net.addLink(h75, s18) 

    net.addLink(h74, s18) 

    net.addLink(h73, s10) 

    net.addLink(h72, s10) 

    net.addLink(h71, s10) 

    net.addLink(h70, s10) 

    net.addLink(h69, s10) 

    net.addLink(h68, s10) 

    net.addLink(h67, s10) 

    net.addLink(h66, s10) 

    net.addLink(h73, s9) 

    net.addLink(h72, s9) 

    net.addLink(h71, s9) 

    net.addLink(h70, s9) 

    net.addLink(h69, s9) 

    net.addLink(h68, s9) 

    net.addLink(h67, s9) 

    net.addLink(h66, s9) 

    net.addLink(h65, s8) 

    net.addLink(h64, s8) 

    net.addLink(h63, s8) 

    net.addLink(h62, s8) 
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    net.addLink(h61, s8) 

    net.addLink(h60, s8) 

    net.addLink(h59, s8) 

    net.addLink(h58, s8) 

    net.addLink(h65, s7) 

    net.addLink(h64, s7) 

    net.addLink(h63, s7) 

    net.addLink(h62, s7) 

    net.addLink(h61, s7) 

    net.addLink(h60, s7) 

    net.addLink(h59, s7) 

    net.addLink(h58, s7) 

    net.addLink(h57, s6) 

    net.addLink(h56, s6) 

    net.addLink(h55, s6) 

    net.addLink(h54, s6) 

    net.addLink(h53, s6) 

    net.addLink(h52, s6) 

    net.addLink(h51, s6) 

    net.addLink(h50, s6) 

    net.addLink(h57, s5) 

    net.addLink(h56, s5) 

    net.addLink(h55, s5) 

    net.addLink(h54, s5) 

    net.addLink(h53, s5) 

    net.addLink(h52, s5) 

    net.addLink(h51, s5) 

    net.addLink(h50, s5) 

    net.addLink(h49, s4) 

    net.addLink(h48, s4) 

    net.addLink(h47, s4) 

    net.addLink(h46, s4) 

    net.addLink(h45, s4) 

    net.addLink(h44, s4) 

    net.addLink(s4, h43) 

    net.addLink(h42, s4) 

    net.addLink(h32, s2) 

    net.addLink(h31, s2) 

    net.addLink(h30, s2) 

    net.addLink(h29, s2) 

    net.addLink(h28, s2) 

    net.addLink(h27, s2) 

    net.addLink(h26, s2) 

    net.addLink(h25, s2) 

    net.addLink(h49, s3) 

    net.addLink(h48, s3) 

    net.addLink(h47, s3) 

    net.addLink(h46, s3) 

    net.addLink(h45, s3) 

    net.addLink(h44, s3) 

    net.addLink(h43, s3) 

    net.addLink(h42, s3) 

    net.addLink(h32, s1) 

    net.addLink(h31, s1) 

    net.addLink(h30, s1) 
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    net.addLink(h29, s1) 

    net.addLink(h28, s1) 

    net.addLink(h27, s1) 

    net.addLink(h26, s1) 

    net.addLink(h25, s1) 

 

    print "*** Starting network" 

    net.build() 

    c30.start() 

 

    print "*** Running CLI" 

    CLI( net ) 

 

    print "*** Stopping network" 

    net.stop() 

 

if __name__ == '__main__': 

    setLogLevel( 'info' ) 

    topology() 

 

 

4.3 Campus Network Topology – Profiling Overead Computation (Chapter 8) 

#!/usr/bin/python 

 

""" 

Script created by VND - Visual Network Description (SDN version) 

""" 

from mininet.net import Mininet 

from mininet.node import Controller, RemoteController, 

OVSKernelSwitch, IVSSwitch, UserSwitch 

from mininet.link import Link, TCLink 

from mininet.cli import CLI 

from mininet.log import setLogLevel 

 

def topology(): 

 

    "Create a network." 

    net = Mininet( controller=RemoteController, link=TCLink, 

switch=OVSKernelSwitch ) 

 

    print "*** Creating nodes" 

    s1 = net.addSwitch( 's1', listenPort=6673, 

mac='00:00:00:00:00:01' ) 

    h2 = net.addHost( 'h2', mac='00:00:00:00:00:02', 

ip='10.0.0.2/8' ) 

    h3 = net.addHost( 'h3', mac='00:00:00:00:00:03', 

ip='10.0.0.3/8' ) 

    h4 = net.addHost( 'h4', mac='00:00:00:00:00:04', 

ip='10.0.0.4/8' ) 

    h5 = net.addHost( 'h5', mac='00:00:00:00:00:05', 

ip='10.0.0.5/8' ) 

    h6 = net.addHost( 'h6', mac='00:00:00:00:00:06', 

ip='10.0.0.6/8' ) 
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    h7 = net.addHost( 'h7', mac='00:00:00:00:00:07', 

ip='10.0.0.7/8' ) 

    h8 = net.addHost( 'h8', mac='00:00:00:00:00:08', 

ip='10.0.0.8/8' ) 

    h9 = net.addHost( 'h9', mac='00:00:00:00:00:09', 

ip='10.0.0.9/8' ) 

    h10 = net.addHost( 'h10', mac='00:00:00:00:00:10', 

ip='10.0.0.10/8' ) 

    h11 = net.addHost( 'h11', mac='00:00:00:00:00:11', 

ip='10.0.0.11/8' ) 

    h12 = net.addHost( 'h12', mac='00:00:00:00:00:12', 

ip='10.0.0.12/8' ) 

    h13 = net.addHost( 'h13', mac='00:00:00:00:00:13', 

ip='10.0.0.13/8' ) 

    c26 = net.addController( 'c26' ) 

 

    print "*** Creating links" 

    net.addLink(s1, h13) 

    net.addLink(s1, h12) 

    net.addLink(s1, h11) 

    net.addLink(s1, h10) 

    net.addLink(s1, h9) 

    net.addLink(s1, h8) 

    net.addLink(h7, s1) 

    net.addLink(h6, s1) 

    net.addLink(h5, s1) 

    net.addLink(h4, s1) 

    net.addLink(h3, s1) 

    net.addLink(h2, s1) 

 

    print "*** Starting network" 

    net.start() 

    c26.start() 

 

    print "*** Running CLI" 

    CLI( net ) 

 

    print "*** Stopping network" 

    net.stop() 

 

if __name__ == '__main__': 

    setLogLevel( 'info' ) 

    topology() 
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APPENDIX – 5 

 

 

5. RYU Control Scripts 

 

5.1 Switching Application (with QoS support) 

5.2 RESTful Flow Configuration Support Module 

5.3 SwitchPort Monitoring and Queue Calculator Constructs 

5.4 DC Traffic Monitor and Route Installer 

5.5 OpenFlow Traffic Measurement 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



284 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



285 
 
 

5.1 Switching Application (with QoS support) 

 

from ryu.base import app_manager 

from ryu.controller import ofp_event 

from ryu.controller.handler import CONFIG_DISPATCHER, 

MAIN_DISPATCHER 

from ryu.controller.handler import set_ev_cls 

from ryu.ofproto import ofproto_v1_3 

from ryu.lib.packet import packet 

from ryu.lib.packet import ethernet 

from ryu.lib.packet import ether_types 

from ryu.lib import pcaplib 

 

 

class SimpleSwitch13(app_manager.RyuApp): 

    OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION] 

 

    def __init__(self, *args, **kwargs): 

        super(SimpleSwitch13, self).__init__(*args, **kwargs) 

        self.mac_to_port = {} 

        self.pcap_pen = pcaplib.Writer(open('mypcap.pcap', 'wb')) 

        # Creating an instance with a PCAP filename 

 

    @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER) 

    def switch_features_handler(self, ev): 

        datapath = ev.msg.datapath 

        ofproto = datapath.ofproto 

        parser = datapath.ofproto_parser 

 

        # install table-miss flow entry 

        # 

        # We specify NO BUFFER to max_len of the output action due 

to 

        # OVS bug. At this moment, if we specify a lesser number, 

e.g., 

        # 128, OVS will send Packet-In with invalid buffer_id and 

        # truncated packet data. In that case, we cannot output 

packets 

        # correctly.  The bug has been fixed in OVS v2.1.0. 

        match = parser.OFPMatch() 

        actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER, 

                                          ofproto.OFPCML_NO_BUFFER)] 

        self.add_flow(datapath, 0, match, actions) 

 

    def add_flow(self, datapath, priority, match, actions, 

buffer_id=None): 

        ofproto = datapath.ofproto 

        parser = datapath.ofproto_parser 

 

        inst = 

[parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS, 

                                             actions)] 

        if buffer_id: 
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            mod = parser.OFPFlowMod(datapath=datapath, 

buffer_id=buffer_id, 

                                    priority=priority, match=match, 

                                    instructions=inst, table_id=1) 

        else: 

            mod = parser.OFPFlowMod(datapath=datapath, 

priority=priority, 

                                    match=match, instructions=inst, 

table_id=1) 

        datapath.send_msg(mod) 

 

    @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER) 

    def _packet_in_handler(self, ev): 

        # If you hit this you might want to increase 

        # the "miss_send_length" of your switch 

        if ev.msg.msg_len < ev.msg.total_len: 

            self.logger.debug("packet truncated: only %s of %s 

bytes", 

                              ev.msg.msg_len, ev.msg.total_len) 

        msg = ev.msg 

        self.pcap_pen.write_pkt(msg.data) 

        datapath = msg.datapath 

        ofproto = datapath.ofproto 

        parser = datapath.ofproto_parser 

        in_port = msg.match['in_port'] 

 

        pkt = packet.Packet(msg.data) 

        eth = pkt.get_protocols(ethernet.ethernet)[0] 

 

        if eth.ethertype == ether_types.ETH_TYPE_LLDP: 

            # ignore lldp packet 

            return 

        dst = eth.dst 

        src = eth.src 

 

        dpid = datapath.id 

        self.mac_to_port.setdefault(dpid, {}) 

 

        self.logger.info("packet in %s %s %s %s", dpid, src, dst, 

in_port) 

 

        # learn a mac address to avoid FLOOD next time. 

        self.mac_to_port[dpid][src] = in_port 

 

        if dst in self.mac_to_port[dpid]: 

            out_port = self.mac_to_port[dpid][dst] 

        else: 

            out_port = ofproto.OFPP_FLOOD 

 

        actions = [parser.OFPActionOutput(out_port)] 

 

        # install a flow to avoid packet_in next time 

        if out_port != ofproto.OFPP_FLOOD: 

            match = parser.OFPMatch(in_port=in_port, eth_dst=dst) 
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            # verify if we have a valid buffer_id, if yes avoid to 

send both 

            # flow_mod & packet_out 

            if msg.buffer_id != ofproto.OFP_NO_BUFFER: 

                self.add_flow(datapath, 1, match, actions, 

msg.buffer_id) 

                return 

            else: 

                self.add_flow(datapath, 1, match, actions) 

        data = None 

        if msg.buffer_id == ofproto.OFP_NO_BUFFER: 

            data = msg.data 

 

        out = parser.OFPPacketOut(datapath=datapath, 

buffer_id=msg.buffer_id, 

                                  in_port=in_port, actions=actions, 

data=data) 

        datapath.send_msg(out) 

 

5.2 RESTful Flow Configuration Support Module 

import logging 

import json 

import re 

 

from webob import Response 

 

from ryu.app import conf_switch_key as cs_key 

from ryu.app.wsgi import ControllerBase, WSGIApplication, route 

from ryu.base import app_manager 

from ryu.controller import conf_switch 

from ryu.controller import ofp_event 

from ryu.controller import dpset 

from ryu.controller.handler import set_ev_cls 

from ryu.controller.handler import MAIN_DISPATCHER 

from ryu.exception import OFPUnknownVersion 

from ryu.lib import dpid as dpid_lib 

from ryu.lib import mac 

from ryu.lib import ofctl_v1_0 

from ryu.lib import ofctl_v1_2 

from ryu.lib import ofctl_v1_3 

from ryu.lib.ovs import bridge 

from ryu.ofproto import ofproto_v1_0 

from ryu.ofproto import ofproto_v1_2 

from ryu.ofproto import ofproto_v1_3 

from ryu.ofproto import ofproto_v1_3_parser 

from ryu.ofproto import ether 

from ryu.ofproto import inet 

 

 

# ============================= 

#          REST API 

# ============================= 

# 
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#  Note: specify switch and vlan group, as follows. 

#   {switch-id} : 'all' or switchID 

#   {vlan-id}   : 'all' or vlanID 

# 

# about queue status 

# 

# get status of queue 

# GET /qos/queue/status/{switch-id} 

# 

# about queues 

# get a queue configurations 

# GET /qos/queue/{switch-id} 

# 

# set a queue to the switches 

# POST /qos/queue/{switch-id} 

# 

# request body format: 

#  {"port_name":"<name of port>", 

#   "type": "<linux-htb or linux-other>", 

#   "max-rate": "<int>", 

#   "queues":[{"max_rate": "<int>", "min_rate": "<int>"},...]} 

# 

#   Note: This operation override 

#         previous configurations. 

#   Note: Queue configurations are available for 

#         OpenvSwitch. 

#   Note: port_name is optional argument. 

#         If does not pass the port_name argument, 

#         all ports are target for configuration. 

# 

# delete queue 

# DELETE /qos/queue/{swtich-id} 

# 

#   Note: This operation delete relation of qos record from 

#         qos colum in Port table. Therefore, 

#         QoS records and Queue records will remain. 

# 

# about qos rules 

# 

# get rules of qos 

# * for no vlan 

# GET /qos/rules/{switch-id} 

# 

# * for specific vlan group 

# GET /qos/rules/{switch-id}/{vlan-id} 

# 

# set a qos rules 

# 

#   QoS rules will do the processing pipeline, 

#   which entries are register the first table (by default table id 

0) 

#   and process will apply and go to next table. 

# 

# * for no vlan 

# POST /qos/{switch-id} 
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# 

# * for specific vlan group 

# POST /qos/{switch-id}/{vlan-id} 

# 

#  request body format: 

#   {"priority": "<value>", 

#    "match": {"<field1>": "<value1>", "<field2>": "<value2>",...}, 

#    "actions": {"<action1>": "<value1>", "<action2>": 

"<value2>",...} 

#   } 

# 

#  Description 

#    * priority field 

#     <value> 

#    "0 to 65533" 

# 

#   Note: When "priority" has not been set up, 

#         "priority: 1" is set to "priority". 

# 

#    * match field 

#     <field> : <value> 

#    "in_port" : "<int>" 

#    "dl_src"  : "<xx:xx:xx:xx:xx:xx>" 

#    "dl_dst"  : "<xx:xx:xx:xx:xx:xx>" 

#    "dl_type" : "<ARP or IPv4 or IPv6>" 

#    "nw_src"  : "<A.B.C.D/M>" 

#    "nw_dst"  : "<A.B.C.D/M>" 

#    "ipv6_src": "<xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx/M>" 

#    "ipv6_dst": "<xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx/M>" 

#    "nw_proto": "<TCP or UDP or ICMP or ICMPv6>" 

#    "tp_src"  : "<int>" 

#    "tp_dst"  : "<int>" 

#    "ip_dscp" : "<int>" 

# 

#    * actions field 

#     <field> : <value> 

#    "mark": <dscp-value> 

#    sets the IPv4 ToS/DSCP field to tos. 

#    "meter": <meter-id> 

#    apply meter entry 

#    "queue": <queue-id> 

#    register queue specified by queue-id 

# 

#   Note: When "actions" has not been set up, 

#         "queue: 0" is set to "actions". 

# 

# delete a qos rules 

# * for no vlan 

# DELETE /qos/rule/{switch-id} 

# 

# * for specific vlan group 

# DELETE /qos/{switch-id}/{vlan-id} 

# 

#  request body format: 

#   {"<field>":"<value>"} 
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# 

#     <field>  : <value> 

#    "qos_id" : "<int>" or "all" 

# 

# about meter entries 

# 

# set a meter entry 

# POST /qos/meter/{switch-id} 

# 

#  request body format: 

#   {"meter_id": <int>, 

#    "bands":[{"action": "<DROP or DSCP_REMARK>", 

#              "flag": "<KBPS or PKTPS or BURST or STATS" 

#              "burst_size": <int>, 

#              "rate": <int>, 

#              "prec_level": <int>},...]} 

# 

# delete a meter entry 

# DELETE /qos/meter/{switch-id} 

# 

#  request body format: 

#   {"<field>":"<value>"} 

# 

#     <field>  : <value> 

#    "meter_id" : "<int>" 

# 

 

 

SWITCHID_PATTERN = dpid_lib.DPID_PATTERN + r'|all' 

VLANID_PATTERN = r'[0-9]{1,4}|all' 

 

QOS_TABLE_ID = 0 

 

REST_ALL = 'all' 

REST_SWITCHID = 'switch_id' 

REST_COMMAND_RESULT = 'command_result' 

REST_PRIORITY = 'priority' 

REST_VLANID = 'vlan_id' 

REST_PORT_NAME = 'port_name' 

REST_QUEUE_TYPE = 'type' 

REST_QUEUE_MAX_RATE = 'max_rate' 

REST_QUEUE_MIN_RATE = 'min_rate' 

REST_QUEUES = 'queues' 

REST_QOS = 'qos' 

REST_QOS_ID = 'qos_id' 

REST_COOKIE = 'cookie' 

 

REST_MATCH = 'match' 

REST_IN_PORT = 'in_port' 

REST_SRC_MAC = 'dl_src' 

REST_DST_MAC = 'dl_dst' 

REST_DL_TYPE = 'dl_type' 

REST_DL_TYPE_ARP = 'ARP' 

REST_DL_TYPE_IPV4 = 'IPv4' 

REST_DL_TYPE_IPV6 = 'IPv6' 
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REST_DL_VLAN = 'dl_vlan' 

REST_SRC_IP = 'nw_src' 

REST_DST_IP = 'nw_dst' 

REST_SRC_IPV6 = 'ipv6_src' 

REST_DST_IPV6 = 'ipv6_dst' 

REST_NW_PROTO = 'nw_proto' 

REST_NW_PROTO_TCP = 'TCP' 

REST_NW_PROTO_UDP = 'UDP' 

REST_NW_PROTO_ICMP = 'ICMP' 

REST_NW_PROTO_ICMPV6 = 'ICMPv6' 

REST_TP_SRC = 'tp_src' 

REST_TP_DST = 'tp_dst' 

REST_DSCP = 'ip_dscp' 

 

REST_ACTION = 'actions' 

REST_ACTION_QUEUE = 'queue' 

REST_ACTION_MARK = 'mark' 

REST_ACTION_METER = 'meter' 

 

REST_METER_ID = 'meter_id' 

REST_METER_BURST_SIZE = 'burst_size' 

REST_METER_RATE = 'rate' 

REST_METER_PREC_LEVEL = 'prec_level' 

REST_METER_BANDS = 'bands' 

REST_METER_ACTION_DROP = 'drop' 

REST_METER_ACTION_REMARK = 'remark' 

 

DEFAULT_FLOW_PRIORITY = 0 

QOS_PRIORITY_MAX = ofproto_v1_3_parser.UINT16_MAX - 1 

QOS_PRIORITY_MIN = 1 

 

VLANID_NONE = 0 

VLANID_MIN = 2 

VLANID_MAX = 4094 

COOKIE_SHIFT_VLANID = 32 

 

BASE_URL = '/qos' 

REQUIREMENTS = {'switchid': SWITCHID_PATTERN, 

                'vlanid': VLANID_PATTERN} 

 

LOG = logging.getLogger(__name__) 

 

 

class RestQoSAPI(app_manager.RyuApp): 

 

    OFP_VERSIONS = [ofproto_v1_0.OFP_VERSION, 

                    ofproto_v1_2.OFP_VERSION, 

                    ofproto_v1_3.OFP_VERSION] 

 

    _CONTEXTS = { 

        'dpset': dpset.DPSet, 

        'conf_switch': conf_switch.ConfSwitchSet, 

        'wsgi': WSGIApplication} 

 

    def __init__(self, *args, **kwargs): 
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        super(RestQoSAPI, self).__init__(*args, **kwargs) 

 

        # logger configure 

        QoSController.set_logger(self.logger) 

        self.cs = kwargs['conf_switch'] 

        self.dpset = kwargs['dpset'] 

        wsgi = kwargs['wsgi'] 

        self.waiters = {} 

        self.data = {} 

        self.data['dpset'] = self.dpset 

        self.data['waiters'] = self.waiters 

        wsgi.registory['QoSController'] = self.data 

        wsgi.register(QoSController, self.data) 

 

    def stats_reply_handler(self, ev): 

        msg = ev.msg 

        dp = msg.datapath 

 

        if dp.id not in self.waiters: 

            return 

        if msg.xid not in self.waiters[dp.id]: 

            return 

        lock, msgs = self.waiters[dp.id][msg.xid] 

        msgs.append(msg) 

 

        flags = 0 

        if dp.ofproto.OFP_VERSION == ofproto_v1_0.OFP_VERSION or \ 

                dp.ofproto.OFP_VERSION == ofproto_v1_2.OFP_VERSION: 

            flags = dp.ofproto.OFPSF_REPLY_MORE 

        elif dp.ofproto.OFP_VERSION == ofproto_v1_3.OFP_VERSION: 

            flags = dp.ofproto.OFPMPF_REPLY_MORE 

 

        if msg.flags & flags: 

            return 

        del self.waiters[dp.id][msg.xid] 

        lock.set() 

 

    @set_ev_cls(conf_switch.EventConfSwitchSet) 

    def conf_switch_set_handler(self, ev): 

        if ev.key == cs_key.OVSDB_ADDR: 

            QoSController.set_ovsdb_addr(ev.dpid, ev.value) 

        else: 

            QoSController._LOGGER.debug("unknown event: %s", ev) 

 

    @set_ev_cls(conf_switch.EventConfSwitchDel) 

    def conf_switch_del_handler(self, ev): 

        if ev.key == cs_key.OVSDB_ADDR: 

            QoSController.delete_ovsdb_addr(ev.dpid) 

        else: 

            QoSController._LOGGER.debug("unknown event: %s", ev) 

 

    @set_ev_cls(dpset.EventDP, dpset.DPSET_EV_DISPATCHER) 

    def handler_datapath(self, ev): 

        if ev.enter: 

            QoSController.regist_ofs(ev.dp, self.CONF) 
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        else: 

            QoSController.unregist_ofs(ev.dp) 

 

    # for OpenFlow version1.0 

    @set_ev_cls(ofp_event.EventOFPFlowStatsReply, MAIN_DISPATCHER) 

    def stats_reply_handler_v1_0(self, ev): 

        self.stats_reply_handler(ev) 

 

    # for OpenFlow version1.2 or later 

    @set_ev_cls(ofp_event.EventOFPStatsReply, MAIN_DISPATCHER) 

    def stats_reply_handler_v1_2(self, ev): 

        self.stats_reply_handler(ev) 

 

    # for OpenFlow version1.2 or later 

    @set_ev_cls(ofp_event.EventOFPQueueStatsReply, MAIN_DISPATCHER) 

    def queue_stats_reply_handler_v1_2(self, ev): 

        self.stats_reply_handler(ev) 

 

    # for OpenFlow version1.2 or later 

    @set_ev_cls(ofp_event.EventOFPMeterStatsReply, MAIN_DISPATCHER) 

    def meter_stats_reply_handler_v1_2(self, ev): 

        self.stats_reply_handler(ev) 

 

 

class QoSOfsList(dict): 

 

    def __init__(self): 

        super(QoSOfsList, self).__init__() 

 

    def get_ofs(self, dp_id): 

        if len(self) == 0: 

            raise ValueError('qos sw is not connected.') 

 

        dps = {} 

        if dp_id == REST_ALL: 

            dps = self 

        else: 

            try: 

                dpid = dpid_lib.str_to_dpid(dp_id) 

            except: 

                raise ValueError('Invalid switchID.') 

 

            if dpid in self: 

                dps = {dpid: self[dpid]} 

            else: 

                msg = 'qos sw is not connected. : switchID=%s' % 

dp_id 

                raise ValueError(msg) 

 

        return dps 

 

 

class QoSController(ControllerBase): 

 

    _OFS_LIST = QoSOfsList() 
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    _LOGGER = None 

 

    def __init__(self, req, link, data, **config): 

        super(QoSController, self).__init__(req, link, data, 

**config) 

        self.dpset = data['dpset'] 

        self.waiters = data['waiters'] 

 

    @classmethod 

    def set_logger(cls, logger): 

        cls._LOGGER = logger 

        cls._LOGGER.propagate = False 

        hdlr = logging.StreamHandler() 

        fmt_str = '[QoS][%(levelname)s] %(message)s' 

        hdlr.setFormatter(logging.Formatter(fmt_str)) 

        cls._LOGGER.addHandler(hdlr) 

 

    @staticmethod 

    def regist_ofs(dp, CONF): 

        if dp.id in QoSController._OFS_LIST: 

            return 

 

        dpid_str = dpid_lib.dpid_to_str(dp.id) 

        try: 

            f_ofs = QoS(dp, CONF) 

            f_ofs.set_default_flow() 

        except OFPUnknownVersion as message: 

            QoSController._LOGGER.info('dpid=%s: %s', 

                                       dpid_str, message) 

            return 

 

        QoSController._OFS_LIST.setdefault(dp.id, f_ofs) 

        QoSController._LOGGER.info('dpid=%s: Join qos switch.', 

                                   dpid_str) 

 

    @staticmethod 

    def unregist_ofs(dp): 

        if dp.id in QoSController._OFS_LIST: 

            del QoSController._OFS_LIST[dp.id] 

            QoSController._LOGGER.info('dpid=%s: Leave qos switch.', 

                                       dpid_lib.dpid_to_str(dp.id)) 

 

    @staticmethod 

    def set_ovsdb_addr(dpid, value): 

        ofs = QoSController._OFS_LIST.get(dpid, None) 

        if ofs is not None: 

            ofs.set_ovsdb_addr(dpid, value) 

 

    @staticmethod 

    def delete_ovsdb_addr(dpid): 

        ofs = QoSController._OFS_LIST.get(dpid, None) 

        ofs.set_ovsdb_addr(dpid, None) 

 

    @route('qos_switch', BASE_URL + '/queue/{switchid}', 

           methods=['GET'], requirements=REQUIREMENTS) 
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    def get_queue(self, req, switchid, **_kwargs): 

        return self._access_switch(req, switchid, VLANID_NONE, 

                                   'get_queue', None) 

 

    @route('qos_switch', BASE_URL + '/queue/{switchid}', 

           methods=['POST'], requirements=REQUIREMENTS) 

    def set_queue(self, req, switchid, **_kwargs): 

        return self._access_switch(req, switchid, VLANID_NONE, 

                                   'set_queue', None) 

 

    @route('qos_switch', BASE_URL + '/queue/{switchid}', 

           methods=['DELETE'], requirements=REQUIREMENTS) 

    def delete_queue(self, req, switchid, **_kwargs): 

        return self._access_switch(req, switchid, VLANID_NONE, 

                                   'delete_queue', None) 

 

    @route('qos_switch', BASE_URL + '/queue/status/{switchid}', 

           methods=['GET'], requirements=REQUIREMENTS) 

    def get_status(self, req, switchid, **_kwargs): 

        return self._access_switch(req, switchid, VLANID_NONE, 

                                   'get_status', self.waiters) 

 

    @route('qos_switch', BASE_URL + '/rules/{switchid}', 

           methods=['GET'], requirements=REQUIREMENTS) 

    def get_qos(self, req, switchid, **_kwargs): 

        return self._access_switch(req, switchid, VLANID_NONE, 

                                   'get_qos', self.waiters) 

 

    @route('qos_switch', BASE_URL + '/rules/{switchid}/{vlanid}', 

           methods=['GET'], requirements=REQUIREMENTS) 

    def get_vlan_qos(self, req, switchid, vlanid, **_kwargs): 

        return self._access_switch(req, switchid, vlanid, 

                                   'get_qos', self.waiters) 

 

    @route('qos_switch', BASE_URL + '/rules/{switchid}', 

           methods=['POST'], requirements=REQUIREMENTS) 

    def set_qos(self, req, switchid, **_kwargs): 

        return self._access_switch(req, switchid, VLANID_NONE, 

                                   'set_qos', self.waiters) 

 

    @route('qos_switch', BASE_URL + '/rules/{switchid}/{vlanid}', 

           methods=['POST'], requirements=REQUIREMENTS) 

    def set_vlan_qos(self, req, switchid, vlanid, **_kwargs): 

        return self._access_switch(req, switchid, vlanid, 

                                   'set_qos', self.waiters) 

 

    @route('qos_switch', BASE_URL + '/rules/{switchid}', 

           methods=['DELETE'], requirements=REQUIREMENTS) 

    def delete_qos(self, req, switchid, **_kwargs): 

        return self._access_switch(req, switchid, VLANID_NONE, 

                                   'delete_qos', self.waiters) 

 

    @route('qos_switch', BASE_URL + '/rules/{switchid}/{vlanid}', 

           methods=['DELETE'], requirements=REQUIREMENTS) 

    def delete_vlan_qos(self, req, switchid, vlanid, **_kwargs): 
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        return self._access_switch(req, switchid, vlanid, 

                                   'delete_qos', self.waiters) 

 

    @route('qos_switch', BASE_URL + '/meter/{switchid}', 

           methods=['GET'], requirements=REQUIREMENTS) 

    def get_meter(self, req, switchid, **_kwargs): 

        return self._access_switch(req, switchid, VLANID_NONE, 

                                   'get_meter', self.waiters) 

 

    @route('qos_switch', BASE_URL + '/meter/{switchid}', 

           methods=['POST'], requirements=REQUIREMENTS) 

    def set_meter(self, req, switchid, **_kwargs): 

        return self._access_switch(req, switchid, VLANID_NONE, 

                                   'set_meter', self.waiters) 

 

    @route('qos_switch', BASE_URL + '/meter/{switchid}', 

           methods=['DELETE'], requirements=REQUIREMENTS) 

    def delete_meter(self, req, switchid, **_kwargs): 

        return self._access_switch(req, switchid, VLANID_NONE, 

                                   'delete_meter', self.waiters) 

 

    def _access_switch(self, req, switchid, vlan_id, func, waiters): 

        try: 

            rest = json.loads(req.body) if req.body else {} 

        except SyntaxError: 

            QoSController._LOGGER.debug('invalid syntax %s', 

req.body) 

            return Response(status=400) 

 

        try: 

            dps = self._OFS_LIST.get_ofs(switchid) 

            vid = QoSController._conv_toint_vlanid(vlan_id) 

        except ValueError as message: 

            return Response(status=400, body=str(message)) 

 

        msgs = [] 

        for f_ofs in dps.values(): 

            function = getattr(f_ofs, func) 

            try: 

                if waiters is not None: 

                    msg = function(rest, vid, waiters) 

                else: 

                    msg = function(rest, vid) 

            except ValueError as message: 

                return Response(status=400, body=str(message)) 

            msgs.append(msg) 

 

        body = json.dumps(msgs) 

        return Response(content_type='application/json', body=body) 

 

    @staticmethod 

    def _conv_toint_vlanid(vlan_id): 

        if vlan_id != REST_ALL: 

            vlan_id = int(vlan_id) 

            if (vlan_id != VLANID_NONE and 
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                    (vlan_id < VLANID_MIN or VLANID_MAX < vlan_id)): 

                msg = 'Invalid {vlan_id} value. Set [%d-%d]' % 

(VLANID_MIN, 

                                                                

VLANID_MAX) 

                raise ValueError(msg) 

        return vlan_id 

 

 

class QoS(object): 

 

    _OFCTL = {ofproto_v1_0.OFP_VERSION: ofctl_v1_0, 

              ofproto_v1_2.OFP_VERSION: ofctl_v1_2, 

              ofproto_v1_3.OFP_VERSION: ofctl_v1_3} 

 

    def __init__(self, dp, CONF): 

        super(QoS, self).__init__() 

        self.vlan_list = {} 

        self.vlan_list[VLANID_NONE] = 0  # for VLAN=None 

        self.dp = dp 

        self.version = dp.ofproto.OFP_VERSION 

        self.queue_list = {} 

        self.CONF = CONF 

        self.ovsdb_addr = None 

        self.ovs_bridge = None 

 

        if self.version not in self._OFCTL: 

            raise OFPUnknownVersion(version=self.version) 

 

        self.ofctl = self._OFCTL[self.version] 

 

    def set_default_flow(self): 

        if self.version == ofproto_v1_0.OFP_VERSION: 

            return 

 

        cookie = 0 

        priority = DEFAULT_FLOW_PRIORITY 

        actions = [{'type': 'GOTO_TABLE', 

                    'table_id': QOS_TABLE_ID + 1}] 

        flow = self._to_of_flow(cookie=cookie, 

                                priority=priority, 

                                match={}, 

                                actions=actions) 

 

        cmd = self.dp.ofproto.OFPFC_ADD 

        self.ofctl.mod_flow_entry(self.dp, flow, cmd) 

 

    def set_ovsdb_addr(self, dpid, ovsdb_addr): 

        # easy check if the address format valid 

        _proto, _host, _port = ovsdb_addr.split(':') 

 

        old_address = self.ovsdb_addr 

        if old_address == ovsdb_addr: 

            return 

        if ovsdb_addr is None: 
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            if self.ovs_bridge: 

                self.ovs_bridge.del_controller() 

                self.ovs_bridge = None 

            return 

        self.ovsdb_addr = ovsdb_addr 

        if self.ovs_bridge is None: 

            ovs_bridge = bridge.OVSBridge(self.CONF, dpid, 

ovsdb_addr) 

            self.ovs_bridge = ovs_bridge 

            try: 

                ovs_bridge.init() 

            except: 

                raise ValueError('ovsdb addr is not available.') 

 

    def _update_vlan_list(self, vlan_list): 

        for vlan_id in self.vlan_list.keys(): 

            if vlan_id is not VLANID_NONE and vlan_id not in 

vlan_list: 

                del self.vlan_list[vlan_id] 

 

    def _get_cookie(self, vlan_id): 

        if vlan_id == REST_ALL: 

            vlan_ids = self.vlan_list.keys() 

        else: 

            vlan_ids = [vlan_id] 

 

        cookie_list = [] 

        for vlan_id in vlan_ids: 

            self.vlan_list.setdefault(vlan_id, 0) 

            self.vlan_list[vlan_id] += 1 

            self.vlan_list[vlan_id] &= 

ofproto_v1_3_parser.UINT32_MAX 

            cookie = (vlan_id << COOKIE_SHIFT_VLANID) + \ 

                self.vlan_list[vlan_id] 

            cookie_list.append([cookie, vlan_id]) 

 

        return cookie_list 

 

    @staticmethod 

    def _cookie_to_qosid(cookie): 

        return cookie & ofproto_v1_3_parser.UINT32_MAX 

 

    # REST command template 

    def rest_command(func): 

        def _rest_command(*args, **kwargs): 

            key, value = func(*args, **kwargs) 

            switch_id = dpid_lib.dpid_to_str(args[0].dp.id) 

            return {REST_SWITCHID: switch_id, 

                    key: value} 

        return _rest_command 

 

    @rest_command 

    def get_status(self, req, vlan_id, waiters): 

        if self.version == ofproto_v1_0.OFP_VERSION: 



299 
 
 

            raise ValueError('get_status operation is not 

supported') 

 

        msgs = self.ofctl.get_queue_stats(self.dp, waiters) 

        return REST_COMMAND_RESULT, msgs 

 

    @rest_command 

    def get_queue(self, rest, vlan_id): 

        if len(self.queue_list): 

            msg = {'result': 'success', 

                   'details': self.queue_list} 

        else: 

            msg = {'result': 'failure', 

                   'details': 'Queue is not exists.'} 

 

        return REST_COMMAND_RESULT, msg 

 

    @rest_command 

    def set_queue(self, rest, vlan_id): 

        if self.ovs_bridge is None: 

            msg = {'result': 'failure', 

                   'details': 'ovs_bridge is not exists'} 

            return REST_COMMAND_RESULT, msg 

 

        self.queue_list.clear() 

        queue_type = rest.get(REST_QUEUE_TYPE, 'linux-htb') 

        parent_max_rate = rest.get(REST_QUEUE_MAX_RATE, None) 

        queues = rest.get(REST_QUEUES, []) 

        queue_id = 0 

        queue_config = [] 

        for queue in queues: 

            max_rate = queue.get(REST_QUEUE_MAX_RATE, None) 

            min_rate = queue.get(REST_QUEUE_MIN_RATE, None) 

            if max_rate is None and min_rate is None: 

                raise ValueError('Required to specify max_rate or 

min_rate') 

            config = {} 

            if max_rate is not None: 

                config['max-rate'] = max_rate 

            if min_rate is not None: 

                config['min-rate'] = min_rate 

            if len(config): 

                queue_config.append(config) 

            self.queue_list[queue_id] = {'config': config} 

            queue_id += 1 

 

        port_name = rest.get(REST_PORT_NAME, None) 

        vif_ports = self.ovs_bridge.get_port_name_list() 

 

        if port_name is not None: 

            if port_name not in vif_ports: 

                raise ValueError('%s port is not exists' % 

port_name) 

            vif_ports = [port_name] 
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        for port_name in vif_ports: 

            try: 

                self.ovs_bridge.set_qos(port_name, type=queue_type, 

                                        max_rate=parent_max_rate, 

                                        queues=queue_config) 

            except Exception as msg: 

                raise ValueError(msg) 

 

        msg = {'result': 'success', 

               'details': self.queue_list} 

 

        return REST_COMMAND_RESULT, msg 

 

    def _delete_queue(self): 

        if self.ovs_bridge is None: 

            return False 

 

        vif_ports = self.ovs_bridge.get_external_ports() 

        for port in vif_ports: 

            self.ovs_bridge.del_qos(port.port_name) 

        return True 

 

    @rest_command 

    def delete_queue(self, rest, vlan_id): 

        self.queue_list.clear() 

        if self._delete_queue(): 

            msg = 'success' 

        else: 

            msg = 'failure' 

 

        return REST_COMMAND_RESULT, msg 

 

    @rest_command 

    def set_qos(self, rest, vlan_id, waiters): 

        msgs = [] 

        cookie_list = self._get_cookie(vlan_id) 

        for cookie, vid in cookie_list: 

            msg = self._set_qos(cookie, rest, waiters, vid) 

            msgs.append(msg) 

        return REST_COMMAND_RESULT, msgs 

 

    def _set_qos(self, cookie, rest, waiters, vlan_id): 

        match_value = rest[REST_MATCH] 

        if vlan_id: 

            match_value[REST_DL_VLAN] = vlan_id 

 

        priority = int(rest.get(REST_PRIORITY, QOS_PRIORITY_MIN)) 

        if (QOS_PRIORITY_MAX < priority): 

            raise ValueError('Invalid priority value. Set [%d-%d]' 

                             % (QOS_PRIORITY_MIN, QOS_PRIORITY_MAX)) 

 

        match = Match.to_openflow(match_value) 

 

        actions = [] 

        action = rest.get(REST_ACTION, None) 
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        if action is not None: 

            if REST_ACTION_MARK in action: 

                actions.append({'type': 'SET_FIELD', 

                                'field': REST_DSCP, 

                                'value': 

int(action[REST_ACTION_MARK])}) 

            if REST_ACTION_METER in action: 

                actions.append({'type': 'METER', 

                                'meter_id': 

action[REST_ACTION_METER]}) 

            if REST_ACTION_QUEUE in action: 

                actions.append({'type': 'SET_QUEUE', 

                                'queue_id': 

action[REST_ACTION_QUEUE]}) 

        else: 

            actions.append({'type': 'SET_QUEUE', 

                            'queue_id': 0}) 

 

        actions.append({'type': 'GOTO_TABLE', 

                        'table_id': QOS_TABLE_ID + 1}) 

        flow = self._to_of_flow(cookie=cookie, priority=priority, 

                                match=match, actions=actions) 

 

        cmd = self.dp.ofproto.OFPFC_ADD 

        try: 

            self.ofctl.mod_flow_entry(self.dp, flow, cmd) 

        except: 

            raise ValueError('Invalid rule parameter.') 

 

        qos_id = QoS._cookie_to_qosid(cookie) 

        msg = {'result': 'success', 

               'details': 'QoS added. : qos_id=%d' % qos_id} 

 

        if vlan_id != VLANID_NONE: 

            msg.setdefault(REST_VLANID, vlan_id) 

        return msg 

 

    @rest_command 

    def get_qos(self, rest, vlan_id, waiters): 

        rules = {} 

        msgs = self.ofctl.get_flow_stats(self.dp, waiters) 

        if str(self.dp.id) in msgs: 

            flow_stats = msgs[str(self.dp.id)] 

            for flow_stat in flow_stats: 

                if flow_stat['table_id'] != QOS_TABLE_ID: 

                    continue 

                priority = flow_stat[REST_PRIORITY] 

                if priority != DEFAULT_FLOW_PRIORITY: 

                    vid = flow_stat[REST_MATCH].get(REST_DL_VLAN, 

VLANID_NONE) 

                    if vlan_id == REST_ALL or vlan_id == vid: 

                        rule = self._to_rest_rule(flow_stat) 

                        rules.setdefault(vid, []) 

                        rules[vid].append(rule) 
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        get_data = [] 

        for vid, rule in rules.items(): 

            if vid == VLANID_NONE: 

                vid_data = {REST_QOS: rule} 

            else: 

                vid_data = {REST_VLANID: vid, REST_QOS: rule} 

            get_data.append(vid_data) 

 

        return REST_COMMAND_RESULT, get_data 

 

    @rest_command 

    def delete_qos(self, rest, vlan_id, waiters): 

        try: 

            if rest[REST_QOS_ID] == REST_ALL: 

                qos_id = REST_ALL 

            else: 

                qos_id = int(rest[REST_QOS_ID]) 

        except: 

            raise ValueError('Invalid qos id.') 

 

        vlan_list = [] 

        delete_list = [] 

 

        msgs = self.ofctl.get_flow_stats(self.dp, waiters) 

        if str(self.dp.id) in msgs: 

            flow_stats = msgs[str(self.dp.id)] 

            for flow_stat in flow_stats: 

                cookie = flow_stat[REST_COOKIE] 

                ruleid = QoS._cookie_to_qosid(cookie) 

                priority = flow_stat[REST_PRIORITY] 

                dl_vlan = flow_stat[REST_MATCH].get(REST_DL_VLAN, 

VLANID_NONE) 

 

                if priority != DEFAULT_FLOW_PRIORITY: 

                    if ((qos_id == REST_ALL or qos_id == ruleid) 

and 

                            (vlan_id == dl_vlan or vlan_id == 

REST_ALL)): 

                        match = 

Match.to_mod_openflow(flow_stat[REST_MATCH]) 

                        delete_list.append([cookie, priority, 

match]) 

                    else: 

                        if dl_vlan not in vlan_list: 

                            vlan_list.append(dl_vlan) 

 

        self._update_vlan_list(vlan_list) 

 

        if len(delete_list) == 0: 

            msg_details = 'QoS rule is not exist.' 

            if qos_id != REST_ALL: 

                msg_details += ' : QoS ID=%d' % qos_id 

            msg = {'result': 'failure', 

                   'details': msg_details} 

        else: 
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            cmd = self.dp.ofproto.OFPFC_DELETE_STRICT 

            actions = [] 

            delete_ids = {} 

            for cookie, priority, match in delete_list: 

                flow = self._to_of_flow(cookie=cookie, 

priority=priority, 

                                        match=match, 

actions=actions) 

                self.ofctl.mod_flow_entry(self.dp, flow, cmd) 

 

                vid = match.get(REST_DL_VLAN, VLANID_NONE) 

                rule_id = QoS._cookie_to_qosid(cookie) 

                delete_ids.setdefault(vid, '') 

                delete_ids[vid] += (('%d' if delete_ids[vid] == '' 

                                     else ',%d') % rule_id) 

 

            msg = [] 

            for vid, rule_ids in delete_ids.items(): 

                del_msg = {'result': 'success', 

                           'details': ' deleted. : QoS ID=%s' % 

rule_ids} 

                if vid != VLANID_NONE: 

                    del_msg.setdefault(REST_VLANID, vid) 

                msg.append(del_msg) 

 

        return REST_COMMAND_RESULT, msg 

 

    @rest_command 

    def set_meter(self, rest, vlan_id, waiters): 

        if self.version == ofproto_v1_0.OFP_VERSION: 

            raise ValueError('set_meter operation is not supported') 

 

        msgs = [] 

        msg = self._set_meter(rest, waiters) 

        msgs.append(msg) 

        return REST_COMMAND_RESULT, msgs 

 

    def _set_meter(self, rest, waiters): 

        cmd = self.dp.ofproto.OFPMC_ADD 

        try: 

            self.ofctl.mod_meter_entry(self.dp, rest, cmd) 

        except: 

            raise ValueError('Invalid meter parameter.') 

 

        msg = {'result': 'success', 

               'details': 'Meter added. : Meter ID=%s' % 

               rest[REST_METER_ID]} 

        return msg 

 

    @rest_command 

    def get_meter(self, rest, vlan_id, waiters): 

        if (self.version == ofproto_v1_0.OFP_VERSION or 

                self.version == ofproto_v1_2.OFP_VERSION): 

            raise ValueError('get_meter operation is not supported') 
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        msgs = self.ofctl.get_meter_stats(self.dp, waiters) 

        return REST_COMMAND_RESULT, msgs 

 

    @rest_command 

    def delete_meter(self, rest, vlan_id, waiters): 

        if (self.version == ofproto_v1_0.OFP_VERSION or 

                self.version == ofproto_v1_2.OFP_VERSION): 

            raise ValueError('delete_meter operation is not 

supported') 

 

        cmd = self.dp.ofproto.OFPMC_DELETE 

        try: 

            self.ofctl.mod_meter_entry(self.dp, rest, cmd) 

        except: 

            raise ValueError('Invalid meter parameter.') 

 

        msg = {'result': 'success', 

               'details': 'Meter deleted. : Meter ID=%s' % 

               rest[REST_METER_ID]} 

        return REST_COMMAND_RESULT, msg 

 

    def _to_of_flow(self, cookie, priority, match, actions): 

        flow = {'cookie': cookie, 

                'priority': priority, 

                'flags': 0, 

                'idle_timeout': 0, 

                'hard_timeout': 0, 

                'match': match, 

                'actions': actions} 

        return flow 

 

    def _to_rest_rule(self, flow): 

        ruleid = QoS._cookie_to_qosid(flow[REST_COOKIE]) 

        rule = {REST_QOS_ID: ruleid} 

        rule.update({REST_PRIORITY: flow[REST_PRIORITY]}) 

        rule.update(Match.to_rest(flow)) 

        rule.update(Action.to_rest(flow)) 

        return rule 

 

 

class Match(object): 

 

    _CONVERT = {REST_DL_TYPE: 

                {REST_DL_TYPE_ARP: ether.ETH_TYPE_ARP, 

                 REST_DL_TYPE_IPV4: ether.ETH_TYPE_IP, 

                 REST_DL_TYPE_IPV6: ether.ETH_TYPE_IPV6}, 

                REST_NW_PROTO: 

                {REST_NW_PROTO_TCP: inet.IPPROTO_TCP, 

                 REST_NW_PROTO_UDP: inet.IPPROTO_UDP, 

                 REST_NW_PROTO_ICMP: inet.IPPROTO_ICMP, 

                 REST_NW_PROTO_ICMPV6: inet.IPPROTO_ICMPV6}} 

 

    @staticmethod 

    def to_openflow(rest): 
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        def __inv_combi(msg): 

            raise ValueError('Invalid combination: [%s]' % msg) 

 

        def __inv_2and1(*args): 

            __inv_combi('%s=%s and %s' % (args[0], args[1], 

args[2])) 

 

        def __inv_2and2(*args): 

            __inv_combi('%s=%s and %s=%s' % ( 

                args[0], args[1], args[2], args[3])) 

 

        def __inv_1and1(*args): 

            __inv_combi('%s and %s' % (args[0], args[1])) 

 

        def __inv_1and2(*args): 

            __inv_combi('%s and %s=%s' % (args[0], args[1], 

args[2])) 

 

        match = {} 

 

        # error check 

        dl_type = rest.get(REST_DL_TYPE) 

        nw_proto = rest.get(REST_NW_PROTO) 

        if dl_type is not None: 

            if dl_type == REST_DL_TYPE_ARP: 

                if REST_SRC_IPV6 in rest: 

                    __inv_2and1( 

                        REST_DL_TYPE, REST_DL_TYPE_ARP, 

REST_SRC_IPV6) 

                if REST_DST_IPV6 in rest: 

                    __inv_2and1( 

                        REST_DL_TYPE, REST_DL_TYPE_ARP, 

REST_DST_IPV6) 

                if REST_DSCP in rest: 

                    __inv_2and1( 

                        REST_DL_TYPE, REST_DL_TYPE_ARP, REST_DSCP) 

                if nw_proto: 

                    __inv_2and1( 

                        REST_DL_TYPE, REST_DL_TYPE_ARP, 

REST_NW_PROTO) 

            elif dl_type == REST_DL_TYPE_IPV4: 

                if REST_SRC_IPV6 in rest: 

                    __inv_2and1( 

                        REST_DL_TYPE, REST_DL_TYPE_IPV4, 

REST_SRC_IPV6) 

                if REST_DST_IPV6 in rest: 

                    __inv_2and1( 

                        REST_DL_TYPE, REST_DL_TYPE_IPV4, 

REST_DST_IPV6) 

                if nw_proto == REST_NW_PROTO_ICMPV6: 

                    __inv_2and2( 

                        REST_DL_TYPE, REST_DL_TYPE_IPV4, 

                        REST_NW_PROTO, REST_NW_PROTO_ICMPV6) 

            elif dl_type == REST_DL_TYPE_IPV6: 

                if REST_SRC_IP in rest: 
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                    __inv_2and1( 

                        REST_DL_TYPE, REST_DL_TYPE_IPV6, 

REST_SRC_IP) 

                if REST_DST_IP in rest: 

                    __inv_2and1( 

                        REST_DL_TYPE, REST_DL_TYPE_IPV6, 

REST_DST_IP) 

                if nw_proto == REST_NW_PROTO_ICMP: 

                    __inv_2and2( 

                        REST_DL_TYPE, REST_DL_TYPE_IPV6, 

                        REST_NW_PROTO, REST_NW_PROTO_ICMP) 

            else: 

                raise ValueError('Unknown dl_type : %s' % dl_type) 

        else: 

            if REST_SRC_IP in rest: 

                if REST_SRC_IPV6 in rest: 

                    __inv_1and1(REST_SRC_IP, REST_SRC_IPV6) 

                if REST_DST_IPV6 in rest: 

                    __inv_1and1(REST_SRC_IP, REST_DST_IPV6) 

                if nw_proto == REST_NW_PROTO_ICMPV6: 

                    __inv_1and2( 

                        REST_SRC_IP, REST_NW_PROTO, 

REST_NW_PROTO_ICMPV6) 

                rest[REST_DL_TYPE] = REST_DL_TYPE_IPV4 

            elif REST_DST_IP in rest: 

                if REST_SRC_IPV6 in rest: 

                    __inv_1and1(REST_DST_IP, REST_SRC_IPV6) 

                if REST_DST_IPV6 in rest: 

                    __inv_1and1(REST_DST_IP, REST_DST_IPV6) 

                if nw_proto == REST_NW_PROTO_ICMPV6: 

                    __inv_1and2( 

                        REST_DST_IP, REST_NW_PROTO, 

REST_NW_PROTO_ICMPV6) 

                rest[REST_DL_TYPE] = REST_DL_TYPE_IPV4 

            elif REST_SRC_IPV6 in rest: 

                if nw_proto == REST_NW_PROTO_ICMP: 

                    __inv_1and2( 

                        REST_SRC_IPV6, REST_NW_PROTO, 

REST_NW_PROTO_ICMP) 

                rest[REST_DL_TYPE] = REST_DL_TYPE_IPV6 

            elif REST_DST_IPV6 in rest: 

                if nw_proto == REST_NW_PROTO_ICMP: 

                    __inv_1and2( 

                        REST_DST_IPV6, REST_NW_PROTO, 

REST_NW_PROTO_ICMP) 

                rest[REST_DL_TYPE] = REST_DL_TYPE_IPV6 

            elif REST_DSCP in rest: 

                # Apply dl_type ipv4, if doesn't specify dl_type 

                rest[REST_DL_TYPE] = REST_DL_TYPE_IPV4 

            else: 

                if nw_proto == REST_NW_PROTO_ICMP: 

                    rest[REST_DL_TYPE] = REST_DL_TYPE_IPV4 

                elif nw_proto == REST_NW_PROTO_ICMPV6: 

                    rest[REST_DL_TYPE] = REST_DL_TYPE_IPV6 

                elif nw_proto == REST_NW_PROTO_TCP or \ 
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                        nw_proto == REST_NW_PROTO_UDP: 

                    raise ValueError('no dl_type was specified') 

                else: 

                    raise ValueError('Unknown nw_proto: %s' % 

nw_proto) 

 

        for key, value in rest.items(): 

            if key in Match._CONVERT: 

                if value in Match._CONVERT[key]: 

                    match.setdefault(key, 

Match._CONVERT[key][value]) 

                else: 

                    raise ValueError('Invalid rule parameter. : 

key=%s' % key) 

            else: 

                match.setdefault(key, value) 

 

        return match 

 

    @staticmethod 

    def to_rest(openflow): 

        of_match = openflow[REST_MATCH] 

 

        mac_dontcare = mac.haddr_to_str(mac.DONTCARE) 

        ip_dontcare = '0.0.0.0' 

        ipv6_dontcare = '::' 

 

        match = {} 

        for key, value in of_match.items(): 

            if key == REST_SRC_MAC or key == REST_DST_MAC: 

                if value == mac_dontcare: 

                    continue 

            elif key == REST_SRC_IP or key == REST_DST_IP: 

                if value == ip_dontcare: 

                    continue 

            elif key == REST_SRC_IPV6 or key == REST_DST_IPV6: 

                if value == ipv6_dontcare: 

                    continue 

            elif value == 0: 

                continue 

 

            if key in Match._CONVERT: 

                conv = Match._CONVERT[key] 

                conv = dict((value, key) for key, value in 

conv.items()) 

                match.setdefault(key, conv[value]) 

            else: 

                match.setdefault(key, value) 

 

        return match 

 

    @staticmethod 

    def to_mod_openflow(of_match): 

        mac_dontcare = mac.haddr_to_str(mac.DONTCARE) 

        ip_dontcare = '0.0.0.0' 
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        ipv6_dontcare = '::' 

 

        match = {} 

        for key, value in of_match.items(): 

            if key == REST_SRC_MAC or key == REST_DST_MAC: 

                if value == mac_dontcare: 

                    continue 

            elif key == REST_SRC_IP or key == REST_DST_IP: 

                if value == ip_dontcare: 

                    continue 

            elif key == REST_SRC_IPV6 or key == REST_DST_IPV6: 

                if value == ipv6_dontcare: 

                    continue 

            elif value == 0: 

                continue 

 

            match.setdefault(key, value) 

 

        return match 

 

 

class Action(object): 

 

    @staticmethod 

    def to_rest(openflow): 

        if REST_ACTION in openflow: 

            actions = [] 

            for action in openflow[REST_ACTION]: 

                field_value = re.search('SET_FIELD: {ip_dscp:(\d+)', 

action) 

                if field_value: 

                    actions.append({REST_ACTION_MARK: 

field_value.group(1)}) 

                meter_value = re.search('METER:(\d+)', action) 

                if meter_value: 

                    actions.append({REST_ACTION_METER: 

meter_value.group(1)}) 

                queue_value = re.search('SET_QUEUE:(\d+)', action) 

                if queue_value: 

                    actions.append({REST_ACTION_QUEUE: 

queue_value.group(1)}) 

                action = {REST_ACTION: actions} 

        else: 

            action = {REST_ACTION: 'Unknown action type.'} 

 

        return action 
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5.3 SwitchPort Monitoring and Queue Calculator Constructs 

(a) Switch Port Monitoring 
 
#!/usr/bin/bash 

 

while true 

do 

cat stats1.log > stats1.old 

cat stats2.log > stats2.old 

curl -X GET http://localhost:8080/stats/port/000000000001 > 

raw1.log 

curl -X GET http://localhost:8080/stats/port/000000000002 > 

raw2.log 

cat raw1.log | awk '{gsub ("tx_dropped", "\ntx_dropped") } 1' | 

column -t | awk '{print $ 11 $12 $7 $8 $17 $ 18 $19 $20 $27 $28 $23 

$24}' | column -t -s ',' | column -t -s ':' | sort -k2 -n > 

stats1.log 

cat raw2.log | awk '{gsub ("tx_dropped", "\ntx_dropped") } 1' | 

column -t | awk '{print $ 11 $12 $7 $8 $17 $ 18 $19 $20 $27 $28 $23 

$24}' | column -t -s ',' | column -t -s ':' | sort -k2 -n > 

stats2.log 

rm raw1.log raw2.log 

echo " " 

echo "SWITCH S1" 

echo "=========" 

cat stats1.log 

echo " " 

echo "SWITCH S2" 

echo "=========" 

cat stats2.log 

echo " " 

paste stats1.log stats1.old | awk '{for (i=0;i<=NF/2;i++) printf 

"%s ", ($i==$i+0)?$i-$(i+NF/2):$i; print ""}' | awk '{print $1 " " 

$2 " " $27 " " $28 " " $29 " " $30 " " $31 " "  $32 " " $33 " "$34 

" " $35 " " $36}' | column -t > diff.log 

echo "================================= " 

echo "PORT STATS (DIFFERENCE) SWITCH S1" 

echo "=================================" 

cat diff.log 

echo " " 

cat diff.log | awk '{print $4}' | tr '\n' ' ' > diff-linear.log 

 

awk '{if ($2 > "100" && $3 > "100") system("bash -c '\''" "bash 

config1.sh" "'\''")}' diff-linear.log 

awk '{if ($2 < "10" && $3 < "10" && $4 < "10" && $5 < "10" && $6 < 

"10" && $7 < "10" && $8 < "10" && $9 < "10" && $11 < "10" && $12 < 

"10" && $13 < "10") system("bash -c '\''" "bash remove-config.sh" 

"'\''")}' diff-linear.log 

 

echo " " 

sleep 10 

 

done 
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(b) Queue Installation 

 

#!/usr/bin/bash 

 

#=========================== 

#RYU CONTROLLER INSTALLATION 

#=========================== 

#git clone git://github.com/osrg/ryu.git 

#time sudo apt-get install python-eventlet python-routes python-

webob python-paramiko 

#sudo killall controller 

#cd ryu 

#sudo ./setup.py install 

#sudo install ryu 

#./bin/ryu-manager ryu/app/simple_switch.py 

 

#=========== 

#SETTING QOS 

#=========== 

#SET SWITCH: 

ovs-vsctl set Bridge s1 protocols=OpenFlow13,OpenFlow14 

ovs-vsctl set-manager ptcp:6632 

 

#SET CONTROLLER AND ENABLE QOS: 

sed '/OFPFlowMod(/,/)/s/)/, table_id=1)/' 

ryu/ryu/app/simple_switch_13.py > 

ryu/ryu/app/qos_simple_switch_13.py OR 

PYTHONPATH=. ./bin/ryu-manager ryu/app/rest_qos 

ryu/app/qos_simple_switch_13 ryu/app/rest_conf_switch 

ryu/app/ofctl_rest 

 

cd ryu/; python ./setup.py install 

ryu-manager ryu.app.rest_qos ryu.app.qos_simple_switch_13 

ryu.app.rest_conf_switch ryu.app.ofctl_rest 

curl -X PUT -d '"tcp:127.0.0.1:6632"' 

http://localhost:8080/v1.0/conf/switches/0000000000000001/ovsdb_add

r 

curl -X PUT -d '"tcp:127.0.0.1:6632"' 

http://localhost:8080/v1.0/conf/switches/0000000000000002/ovsdb_add

r 

 

#============== 

#DISPLAY QUEUES 

#============== 

 

curl -X GET http://localhost:8080/qos/rules/0000000000000001 

curl -X GET http://localhost:8080/qos/rules/0000000000000002 

 

#========= 

#SET QUEUE 

#========= 

#Q1: 

curl -X POST -d '{"port_name": "s1-eth1", "type": "linux-htb", 

"max_rate": "2000000", "queues": [{"max_rate": "2000000"}, 
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{"max_rate": "250000"}, {"max_rate": "62500"}, {"max_rate": 

"510000"}, {"max_rate": "600000"}, {"max_rate": "100000"}, 

{"max_rate": "175000"}]}' 

http://localhost:8080/qos/queue/0000000000000001 

#Q2: 

curl -X POST -d '{"port_name": "s1-eth1", "type": "linux-htb", 

"max_rate": "2000000", "queues": [{"max_rate": "2000000"}, 

{"max_rate": "250000"}, {"max_rate": "62500"}, {"max_rate": 

"680000"}, {"max_rate": "900000"}, {"max_rate": "100000"}]}' 

http://localhost:8080/qos/queue/0000000000000001 

#Q3: 

curl -X POST -d '{"port_name": "s1-eth1", "type": "linux-htb", 

"max_rate": "2000000", "queues": [{"max_rate": "2000000"}, 

{"max_rate": "500000"}, {"max_rate": "187500"}, {"max_rate": 

"680000"}, {"max_rate": "600000"}]}' 

http://localhost:8080/qos/queue/0000000000000001 

 

#Q1: Service Proiver: 

curl -X POST -d '{"port_name": "s2-eth1", "type": "linux-htb", 

"max_rate": "20000000", "queues": [{"max_rate": "20000000"}, 

{"max_rate": "250000"}, {"max_rate": "500000"}, {"max_rate": 

"1000000"}, {"max_rate": "2000000"}, {"max_rate": "3000000"}]}' 

http://localhost:8080/qos/queue/0000000000000002 

 

#=========== 

#APPLY QUEUE 

#=========== 

#OUTBOUND QUEUES 

#=============== 

 

curl -X POST -d '{"match": {"nw_src": "10.0.0.3"}, 

"actions":{"queue": "1"}}' 

http://localhost:8080/qos/rules/0000000000000001 

curl -X POST -d '{"match": {"nw_src": "10.0.0.4"}, 

"actions":{"queue": "2"}}' 

http://localhost:8080/qos/rules/0000000000000001 

curl -X POST -d '{"match": {"nw_src": "10.0.0.10"}, 

"actions":{"queue": "3"}}' 

http://localhost:8080/qos/rules/0000000000000001 

curl -X POST -d '{"match": {"nw_src": "10.0.0.22"}, 

"actions":{"queue": "3"}}' 

http://localhost:8080/qos/rules/0000000000000001 

curl -X POST -d '{"match": {"nw_src": "10.0.0.23"}, 

"actions":{"queue": "3"}}' 

http://localhost:8080/qos/rules/0000000000000001 

curl -X POST -d '{"match": {"nw_src": "10.0.0.6"}, 

"actions":{"queue": "4"}}' 

http://localhost:8080/qos/rules/0000000000000001 

curl -X POST -d '{"match": {"nw_src": "10.0.0.7"}, 

"actions":{"queue": "4"}}' 

http://localhost:8080/qos/rules/0000000000000001 

curl -X POST -d '{"match": {"nw_src": "10.0.0.24"}, 

"actions":{"queue": "5"}}' 

http://localhost:8080/qos/rules/0000000000000001 
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curl -X POST -d '{"match": {"nw_src": "10.0.0.25"}, 

"actions":{"queue": "6"}}' 

http://localhost:8080/qos/rules/0000000000000001 

 

#============= 

#IBOUND QUEUES 

#============= 

curl -X POST -d '{"match": {"nw_dst": "10.0.0.3"}, 

"actions":{"queue": "2"}}' 

http://localhost:8080/qos/rules/0000000000000002 

curl -X POST -d '{"match": {"nw_dst": "10.0.0.4"}, 

"actions":{"queue": "2"}}' 

http://localhost:8080/qos/rules/0000000000000002 

#========================= 

#CLEAR ALL QUEUES 

#========================= 

 

curl -X POST -d '{"match": {"nw_src": "10.0.0.3"}, 

"actions":{"queue": "0"}}' 

http://localhost:8080/qos/rules/0000000000000001 

curl -X POST -d '{"match": {"nw_src": "10.0.0.4"}, 

"actions":{"queue": "0"}}' 

http://localhost:8080/qos/rules/0000000000000001 

curl -X POST -d '{"match": {"nw_src": "10.0.0.10"}, 

"actions":{"queue": "0"}}' 

http://localhost:8080/qos/rules/0000000000000001 

curl -X POST -d '{"match": {"nw_src": "10.0.0.22"}, 

"actions":{"queue": "0"}}' 

http://localhost:8080/qos/rules/0000000000000001 

curl -X POST -d '{"match": {"nw_src": "10.0.0.23"}, 

"actions":{"queue": "0"}}' 

http://localhost:8080/qos/rules/0000000000000001 

curl -X POST -d '{"match": {"nw_src": "10.0.0.6"}, 

"actions":{"queue": "0"}}' 

http://localhost:8080/qos/rules/0000000000000001 

curl -X POST -d '{"match": {"nw_src": "10.0.0.7"}, 

"actions":{"queue": "0"}}' 

http://localhost:8080/qos/rules/0000000000000001 

curl -X POST -d '{"match": {"nw_src": "10.0.0.24"}, 

"actions":{"queue": "0"}}' 

http://localhost:8080/qos/rules/0000000000000001 

curl -X POST -d '{"match": {"nw_src": "10.0.0.25"}, 

"actions":{"queue": "0"}}' 

http://localhost:8080/qos/rules/0000000000000001 

curl -X POST -d '{"match": {"nw_dst": "10.0.0.3"}, 

"actions":{"queue": "0"}}' 

http://localhost:8080/qos/rules/0000000000000002 

curl -X POST -d '{"match": {"nw_dst": "10.0.0.4"}, 

"actions":{"queue": "0"}}' 

http://localhost:8080/qos/rules/0000000000000002 

 

#OR  

 

#ovs-vsctl --all destroy qos 

#ovs-vsctl --all destroy queue 
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5.4 Traffic Monitor and Route Installation 

 
(a) Real-time traffic monitor - Port Monitoring Module (Ryu) 

 

from operator import attrgetter 

from ryu.app import simple_switch_13 

from ryu.controller import ofp_event 

from ryu.controller.handler import MAIN_DISPATCHER, DEAD_DISPATCHER 

from ryu.controller.handler import set_ev_cls 

from ryu.lib import hub 

 

 

class SimpleMonitor(simple_switch_13.SimpleSwitch13): 

 

    def __init__(self, *args, **kwargs): 

        super(SimpleMonitor, self).__init__(*args, **kwargs) 

        self.datapaths = {} 

        self.monitor_thread = hub.spawn(self._monitor) 

 

    @set_ev_cls(ofp_event.EventOFPStateChange, 

                [MAIN_DISPATCHER, DEAD_DISPATCHER]) 

    def _state_change_handler(self, ev): 

        datapath = ev.datapath 

        if ev.state == MAIN_DISPATCHER: 

            if not datapath.id in self.datapaths: 

                self.logger.debug('register datapath: %016x', 

datapath.id) 

                self.datapaths[datapath.id] = datapath 

        elif ev.state == DEAD_DISPATCHER: 

            if datapath.id in self.datapaths: 

                self.logger.debug('unregister datapath: %016x', 

datapath.id) 

                del self.datapaths[datapath.id] 

 

    def _monitor(self): 

        while True: 

            for dp in self.datapaths.values(): 

                self._request_stats(dp) 

            hub.sleep(1) 

 

    def _request_stats(self, datapath): 

        self.logger.debug('send stats request: %016x', datapath.id) 

        ofproto = datapath.ofproto 

        parser = datapath.ofproto_parser 

 

        req = parser.OFPFlowStatsRequest(datapath) 

        datapath.send_msg(req) 

 

        req = parser.OFPPortStatsRequest(datapath, 0, 

ofproto.OFPP_ANY) 

        datapath.send_msg(req) 

 

    @set_ev_cls(ofp_event.EventOFPFlowStatsReply, MAIN_DISPATCHER) 

    def _flow_stats_reply_handler(self, ev): 
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        body = ev.msg.body 

 

        self.logger.info('datapath         ' 

                         'in-port  eth-dst           ' 

                         'out-port packets  bytes') 

        self.logger.info('---------------- ' 

                         '-------- ----------------- ' 

                         '-------- -------- --------') 

        for stat in sorted([flow for flow in body if flow.priority 

== 1], 

                           key=lambda flow: (flow.match['in_port'], 

                                             

flow.match['eth_dst'])): 

            self.logger.info('%016x %8x %17s %8x %8d %8d', 

                             ev.msg.datapath.id, 

                             stat.match['in_port'], 

stat.match['eth_dst'], 

                             stat.instructions[0].actions[0].port, 

                             stat.packet_count, stat.byte_count) 

 

    @set_ev_cls(ofp_event.EventOFPPortStatsReply, MAIN_DISPATCHER) 

    def _port_stats_reply_handler(self, ev): 

        body = ev.msg.body 

 

        self.logger.info('datapath         port     ' 

                         'rx-pkts  rx-bytes rx-error ' 

                         'tx-pkts  tx-bytes tx-error') 

        self.logger.info('---------------- -------- ' 

                         '-------- -------- -------- ' 

                         '-------- -------- --------') 

        for stat in sorted(body, key=attrgetter('port_no')): 

            self.logger.info('%016x %8x %8d %8d %8d %8d %8d %8d',  

                             ev.msg.datapath.id, stat.port_no, 

                             stat.rx_packets, stat.rx_bytes, 

stat.rx_errors, 

                             stat.tx_packets, stat.tx_bytes, 

stat.tx_errors) 

 

         

(b) Route Installation 
 

portstats.sh 

#!/usr/bin/bash 

 

ryu-manager ./simple_monitor.py | tee stats.log 

 

while true 

do 

 

cat stats.log >> stats.old 

cat stats.log | awk '{print $1" "$2" "$3}' > stats_updated.log 
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paste stats1.log stats1.old | awk '{for (i=0;i<=NF/2;i++) printf 

"%s ", ($i==$i+0)?$i-$(i+NF/2):$i; print ""}' | awk '{print $1 " " 

$2" "$3}' | column -t > diff.log 

echo "====================================== " 

echo "PORT STATS (DIFFERENCE) SWITCH S1 & S2" 

echo "======================================" 

cat diff.log 

echo " " 

cat diff.log | awk '{print $0}' | tr '\n' ' ' > diff-linear.log 

 

#profile 1: port, 1-2 SW1 

#profile 1: port, 1-2 SW2 

#profile 2: port, 3-4 SW1 

#profile 2: port, 3-4 SW2 

#profile 3: port, 5-6 SW1 

#profile 3: port, 5-6 SW2 

#profile 4: port, 7-8 SW1 

#profile 4: port, 7-8 SW2 

#profile 5: port, 9-10 SW1 

#profile 5: port, 9-10 SW2 

#profile 6: port, 11-12 SW1 

#profile 6: port, 11-12 SW2 

#profile 7: port, 13-14 SW1 

#profile 7: port, 13-14 SW2 

 

for i in {100,200,300,400,500,600,700}; 

do 

awk '{if ($3 > "1" && $2 > "1" && $1 = "0000000000000001" || $1 = 

"0000000000000002") system("bash -c '\''" "bash config$i.sh" 

"'\''")}' diff-linear.log 

echo " " 

sleep 60 

done 

 

echo " " 

sleep 10 

 

done 

 

Example: config.sh 

#!/usr/bin/bash 

 

echo "Enter the number of user load per profile, followed by 

[ENTER]:" 

read user_load 

 

echo_time() { 

    date +"%R:%S $*" 

   } 

echo_time "Simulation start time" 

 

lt_core_dist_dn = 10000000000 

lt_dist_access_dn = 10000000000 

lt_core_dist_up = 10000000000 

lt_dist_access_up = 10000000000 
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for p in {1..7} 

 do 

   for app_direction in {1..8} 

   do 

      for dn in {1..2} 

      #compute core-dist link 

   #total links: 4 

   do while user_load > 1    

   for l in {1..4} 

   do  

    B=$(cat B_profile_$p_$app_$direction.dat) 

    lt_$l = lt_core_dist_dn   

    u_max_core_dist_$dn = "$lt_l /$B" | bc 

     

   if u_max_core_dist_$dn >= user_load && lt_l > 0 

    

   for i in {1..2} 

     do 

     for j in {1..7} 

      do 

       for x in {1..8} 

       do 

       curl -X POST -d '{"match": 

{"nw_src": "10.'$j'.0.0/16"}, "actions":{"table1"}}' 

http://localhost:8080/qos/rules/000000000000000'$i' 

       curl -X POST -d '{"match": 

{"table_id": "1","nw_src": "10.'$j'.0.0/16", "nw_dst": 

"10.0.0.'$x'"}, "actions":{set "vlan_id":"1'$j$dn'", 

"output":"$l"}}' 

http://localhost:8080/qos/rules/000000000000000'$i' 

       echo_time 

       #barrier message 

       curl -X POST -d 

'{ "OFPBarrierRequest": {} } 

'http://localhost:8080/qos/rules/000000000000000'$i' 

       echo_time 

       echo "Core - Routes 

Installed" 

      done 

     done 

   lt_l = "$lt_core_dist_dn - $user_load * $B" | bc 

    

   if u_max_core_dist_dn >= user_load && lt_l > 0 

   max_users = user_load - user_load/lt_l 

    

   for i in {1..2} 

     do 

     for j in {1..7} 

      do 

       for x in {1..8} 

       do 

       curl -X POST -d '{"match": 

{"nw_src": "10.'$j'.0.0/16"}, "actions":{"table2"}}' 

http://localhost:8080/qos/rules/000000000000000'$i' 
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       curl -X POST -d '{"match": 

{"table_id": "2","nw_src": "10.'$j'.0.0/16", "nw_dst": 

"10.0.0.'$x'"}, "actions":{set "vlan_id":"2'$j$dn'", 

"output":"$l"}}' 

http://localhost:8080/qos/rules/000000000000000'$i' 

       echo_time 

       #barrier message 

       curl -X POST -d 

'{ "OFPBarrierRequest": {} } 

'http://localhost:8080/qos/rules/000000000000000'$i' 

       echo_time 

       echo "Core - Routes 

Installed" 

      done 

     done 

   done       

   

     

   for l in {1..2} 

   do  

    B=$(cat B_profile_$p_$app_$direction.dat) 

    lt_$l = lt_core_dist_dn   

    u_max_core_dist_$dn = "$lt_l /$B" | bc 

     

   if u_max_core_dist_$dn >= user_load && lt_l > 0 

    

   for i in {1..2} 

     do 

     for j in {1..7} 

      do 

       for x in {1..8} 

       do 

       curl -X POST -d '{"match": 

{"nw_dst": "10.0.0.'$x'/16", "vlan_id":"10'$j'"}, 

"actions":{"output":"$l"}}' 

http://localhost:8080/qos/rules/000000000000000'$k' 

       echo_time 

       #barrier message 

       curl -X POST -d 

'{ "OFPBarrierRequest": {} } 

'http://localhost:8080/qos/rules/000000000000000'$i' 

       echo_time 

       echo "Core - Routes 

Installed" 

      done 

     done 

   lt_l = "$lt_core_dist_dn - $user_load * $B" | bc 

    

   if u_max_core_dist_dn >= user_load && lt_l > 0 

   max_users = user_load - user_load/lt_l 

    

   for i in {1..2} 

     do 

     for j in {1..7} 

      do 
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       for x in {1..8} 

       do 

       curl -X POST -d '{"match": 

{"nw_dst": "10.0.0.'$x'/16", "vlan_id":"10'$j'"}, 

"actions":{"output":"$l"}}' 

http://localhost:8080/qos/rules/000000000000000'$k' 

       echo_time 

       #barrier message 

       curl -X POST -d 

'{ "OFPBarrierRequest": {} } 

'http://localhost:8080/qos/rules/000000000000000'$i' 

       echo_time 

       echo "Core - Routes 

Installed" 

      done 

     done 

   done       

 

for m in {11..18} 

for z in {1..8} 

do 

curl -X POST -d '{"match": {"dl_src": "aa:bb:cc:11:11:$m", "dl_dst": 

"aa:bb:cc:11:11:1'$z'"}, "actions":{"output":"1"}}' 

http://localhost:8080/qos/rules/000000000000000'$z' 

curl -X POST -d '{"match":"dl_src": "aa:bb:cc:11:11:$m"}}' 

http://localhost:8080/stats/aggregateflow/$z 

echo_time 

#barrier message 

curl -X POST -d '{ "OFPBarrierRequest": {} } 

'http://localhost:8080/qos/rules/000000000000000'$z' 

echo_time 

echo "East West Traffic (Access, Distribution) - Routes Installed" 

done 

done 

 

echo " " 

echo "Traffic Statistics" 

for u in {1..18} 

do 

curl -X GET http://localhost:8080/stats/table/$u 

curl -X GET http://localhost:8080/stats/flow/$u 

curl -X POST -d '{"match":{"vlan_id":"10'$j'"}}' 

http://localhost:8080/stats/aggregateflow/$u 

 

done 

 

done 

done 

 

 

(c) Barrier Request Support Added to Ryu Switching Application (simple_switch_13) 
 

Barrier Request Message 

def send_barrier_request(self, datapath): 

    ofp_parser = datapath.ofproto_parser 
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    req = ofp_parser.OFPBarrierRequest(datapath) 

    datapath.send_msg(req) 

  

  

Barrier Reply Message 

@set_ev_cls(ofp_event.EventOFPBarrierReply, MAIN_DISPATCHER) 

def barrier_reply_handler(self, ev): 

    self.logger.debug('OFPBarrierReply received') 

 

(d) Recording per profile, per application traffic statistics 
 

#!/bin/bash 

for dom in {01..30}; 

do  

for p in {1..6} 

do 

cat report$dom.csv | awk -F',' '$22==1 

{print$1","$2","$11","$12","$13","$14","$20}'> 

profile$p_day$dom.csv 

cat report$dom.csv | awk -F',' '$23==1 

{print$1","$2","$11","$12","$13","$14","$20}'> 

profile$p_day$dom.csv 

done 

done 

 

for p in {1..6};  

do 

for dom in {01..30};  

do 

cat profile$p'_day'$dom.csv | wc -l >> num_devcs_profile$p.csv;  

cat profile$p'_day'$dom.csv | awk -F',' '{print $7}' | sed /^$/d 

|sort | uniq | wc -l >> num_users_profile$p.csv; 

cat profile$p'_day'$dom.csv | awk -F',' '{ sum += $2; n++ } END 

{ if (n > 0) print sum / n; }'>>avg_flows_profile$p.csv; 

cat profile$p'_day'$dom.csv | awk -F',' '{ sum += $5; n++ } END 

{ if (n > 0) print sum / n; }'>>avg_Tx_Bytes_profile$p.csv; 

cat profile$p'_day'$dom.csv | awk -F',' '{ sum += $6; n++ } END 

{ if (n > 0) print sum / n; }'>>avg_Rx_Bytes_profile$p.csv; 

cat profile$p'_day'$dom.csv | awk -F',' '{ sum += $3; n++ } END 

{ if (n > 0) print sum / n; }'>>avg_Tx_Flow_duration_profile$p.csv; 

cat profile$p'_day'$dom.csv | awk -F',' '{ sum += $4; n++ } END 

{ if (n > 0) print sum / n; }'>>avg_Rx_Flow_duration_profile$p.csv; 

done; 

done; 

 

for i in {1..6};  

do  

awk '{printf("%s,", $0)}' num_devcs_profile$i.csv >> 

temp_num_devices_week1.csv; 

awk '{printf("%s,", $0)}' num_users_profile$i.csv>> 

temp_num_users_week1.csv; 
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awk '{printf("%s,", $0)}' avg_flows_profile$i.csv >> 

temp_avg_flows_week1.csv; 

awk '{printf("%s,", $0)}' avg_Tx_Bytes_profile$i.csv >> 

temp_avg_Tx_Bytes_week1.csv; 

awk '{printf("%s,", $0)}' avg_Rx_Bytes_profile$i.csv >> 

temp_avg_Rx_Bytes_week1.csv; 

awk '{printf("%s,", $0)}' avg_Tx_Flow_duration_profile$i.csv>> 

temp_avg_Tx_Flow_duration_week1.csv; 

awk '{printf("%s,", $0)}' avg_Rx_Flow_duration_profile$i.csv>> 

temp_avg_Rx_Flow_duration_week1.csv; 

done;  

 

 

cat temp_num_devices_week1.csv | awk -F',' '{print 

$1","$2","$3","$4","$5","$6","$7"\n" 

$8","$9","$10","$11","$12","$13","$14"\n" 

$15","$16","$17","$18","$19","$20","$21"\n" 

$22","$23","$24","$25","$26","$27","$28"\n"}' > num_devcs_week1.csv; 

cat temp_num_users_week1.csv   | awk -F',' '{print 

$1","$2","$3","$4","$5","$6","$7"\n" 

$8","$9","$10","$11","$12","$13","$14"\n" 

$15","$16","$17","$18","$19","$20","$21"\n" 

$22","$23","$24","$25","$26","$27","$28"\n"}' > num_users_week1.csv;  

cat temp_avg_flows_week1.csv   | awk -F',' '{print 

$1","$2","$3","$4","$5","$6","$7"\n" 

$8","$9","$10","$11","$12","$13","$14"\n" 

$15","$16","$17","$18","$19","$20","$21"\n" 

$22","$23","$24","$25","$26","$27","$28"\n"}' > avg_flows_week1.csv; 

cat temp_avg_Tx_Bytes_week1.csv| awk -F',' '{print 

$1","$2","$3","$4","$5","$6","$7"\n" 

$8","$9","$10","$11","$12","$13","$14"\n" 

$15","$16","$17","$18","$19","$20","$21"\n" 

$22","$23","$24","$25","$26","$27","$28"\n"}' > 

avg_Tx_Bytes_week1.csv; 

cat temp_avg_Rx_Bytes_week1.csv| awk -F',' '{print 

$1","$2","$3","$4","$5","$6","$7"\n" 

$8","$9","$10","$11","$12","$13","$14"\n" 

$15","$16","$17","$18","$19","$20","$21"\n" 

$22","$23","$24","$25","$26","$27","$28"\n"}' > 

avg_Rx_Bytes_week1.csv; 

cat temp_avg_Tx_Flow_duration_week1.csv | awk -F',' '{print 

$1","$2","$3","$4","$5","$6","$7"\n" 

$8","$9","$10","$11","$12","$13","$14"\n" 

$15","$16","$17","$18","$19","$20","$21"\n" 

$22","$23","$24","$25","$26","$27","$28"\n"}' > 

avg_Tx_Flow_duration_week1.csv; 

cat temp_avg_Rx_Flow_duration_week1.csv | awk -F',' '{print 

$1","$2","$3","$4","$5","$6","$7"\n" 

$8","$9","$10","$11","$12","$13","$14"\n" 

$15","$16","$17","$18","$19","$20","$21"\n" 

$22","$23","$24","$25","$26","$27","$28"\n"}' > 

avg_Rx_Flow_duration_week1.csv; 
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rm  temp_num_devices_week1.csv temp_num_users_week1.csv  

temp_avg_flows_week1.csv temp_avg_Tx_Bytes_week1.csv 

temp_avg_Rx_Bytes_week1.csv temp_avg_Tx_Flow_duration_week1.csv 

temp_avg_Rx_Flow_duration_week1.csv  

 

for p in {1..6} 

do 

for app in {1..8} 

do 

for direction in {1..2} 

do 

awk -f nfprofiler.awk segmented_report_month.csv > 

B_profile_$p_$app_$direction.dat  

done 

done 

done 

 

 

rm  num_users_profile$p.csv num_devcs_profile$p.csv 

avg_flows_profile$p.csv avg_Tx_Bytes_profile$p.csv 

avg_Rx_Bytes_profile$p.csv avg_Tx_Flow_duration_profile$p.csv 

avg_Rx_Flow_duration_profile$p.csv; 

 

5.5 OpenFlow Traffic Measurements 

(a) Output Port Selection and Flow_REM flag setting in Ryu Switching Application 

 

from ryu.controller import handler 

from ryu.controller import dpset 

from ryu.controller import ofp_event 

from ryu.ofproto import ofproto_v1_3 

from ryu.ofproto import ofproto_v1_3_parser 

from ryu.base import app_manager 

from ryu.ofproto.ofproto_parser import MsgBase, msg_pack_into, 

msg_str_attr 

 

 

class OF13(app_manager.RyuApp): 

    OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION] 

     

    _CONTEXTS = { 

        'dpset': dpset.DPSet, 

        } 

 

    def __init__(self, *args, **kwargs): 

        super(OF13, self).__init__(*args, **kwargs) 

 

   

    def add_flow(self, datapath, priority, match, actions): 

        ofproto = datapath.ofproto 

        parser = datapath.ofproto_parser 

 

        inst = 

[parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS, 
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                                             actions)] 

 

        mod = parser.OFPFlowMod(datapath=datapath, 

priority=priority, 

                                match=match, instructions=inst, 

flags=ofproto.OFPFF_SEND_FLOW_REM) 

        datapath.send_msg(mod) 

 

    @handler.set_ev_cls(dpset.EventDP, dpset.DPSET_EV_DISPATCHER) 

    def handler_datapath(self, ev): 

        if ev.enter: 

            print "join" 

            dp = ev.dp 

 

                   

            actions = [dp.ofproto_parser.OFPActionOutput(2)] 

            match = dp.ofproto_parser.OFPMatch(in_port=1) 

            self.add_flow(dp, 1, match, actions) 

 

 

 

(b) Resource Monitoring Script 

#! /bin/bash 

# unset any variable which system may be using 

 

while true 

do 

 

echo_time() { 

    date +"%R:%S $*" 

   } 

 

# clear the screen 

clear 

 

unset tecreset os architecture kernelrelease internalip externalip 

nameserver loadaverage 

 

while getopts iv name 

do 

        case $name in 

          i)iopt=1;; 

          v)vopt=1;; 

          *)echo "Invalid arg";; 

        esac 

done 

 

if [[ ! -z $iopt ]] 

then 

{ 

wd=$(pwd) 
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basename "$(test -L "$0" && readlink "$0" || echo "$0")" > 

/tmp/scriptname 

scriptname=$(echo -e -n $wd/ && cat /tmp/scriptname) 

su -c "cp $scriptname /usr/bin/monitor" root && echo 

"Congratulations! Script Installed, now run monitor Command" || 

echo "Installation failed" 

} 

fi 

 

if [[ ! -z $vopt ]] 

then 

{ 

echo -e "tecmint_monitor version 0.1\nDesigned by 

Tecmint.com\nReleased Under Apache 2.0 License" 

} 

fi 

 

if [[ $# -eq 0 ]] 

then 

{ 

 

 

# Define Variable tecreset 

tecreset=$(tput sgr0) 

 

# Check if connected to Internet or not 

ping -c 1 google.com &> /dev/null && echo -e '\E[32m'"Internet: 

$tecreset Connected" || echo -e '\E[32m'"Internet: $tecreset 

Disconnected" 

 

# Check OS Type 

os=$(uname -o) 

echo -e '\E[32m'"Operating System Type :" $tecreset $os 

 

# Check OS Release Version and Name 

cat /etc/os-release | grep 'NAME\|VERSION' | grep -v 'VERSION_ID' | 

grep -v 'PRETTY_NAME' > /tmp/osrelease 

echo -n -e '\E[32m'"OS Name :" $tecreset  && cat /tmp/osrelease | 

grep -v "VERSION" | cut -f2 -d\" 

echo -n -e '\E[32m'"OS Version :" $tecreset && cat /tmp/osrelease | 

grep -v "NAME" | cut -f2 -d\" 

 

# Check Architecture 

architecture=$(uname -m) 

echo -e '\E[32m'"Architecture :" $tecreset $architecture 

 

# Check Kernel Release 

kernelrelease=$(uname -r) 

echo -e '\E[32m'"Kernel Release :" $tecreset $kernelrelease 

 

# Check hostname 

echo -e '\E[32m'"Hostname :" $tecreset $HOSTNAME 

 

# Check Internal IP 

internalip=$(hostname -I) 
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echo -e '\E[32m'"Internal IP :" $tecreset $internalip 

 

# Check External IP 

externalip=$(curl -s ipecho.net/plain;echo) 

echo -e '\E[32m'"External IP : $tecreset "$externalip 

 

# Check DNS 

nameservers=$(cat /etc/resolv.conf | sed '1 d' | awk '{print $2}') 

echo -e '\E[32m'"Name Servers :" $tecreset $nameservers  

 

# Check Logged In Users 

who>/tmp/who 

echo -e '\E[32m'"Logged In users :" $tecreset && cat /tmp/who  

 

# Check RAM and SWAP Usages 

free -h | grep -v + > /tmp/ramcache 

echo -e '\E[32m'"Ram Usages :" $tecreset 

cat /tmp/ramcache | grep -v "Swap" 

echo_time >> swap_usage.log 

cat /tmp/ramcache | grep -v "Swap"  >> swap_usage.log 

echo -e '\E[32m'"Swap Usages :" $tecreset 

cat /tmp/ramcache | grep -v "Mem" 

echo_time >> ram_usage.log 

cat /tmp/ramcache | grep -v "Mem" >> ram_usage.log 

# Check Disk Usages 

df -h| grep 'Filesystem\|/dev/sda*' > /tmp/diskusage 

echo -e '\E[32m'"Disk Usages :" $tecreset  

cat /tmp/diskusage 

 

# Check Load Average 

loadaverage=$(top -n 1 -b | grep "load average:" | awk '{print $10 

$11 $12}') 

echo -e '\E[32m'"Load Average :" $tecreset $loadaverage 

echo_time >> cpuload.log 

echo -e '\E[32m'"Load Average :" $tecreset $loadaverage >> 

cpuload.log 

 

# Check System Uptime 

tecuptime=$(uptime | awk '{print $3,$4}' | cut -f1 -d,) 

echo -e '\E[32m'"System Uptime Days/(HH:MM) :" $tecreset $tecuptime 

 

# Unset Variables 

unset tecreset os architecture kernelrelease internalip externalip 

nameserver loadaverage 

 

# Remove Temporary Files 

rm /tmp/osrelease /tmp/who /tmp/ramcache /tmp/diskusage 

} 

fi 

shift $(($OPTIND -1)) 

 

sleep 1 

 

done 
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Packet Capture Library (Control Channel Traffic) 

PCAP reader (module) 

pcapsave.py 

 

from ryu.lib import pcaplib 

from ryu.lib.packet import packet 

 

frame_count = 0 

# iterate pcaplib.Reader that yields (timestamp, packet_data) 

# in the PCAP file 

for ts, buf in pcaplib.Reader(open('test.pcap', 'rb')): 

    frame_count += 1 

    pkt = packet.Packet(buf) 

    print("%d, %f, %s" % (frame_count, ts, pkt)) 

  

PCAP writer (module) 

pcapread.py 

 

from ryu.lib import pcaplib 

class SimpleSwitch13(app_manager.RyuApp): 

    OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION] 

 

    def __init__(self, *args, **kwargs): 

        super(SimpleSwitch13, self).__init__(*args, **kwargs) 

        self.mac_to_port = {} 

 

        # Create pcaplib.Writer instance with a file object 

        # for the PCAP file 

        self.pcap_writer = pcaplib.Writer(open('test.pcap', 'wb')) 

 

    ... 

 

    @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER) 

    def _packet_in_handler(self, ev): 

        # Dump the packet data into PCAP file 

        self.pcap_writer.write_pkt(ev.msg.data) 

 

Switch and Flow Table Statistics Collection 

#!/usr/bin/bash 

 

while true 

do 

curl -X GET http://localhost:8080/stats/table/1 

curl -X GET http://localhost:8080/stats/flow/1 

 

echo " " 

 

sleep 30 

 

done 
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