
ABSTRACT

Title of dissertation: SEARCH, REPLICATION AND GROUPING
FOR UNSTRUCTURED P2P NETWORKS

Dimitrios Tsoumakos, Doctor of Philosophy, 2006

Dissertation directed by: Professor Nicholas Roussopoulos
Department of Computer Science

In my dissertation, I present a suite of protocols that assist in efficient content loca-

tion and distribution in unstructured Peer-to-Peer overlays. The basis of these schemes is

their ability to learn from past interactions, increasing their performance with time.

Peer-to-Peer (P2P) networks are gaining increasing attention from both the scien-

tific and the large Internet user community. Popular applications utilizing this new tech-

nology offer many attractive features to a growing number of users. P2P systems have

two basic functions: Content search and dissemination. Search (or lookup) protocols de-

fine how participants locate remotely maintained resources. In data dissemination, users

transmit or receive content from single or multiple sites in the network.

P2P applications traditionally operate under purely decentralized and highly dy-

namic environments.Unstructuredsystems represent a particularly interesting class of

P2P networks. Peers form an overlay in an ad-hoc manner, without any guarantees rel-

ative to lookup performance or content availability. Resources are locally maintained,

while participants have limited knowledge, usually confined to their immediate neighbor-

hood in the overlay.

My work aims at providing effective and bandwidth-efficient searching and data

sharing. A suite of algorithms which provide peers inunstructuredP2P overlays with

the state necessary in order to efficiently locate, disseminate and replicate objects is pre-

sented. TheAdaptive Probabilistic Search (APS)scheme utilizes directed walkers to

forward queries on a hop-by-hop basis. Peers store success probabilities for each of their

neighbors in order to efficiently route towards object holders.AGNOperforms implicit

grouping of peers according to the demand incentive and utilizes state maintained byAPS

in order to route messages from content holders towards interested peers, without requir-

ing any subscription process. Finally, theAdaptive Probabilistic REplication (APRE)

scheme expands on the state thatAGNObuilds in order to replicate content inside query

intensive areas according to demand.

SEARCH, REPLICATION AND GROUPING
FOR UNSTRUCTURED P2P NETWORKS

by

Dimitrios Tsoumakos

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2006

Advisory Committee:
Professor Nicholas Roussopoulos, Chair/Advisor
Professor Lise Getoor
Professor Amol Deshpande
Professor Louiqa Raschid
Professor Virgil Gligor

c© Copyright by
Dimitrios Tsoumakos

2006

DEDICATION

To my beloved father, Nikiforos.

ii

ACKNOWLEDGMENTS

I owe my gratitude to all the people who have made this thesis possible and because

of whom my graduate experience has been one that I will value forever.

First and foremost I would like to thank my parents. My father and mother have

always stood by, supported and actively encouraged me to follow my dreams throughout

life. Without their moral, psychological and material support, I would not have been able

to achieve my goals. I owe them my deepest gratitude and love.

I offer my wholehearted thanks to my advisor, Professor Nick Roussopoulos for

trusting my abilities and giving me the opportunity to study in one of the best graduate

schools. He provided me with the freedom to follow my research interests and the support

under his research program. His technical and moral advice followed me throughout the

duration of my stay here. It has been a pleasure to work with and learn from such an

extraordinary individual.

I would also like to thank the members of my committee for the valuable advice

they provided during and after my proposal. Dr. Lise Getoor and Dr. Jim Reggia offered

some very useful pointers about Reinforcement Learning and Dr. Bobby Bhattacharjee

offered his expert opinion on a variety of occasions. Special thanks are due to all my

course professors, with whom I still have excellent relations, that helped me enhance

my understanding on many diverse notions in computer science. I also like to thank Dr.

Timos Sellis, my advisor in the National Technical Institute of Athens, who both guided

iii

my decision to pursue my PhD and co-advised me on theGrouPeerproject.

My colleagues and close friends have enriched my graduate life in many ways and

deserve a special mention. Dr. Antonios Deligiannakis, who besides being a close friend

and roommate of 5 years, offered valuable advice on research and technical issues. Kon-

stantinos Bitsakos, my neighbor and colleague of years, who proved a rare friend and col-

laborator. The same is true for Emmanuel Hourdakis, Athanasios Chryssis, Dr. Yiannis

Sismanis, Polyvios Pratikakis, Dr. Alexandros Lambrinidis, Konstantinos Spiliopoulos,

Vassilios Botopoulos and all my friends here in College Park. I thank them all for their

friendship and support.

Deepest thanks are due to my dear friends in Greece: Georgios Gkoumas, Georgios

Andritsopoulos, and the rest of my friends who have constantly supported me in both

good and bad periods of my stay here. Among them is my very good friend and colleague,

Verena Kantere. Our collaboration was fruitful and utterly satisfying for me. I thank her

for both for her cooperation as well as for her support all those years.

Finally, I would like to acknowledge the financial support from the U.S. Army

Research Laboratory and the U.S. Army Research Office for all the projects discussed

herein, as well as the continuous efforts of our our project leader, Dr. Barras. Without

their support, all this would have been near-impossible.

Special thanks are due to the administrative staff of CS and ISR who have accom-

modated all my needs effortlessly. The same is true for the technical support offered by

the CS and UMIACS staffs.

It is impossible to remember all, and I apologize to those I’ve inadvertently left out.

Lastly, thank you all and thank God!

iv

TABLE OF CONTENTS

List of Figures viii

1 Introduction 1
1.1 The Notion of Peer-to-Peer and its Internet Origins 1
1.2 Categorization of Peer-to-Peer Overlays 3
1.3 A General Model for an Unstructured P2P Overlay 6
1.4 Our Contribution . 8

2 Searching in Unstructured P2P Overlays: The APS Method 13
2.1 Overview . 13
2.2 The APS Method . 17

2.2.1 Algorithm Description . 17
2.2.2 Discussion . 20
2.2.3 Algorithm Improvements . 22
2.2.4 APS and Reinforcement Learning 24

2.2.4.1 Elements of Reinforcement Learning 24
2.2.4.2 Problem Formulation 27

2.3 Simulation Results . 31
2.3.1 Comparing the Index Update Functions 33
2.3.2 Basic Performance Analysis . 37
2.3.3 Discovered Objects vs. Distance from Requesters 42
2.3.4 Effect of Object Popularity . 43
2.3.5 Results for Different Topologies 45
2.3.6 Comparison withGUESS. 47

2.4 Summary . 48

3 Content Dissemination to Groups of Peers: AGNO 49
3.1 Overview . 49
3.2 AGNO Protocol Description . 52

3.2.1 Protocol Specifics . 57
3.3 Simulation Results . 62

3.3.1 Basic Performance Analysis . 65
3.3.2 Sensitivity toλr . 68
3.3.3 Changes in Group Size . 71
3.3.4 Sensitivity to the Binning Scheme 73
3.3.5 Real Traces . 74

3.4 Summary . 78

4 Adaptive Replication for Unstructured Overlays 79
4.1 Introduction and Overview of our Approach 79
4.2 Adaptive Replica Expansion/Contraction: APRE 83

4.2.1 Protocol Implementation . 87
4.3 Performance Evaluation . 91

v

4.3.1 Basic Performance Comparison 94
4.3.2 Load Distribution Between Replicas 98
4.3.3 Flash Crowds . 102
4.3.4 Effect of the Maximum Replication Ratio andLimitup 104
4.3.5 Simulations with Different Topologies 106

4.4 Conclusions . 107

5 Related Work 109
5.1 Search Algorithms for P2P Systems . 109

5.1.1 Blind Search Methods . 110
5.1.2 Informed Search Methods . 110

5.2 Data Dissemination . 116
5.2.1 Application-layer Multicast . 117
5.2.2 Multicast over P2P Overlays . 117
5.2.3 Group Communication in Unstructured Overlays 118

5.3 Replication . 120

6 Conclusions 124

Appendices 126

A Analysis and Comparison of P2P Search Methods 126
A.1 Overview . 126
A.2 Performance Evaluation . 127

A.2.1 Algorithm Implementations . 127
A.2.2 Basic Comparison . 128
A.2.3 Results on Denser Graphs . 133
A.2.4 Increased Number of Objects . 138

A.3 Conclusions . 139

B Sharing Relational Data in Unstructured Overlays 141
B.1 Introduction . 141

B.1.1 Motivating Example . 144
B.1.2 Our Contribution:GrouPeer . 147

B.2 Clustering Peers for Accurate Query Answers 148
B.2.1 Query Reformulation and Similarity for P2P Database Systems . 149
B.2.2 Description of the Clustering Process 150
B.2.3 GrouPeer Protocol Internals . 152

B.3 Interest Groups inGrouPeer . 153
B.3.1 Group Inference . 154
B.3.2 Discussion on the Group Inference Process 157

B.4 Experimental Evaluation . 165
B.4.1 Clustering Results . 166
B.4.2 Group Inference Results . 170

B.5 Related Work . 176

vi

B.6 Summary . 178

Bibliography 179

vii

LIST OF FIGURES

1.1 Client-Server architecture . 2

1.2 Peer-to-Peer architecture . 2

1.3 Centralized P2P network . 4

1.4 Pure P2P network . 4

1.5 Hybrid P2P architecture . 4

1.6 Schematic description of an overlay network 5

1.7 An identifier circle (ring) with 10 nodes in a DHT. Node 8 issues alookup(54)
command and this is routed to the host node (56) 5

1.8 Pictorial description of our framework. Links represent logical connec-
tions in the overlay. Two searches take place, one from node A (for object
k) and the other from node J for objecti 8

2.1 Search for an object stored at node F using the pessimistic approach of
APS with two walkers. The table shows how various index values change,
where X→Y denotes the index value stored at node X for neighbor Y
relative to the requested object. 19

2.2 The model of interaction between agent and environment 24

2.3 Part of an overlay for our example. Nodes 2 and 7 obtain the object in
search . 29

2.4 No unlearning, first setting . 34

2.5 No unlearning, second setting . 34

2.6 Learning with decay, first setting . 34

2.7 Learning with decay, second setting . 34

2.8 Standard update, first setting . 34

2.9 Standard update, second setting . 34

2.10 Linear update, first setting . 34

2.11 Linear update, second setting . 34

viii

2.12 Distance-based update, first setting . 35

2.13 Distance-based update, second setting 35

2.14 Percentage of finding the closest object for the various index update methods 36

2.15 Success rate, message production, number of hits and number of duplicate
messages of the two methods vs. number of deployed walkers in the three
different settings . 38

2.16 Success rate vs. number of requests per object 40

2.17 Hits per query vs. hop distance (static setting) 41

2.18 Hits per query vs. hop distance (more dynamic setting) 41

2.19 Ratio of hits per query vs. hop distance forw-APS. 43

2.20 Ratio of hits per query vs. hop distance fors-APS 43

2.21 Distribution of index values according to object popularity for one peer
and 10 objects . 44

2.22 Distribution of index values versus object popularity in our default setting 44

2.23 Individual success rate vs. object popularity 45

3.1 Graphic explanation of AGNO reverse indices. The filled table represents
the reverse index values stored at node A, which coincide with the APS
index values that nodes B,C,D,E store regarding A 54

3.2 The black nodes search for an object stored at nodes (left). On the right,
s initiates a push phase in order to contact the requesters 55

3.3 Example of computation of a reverse index value 57

3.4 Sample binning scheme with the respectiveThreshand Threshi − bi−1

values . 59

3.5 Success rate over variable number of searches 65

3.6 Stress over variable number of searches 65

3.7 Utilization of pure forwarding vs. backpointers 66

3.8 Stress and success rate over variable group size 67

ix

3.9 Success rate over variableλr values (Tn = 10sec) 68

3.10 Stress values over variableλr values (Tn = 10sec) 68

3.11 Success rate for different values ofT (Tn = 10sec) 69

3.12 Adaptation to a change inλr by a factor of 20 69

3.13 Stress and success rates when a different ratio of peers depart at time
t=100sec (λr = 1/sec,Tn = 10sec) . 71

3.14 Success rate after a series of member departures and arrivals (λr = 0.5,Tn =
10) . 72

3.15 Stress after a series of member departures and arrivals (λr = 0.5,Tn = 10) 72

3.16 Comparison of 100 different binning configurations to the original one . . 74

3.17 Average results for one-day periods for the CNN and BBC news front pages 75

3.18 Results for a 7-day period for the Microsoft, SUN and Oracle quotes be-
tween 11:00am and 11:59am . 77

4.1 Part of the overlay network of our model. Dark nodes inside the bold
dotted ellipse representMi , while those inside the thin dotted ellipse rep-
resentM j . Peers with a file attached also serve objectsi or j 81

4.2 State transitions in our system . 84

4.3 The shaded oval represents a server set for a specific object. Our system
expands by creating replicas inside two areas where demand (depicted by
arrows) is high. 85

4.4 Due to low demand in certain regions of the server set (depicted as white
areas inside the dotted line), our system contracts its replica set 86

4.5 Visual representation of a sample power-law graph, after several searches
for a single object using the APS method. Solid line arcs show high index
value links between nodes . 88

4.6 After searches for an object ats take place, reverse index values are up-
dated and a push phase creates new replicas inside areas of high demand
(dotted links) . 89

4.7 Variation inΛ and|Si | over increasingλr values 94

4.8 Ratio of overloaded servers vs. variableλr 95

x

4.9 Percentage of change in|Si | vs. variableλr 95

4.10 Variation in the average load vs. variableλr (5000 requesters) 96

4.11 Percentage of change in|Si | vs. variableλr (5000 requesters) 96

4.12 Λ and|Si | over time for 5000 requesters and multipleλr values 97

4.13 Variation ofσΛ vs. variableλr (2000 requesters) 99

4.14 Average values ofG as a function ofλr for theClosestFirststrategy . . . 99

4.15 Si load distribution forλr = 4/sec(2000 requesters) 101

4.16 Si load distribution forλr = 10/sec(2000 requesters) 101

4.17 Effect of flash crowds inΛ and|Si | in two different settings 103

4.18 |Si | variation for different maximum allowed replication ratio 104

4.19 Λ variation for different maximum allowed replication ratio 104

4.20 Percentage of overloaded nodes for different maximum allowed replica-
tion ratio . 104

4.21 Percentage of change inSi for different maximum allowed replication ratio 104

4.22 Λ variation for different values ofLimitup
s,i 105

4.23 Percentage of overloaded nodes for different values ofLimitup
s,i 105

4.24 Average load for 1k and 2k requesters in power-law topologies (λr = 6/sec)106

A.1 Success rate and message production of the methods using a set of 10,000-
node random graphs with average degreed = 4 129

A.2 Hits per query of the methods using the set of 10,000-node random graphs
with average degreed = 4 . 131

A.3 Hits per hop distance from the requesters 134

A.4 Accuracy and message production vs. object popularity in the dynamic
setting . 135

xi

B.1 Propagation of queries among acquaintees. The size of the rectangles
reflects the amount of degradation after a rewriting.Q′′′1 6= Q′′2 because
the queries followed different paths . 143

B.2 Query directed towards a group schema which holds mappings with all
group members . 143

B.3 Part of a P2P system from a health-related environment 144

B.4 Two schemas to be semantically merged 161

B.5 SIG is initialized toSDavisDB and there is mappingM1 betweenSIG and
SLuDB . 161

B.6 Relations Disease and Sickness of Figure B.5 are merged 161

B.7 Relations Disease/Sickness and Treatment of Figure B.6 are merged . . . 162

B.8 Similarity of answers to the original and rewritten query versions over
variable queries per requester . 167

B.9 Similarity of answers to join queries over variable queries per requester . 167

B.10 Ratio ofGrouPeer’s clustering versus the optimal, given an equal number
of acquaintees . 168

B.11 % Increase in answer similarity over variable MaxP and t 171

B.12 % Increase in number of answers over variable MaxP and t 171

B.13 % Increase in answer similarity over variable group creation time 172

B.14 % Increase in number of answers over variable group creation time 172

B.15 Relationship between initiator and inferred schema similarity 174

B.16 Similarity and number of answers of the initial and merged groups vs
creation time . 175

xii

Chapter 1

Introduction

1.1 The Notion of Peer-to-Peer and its Internet Origins

Peer-to-Peercomputing (hence P2P) represents the notion of sharing resources

available at the edges of the Internet [1]. The P2P paradigm dictates a fully-distributed,

cooperative network design, where nodes collectively form a system without any supervi-

sion. Most importantly, they operate in a symmetric manner, running the same protocols

and communicating freely and equally with each other.

The Internet started out as a system operating under the aforementioned basic P2P

properties [2]. The original ARPANET was a network among equal interconnected com-

puters. Every site could contact and accept connections fromeveryother site in this

network. Examples of such applications areUSENET[3] andDNS[4].

USENET is a distributed worldwide system that allows users to post, read and ex-

change messages by directly connecting with each other. An important characteristic of

USENET is the lack of any requirement for a central administration or controlling host

to manage the network. DNS combines principles of P2P with a hierarchical organiza-

tion in order to achieve efficient file-sharing. Instead of replicating and managing a single

hosts.txtfile, DNS allows the delegation of responsibility through the use of name servers.

These hosts operate as both clients and servers, making, answering and forwarding DNS

requests.

1

LAN/WAN

SERVER

Clients

Figure 1.1: Client-Server architecture

LAN/WAN

Peers

Figure 1.2: Peer-to-Peer architecture

With the explosion of the Internet, its nature gradually shifted from being symmet-

ric and cooperative towards an asymmetric and disjoint environment. Web browsing, the

dominant application during Internet’s surge in popularity, is based on the client/server

architecture: Client machines send requests to a small number of powerful, well-known

sites running special software, retrieve answers and display them locally (see Figure

1.1). The immense popularity also brought the need for security and control. Large

sub-networks got behind firewalls, denying the majority of their hosts direct access to

or from the outside world. The same effect is produced by the numerous NAT boxes

which are used to provide a single point of contact between the Internet and the numerous

local networks. Finally, the Internet Service Providers, realizing the dominant trend is

to request and not to disseminate data, engineered and provided asymmetric bandwidth

services which inherently changed the ability to equally share content.

With the emergence of file-sharing P2P applications (especially [5,6]), users started

2

massively sharing multimedia resources freely and equally, without any central control

(see Figure 1.2). A large number of systems and architectures that utilize this technology

have emerged since ([7,8], etc.). Its advantages (although application-dependent in many

cases) include robustness in failures, extensive resource-sharing, self-organization, load

balancing, data persistence, anonymity, etc.

According to very conservative estimates [1], there exist more than 10×109 MHz of

CPU power and 10,000 TB of storage not utilized at the edges of the Internet. According

to a different report [9], bandwidth consumption attributed to popular file-sharing appli-

cations amounts to a considerable fraction (up to 60%) of the total Internet traffic. These

two reports identify two different challenges: First, there is a vast amount of “untapped”

potential over the Internet. On the other hand, current resource-sharing applications are

responsible for huge amounts of data transmissions over the network. P2P technology

can play a key role in our efforts to tackle both issues.

1.2 Categorization of Peer-to-Peer Overlays

An overlaynetwork is a computer network built on top of one or more existing

ones (often the Internet itself). Its connectivity usually differs from the underlying phys-

ical connectivity. Nodes can be thought of as being connected by logical links, each of

which corresponds to a path of one or more physical links (see Figure 1.6). Thanks to

NAT, firewalls and private IP address, the implementation of applications for end-to-end

communication over the IP network eventually requires some sort of overlay structure.

Several P2P overlays have been proposed by both academia and industry in the last few

3

Figure 1.3: Centralized
P2P network

Figure 1.4: Pure P2P net-
work

Figure 1.5: Hybrid P2P ar-
chitecture

years. Their primary functionality is to provide a routing substrate between nodes identi-

fied by a mechanism other than their IP addresses.

We can roughly classify P2P architectures into two categories:Centralizedap-

proaches utilize a central directory for object location, ID assignment, etc (see Figure 1.3).

Decentralizedapproaches abandon this solution to employ a distributed directory struc-

ture.Puredecentralized systems exhibit a fully distributed behavior with all peers equally

making, answering and forwarding requests (Figure 1.4). Inhybrid systems, nodes are

categorized asleaf-nodesor super-peers(also referred to assupernodesor ultrapeers, see

Figure 1.5).Super-peersare responsible for returning results to the queries posed by their

neighboring leaf-nodes. They usually achieve that by indexing the repositories of all their

leaf-nodes and communicating with a number of different super-peers.

Another taxonomy classifies P2P networks intostructuredand unstructured, ac-

cording to the degree of control over the topology and routing infrastructure they provide.

Structurednetworks provide strict rules for file placement and object discovery, while

unstructuredapproaches offer arbitrary network topology, file placement and search.

Several researchers have proposed theDistributed Hash Tables (DHTs)as a means

of organizing a P2P overlay (e.g., [10–13]). In these systems, files and node-IDs are asso-

4

Physical link

Overlay link

Figure 1.6: Schematic description of an
overlay network

Figure 1.7: An identifier circle (ring) with
10 nodes in a DHT. Node 8 issues a
lookup(54)command and this is routed to
the host node (56)

ciated with a key produced by hashing filenames or addresses. Each node is responsible

for a range of keys in this namespace: Object locations are stored at the node(s) whose

ID(s) is(are) numerically closest to the given key. The basic operation in these DHT sys-

tems is to implementlookup(key), which returns the identity of the node storing the

object with that key. When alookup(key) is issued, the message is routed through the

overlay network, each time bringing the request to nodes numerically closer to thekey,

until the node responsible for it is reached (see Figure 1.7). DHTs provide a very efficient

(O(logn), with n equal to the size of the network) routing mechanism. This comes at a

cost of maintaining state about a number of overlay nodes that assist in routing.

Today, some of the popular P2P applications operate onunstructurednetworks. In

contrast to DHTs, peers connect in an ad-hoc fashion, the location of the documents is

not controlled by the system and no guarantees for the success or the complexity of a

search are offered to the users. More important, peers obtain only local knowledge of

a network where nodes enter and leave frequently. For such systems, searching for an

5

object is traditionally implemented by either broadcast-based schemes [6], or randomized

walks [14]. Queries utilizing exact-match object-IDs or keywords are propagated inside

the overlay on a hop-by-hop basis. Each time a peer receives a request, it evaluates

it against its local repository and (if necessary) forwards it to a number of its overlay

neighbors(i.e., nodes directly connected to it).

1.3 A General Model for an Unstructured P2P Overlay

In many realistic scenarios, the topology cannot be controlled and thus DHTs can-

not be used (e.g., ad-hoc networks or current large-scale unstructured overlays). In our

work, we focus onpure decentralized unstructuredP2P systems. Such systems have

been shown to attract large user populations and be of great impact to the network com-

munity [9].

We now describe our system model for search and content-sharing in unstructured

P2P networks. We assume a pure P2P model, with no imposed hierarchy over the set

of participating peers. All of them may equally serve and make requests for various

objects. Peers and documents are assumed to have unique identifiers, with object IDs used

to specify the query target. Ignoring physical connectivity and topology from our talk,

we assume that peers are aware of their one-hop neighbors in the overlay. Neighboring

nodes are connected with direct logical links and can contact each other with one overlay

message. Throughout its lifetime, a node periodically checks the availability and status of

its neighbors. The system can generally exhibit a dynamic behavior, with peers entering

and leaving at will and also updating their local repositories. We should also note that we

6

do not expect the overlay structure to be static, since nodes are not guaranteed to connect

to the same neighbors each time they return from an off-line state.

Peers overcome some of these deficiencies by keepingsoft state, i.e., auxiliary in-

formation stored at a node, erased after a short amount of time and the loss of which will

not keep the node from functioning. For example, peers temporarily store the unique ID

of each query they process, enabling them to make the distinction between new queries

and duplicate ones.

Each peer retains a local collection of documents (or objects), while it makes re-

quests for those it wishes to obtain. The documents are stored at various nodes across the

network, without the system dictating a relationship between content and its location (un-

like DHTs). Objects are assumed to be of varying popularity, which affects the respective

number of replicas and received requests. Objects are distributed over the network ac-

cording to thereplication distribution, which dictates the number and identity of objects

stored at each node. Each peer makes requests according to aquery distribution, which

controls how many requests are made for each object (e.g., popular objects get many more

requests than unpopular ones). A search issuccessfulif it discovers at least one replica

of the requested object. The ratio of successful to total searches made is called thesuc-

cess rate(or accuracy). A search can result to multiple discoveries (orhits), which are

replicas of the same object stored at distinct nodes. A globaltime-to-live (TTL)parameter

represents the maximum hop-distance a query can travel before it gets discarded.

Figure 1.8 shows an sample overlay to demonstrate the concepts of this model. Our

system consists of 10 nodes with IDs A–L. Node E holds objectsi andk. Node A initiates

a search for objectk, indicated by the arrows. Searches are propagated among peers

7

A

B

C

D

E

F

G

H

L
i

k

J

(s1,A,k,1)

(s1,A,k,0)

(s1,A, k, 1)

(s1,A,k,1)

(s1,A,k,0)

(s15,J,i,1)

(s15,J,i,1)
(s15,J,i,0)

(s15,J,i,0)

(s15,J,i,0)

{E,k}

{E,i}

Figure 1.8: Pictorial description of our framework. Links represent logical connections in
the overlay. Two searches take place, one from node A (for objectk) and the other from
node J for objecti

usually in a hop-by-hop fashion. Search messages have theirTTL value set to 2, so that

no node more than 2 hops away from A can receive it. Each search message contains a

unique identifier (e.g.,s1), the initiator’s ID, the requested object and the remaining hops,

reduced by one at each node. Peer E replies directly to A, notifying it that it obtains the

desired object (dotted arrow). A similar search, identified ass15, takes place from J. Node

E now notifies J that it can share objecti.

1.4 Our Contribution

In our previous discussion, we argued about the potential and impact of the P2P

paradigm in the modern Internet. A variety of sources attest to the importance that P2P

has received over the last few years. On one hand, we have economic incentives that fol-

low the success and popularity of sharing content available at the edges of the Internet. On

8

the other hand, we cannot but notice the profound economic, social and practical impact

that such applications have: Their operation often challenges pre-defined notions of copy-

right, trust, accountability and security. We have witnessed a barrage of legal disputes,

which represent the materialization of the clash between powerful economic interests and

the users’ desire to freely share. While such issues evolve and hold great significance,

we cannot overlook some equally important practical issues. The unsupervised, ad-hoc

character of P2P systems puts inherent strains on their ability to operate both efficiently

and at low-cost. Valuable resources such as bandwidth, processing power, and connection

time must be carefully distributed according to demand and the system’s resources.

In this dissertation, we exclusively deal with the practical/technical challenges in

P2P networking. Our goal is to provide functional, adaptive and bandwidth-efficient al-

gorithms for unstructured Peer-to-Peer networks. Our main contribution is to describe

an efficient search algorithm in order to locate content. Its most notable characteristic is

the utilization of a learning feature that enables an increase in accuracy as more requests

are generated in the network. Extending this, we also present our protocol for content

dissemination to groups of peers in a cost-effective manner. We conclude by presenting a

scheme which, building on our previous algorithms, achieves adaptive replication in order

to perform efficient content sharing in high-demand scenarios. Hence, our contribution

can be divided in 3 major parts:

1. Adaptive Probabilistic Search for Unstructured P2P Networks:

We propose a new search algorithm that achieves efficient lookups with low band-

width consumption, theAdaptive Probabilistic Searchmethod (APS) [15]. In APS, a node

deploysk walkers for object discovery, but the forwarding process is probabilistic instead

9

of random. Peers effectively direct walkers using feedback from previous searches, while

keeping information only about their neighbors. As we show in this work,APSexhibits

many plausible characteristics, such as:

• High accuracy

• Low bandwidth consumption

• Robust and adaptive behavior in rapidly-changing environments

These features come as a result of our algorithm’slearningcharacter, which enables peers

to share, refine and adjust their search knowledge with time. Furthermore,APSinduces

zero overhead over the network at join/leave/update operations. We present a formulation

of our method by defining it as aReinforcement Learningproblem. This formulation

explains many of our empirical observations.

Concurrently with this work, Appendix A presents a detailed comparison of con-

temporary search algorithms for unstructured overlays. Our work in [16, 17] describes

a detailed categorization, description and performance evaluation of current approaches.

Our focus lies on the behavior of these algorithms for each of the following metrics:

• Efficiency in object discovery (accuracyand number ofhits)

• Bandwidth consumption

• Adaptation to changing topologies and workloads

To evaluate our analysis, we simulate eight of those methods (alongsideAPS) and

present a direct quantitative comparison of their performance. We identify the relative

10

advantages and disadvantages of each method as well as the conditions under which they

can be most or least effective. We believe this is an important contribution that can pro-

vide a better understanding of the various search mechanisms and assist in choosing an

algorithm that best fits a particular application.

2. Adaptive Group Notification for Unstructured P2P Networks:

In this part, we propose a novel approach to content dissemination based on the

demand incentive. The goal of ourAdaptive Group Notification(AGNO) [18] protocol

is to enable peers to disseminate important updates/notifications that relate to shared ob-

jects in the overlay.AGNOcombines the utilization of state accumulated during theAPS

search process together with a set number of probabilistically stored requester addresses

to contact groups of nodes defined implicitly through lookups. Our method builds its

knowledge by only monitoring the independently conducted searches and avoids the cost

of explicit multicast group formation.

3. Adaptive Probabilistic Replication for Unstructured P2P Networks:

This part of our work describesAPRE(Adaptive Probabilistic REplication) [19]. It

represents the third member of our suite of algorithms that build on probabilistic soft state

in order to provide higher-order functionality. Our goal is to design and implement a repli-

cation protocol that will provide efficient sharing of objects (servers operating under low

load), scalability and bandwidth-efficiency.APREis a distributed scheme that automat-

ically adjusts the replication ratio of every shared item according to the current demand

for it. By utilizing inexpensive routing indices during searches, loaded servers are able

to identify “hot” areas inside the unstructured overlay with a customizable push phase.

Chosen nodes receive copies thus sharing part of the load. Under-utilized servers become

11

freed and can host other content. The rationale behindAPRE is the tight coupling be-

tween replication and the lookup protocol which controls how searches get disseminated

in the overlay. By combining the Adaptive Probabilistic Search (APS) state withAPRE,

we are able to identify in real-time “hot” or “cold” paths and avoid the need of advertising

constantly created replicas. We show that this method proves very efficient in minimizing

the number of overloaded peers and achieving a robust and well-balanced distribution in

a variety of settings.

The remainder of this thesis is organized as follows: Chapter 2 presents our work

on searching in P2P overlays, presenting the Adaptive Probabilistic Search. Chapter 3

describes the group notification scheme, which implicitly groups peers according to their

demand for an object. In Chapter 4 we present the last member from this family of

algorithms, a replication scheme that adaptively expands or contracts the replicas of any

given object based on local demand computation. Our presentation ends with the related

work (Chapter 5) and our conclusions (Chapter 6). Appendix A presents the performance

evaluation of a number of search methods presented in Chapter 5. Finally, Appendix B

describesGrouPeer, a system that adopts our goal of efficient content sharing through

learning and grouping in the area of relational peer-databases.

12

Chapter 2

Searching in Unstructured P2P Overlays: The APS Method

2.1 Overview

Searching for information has been a fundamental tool in society’s continuous ef-

fort for progress. We are witnesses to a series of breakthroughs in technology which, in

turn, fundamentally alter the way humans communicate with each other. With the rise

and popularity of the Internet, immense amounts of information have become available

to an increasing number of people. To search and process this ocean of information has

become an absolute necessity. As an example, a nationwide survey of Internet users in

2004 [20] shows how important search engines have become: Over 85% of the Inter-

net users were reported to search daily for content, ranking this activity second only to

email. Steadily, these “consumers” become producers, adding their own content, in a

self-reinforcing process.

The primary goal of P2P systems is to allow large peer populations to interconnect

and share content. In these systems, each peer individually decides on its availability,

conformity to protocols and identity of objects to share. Due to the decentralization and

heterogeneity of these environments, it is vital that efficient lookup schemes are provided

to their users. The lack of a centralized directory or global knowledge forces searches

to take place in a distributed manner, with peers directing queries to a greater part of the

system. This, combined with the large popularity and enormous volumes of data being

13

exchanged, necessitates bandwidth-efficient P2P searches. Finally, it is important to note

that popular P2P networks display a highly dynamic behavior, with most users connecting

for small periods of time and then leaving the system [21], locally managing their object

repositories. Any algorithm that fails to scale along this pattern, inevitably puts excessive

burden on network traffic.

A search process includes aspects such as the query-forwarding method, the set of

nodes that receive query-related messages, the form of these messages, local processing,

stored indices and their maintenance, etc. We associate theperformanceof an algorithm

with its success rate and number of hits, while itscostrelates to the number of messages

produced, either directly during the search or indirectly during index updates, object re-

locations, etc.

We can categorize search schemes according to the query forwarding method into

flood-based(utilizing the standard flooding scheme or one of its variations, e.g., [22]),

non-flood-based(e.g., hop by hop [23], direct contact [24]) or combinations of the two

(e.g., [25]).

According to the type of information used, there exist two general strategies to

search for an object:Blind and informedsearches.Blind schemes try to propagate the

query to a sufficient number of nodes in order to satisfy the request. Current methods

waste a lot of bandwidth to achieve high accuracy. Every search requires contacting

many nodes within a distance calledtime-to-live(TTL), generating huge overhead to the

network. This approach aims at finding the maximum number of results within an area

of the network with the originating node being at the center and the radius being a TTL-

related parameter.

14

Several search protocols have been proposed with an intention to reduce the over-

head of the original flooding scheme. In theRandom Walksalgorithm [14], the requesting

node sends outk query messages to an equal number of randomly chosen neighbors. Each

of these queries follows its own path, having intermediate nodes forward it to a randomly

chosen neighbor at each step. These queries are known aswalkers. While this approach

manages to reduce messages by more than an order of magnitude, it exhibits low accuracy

due to its random nature and inability to adapt to different query loads.

Informedapproaches, on the other hand, utilize stored or created information in

order to locate various content in the overlay. The semantics of the used information range

from simple forwarding hints to exact object locations. The placement of this information

may also vary: Incentralizedapproaches (e.g., [5]), a central directory known to all

peers exists. Distributed approaches can also be subdivided intopure and hybrid. In

purely distributedapproaches (e.g., [15, 22, 26]), all participating peers maintain some

portion of the information. Inhybrid schemes, certain nodes assume the role of asuper-

peerand the rest becomeleaf-nodes. Each super-peer acts as a proxy for its leaf-nodes

by indexing all their documents and serving their requests.GUESS[27] is an example

from this category. Peers are ranked asultrapeersor leaf-nodes. A search is conducted

with the requester’s ultrapeer iteratively contacting different (not necessarily neighboring)

ultrapeers and having them ask all their leaf-nodes, until a number of objects are retrieved.

The semantics of the stored indices in informed approaches can be used for another

categorization. Indices might relate to exact object locations (e.g., [25]), probability of

discovery through a link (e.g., [15]), number of objects through a link (e.g., [26]), or other

metrics (e.g., [28]). Informed methods use their indices in order to achieve high accuracy

15

(by choosing “good” neighbors to forward the query to) and to reduce overhead. The

shortcoming of most informed methods is the maintenance cost of the indices while peers

join/leave the network or update their collections. In most cases, these events trigger

floodsof update messages, increasing network traffic.

In this thesis, we propose a new search algorithm that achieves high performance

at low cost, theAdaptive Probabilistic Searchmethod (APS). In APS, a node deploys

k walkers which are probabilistically directed using index values that each peer stores

regarding its neighbors. The indices are updated along paths ofevery walk according

to the outcome of the search. This enables searches to become more accurate as more

requests are generated in the network, while each peer stores only a small part of this

knowledge. Because of the nature of these indices,APS induces zero overhead over

the network at join/leave/update operations. As we show in this work,APSachieves

high accuracy and maintains a low message consumption in both static and dynamically

changing environments. In the remainder of this Chapter we will make the following

contributions:

1. Define theAPSalgorithm for search in unstructured P2P networks. We describe the

main idea, the indexing scheme, the search and update procedures and analyze its

performance.

2. Present two improved versions of the algorithm which exhibit significant gains in

message reduction and the number of objects discovered near the requesters respec-

tively.

3. Formulate our problem as a Reinforcement Learning problem and show that con-

16

vergence of the index values to optimal ones can be achieved.

4. Perform extensive simulations and compareAPSwith theRandom WalksandGUESS

methods over different environments. Our algorithm achieves excellent results in

the success rate, number of discovered objects, message consumption and adapta-

tion to changing topologies.

2.2 The APS Method

2.2.1 Algorithm Description

In APS, each node keeps a local index consisting of one entry per neighbor for each

object it has requested, or forwarded a request for. The value kept for each index entry

reflects the relative probability of this node’s neighbor to be chosen as the next hop in a

future request for the specific object. Searching is based on the simultaneous deployment

of k walkers and probabilistic forwarding: A node forwards tok (if it initiates a search) or

one (if it is an intermediate node) of its neighbors not randomly, but using the probabilities

computed by the stored index values.

The search message is defined by the tuple:(requesterID, objectID, search-

ID, TTL, v[TTL]). The requester node includes its identity, the identity of the object in

search, the unique ID of the search, its scope (TTL) and an initially empty array ofTTL

values. Entryv(d) identifies the node visited by this walker afterd forwarding steps.

The requester choosesk out of its N neighbors (ifk≥ N, the query is sent to all

neighbors) to forward the request to. Each of these nodes evaluates the query against its

17

local repository and if a hit occurs, the walker terminates successfully. On a miss, the

query is forwarded to one of the node’s neighbors. This procedure continues until allk

walkers have terminated, either with a success or a failure. At each forwarding step, the

current node appends its identifier in the search message (the corresponding entry in the

v table) and keeps a soft state about the search it has just processed (therequesterID,

searchID pair). If two walkers from the same request cross paths (i.e., a node receives a

duplicatemessage due to a cycle), the second walker is assumed to have terminated with

a failure and the duplicate message is discarded.

Index values stored at peers are updated in the following manner: When a node

forwards the request to one ork of its neighbors, it pro-actively either increases the relative

probability of the peer(s) it picked, assuming the walker(s) will be successful (optimistic

approach), or it decreases the relative probability of the chosen peer(s), assuming the

walker(s) will fail (pessimisticapproach).

Upon walker termination, if the walker is successful, there isnothingto be done in

theoptimisticapproach. If the walker fails, index values relative to the requested object

along the walker’s path must be corrected. Using information available inside the search

message, the last node in the path sends an“update” message to the preceding node.

This node, after receiving the update message,decreasesits index value for the last node

to reflect the failure. The update procedure continues along the reverse path towards the

requester, with intermediate nodes decreasing their local index values relative to the next

hops for that walker. Finally, the requester decreases its index value that relates to its

neighbor for that walker. If we employ thepessimisticapproach, this update procedure

takes place after a walker succeeds, having nodes increase the index values along the

18

Indices Initially After walkers finish After updates

A→B 30 20 20

B→C 30 20 20

C→D 30 20 20

A→E 30 20 40

E→F 30 20 40

A→G 30 30 30

Figure 2.1: Search for an object stored at node F using the pessimistic approach of APS
with two walkers. The table shows how various index values change, where X→Y de-
notes the index value stored at node X for neighbor Y relative to the requested object.

walker’s path. There is nothing to be done when a walker fails.

Figure 2.1 shows an example of how the search process works. Node A initiates a

request for an object owned by node F using two walkers. Assume that all index values

relative to this object are initially equal to 30 and thepessimisticapproach is used. The

paths of the two walkers are shown with thicker arrows. During the search, the index

value for a chosen neighbor is reduced by 10. One walker with path (A,B,C,D) fails,

while the second with path (A,E,F) finds the object. The update process is initiated for the

successful walker on the reverse path (along the dotted arrows). First node E, then node

A increase the value of their indices for their next hops (nodes F, E respectively) by 20 to

19

indicate object discovery through that path. In a subsequent search for the same object,

peer A will choose peer B with probability 2/9 (= 20
20+40+30), peer E with probability 4/9

and peer G with probability 3/9.

Our method utilizes “probabilistic” walkers with alearning feature that incorpo-

rates knowledge from past and present searches to enhance future performance. The

learning process adaptively directs the walkers to promising parts of the network, while

keeping bandwidth consumption low.

APSrequires no message exchange on any dynamic operation such as node arrivals

or departures and object insertions or deletions. Because the indices do not depend on

content or its location but rather on the success or failure of search paths, the handling of

these operations is simple: If a node detects the arrival of a new neighbor, it will associate

an initial index value with that neighbor when a search will take place. If a neighbor

disconnects from the network, the node removes the relative entries and stops considering

it in future queries. No action is required after object updates, since indices are not related

to file content. So, althoughAPSactively uses information, its maintenance cost on any

of these events is zero, a major advantage over most current approaches.

2.2.2 Discussion

Each node stores a relative probability (e.g., an unsigned integer value) for each of

its neighbors for each (directly or indirectly) requested object. So, forR such objects

andN neighbors,O(R N) space is needed. For a typical network node, this amount of

space is not a burden. In nodes with limited storage capacities, index values for objects

20

not requested for some time can be erased. This can be achieved by assigning a time-to-

expire value on each newly-created or updated index, or by expunging the least recently

(or frequently) used indices.

Let us calculate how many messages it will take for theAPSmethod to terminate (in

success or failure). In the worst case — all walkers travel TTL hops and then invoke the

update procedure — the number of messages exchanged will be 2k ·TTL, so the method

has the same complexity with theRandom Walksalgorithm –O(k ·TTL). The only extra

messages that occur inAPSare due to the update process along the reverse path. This is

where our two index update policies are used: If we expect or experience after a while

that for a specific number of walkersk, only few of them terminate successfully, then the

pessimisticmode should be employed. Conversely, if many of our walkers hit their targets

on average, theoptimisticapproach should be considered.

Along the paths of allk walkers, indices are updated so that better next hop choices

are made with bigger probability. Our learning feature includes both positive and nega-

tive feedback from the walkers in both update approaches. In thepessimisticapproach,

each node on the walker’s path decreases the relative probability of its next hop for the re-

quested object concurrently with the search. If the walker succeeds, the update procedure

increases those index values by more than the subtracted amount (positive feedback). So,

if the initial index value for a neighbor for a certain object wasJ , it becomes bigger than

J if the object is discovered through (or at) that node and smaller thanJ if the walker

fails. This is the only invariant we require from our update process. In the next section,

we compare several index update functions to empirically decide on their performance.

The learning process in theoptimisticapproach operates in an opposite fashion, with neg-

21

ative feedback taking place after a walker fails. Our algorithm exhibits bothlearningand

unlearningcharacteristics:Learning is important to achieve both high performance and

discovery of newly inserted objects.Unlearninghelps our search process adjust to object

deletions and node departures, redirecting the walkers elsewhere.

Another characteristic of the algorithm is its ability to learn faster with more ques-

tions. The more feedback from the walkers, the more precise the indices become. This

particularly suits the discovery of popular objects in the P2P network, which, according

to studies [21], constitute over 60% of all searches. Another observation is that all nodes

participating in a search will benefit from the process. This is a distinctive feature of

our method, with indices being constantly updated during searches and not after object

updates. In our case,both requesters and peers on the paths of all walkers actively ad-

just their knowledge about the specific object. A node that has never before requested an

object but is “near” peers that have done so, inherits this knowledge by proximity. Be-

sides standard resource-sharing in P2P systems, our algorithm achieves the distribution

of search knowledgeover a large number of peers.

2.2.3 Algorithm Improvements

APSproduces update messages to adjust index values along the paths of some walk-

ers. Our goal is to minimize these messages in order to further reduce the level of band-

width consumption. Obviously, if fewer thank/2 walkers are successful, then thepes-

simisticapproach should be employed instead of theoptimisticand vice versa. Choosing

one strategy over the other for queries over all objects is not optimal, as many unnecessary

22

update messages would be produced for both popular and unpopular object requests. An

improved version ofAPSis theswapping-APS(or s-APS), where the algorithm constantly

monitors the ratio of successful walkers for each object and accordingly switches to the

update policy that produces fewer messages. This makes ours-APSimprovement even

more bandwidth efficient. The number of objects for which nodes monitor the successful

walker ratio depends on available node storage, although the overhead will be very small

in most cases.

Another improvement relates to the index update procedure. The idea is to give

preference to objects located near the requesters. In the original scheme, all index values

are updated without any regard to the hop-distance from the requesters. In theweighted

approach (w-APS), we incorporate a distance-based function for modifying the indices

stored at each node. Index values for peers closer to the discovered object are increased

more than those for distant nodes. Thus, the updated value of indexJ at node X would

be J ← J + Γγh, whereh is X’s hop-distance from the discovered object,γ is the rein-

forcementparameter,γ ∈ (0,1) andΓ is a multiplicative factor (to assure a non-negligible

index increase for the larger values ofh). The smaller the value ofγ, the more biased

walkers become towards nearest-object paths. Distance information is directly accessible

from the stored path inside the search messages. With this method, peers are biased to

direct walkers towards closer objects in the overlay.

Both improved versions impose no extra burden to the search process, while they

aim at reducing its average response time. This is achieved either by decreasing the

produced messages or the distance to the objects.

23

Environment

Agent (State)

ActionReward

New State

Figure 2.2: The model of interaction between agent and environment

2.2.4 APS and Reinforcement Learning

In this section we discuss the formulation of our problem as a reinforcement learn-

ing problem. First, we shortly describe the area of reinforcement learning and the general

components of the problems it addresses. Later, we show that our search scheme can be

similarly formulated and that a unique optimal policy can be reached.

2.2.4.1 Elements of Reinforcement Learning

Reinforcement Learning is defined as the task of learning how to behave in a certain

environment [29]. Specifically, anagentor learner is expected to learn a mapping from

states into actions which will eventually maximize its feedback from the environment

(reward). The agent has to learn its behavior through trial-and-error, unlike supervised

learning where the correct behavior is given through a series of training examples.

Figure 2.2 shows the model that reinforcement learning uses. At each time stept

the agent is in statest . It can choose actionat ∈ A(st), that is one of the actions available

given the state it is in. Upon acting, it finds itself in statest+1, while the environment

signals a numerical value,rt+1 as a reward for entering that state. The goal of the agent

24

is to select apolicy π (choice of an action for each possible state) that will maximize the

total reward it receives in the long run:

Rr =
T

∑
k=0

γkrt+k+1

The parameterγ ∈ (0,1] is thediscount factor that allows the same formulation for both

finite (T < ∞) and infinite (T = ∞) horizon problems. It represents a natural notion that

rewards received in the future should not weigh as much as the immediate reward.

Besides the model and the reward function, the third important element in rein-

forcement learning methods is the notion of thestate value. Thevalue of a states, Vπ(s),

represents the expected total reward for the agent starting at states and following policy

π thereafter. Intuitively, state values represent a metric of goodness for the agent being in

that state. Their computation is the ultimate goal in a reinforcement learning problem.

A very important property that greatly assists in the formulation and solution of

reinforcement learning problems is theMarkov property. It states that, given a finite

number of states and actions, next or future states depend solely on the current state and

action. Formally, the probability of transitioning from statesi to statesj taking actionak

is: P{st+1 = sj |st = si ,ak}, i.e., depends only on the current state and action. If a problem

has this property, then it can be formulated as aMarkov Decision Process (MDP).

An MDP is formally defined by the tuple(S,A,{Psa},γ,R), whereS is the set of

states,A is the set of actions,{Psa} is the set of transition probabilities,γ ∈ [0,1) is the

discount factor andR is a reward function:R : S 7→ R. As we described before, the MDP

proceeds in the following manner: At each time stept, the agent finds itself in statest .

Choosing actionat ∈ A drawn according to probabilities{Pstat} brings the agent to the

25

next statest+1, receiving a reward ofR(st+1). Our total reward (orreturn) is given by the

discounted sum of rewards. The goal then becomes the maximization of the return. The

value function of a state, as me mentioned before, is defined as the expected return when

the agent starts from that state. The value function satisfies theBellman equation:

Vπ(s) = R(s)+ γ ∑
s′∈S

a∈A(s)

PsaV
π(s′)

Thus, the value of a state equals the immediate reward for being in that state plus the

discounted values of the future states through the probability distribution.

The core of reinforcement learning methods is the estimation of these value func-

tions for each state, since they represent a measure of how useful each state is in achieving

a high return. The Bellman equations, which hold for a set policyπ, define an|S|×|S| lin-

ear system that can be solved to give the respectiveV(s) values. Among all policies, there

exists at least one that maximizes the expected sum of rewards. Following that policy (π∗)

produces the optimal value functionsV∗(s), which also satisfy Bellman’s equation:

V∗(s) = R(S)+max
a∈A

γ ∑
s′∈S

PsaV
∗(s′)

This equation means that the optimal value function for states is equal to the immediate

reward plus the maximum (over all possible actions from that state) future sum of rewards.

For finite MDPs, there exists a unique set ofV∗(s) values that satisfy the Bellman

equations, regardless of a policy. Given the optimal value functions, one merely has to

perform greedy single-step choices that maximize the value functions: Given any start

states, the optimal policy(-ies) are those that choose actions that maximizeV∗(s). Thus,

solving finite-state MDPs becomes equal to the task of producing efficient algorithms

26

(e.g., dynamic programming, temporal-difference learning, Monte-Carlo methods, etc) to

estimate the value functions.

2.2.4.2 Problem Formulation

In this section we present a simple formulation to our problem based on Markov

Decision Processes. It shows that many parts of our scheme already fit into this framework

that provably converges to optimal state values/policy.

First off, we show that the Markov property holds for our system. Indeed, each time

a query arrives at a node, the path to be followed and the discovery of an object through

this node does not depend on the previously visited nodes: What happens next depends

on the peer that currently processes the request and the neighbor it will choose to forward

it to.

In the following, neighbors(x,y) is a function that returnsTRUE if nodesx,y are

neighbors andFALSE otherwise. Similarly,has(x,o) returnsTRUE if node x has object

o andFALSE otherwise. V is the set of nodes that have received queryq. Finally, HL

is a variable that at the initial state has a value of TTL, reduced by 1 each timeq gets

forwarded. Having asserted that our problem can be formulated as an MDP, we now

define the tuple(S,A,{Psas′},γ,R) that describes our problem:

S: The set of states. LetS= {S1,S2, ...,SN}, whereSi represents a node in our

overlay and|S| = N = size of the network. We map the position ofq at each time to a

state of our MDP.

A: The set of actions. LetA(s) = {a1,a2, ...,aN}, whereai represents the action of

27

nodes choosing nodei to forward the query to.

Psas′: The transition probability matrix. The quantitypia j shows the probability of

transitioning from statei to statej given actiona was taken. For our setting:

pia j =

1, if neighbors(i,j) anda≡ a j andHL > 0

and j /∈ V and¬has(i,o)

0, otherwise

The transition probabilities describe that a state transition is only allowed if the object has

yet to be found, there are still more hops to travel and we forward to a neighboring node,

given that the query has not previously visited that node.

γ: The discount factor 0≤ γ < 1.

R: Numerical rewards associated with each state. Letr i be the reward we receive

when the query reaches state (node)i. For our system:

r i =

1, if has(i,o)

0, otherwise

Given this formulation, we can use Bellman’s equation on the optimal state value

functions, which, given our definition ofPsas′ becomes:

V∗(s) = max
a≡as′
{r(s)+ γV∗(s′)},

with neighbors(s,s′) =TRUE.

To illustrate how these equations can actually help us determine, in an optimal way,

the query forwarding policy at any peer, we consider the following example: Figure 2.3

shows a subgraph with eight nodes/states. Let us computeV∗(s1), assumingHL = 6:

28

S1

S3

S4

S8 S7

S6

S2

S5

Figure 2.3: Part of an overlay for our example. Nodes 2 and 7 obtain the object in search

V∗(s1) = r1 + γ max
HL←4

{V(s2),V(s3),V(s4)}

= γmax{1, r3 + γHL←3V(s5), r4 + γHL←3V(s6)}
= γmax{1,γ2 max

HL←2
{V(s2),V(s7),V(s8)},0}

= γmax{1,γ2max{1,1,0},0}
= γmax{1,γ2,0}= γ

Similarly:

V∗(s3) = r3 + γ max
HL←4

{V(s1),V(s5)}

= γmax{r1 + γ max
HL←3

{V(s2),V(s4)}, r5 + γ max
HL←3

{V(s2),V(s7),V(s8)}}

= γmax{γmax{1, r4 + γ max
HL←2

{V(s6)},γmax{1,1,γ max
HL←2

{V(s8)}}

= γmax{γmax{1,γr6},γmax{1,1,γr8}}= γ2

With this method, we arrive at the optimal solution:

V∗(s1) = γ,V∗(s2) = 1,V∗(s3) = γ2,V∗(s4) = γ2,V∗(s5) = γ,V∗(s6) = γ3,

V∗(s7) = 1,V∗(s8) = γ2

Given these values and assumingγ < 1, it is easy to implement the optimal forward-

ing policy: From any nodes, if V(s) < 1, forward to a neighbors′ that maximizesV(s′).

For example, node 1 should forward to node 2, node 5 can forward to either one of nodes

29

2 or 3, etc. The above hold for deployment of a single walker per query(k = 1). For

k > 1, we initially forward to the top−k neighbors according to their values. The optimal

policy behaves greedily in respect to the optimal value functions.

Moreover, given the discounted model we used, the query is directed towards the

nearest replica in the graph. Nodes with no chance of locating an object have a value of

zero. All other states maintain a valueγ times the length of the shortest path to a replica.

This is the index update model that ourw-APSapproach utilizes.

Value iteration is one of the methods that we can use to compute this solution. We

update all values in steps: Initially,V∗(0)(si) = r i . Then, compute

V∗(t)(si) = max
s′
{r(s)+ γV∗(t−1)(s′)}

for all i andt = 1,2, ... until the values converge. Initially we have:V∗(0)(s1)=V∗(0)(s3)=

V∗(0)(s4) = V∗(0)(s5) = V∗(0)(s6) = V∗(0)(s8) = 0 andV∗(0)(s2) = V∗(0)(s7) = 1.

Small changes in this formulation can alter the resulting policy. For example, since

we assume each search has a limited scope, we can setγ = 1. This would make all

state values equal to 1, meaning an object canpotentially be discovered from any state1.

Another formulation could drop the restriction that the search terminates upon object dis-

covery. For this reformulation, the optimal value functions are:V∗(s1) = γ+γ3,V∗(s2) =

V∗(s7) = 1+ γ2,V∗(s3) = V∗(s4) = γ2 + γ4,V∗(s5) = γ,V∗(s6) = γ3 + γ5,V∗(s8) = γ2.

We notice that the values of the states are increased. Indeed, each state’s value now has

one term for each object it can recover with one path of length at mostHL.

1note that this choice may lead to non-optimal policies when deciding on state values. To avoid that, we

should instead compute the optimalaction-valuefunctions

30

The previous analysis describes a theoretic formulation of our problem and the guar-

antee that, under certain assumptions, dynamic programming (among other) techniques

can be used to show convergence to optimal state values (and thus query forwarding pol-

icy). Nevertheless, in most realistic scenarios, this computation is either very expensive

or not desirable. In the area of reinforcement learning, simple greedy algorithms such

asε−greedy,pursuit andsoftmax methods are considered very effective means of solv-

ing similar problems [29]. This is also apparent in theAnt-basedrouting algorithms.

They represent a family of reinforcement learning algorithms that base their operation on

biological ants and their collective behavior. Such algorithms have proved extremely suc-

cessful in providing shortest path routes in dynamic networks [30], yet they incorporate a

variety of empirically-tunable parameters and variable convergence rates. In the chapter

presenting related work we describe these approaches in more detail.

2.3 Simulation Results

To simulate the P2P overlay, we mainly used therandomgraph topology with the

pure P2P model. We also experimented with thehybrid model for a comparison with

GUESS. In the pure model, all peers equally pose and answer requests; in the hybrid

model, nodes are organized in an ultrapeer-leaf hierarchy. Some experiments were run

overpower-law[31] graphs. We utilized two well-known topology generators: GT-ITM

[32] for the pure and hybrid random graph models and Inet-3.0 [33] for the power-law

graph model.

For the object placement and query strategies, we choose from two different distri-

31

butions, namely uniform and zipf. Requesters are randomly chosen and always represent

a noticeable fraction (10% or more) of the network. The default graph has 10,000 nodes

with an average out-degreed ∼= 9. The default value fork is 12 and for TTL is 5 hops.

The minimum value of an index is 1, so that no nodes are precluded from the forwarding

process.

To simulate a dynamic network behavior, we insert new nodes and remove online

ones with varying frequencies. In the first setting (static), there are no dynamic operations.

In the less dynamic setting, the topology changes more than 300 times during each run,

while in the more dynamic one it changes more than 3000 times. Periodically, a portion

of peers depart from the overlay and offline ones return. We always keep approximately

80% of the network nodes online. Departing nodes clear their local cache from all built

knowledge.

We used 100 objects in most simulations for simplicity and speed. Objects are of

varying popularity, which affects the respective number of replicas and received requests.

An increase in the number of objects did not affect the quality of the results. We modeled

the query and object placement strategies using a zipfian distribution to achieve results

similar to the observations in [21]. The highest-ranked 10% of objects amount to over

40% of the total number of stored objects and receive about half of the requests. With

our default parameters, the most popular object is stored in more than 10% of the peers,

while the least popular only in 0.25% of them. Table 2.1 summarizes our simulation

parameters and their default values.

In the figures that follow, the label “APS” is used when all variations of our method

have very similar performance in a particular metric. If the results were taken under any

32

Table 2.1: Simulation parameters and their default values

Simulation Parameters Default Values

Number of Nodes (N) 10000

Graph/P2P model Random/Pure

Average node out-degree (d) 9

Walkers deployed (k) 12

TTL 5

Replication Distribution Zipf (a = 0.82)

Query Distribution Zipf (a = 0.9)

Number of Requester Nodes 1000

Number of Queries per Requester Node3162

Reinforcement Parameter (γ) 0.3

of the two dynamic settings, this will be shown in parenthesis.

2.3.1 Comparing the Index Update Functions

Previously, we described that our index update strategy increases or decreases index

values along walkers’ paths in order to direct future searches. One can identify a variety

of strategies in order to achieve that. Clearly, not every function can be as efficient in

achieving fast learning of paths or redirect walkers after objects relocate. In our first set

of simulations, we try to examine the behavior of several index update functions.

We take several 20-node connected parts from our main graphs and make queries

originating from a single node each time. We consider two settings: In the first one, a

single object exists 2 hops away from the initiator. After 10 requests, it gets deleted and

relocated at another node (on a completely different path) 4 hops away. In the second

setting, we instead place the item at a different peer 2 hops away. Note that this is more

33

20 40 60 80 100 120 140 160 180 200
#requests

0

10

20

30

40

50

60

70

80

90

100

Su
cc

es
s

R
at

e
(%

)

no negative, k=3 (62%)
no negative, k=2 (61%)
no negative, k=1 (44%)

Figure 2.4: No unlearning, first set-
ting

20 40 60 80 100 120 140 160 180 200
#requests

0

10

20

30

40

50

60

70

80

90

100

Su
cc

es
s

R
at

e
(%

)

no negative, k=3 (66%)
no negative, k=2 (63%)
no negative, k=1 (45%)

Figure 2.5: No unlearning, second
setting

20 40 60 80 100 120 140 160 180 200
#requests

0

10

20

30

40

50

60

70

80

90

100

Su
cc

es
s

R
at

e
(%

)

decay, k=3 (64%)
decay, k=2 (62%)
decay, k=1 (44%)

Figure 2.6: Learning with decay, first
setting

20 40 60 80 100 120 140 160 180 200
#requests

0

10

20

30

40

50

60

70

80

90

100

Su
cc

es
s

R
at

e
(%

)

decay, k=3 (63%)
decay, k=2 (64%)
decay, k=1 (45%)

Figure 2.7: Learning with decay, sec-
ond setting

20 40 60 80 100 120 140 160 180 200
#requests

0

10

20

30

40

50

60

70

80

90

100

Su
cc

es
s

R
at

e
(%

)

standard, k=3 (77%)
standard, k=2 (75%)
standard, k=1 (55%)

Figure 2.8: Standard update, first set-
ting

20 40 60 80 100 120 140 160 180 200
#requests

0

10

20

30

40

50

60

70

80

90

100

Su
cc

es
s

R
at

e
(%

)

standard, k=3 (77%)
standard, k=2 (76%)
standard, k=1 (56%)

Figure 2.9: Standard update, second
setting

20 40 60 80 100 120 140 160 180 200
#requests

0

10

20

30

40

50

60

70

80

90

100

Su
cc

es
s

R
at

e
(%

)

linear, k=3 (87%)
linear, k=2 (86%)
linear, k=1 (71%)

Figure 2.10: Linear update, first set-
ting

20 40 60 80 100 120 140 160 180 200
#requests

0

10

20

30

40

50

60

70

80

90

100

Su
cc

es
s

R
at

e
(%

)

linear, k=3 (89%)
linear, k=2 (88%)
linear, k=1 (70%)

Figure 2.11: Linear update, second
setting

34

20 40 60 80 100 120 140 160 180 200
#requests

0

10

20

30

40

50

60

70

80

90

100

Su
cc

es
s

R
at

e
(%

)

weighted, k=3 (84%)
weighted, k=2 (82%)
weighted, k=1 (69%)

Figure 2.12: Distance-based update,
first setting

20 40 60 80 100 120 140 160 180 200
#requests

0

10

20

30

40

50

60

70

80

90

100

Su
cc

es
s

R
at

e
(%

)

weighted, k=3 (85%)
weighted, k=2 (85%)
weighted, k=1 (69%)

Figure 2.13: Distance-based update,
second setting

challenging than simply removing the node with the initial replica. Keeping the node

active forcesAPSto consider it for future requests with the already accumulated index

knowledge.

We monitor the accuracy achieved by several functions after the deletion and present

the results for five of them in Figures 2.4–2.13 (for different values ofk). The achieved

accuracy just before the deletion is shown in parenthesis. We evaluate a function with

no negative reinforcement (no unlearning), one with “temporal” decay (small negative

reinforcement at each time step), a flat update function (change indices by a set value

each time, see Figure 2.1), a linear function (amount of change is a linear function of the

current index value) and a weighted function (as described for thew-APSmethod).

We notice that all functions “learn” with more queries, although they do so with

varying speed. Trying to learn the location of an object 4 hops away is harder than finding

a new one 2 hops away, as we would expect. Utilizing more walkers mitigates this prob-

lem as more resources are now available for exploration of the network. The results for

k≥ 2 do not differ significantly since in this experiment we deal with only two replicas.

The linear method clearly performs better whenk = 1 in both accuracy and fast unlearn-

ing. Whenk > 1, the standard, linear and weighted update schemes perform similarly.

35

0 30 60 90 120 150
#requests

0

20

40

60

80

100

%
 ti

m
es

 c
lo

se
st

 o
bj

ec
t d

is
co

ve
re

d

weighted
linear
standard
no negative

Figure 2.14: Percentage of finding the closest object for the various index update methods

Methods with negligible or no negative reinforcement show worse performance.

These results show that both learning and un-learning are necessary: The linear

function increases its accuracy faster to match the initial success rate. Our observations

show that unlearning is more effective if the amount of indexdecreaseis proportional

to its value. Similarly, thew-APSscheme proves more effective when the positive rein-

forcement is analogous toγh. Obviously, the rate at which nodes (and therefore paths to

objects) depart affects the efficiency of the unlearning process. Also, these experiments

do not take into account the interaction between different queries. This would enable the

failure/success of previous queries to be considered by the current search.

In a similar experiment for thew-APSmethod, we monitor the percentage of hits

for each replica, having only 2 of them at distances 2 and 4 hops away from the requester

respectively (k = 1, Figure 2.14). The un-weighted functions find the nearest object about

45–60% of the time. A function with the amount of increase being proportional toγh

andγ = 0.3, discovers the nearest replica with increasing frequency (i.e., over 95% of the

time). This function will be used to evaluate thew-APSversion. However, for largerk

36

this advantage diminishes, since the walkers quickly establish paths to objects and search

for alternative ones. Indeed, fork≥ 2, our experiment shows that the method converges

fast to an equal discovery ratio for the two objects.

2.3.2 Basic Performance Analysis

For the default graph, our simulations show that the standard flooding scheme with

TTL=4 can be successful in over 99% of its searches, while producing over 9000 mes-

sages per query. These values are well-known, but mentioned here for direct comparison

with theRandom WalksandAPSalgorithms. In the following figures, if one or more of

our algorithm’s variations are compared, they will be specifically mentioned with their

names (e.g.,w-APS). The label “APS” is used to denote thes-APSversion of the protocol

with the linear index update scheme.

In our basic set of simulations, we try to validate the analysis of Section 2.2.2. We

vary the number of walkers deployed (k) from 1 to 15 for the default parameters and test

the two algorithms on all three settings. Figure 2.15 presents the detailed comparison on

the three important metrics (accuracy, hits and messages per query).

Random Walksexhibits low success rate (below 50%) as a result of its nature. More-

over, it barely averages one hit per query in the dynamic settings, even with many walkers.

Its message production is reduced during the dynamic runs (mainly when more walkers

are utilized), since some of the unsuccessful paths inside the network are cut short with

the departures of nodes. The performance decrease is relatively small though, as walkers

are not directed according to object locations but randomly across the network.

37

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
k

10

20

30

40

50

60

70

80

90

100

Su
cc

es
s

R
at

e(
%

)

APS
APS (less dyn)

APS (more dyn)

RWalks
RWalks (less dyn)

RWalks (more dyn)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
k

10

20

30

40

50

60

A
ve

ra
ge

 M
es

sa
ge

s
pe

r
Q

ue
ry

APS (pessimistic)

s-APS (more dyn)

s-APS (less dyn)

RWalks
s-APS
RWalks (more dyn)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
k

0

1

2

3

4

5

6

7

8

A
ve

ra
ge

 H
its

 p
er

 Q
ue

ry

APS
APS (less dyn)

APS (more dyn)

RWalks
RWalks (less dyn)

RWalks (more dyn)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
k

10
3

10
4

10
5

106

107

D
up

lic
at

e
M

es
sa

ge
s

RWalks
s-APS (more dyn)
s-APS
w-APS

Figure 2.15: Success rate, message production, number of hits and number of duplicate
messages of the two methods vs. number of deployed walkers in the three different set-
tings

On the other hand,APSachieves high quality results in all these metrics.APS

manages to maintain high levels of robustness for a variety of reasons: In the static en-

vironments, the learning process achieves fast direction of walkers towards objects. This

is achieved with increasing accuracy as more queries are collected in the system. Nodes

utilize indices built by all their neighbors or even other nearby peers.

In the dynamic environments, two things that affect a search may happen: First,

objects may be removed and/or inserted at different locations. Second, peers may discon-

nect from the system, disrupting established paths. BecauseAPSquery forwarding is a

probabilistic process, nodes with the largest values do not get necessarily chosen. Thus,

no peers are excluded because of a low probability, enabling recovery from bad choices

38

during query routing. Moreover, our algorithm performs unlearning (negative reinforce-

ment), which enables walkers to be redirected if previously discovered objects are found

missing. Finally, the probability of query failure is greatly reduced with the use of a large

number of walkers. This achieves bothexploitationof high index paths andexploration

of less accurate neighbors in order to determine new object locations. The changes in

topology or object locations must simultaneously affect all successful paths in order for a

failure to occur. The metric we expect to be reasonably affected is the number of hits per

search, as some paths to discovered objects frequently “disappear”.

We can see thatAPSachieves very high success rates (about 40% more accurate

thanRandom Walks) even with few deployed walkers. As predicted above, the accuracy

is not greatly influenced by node departures. For the less dynamic run, the amount of

decrease is almost zero, while it remains within only 5% for relatively large (k≥ 8) values.

One would expect that our method produces a much larger number of messages

compared toRandom Walksdue to the update process, but this is not the case, as the

majority of walkers inAPSare successful and only few of them reach TTL hops away.

In Random Walks, about 70% of the walkers fail and travel TTL hops each. To a lesser

extent, objects are equally discovered at all possible distances in the random method,

while our scheme discovers more objects closer to the requesters. The results confirm our

case: Using only thepessimisticapproach,APSproduces around 15 messages more per

search compared toRandom Walks. This proves that a single update policy is not suitable

for all ranges of requests. Thes-APSimprovement has the same very low production as

the random algorithm. This effect is enhanced if we recall that no message exchange is

necessary for peer join/leave/update operations. Only in the highly dynamic setting do we

39

0 20 40 60 80 100 120 140 160 180 200
Requests per Object

0

20

40

60

80

100

Su
cc

es
s

R
at

e(
%

)

APS(1%)
APS (0.2%)
RWalks(1%)
RWalks (0.2%)

Figure 2.16: Success rate vs. number of requests per object

see an increase in the average production, which is at most 5–7 messages per search. This

gap appears because of the frequent broken paths to objects, causing walkers to travel

more inside the network.

Moreover,APSputs the walkers to a much better use, discovering around 4 times as

many objects as the competing method. This is extremely important for current popular

P2P applications, giving the user a much broader choice for download. This characteris-

tic comes as a result of its high success rate and minimization of walker collisions (two

walkers that cross paths forcing one of them to fail). In the dynamic settings, the max-

imum reduction in the number of hits is around 25% and 40% for the less dynamic and

more dynamic runs respectively. These numbers occur for large values ofk, where the

probability of node departures affecting the walkers increases.

The last graph of Figure 2.15 displays the vast reduction thatAPSachieves in the

number of duplicate messages. These occurrences are considered to be failure states

for our walkers, therefore the learning process makes adjustments in order to minimize

40

1 2 3 4 5
Hop Distance

0

1

2

3

4

H
its

 p
er

 Q
ue

ry

w-APS
APS
RWalks

Figure 2.17: Hits per query vs. hop dis-
tance (static setting)

1 2 3 4 5
Hop Distance

0

1

H
its

 p
er

 Q
ue

ry

w-APS
APS
RWalks

Figure 2.18: Hits per query vs. hop dis-
tance (more dynamic setting)

them. Our method constantly outperformsRandom Walks, producing 1 to 2 orders of

magnitude fewer duplicate messages. This is also important because it increases the

useful processing time for each peer. Theweightedapproach exhibits almost 20% fewer

duplicate messages than our default methods.

To demonstrate howAPSincreases its accuracy as more queries come into the sys-

tem, we vary the number of requests per object on the default graph, using a uniform

replication ratio of 0.2% and 1%. The results are presented in Figure 2.16. We can see

that the accuracy of our method improves significantly with only a small increase in re-

quests. For replication ratios greater or equal to 2%, our method exhibits almost perfect

results. It is noteworthy that even for the rarest of objects,APSmanages to build paths

leading to them through learning and cooperation. At the same time,Random Walksis

steadily below 40% and 10% respectively, regardless of the number of requests.

41

2.3.3 Discovered Objects vs. Distance from Requesters

Figure 2.17 shows how the hits are distributed over their distance from the re-

questers, for the default parameters in the static setting. WhileRandom Walksdiscovers

about the same amount of objects throughout the 1 to TTL range,APSmakes an effort

to discover closer ones. It displays a symmetric curve, finding the most objects 3 hops

away from the requesters. The reason for this is its learning feature that promptly locates

the closest ones (one and two hops away). The rest of the walkers are directed towards

more distant content. Such objects exist in larger quantity (since nodes increase expo-

nentially with distance) but are less easily accessible (more paths, walker collisions, etc).

The results for the dynamic settings are similar, the only difference being the reduction

in hits we mentioned. We have also noticed that our algorithm becomes more biased

into discovering nearby objects as the number of replicas inside the network increases.

This happens because the walkers have a broader selection of paths to objects and can,

therefore, choose the shortest.

The w-APStechnique marginally improves thes-APSperformance by locating a

small amount of extra content two and three hops away. While one would expect the

weighted version to locate considerably more objects closer to the requesters, this is not

the case: Ask increases, paths to the nearest replicas are exploited by both methods.

Furthermore, as Figure 2.18 shows, the un-weighted update method shows superior per-

formance under dynamic environments, exhibiting both higher accuracy and hit count

compared to the weighted index update method. Nevertheless, given a different setting,

one could notice the difference in performance: By applying a uniform 10% replication

42

1 2 3 4 5
Hop-Distance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
at

io
 o

f H
its

w-APS, k=1
w-APS, k=4
w-APS, k=8

Figure 2.19: Ratio of hits per query vs.
hop distance forw-APS

1 2 3 4 5
Hop-Distance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
at

io
 o

f H
its

s-APS, k=1
s-APS, k=4
s-APS, k=8

Figure 2.20: Ratio of hits per query vs.
hop distance fors-APS

rate (to allow for more choice) and 100 requests per object, we measure the ratio of ob-

jects discovered at different distances by the weighted and un-weighted version ofAPS

in Figures 2.19 and 2.20. Ask increases, the difference between the more steepw-APS

curve and the flatter one bys-APSis diminished. For larger values ofk, the two schemes

almost coincide (see Figure 2.17).

2.3.4 Effect of Object Popularity

Next, we analyze the behavior of our scheme’s index values.APSis an inherently

adaptive search algorithm, whose power lies in the use of the local indices. For the next

experiment, we choose only one node from our default graph with degree 12 and examine

how its local indices change. We make requests for 10 objects, with object 1 being the

most popular and 10 the least. Replication and request distributions take their default

values. Figure 2.21 displays the number of high-valued indices for that node for all 10

objects. Object popularity decreases from left to right on the x-axis. We monitor indices

with large values (more than 20 hits) and indices that have a fairly large value (more than

43

Object Popularity
0

2

4

6

8

10

12

#I
nd

ic
es

High-value indices (value > 1000)
Medium-value indices (100 < value < 1000)

Figure 2.21: Distribution of index values
according to object popularity for one peer
and 10 objects

0 20 40 60 80 100
Object Popularity

0.5

0.6

0.7

0.8

0.9

1

R
at

io
 o

f A
PS

 in
di

ce
s

High-value
Medium-value
Low-value

Figure 2.22: Distribution of index values
versus object popularity in our default set-
ting

5 but less than 20 hits). We notice that many indices with large values exist for the very

popular objects, while this number decreases as popularity drops. Still, some indices with

a relatively large value always exist for less popular objects.APSexhibits high precision

for very popular objects, building up its “confidence” through large index values. On the

other hand, the few fairly large indices for unpopular objects point out the algorithm’s

ability to locate them with good probability.

Figure 2.22 presents how the entirety of index values changes for our default set-

ting. The majority of theO(Nd) indices are not used, since only 10% of the nodes are

requesters. We notice that high-valued indices exist mostly for the 20% most popular

items and medium-valued ones are prominent roughly between the top 20%–40% of ob-

jects. Nevertheless, some exist even for the least replicated content, giving few ofAPS’s

walkers viable paths to discovery.

We conclude our analysis on object popularity andAPSwith the results of Figure

2.23. We show the success rates for individual objects grouped according to their pop-

ularity, using all default parameters (in the non-dynamic setting). Popularity decreases

44

Object Popularity
0

20

40

60

80

100

Su
cc

es
s

R
at

e(
%

)

w-APS
APS
Random Walks

Figure 2.23: Individual success rate vs. object popularity

from left to right on the x-axis.APSshows almost perfect results for popular objects and

displays a “graceful” decline for unpopular requests, whilew-APSslightly improves on

this for unpopular requests. On the other hand,Random Walks’ accuracy drops signifi-

cantly after requests for the highest-ranked 10% of objects, reaching a mere 11% for the

least popular objects.

2.3.5 Results for Different Topologies

In this section, we compares-APSwith Random Walksover four different graphs:

The default one, a 10,000-node random graph withd = 4 (similar to Gnutella-type graphs),

a 50,000-node random graph withd = 10 and a 10,000-node power-law (PLAW) graph

with d = 4.4. Table 2.2 presents the two algorithms’ performance in the highly dynamic

setting with the respective results from the static runs in parentheses.

First, we test the methods using a uniform distribution for both requests and storage

in the default graph. The replication ratio for each object is set to 1% and each of them

receives 30 queries by each requester node. We clearly notice thats-APSgreatly benefits

from such a setup, delivering over 94% in success rate (a mere 2% decrease from the

45

Table 2.2: Results for more environments
s-APS Random Walks

Graph-Distr. Succ% Mesg Hits Succ% Mesg Hits

10K-Rand 94.1 58.5 4.3 32.3 41.8 0.4
(d=10,Unif) (96.1) (53.5) (7.2) (38.2) (49.6) (0.5)

10K-Rand 70 17.3 1.4 26.0 12.0 0.3
(d=4,Zipf) (82.2) (18.2) (2.25) (34.5) (15.0) (0.5)

50K-Rand 79.3 48.4 2.4 55.6 39.5 1.3
(d=10,Zipf) (87.6) (47.0) (5.7) (57.6) (45.7) (1.4)

10K-PLAW 67.6 13.0 1.11 21.0 9.0 0.3
(d=4.4,Zipf) (76.1) (14.9) (1.76) (31.6) (12.0) (0.5)

static run) and discovering more than 10 times more objects thanRandom Walks.

On a similar graph with smaller out-degree andk = 5, s-APSis still 40–50% more

accurate, 5 times more effective in locating objects and almost as bandwidth-efficient as

the random method. The results are worse compared to the default graph because of the

smaller out-degree and fewer walkers used.

Our simulations on the 50,000-node random graph justify our prediction that the

graph size cannot influence the performance ofAPS. The results were a little worse from

the ones in the original graph, because the quality of the new graph was worse (many

more disconnected components were present). We notice the success rate is about 8%

lower from the static case, while the number of discovered objects is almost halved.

Our results on the 10,000-node power-law graph show an even greater gap in the

performance of the two algorithms. Our method delivers about 4 times more results and

exhibits a success rate three times bigger thanRandom Walks’. The success rate fors-APS

drops by around 9% and discovered objects decrease by 37%, while message production

slightly decreases.

46

Table 2.3: Comparison with GUESS

s-APS GUESS

Metric Succ% Mesg Hits Succ% Mesg Hits

97.7 16.3 5.22 63.9 16.1 1.28

Messages 98.6 22.0 7.01 65.6 22.2 1.87

99.7 33.2 11.39 84.0 33.1 2.55

81.0 3.2 1.33 63.9 16.1 1.28

Hits 94.6 8.7 3.42 86.4 45.0 3.70

97.9 16.5 5.42 94.5 65.1 5.60

In these simulations, our method kept its message production at the same levels

with the static runs, wasting at most 5 extra messages per search, a direct proof that it

does not impose more burden on network traffic. As expected, the success rate shows

only a small decrease, ranging from 2% to 12%. These results also show that our method

maintains its relative performance gains over the different environments.

2.3.6 Comparison withGUESS

Lastly, we present results comparings-APSwith an implementation ofGUESS[27]

on a randomhybrid graph with 6500 peers, 500 of them being super-peers (or ultrapeers

in GUESS). Each ultrapeer is connected to 12 leaf-nodes on average. Links exist only

between ultrapeers and between an ultrapeer and its leaf-nodes. In ourGUESSimple-

mentation, initiating ultrapeers forward queries tok randomly chosen neighbor ultrapeers.

Query and object placement distributions are set to their default values. Since it is im-

possible to directly compare the two methods for the samek and TTL values, we select

simulations where the two algorithms had similar performance in one of two important

47

metrics: Messages and hits per query. The results are presented in Table 2.3 and the

comparison metric is typed in boldface. For similar message consumption, our scheme

exhibits higher success rates and delivers 4 to 5 times more results. For similar hits per

search, our scheme produces 4 to 5 times fewer messages and always outperformsGUESS

in accuracy.APSachieves these results taking no advantage of the hybrid topology that

GUESSutilizes.

2.4 Summary

APSdeploys probabilistically directed walkers by utilizing information from past

searches regarding their success or failure. This allows for fast learning with a low mes-

sage consumption. Peers are required to keep indices only relative to their neighbors,

while no message exchange is necessary for any dynamic network event, local or global.

Our results show thatAPSexhibits effectiveness being almost as bandwidth-efficient as

Random Walks. It discovers 4 times as many objects and delivers very high success rates

compared to theRandom WalksandGUESSmethods, maintaining these features in dy-

namic environments. Appendix A contains a direct performance comparison between

APS, Random Walks, GUESSand six more representative schemes described in the re-

lated work section.

48

Chapter 3

Content Dissemination to Groups of Peers: AGNO

3.1 Overview

Mass communication is defined as the process of data distribution to a greater num-

ber of people at the same time. The importance and applications of group communication

schemes in computer networks and in distributed systems in particular have been well-

defined in past and recent research work (e.g., [34–36]). A multicast transmission is de-

fined as the dissemination of information to several hosts within a network. These hosts

are interested in receiving the same content from an authority node (such as a web server)

and naturally form a group. The lack of deployment of multicast communication in the IP

layer has led to the development of various application-level multicast protocols, in which

the end hosts are responsible for implementing this functionality. One-to-many commu-

nication is a very useful mechanism for a variety of network applications (e.g., [37,38]).

As the applications that embrace the P2P paradigm grow, a number of methods

have also been proposed to implement multicast communication utilizing some popular

P2P overlays (e.g., [34, 35, 39, 40]). Nevertheless, these approaches take advantage of

the structure that DHTs provide. As we mentioned before in our work, there exist many

realistic scenarios where the topology cannot be controlled and thus DHTs cannot be

used (e.g., ad-hoc networks or existing large-scale unstructured overlays). Explicit group

formation schemes require frequent communication overhead between group members.

49

Nodes must go through a subscription process by contacting a special node and announce

their intent to receive/transmit/forward group messages. These techniques often prove

unsuitable because of the generated traffic for large and dynamically changing group pop-

ulations.

In the area of unstructured P2P overlays, contacting large numbers of nodes is im-

plemented by either broadcast-based schemes (e.g., Gnutella [6], Modified-BFS [22]), or

gossip-based approaches, e.g., [36, 41, 42]. Both produce large numbers of messages by

contacting many peers inside the network. Our work aims at providing peers in dynamic,

unstructured environments with an effective yet inexpensive mechanism to disseminate

content-related information to groups of nodes interested in their content. Specifically,

we intend to provide a scheme that is:

• Efficient: It should be able to contact a high percentage of interested peers with low

message overhead.

• Scalable:The scheme should be able to scale to very large group sizes (thousands

of peers).

• Robust:We would like to avoid the necessity of a single point of contact or group

leader as well as the burden of costly message exchanges in case of member arrivals

and departures.

• Adaptive:It should adapt to changes in the group size and to dynamic workloads.

We assume a fully distributed and unstructured system, where peers share and re-

quest resources replicated inside the network. Users are interested in objects with chang-

50

ing content such as results of a sports meeting in real time, temperature readings, weather

maps, stock quotes, security updates, etc. There exist some nodes (similar to the web

servers or mirror sites in the Internet) that provide fresh content, but their connectivity or

availability varies, as happens with all other network nodes. Peers that are interested in re-

trieving the newest version of the content conduct searches for it in order to locate a fresh

or closer replica. In this environment, interest in a specific object is tied to the lookups

generated for it. We argue for a push-based approach, where a server node forwards

notifications (or other object-specific information) towards the interested hosts. Our as-

sumption is that peers which have recently searched or retrieved an object would also be

interested in receiving important updates about it. For example, it is safe to assume that a

host frequently querying for the price of a quote or the temperature of an area would like

to be informed about an update or another object-related notification.

It is important to note here that peers still search and retrieve objects in a distributed

manner. The notification itself may or may not be directly related to a specific object: A

severe weather alert to be effective in the next 3 hours is not related to the current area

temperature. A change in the scores or quote prices, on the other hand, is directly linked

to the content of the object. Group communication (especially for large groups) requires

a considerable amount of bandwidth. Content providers can assess the importance of

various updates/notifications and choose to push those that would be the most beneficial.

On a more technical note, the forwarding path between any two given peers in a

DHT remains the same with high probability. This is a feature that many approaches

utilize in order to construct efficient multicast paths. This is not the case for unstructured

P2P networks: Peers have multiple (and dynamically changing) communication paths

51

with each other. Therefore, a notification scheme for such networks can also be used

to simulate that functionality and identify reverse paths from the destination (location of

an object) back to the requesters. This information can in turn be used in a variety of

problems (e.g., assist in dynamic replication, see Chapter 4).

In this Chapter, we present theAdaptive Group Notification(AGNO) method. Our

approach combines the utilization of state accumulated during the search process together

with probabilistically stored shortcuts. The first indicates the amount of demand for a spe-

cific object and can be used to infer membership and guide the dissemination of updates

on a hop-by-hop basis. By also allowing peers to locally store a constant amount of re-

quester addresses (calledbackpointers), we show thatAGNOachieves a robust, scalable

behavior in a variety of environments and group sizes. Our method utilizes a simplebin-

ning scheme as well as adaptive indexaging to adjust its performance to different work-

loads and member joins/leaves.AGNOdoes not require any global knowledge, existence

of a special contact node or any membership message exchange. It builds its knowledge

by exclusively monitoring the independently conducted lookups. Finally, its performance

can be easily tuned to fit specific application requirements.

3.2 AGNO Protocol Description

A multicast transmission (also referred to as thenotificationor push phasehere-

after) in our setting is initiated by a content-holding peer (orserver) and its target is to

contact as many “group” members (i.e., requester nodes) as possible with the least amount

of overlay messages. The focus of this work is to describe an efficient mechanism for such

52

transmissions and not to define their content. The message relayed during the push phase

will be referred to as anotificationor push messageand always relates to a specific object

that is shared in the network.

The rationale behindAGNOrelates to the observation that efficient group commu-

nication comes at a cost. In current approaches, this cost is paid by either a membership

management protocol or an overlay infrastructure. Our goal is to provide with the missing

state that can allow for content dissemination to a group of peers, but in a way consistent

with the nature of an unstructured P2P system. InAGNO, the equivalent of group mem-

bership is the demand for an object (or a collection of them), realized through searches

and object sharing that areindependently conducted by peers. The granularity can be as

coarse or fine-grained as the application requires. For the remainder of our discussion, we

assume a per-object level of granularity.

After each search using theAPSalgorithm, peers accumulate knowledge about the

relative success of a search through each of their neighbors. Intuitively, overlay paths that

comprise of high index values are the ones most frequently used to connect requesters and

object holders. InAGNO, nodes utilize this information in order to forward group mes-

sages towards possible group members during the push phase. Note here that, although

we utilize theAPSmethod as a means to provide this state, our approach can be used with

a variety of search mechanisms, as long as they support a similar demand incentive.

We now describe the nature of the index values that are stored at each peer.APS

keeps a local view (an index value) for each neighbor. ForAGNO, each peerP needs to

maintain the index values thatP’s neighbors hold relative toP. Let X
i→ Y denote the

APS index value stored at nodeX for neighborY and objecti. Then, peerP must know

53

A

B
C

D

E

A
X1

100
30

X2 90
... ...

A 50

A
E
Y2
Y5

10
150

40
90

A

D

Z2

20

90

10

B
C
D
E

50
100

10
20

B
C
D
E

60
220

30
30

Reverse Indices

Figure 3.1: Graphic explanation of AGNO reverse indices. The filled table represents
the reverse index values stored at node A, which coincide with the APS index values that
nodes B,C,D,E store regarding A

X
i→ P, for each neighborX (see Figure 3.1). These values can be made known toP

either implicitly or explicitly: In the first case, peerP can infer the indexX
i→ P if it

knows about the update process used (optimistic or pessimistic) and its initial value. In

the explicit approach, whenever a search for objecti is conducted andX forwards toP,

it piggybacksX
i→ P. We call these new stored values thereverse indices, to distinguish

them from the indices used byAPSin searches. For the rest of our discussion, we assume

that the explicit approach is used.

Reverse indices are not the only state that our method utilizes. During the search,

intermediate nodes decide with probabilitypr whether or not to cache the requester’s

address. Thus, for a search pathh hops long, it will be stored onhpr peers on average.

With this scheme, we create a number of soft-state shortcuts calledbackpointersalong

the search paths which point to group members. Each peer can individually decide on the

maximum number of backpointers stored. For simplicity, we assume that all nodes can

store a maximum ofc backpointer values. Backpointers are soft-state that gets invalidated

54

s s

Figure 3.2: The black nodes search for an object stored at nodes (left). On the right,s
initiates a push phase in order to contact the requesters

after some amount of time.

Notifications are issued by peers that (authoritatively) serve objects. They are of

the form(nodeID, nodeIP, notificationID, objectID, TTL, content), where

(nodeID, nodeIP) is the server’s identifier and IP address,notificationID is a unique

identifier for each push message generated bynodeID (to eliminate duplicate receptions),

TTL is the maximum distance allowed for the message to travel andcontent holds the

actual content of the notification that refers to objectobjectID.

During the push phase, peers issuing or receiving a notification forward it to their

neighbors using the reverse index values. We consider the following forwarding schemes:

• Probabilistically forward tok≥ 1 neighbors using the reverse indices or forward to

those with the top-k values

• Forward to all neighbors with reverse index value larger than a defined threshold

Moreover, a peer sends the push message directly to each of its valid backpointers with

probability pn. These messages have a TTL=1 and do not travel further.

Whenever an overlay link is crossed, theTTL field is decremented. A push message

55

is discarded either when itsTTL value reaches zero or when it is received more than

once due to a cycle. Therefore, our scheme combines a selective, BFS-like forwarding

augmented with shortcuts in order to contact the group members. This is shown pictorially

in Figure 3.2.

We now discuss how the aforementioned state is maintained at each peer. The

backpointer values expire after a certain amount of time. Since our incentive to push a

message is the demand on a per-object basis, new backpointers replace the oldest valid

ones (if a node has alreadyc valid backpointers). As searches take place inside the system,

the backpointer repositories get updated, while the probabilistic fashion in which they are

stored guarantees a diverse collection of (ID, address) pairs. Reverse indices get updated

during searches, but this is not enough: There may be peers that have searched for an

object and built large index values, but are no longer interested in receiving notifications

(i.e., stopped querying for that object). If searches are no longer routed through those

peers, the reverse index values (which reflectAPSindices) will not be updated and will

remain high.

To correct this situation, we add anaging factor ξ to the reverse indices, which

forces their values to decrease with time. Peers need to keep track of the time that a

reverse index was last updated in order to acquire its correct value before using it. When a

peer receives a search message, it sets the corresponding reverse index to the piggybacked

value and its last modified field to the time of receipt. Figure 3.3 shows how this process

works. The value of the index decreases exponentially, while two searches at timest1, t2

reset its value. A push message received at timet3 will use the value as shown in the figure.

The last modified value is also reset when a reverse index is used, since a peer computes

56

t

t2t1t0 t3
R

ev
er

se
 In

de
x

V
al

ue
Figure 3.3: Example of computation of a reverse index value

its current value before using it. Obviously, a fixed value forξ will perform suboptimal

aging, by either reducing the reverse indices too much or by failing to reduce them enough

for the push phase to prune out disinterested peers. The next section describes in more

detail how our protocol proceeds in the computation of the parameters described above.

3.2.1 Protocol Specifics

1) Space Requirements:The amount of space required by the peers isO(2d+ 2c)

per object, whered is the average node degree in the overlay andc is the maximum num-

ber of backpointers stored. Each peer stores one reverse index value and its modification

time and a backpointer with its creation time per object. Even if nodes want to keep

track of large numbers of objects, the space requirements are in the order of a few tens

of megabytes, definitely affordable by the vast majority of modern hosts (typical 1GB of

main memory configurations). For about 1 million objects, assumingc= d = 4, each peer

would need approximately 64MB of memory forAGNO.

2) Forwarding: Nodes use a threshold parameterThreshin order to choose the

neighbors to which a notification will be forwarded. Neither the probabilistic nor the top-

57

k value schemes are suitable, as they fail in certain cases. Consider for example a peer

with very low values for all its neighbors. Thresholding enables peers to forward to the

most “promising” (active in searches) parts of the overlay. A good first approximation

is for each peer to use the average of all its neighbors’ indices asThresh. Nevertheless,

both the average and the median values fail as well in various circumstances (e.g., when

all indices have a very close low or high value). Thus, we have to identify a value for

Threshthat will enable more high quality indices to be selected and less (or none) of the

low-quality ones.

3) Local Threshold Computation:After each peer computes the average of its

neighbors’ reverse index values〈RIV〉t at timet, it uses a system-widebinningscheme to

come up with the actual value forThresh. The binning method divides the space of reverse

index values into a set number of bins,{Bini = ([ai ,bi),Threshi)}. Bini is characterized

by its lower and upper limit valuesai ,bi (a0 < b0 = a1 < b1 = a2...) and aThreshi value.

The final threshold value isThresh= Threshi , if 〈RIV〉t ∈ [ai ,bi). For example, assume

we use a 2-bin scheme,{Bin0 = ([0,50),40),Bin1 = ([50,∞),100)}. If 〈RIV〉t = 75, that

node will forward to all neighbors with reverse index value over 100. Bins represent

an approximation that maps reverse indices to a value representing their quality. Higher

numbered bins represent higher quality indices. ValuesThreshi are chosen such that:

Threshi−1−bi−2 > Threshi−bi−1 andThreshi−1 < Threshi , where we assume thatb−1 =

a0. For smalli values we should pick few neighbors (therefore a high threshold relative

to the bin’s interval), while for largei (i.e., high quality bins), most of the neighbors need

to be chosen. Note that we do not requireThreshi to belong to[ai ,bi), nor do we require

thatbi−ai = b j −a j , i 6= j. As a simple heuristic that produces good results for selecting

58

a0 b0 b1 b2 bn

Thresh0 Thresh2Thresh1 Thresh(n+1)

Figure 3.4: Sample binning scheme with the respectiveThreshandThreshi−bi−1 values

theThreshi values, givenThresh0 for bin [a0,b0), we setThreshi = Threshi−1+ bi−1−bi−2
2 .

Figure 3.4 gives a graphic description of our binning scheme. Its granularity, controlled

by the number of defined bins, can be as fine-grained or coarse as our application requires.

4) Reverse Index Aging: APSupdates its index values after either a success or a

failure, achieving learning in both situations. This is very important forAGNOas well:

Peers that lose interest in an object should be left out of the push phase as quickly as

possible. Our scheme uses the aging factorξ together with the last modified time of each

reverse index to reduce the influence of inactive ones. Assuming indexP→ Q was last

modified at timetlast, its value at timet ≥ tlast is: P→Q(t) = (1− ξ)t−tlastP→Q(tlast),

whereξ ∈ [0,1]. Forξ = 0.2, a reverse index value will be 80% of its last modified after

one time unit.

The value ofξ dictates how aggressive our aging will be. It depends on the rate at

which requests occur (and therefore index updates): The larger the rate of searchesλr , the

more aggressive the aging can be. Nevertheless, it is still application-dependent, since the

rateλn at which notifications occur (or even their content) largely affects the aging factor.

For example, in sharing stock market data, for the duration of a peer’s online time it can

be assumed that a user is always interested in her portfolio.

For the remainder of this paper, we assume that peers use the same value forξ which

59

satisfies the inequality:(1− ξ)TmaxreducedThresh< mini(Threshi) (1). In effect, we

pick ξ such that any reverse index with value less or equal tomaxreducedThreshwill

be reduced below the lowest threshold (and thus will not be selected) if not used forT

time steps (T is defined as our “tolerance” parameter). The maximumThreshi represents

the minimum high-quality index value, as this is defined by our binning scheme. There-

fore, by settingmaxreducedThresh= maxi(Threshi), we chooseξ such that all reverse

indices up to that level of quality are discarded after a period of timeT without getting

updated. Choosing larger values results in a more aggressive aging. The same is true for

choosing smallerT values. Assuming that, in the vast majority of cases, notifications are

considerably less frequent than requests, we setT = O(1/λr), which defines the tolerance

interval to be in the order of the average request interarrival period. This is done in order

to quickly identify and decrease idle indices in the overlay.

5) Estimation ofλr : In order for our scheme to work without requiring a priori

knowledge of the request rate but also to be able to adapt to changes in the workload, we

need an effective yet inexpensive mechanism to estimate its value and compute the newξ

before each push. This value is then piggybacked downstream and used by all receiving

nodes. In order to estimateλr , we need the zeroth and first frequency moment of the

request sequence arriving at a server.F0 is the number of distinct IDs that appear in the

sequence, whileF1 is the length of the sequence (number of requests). Servers can easily

monitor the number of incoming requests inside a time interval. Many efficient schemes

to estimateF0 within a factor of 1± ε have been proposed (e.g., [43, 44]). We use one of

the schemes in [43], which requires an extra of onlyO(1/ε2 + log(m)) memory bits (at

server-nodes), wherem is the number of distinct node IDs. In reality,m is in the order

60

of the distinct peers within TTL hops from a server, since only these nodes can reach it:

m' dTTL⇒ log(m)' TTL · log(d), which is usually very small. After each push phase,

both estimates are reset and a new estimation cycle begins.

6) Backpointer Selection:Finally, we specify which backpointers are used by a

node that receives a group notification message. Clearly, following the same number of

backpointers at different peers and times is not efficient. Our method utilizes the local

thresholding computation to assist in the process of selecting valid backpointers. As we

mentioned before, the threshold value is representative of the average quality of a peer’s

reverse indices (higher bins choose on average more neighbors to forward to). Given that

a peer’s threshold bin isi at timet, the probability with which each stored backpointer

will be followed is pni , given from the set{pn1, pn2, . . . pni , . . .} (i.e., onepn value for

each bin). We choose those values such thatpni > pn j ∀i < j, since better quality bins

forward to more neighbors and need not waste more bandwidth. With this scheme,AGNO

adaptively balances the amount of forwarded messages per peer between the shortcuts and

the neighbors according to the current quality of its reverse indices.

7) Summary: AGNOis a probabilistic group notification scheme that integrates

search indices with a constant amount of shortcuts to effectively route messages in an

unstructured overlay. It utilizes a binning scheme to choose between the exact amount

of useful information from each source and an aging mechanism to gracefully adapt to

member departures, requiring no explicit cooperation on their part.

61

3.3 Simulation Results

We use a message-level simulator written in C (about 2,100 lines of code) which

runs on a linux-based platform using an Athlon 2.1GHz processor and 1GB of main mem-

ory. Requesters make searches for objects usingAPSat rateλr (exponentially distributed

interarrival times), while servers initiate push transmissions at rateλn. At each run, we

randomly choose a single node that plays the role of a server and a number of requesters,

also uniformly at random. Results are averaged over several tens of runs.

We present results for bothrandomandpower-lawgraphs. There has been strong

evidence [45] that connects large-scale unstructured P2P networks to a power-law topol-

ogy. We utilize theBRITE[46] andInet-3.0[33] topology generators to create the random

and power-law graphs respectively. We consider 10K node graphs with average node de-

grees around 4 (similar to Gnutella snapshots [45]). Results for graphs up to 50K nodes

and larger average degrees are qualitatively similar.

Finally, the following basic metrics are used to evaluate the performance of a scheme:

The success notification rate(or success ratein brief), which is the ratio of contacted

group members versus the total number of group nodes and the bandwidthstress, which

we define as the ratio of the produced messages over the minimum number of messages

in order to contact all members.

AGNO Parameters:We choose to setc∼= d, which reserves an amount of space

for backpointers roughly equal to the average node degree. Potentially, for each of its

neighbors, any peer can keep one backpointer address during a search. Ref. [45] shows

that over 90% of the node pairs in Gnutella are around 5 hops away. Given this value as

62

an estimate for the TTL parameter, we setpr
∼= 1/TTL, so that on average one peer on

the search path will store the requester’s address. While we experimented with different

distributions (e.g., favoring storage of backpointers for closer nodes), the results did not

considerably vary from the uniform policy.

Given the index update policy used byAPS, we employ a simple 3-bin scheme. The

first bin represents indices below the initial value (very few to no successes,pn1 = 0.4),

the second those with some hits (pn2 = 0.15) and the last one those with more successes

(pn3 = 0.05). The values ofpn for the second and third bin are chosen deliberately low

since the values of the reverse indices are high enough and backpointers are less frequently

useful. Finally, from equation (1) and settingT = 2Tr (whereTr = 1/λr is the average

request interarrival period), we have:ξ = 1−0.440.5λr . The value ofλr (and thereforeξ)

is estimated right before each server push usingε = 0.1.

Compared Methods:We compare our method against the SCAMP protocol [47]

which defines explicit membership procedures and the two rumor-spreading schemes

in [41]: Rumor Mongering(RM) and its deterministic version (det-RM), where peers

have complete topology information. All three schemes are gossip-based approaches for

update dissemination/group communication in unstructured overlays. Furthermore, they

do not require a single point of contact or frequent refresh messages, similar toAGNO.

In SCAMP, joining members subscribe by contacting a random existing member.

Upon receiving a subscription request, a member forwards it to all the members in its local

repository. Nodes decide probabilistically whether to store or forward the subscription.

For the unsubscription process, a node notifies the locally known members to replace its

ID with the IDs of the members it has received messages from. Group communication is

63

performed in the standard gossip-based manner. SCAMP is shown to converge to a local

state of slightly overlog(n) member IDs, which guarantees with high probability that all

members will receive a notification.

In [41], peers that have received a message less than F times, forward it to B ran-

domly selected neighbors, but only those that the node knows have not yet received it. The

deterministic version of that algorithm requires global knowledge of the overlay. Nodes

forward messages to all neighbors with degree equal to 1, plus to B remaining neigh-

bors that have the smallest degrees. For SCAMP, we first run the membership phase, in

which we favor the method by assuming joining peers know all already joined members.

The parameters for those three methods are thebranching factor B, which represents

how many other peers shall be contacted per forwarding step and theseen valueF that

represents how many times a peer can receive the same message before dropping it.

Finally, for demonstration purposes, we design and implement a pure shortcut se-

lection scheme (Shortcuts) inspired by the DHT-based multicast tree creation. Search

packets carry the (ID, address) values of the last node along the path interested in the

object so far. Initially, this pair contains the requester node’s information. During the

search, an interested peer that receives a search message, decides with probabilitypr

whether to store the last member’s ID or not. Moreover, it replaces this ID with its own

before forwarding the request. With this scheme, we create a small sub-overlay of soft-

state backpointers with direction from the object holders towards the group members.

For simplicity, we assume the same maximum number of shortcuts as inAGNO. In the

push phase, a peer forwards to all valid shortcuts, using the standard TTL scheme (unlike

AGNO, where backpointers are contacted with a TTL= 1).

64

0 20 40 60 80 100
searches per member

0

20

40

60

80

100

%
 o

f
co

nt
ac

te
d

m
em

be
rs

AGNO (random)
Shortcuts(random)
AGNO (power-law)
Shortcuts(power-law)

Figure 3.5: Success rate over variable
number of searches

0 20 40 60 80 100
searches per member

1

1.5

2

2.5

3

st
re

ss

AGNO (random)
Shortcuts(random)
AGNO (power-law)
Shortcuts(power-law)

Figure 3.6: Stress over variable number of
searches

Table 3.1: (Success rate, Stress) results for the remaining methods (500 requesters)
SCAMP RM det-RM

10K Random (89%,2.7) (89%,34.5) (98%,31.1)

10K Power-law (68%,2.1) (27%,13.6) (65%,10.8)

3.3.1 Basic Performance Analysis

In this first set of experiments, using a group of 500 requesters, we vary the number

of lookups each of them makes before a single push phase occurs. We report the results

averaged over sets of 10,000-Node random and power-law topologies (d = 4 andd = 4.1

respectively). Figures 3.5 and 3.6 present the results forAGNOandShortcutswhich are

affected by the number of searches.

We notice that the pure shortcut scheme cannot provide an efficient notification

method by itself. AGNO quickly contacts the majority of requesters after only a few

searches take place, while maintaining a low stress factor. As our scheme creates better

quality indices, there exists a slight variation in the stress. This is due to the fact that after

a certain number of queries, peers switch to a different (higher) bin on average.

In the power-law topologies, where about 34% of the peers have degree one, fewer

65

0 20 40 60 80 100
searches per member

0

20

40

60

80

100

% of successes due to reverse indices
% of traffic due to reverse indices

Figure 3.7: Utilization of pure forwarding vs. backpointers

paths are used compared to the random graphs. This, combined to the fact thatξ = 0

in these experiments, explains why the stress forAGNO slightly increases with more

requests. The respective results for the remaining methods (not affected by searches) are

shown in Table 3.1.AGNOproves very accurate (in the big majority of runs) and also the

most bandwidth-efficient of the compared methods. All three rumor-spreading schemes

show considerably worse numbers in the power-law topologies.det-RM is much more

effective thanRM in such graphs, which is in accordance to the findings of [41].

Figure 3.7 shows the percentage of contacted members and messages ofAGNO

purely attributed to forwarding (not backpointers). As we move from less to more precise

reverse indices (from fewer to more queries), our method uses a decreasing number of

backpointers. These results also depict the usefulness of the backpointer scheme as for

less accurate indices they can provide with over 50% of the contacted members.

Table 3.2 summarizes the effect that a change in the number of maximum stored

backpointers (c) has on the performance ofAGNO. We select two runs from the previous

66

Table 3.2: Effect of parameterc
10 queries/member 20 queries/member

success rate stress success rate stress

c=1 68.7% 1.17 90.3% 1.16

c=2 73.5% 1.27 91.5% 1.20

c=4 77.9% 1.42 91.6% 1.23

c=8 79.6% 1.80 92.5% 1.37

c=16 81.2% 2.80 92.9% 1.49

10 100 1000 2000
group size

1

5

10

15

20

st
re

ss

AGNO
SCAMP
RM
det-RM

10 100 1000 2000
group size

40

60

80

100

%
 o

f
co

nt
ac

te
d

m
em

be
rs

AGNO
SCAMP
RM
det-RM

Figure 3.8: Stress and success rate over variable group size

experiment, where each of the 500 members make 10 or 20 queries in the random topolo-

gies. For 10 queries per requester, many peers fall into bins 1 and 2 on average, while the

majority of nodes operate on bin 3 with twice as many queries. With less queries (and

larger backpointer usage), the increase in the success rate over our selectedc = 4 is very

small compared to the increase in stress. As the indices get more accurate, the method

becomes almost insensitive to the value ofc.

Next, we measure the scalability of our method with group sizes ranging from 10 to

2,000 peers using the random topologies. Requesters make only 10 searches on average,

immediately followed by a single push phase from the server. For SCAMP, the member-

ship protocol is run before each different group size. For RM, det-RM and SCAMP, we

setB = 3,F = 1, which proves the best combination taking into consideration both the

67

0 100 200 300 400
time(sec)

20

40

60

80

100

%
 o

f
co

nt
ac

te
d

m
em

be
rs

lr=.2
lr=.6
lr=1
lr=6
SCAMP

Figure 3.9: Success rate over variableλr

values (Tn = 10sec)

0 100 200 300
time(sec)

1

1.5

2

2.5

3

st
re

ss

lr=0.2
lr=0.6
lr=1.0
lr=6.0
SCAMP

Figure 3.10: Stress values over variableλr

values (Tn = 10sec)

success rate and stress metric. Figure 3.8 presents the results.

Our method is very successful in all group sizes, deteriorating only slightly as the

members increase. This happens because with more requesters, their average distance

from the server increases (the number of peers reachable from a node increases expo-

nentially with the hop distance). This makesAPSsearches (and its indices) less accurate

for some requesters. The RM schemes produce a similar number of messages regardless

of the group size, while the closest competitor (SCAMP) has roughly twice the stress

value ofAGNO, without including the overhead of the membership phase. Our method

manages to contact a very high percentage of the members (86-99.5%) using an almost

constant message ratio over the group size.

3.3.2 Sensitivity toλr

In this section, we try to evaluate the effectiveness of ourλr estimator and the

computedξ values over the random topologies. Results for the power-law graphs are

qualitatively similar.

Assuming a group size of 1,000 peers, we try to evaluate the performance ofAGNO

68

0 100 200 300
time(sec)

40

60

80

100

%
 o

f
co

nt
ac

te
d

m
em

be
rs

T=0.2Tr
T=0.5Tr
T=0.9Tr
T=Tr
T=2Tr

Figure 3.11: Success rate for different val-
ues ofT (Tn = 10sec)

0 50 100 150 200 250 300
time(sec)

0

20

40

60

80

100

%
 o

f c
on

ta
ct

ed
 m

em
be

rs

1

1.2

1.4

1.6

1.8

2

st
re

ss

High-Low-High
Low-High-Low

Figure 3.12: Adaptation to a change inλr

by a factor of 20

for differentλr values. Figures 3.9 and 3.10 show the results. Not surprisingly, the larger

the value ofλr , the faster the increase in the success rate, since indices get accurate

faster. Another observation is that, regardless of the average request rate, our method

asymptotically manages to contact all interested peers and reach a very low stress level

(below 1.3). For most realistic scenarios (Tn � Tr), the choice ofTn does not affect

AGNO’s performance. In the very rare cases thatTn < Tr , we just setT = O(Tn) to achieve

comparable adaptation. In all cases, our adaptive aging mechanism selects a suitable value

for ξ such that the stress remains almost constant and below 1.4, half the value of the best

of the remaining schemes (SCAMP). For small request rates, peers adapt using initially

low and then higher quality bins (thus the slight variation in stress). The smaller the value

of λr , the longer this adaptation takes.

The value ofT defines how aggressive the aging is. The smaller it gets, the bigger

ξ becomes and thus the bigger the reduction in the reverse index values. Figure 3.11

shows how the success rate ofAGNO, given 1,000 peers making requests atλr = 1/sec

(andTn = 10sec), varies by changing the value ofT relative to the average request period

Tr = 1/λr . Our default choice forT = 2Tr yields very good results, while choosing values

69

close to the request period also produces fast learning. AsT decreases more, the success

rates increase at much smaller rate. Surprisingly, even if we employ twice as aggressive

an aging as the average request rate, over 80% of the members will be contacted after

threeAGNOpushes (30 seconds). Nevertheless, it is not safe to assume that the larger the

value ofT the better. This would be the case if, for example, we had a static group size

(no aging necessary); a significant number of member departures combined with a large

value forT would delay the adaptation to the new group size and cause more messages to

be created than necessary.

Finally, Figure 3.12 shows how effective our adaptiveλr estimation scheme is. We

simulate the extreme case where the 1,000 requesters suddenly change their query rates by

a factor of 20 (fromλr = 4/secto λr = 0.2/secand vice versa). Our goal for the transition

from high to low rate is to quickly decreaseξ so that our success rate is not affected. For

the transition from low to high rate, we wish to quickly adjust the newξ value according to

the increased requests, such that no more than the necessary indices increase their value.

We name our two runs high-low-high and low-high-low respectively: Starting with a rate

of λr = 4/sec(0.2/sec), requesters drop (increase) their average number of requests to

0.2/sec (4/sec) at timet = 100sec. At time t = 200sec, they increase (decrease) their

rates back to 4 queries/sec (0.2/sec). The top two lines correspond to success rates while

the bottom two to the respective stress values. The maximum observed decrease in the

success rates at 100 or 200 seconds is only 2%, while the stress values remain almost

unaffected (increase equal to 0.01).

70

0 100 200 300 400
time (sec)

1

2

3

4

5

st
re

ss

dep=0.1
dep=0.2
dep=0.5
dep=0.8

0 100 200 300 400
time

0

20

40

60

80

100

su
cc

es
s

(%
)

Figure 3.13: Stress and success rates when a different ratio of peers depart at time
t=100sec (λr = 1/sec,Tn = 10sec)

3.3.3 Changes in Group Size

We now evaluate the performance ofAGNOunder dynamic changes in the group

size. Our goal is to allow for members to join or leave the group with the minimum

amount of performance degradation. Employing this approach that ties group member-

ship to the interest (or lack thereof) of peers for objects, we require no coordination be-

tween members nor any single authority node.

Figure 3.13 shows how our two metrics are affected by having 10%–80% of the

1,000 requesters leave the group (stop making queries) at timet = 100sec. We assume that

all these nodes jointly and instantly decide to leave the group (as a worst-case scenario).

In all runs, the stress value peaks at the time of the departures, since the same number of

peers are notified but fewer are now considered as members. The size of the departing sub-

group directly affects the stress increase. The stress value instantly drops due to our aging

mechanism, but it does not reach its previous value (though it decreases very slowly). This

is due to the fact that a peer’s indices get updated not only when it makes a request but also

71

150 200 250 300 350 400 450 500
time (sec)

60

70

80

90

100

%
 o

f c
on

ta
ct

ed
 m

em
be

rs

AGNO
RM
det-RM
SCAMP

Figure 3.14: Success rate after a series
of member departures and arrivals (λr =
0.5,Tn = 10)

150 200 250 300 350 400 450 500
time (sec)

0

10

20

30

40

50

st
re

ss

AGNO
RM
det-RM
SCAMP

Figure 3.15: Stress after a series of mem-
ber departures and arrivals (λr = 0.5,Tn =
10)

when any request passes through it. Therefore, while shortcuts for departing peers expire,

indices leading to them may still have large values, depending on the relative positions of

other requesters in the overlay. The amount of increase for{10%, 20%, 50% and 80%}

of the members departing is{7%, 12%, 38% and 100%} respectively. The amount of

increase gets reduced as the original group size gets smaller, which proves our previous

point: Assuming 200 initial members instead, the respective stress increase percentiles are

{7%, 9%, 16% and 25%}. On the other hand, as the included graph shows, our success

rate is not affected at all. We show next that the decrease in stress after new members join

compensates for the increase after peer departures.

Figures 3.14 and 3.15 display the performance of the compared methods under a

combination of member joins and leaves. At timest = {200,350}sec, 50% of the current

group members decide to leave. Att = {250,280,300,400,420,440}sec, 50% of the non-

active requesters re-join the group. Members make requests atλr = 0.5/sec, while the

group notification phase is performed every 10 secs.

The success rate shows an instant decrease at the exact time of arrival which is

72

proportional to the number of joining peers. Nevertheless, always more than 85% of the

current members are contacted, andAGNO has learned of their presence by the exact

next transmission. In the next push phases, the method quickly reaches its previous lev-

els. On the other hand, the value of stress decreases after member joins and balances the

small increase that occurs after member departures. SCAMP and the two rumor spread-

ing schemes show big variations in the stress metric. For RM and det-RM, this happens

because of the change in the group size (same number of messages regardless of peer

membership), while for SCAMP this is due to the subscription and unsubscription pro-

cesses.AGNOcontacts the vast majority of members at a cost 1 to 10 times lower than

the closest compared method (SCAMP).

3.3.4 Sensitivity to the Binning Scheme

In all our experiments, we used the same binning scheme. The question is how

sensitiveAGNOis to different binning configurations. An adaptive process that will adjust

an initial binning configuration according to the method’s performance is a difficult task:

Even if the server knows about the number of interested peers that received a notification

(by members acknowledging through piggybacking), finding how many messages were

sent in a distributed manner requires extra overhead. Furthermore, success rate and stress

are often conflicting goals.

Assuming the simple solution of a single binning scheme, we evaluate AGNO using

different bin configurations. We measure the success rate and stress of a single push phase

to a group of 1,000 peers each having made 20 requests on our set of random graphs. We

73

-60 -40 -20 0 20
% variation in success rate

-20

-10

0

10

20

30

40

50

 %
 v

ar
ia

tio
n

in
 s

tr
es

s

Figure 3.16: Comparison of 100 different binning configurations to the original one

produce 100 different binning configurations with 2, 3 and 4 bins for direct comparison

to the original scheme. Our study confirms that if we follow the empirical conditions of

Section 3.2.1, even with coarse granularity (2 bins), our method’s performance exhibits

small variation. On the other hand, random choices for the bin limits and/or threshold

values result in performance significantly degraded. In Figure 3.16, each point represents

the percentile variation in our 2 basic metrics of a bin configuration compared to the

original one. Configurations marked with ‘×’ represent choices that follow our rules,

while ‘◦’s represent bin settings that do not adhere to those rules. Even random choices

of the binning scheme which reasonably respect our simple conditions exhibit less than

10% variation.

3.3.5 Real Traces

We now present results from simulations using real traces. In our first experi-

ment, we monitor the change in content for two very popular web sites, CNN and BBC

74

0 200 600 800 1000 1200 1400 1600
Time (min)

0

20

40

60

80

100

%
 o

f c
on

ta
ct

ed
 h

os
ts

CNN home page
BBC news

0 500 1000 1400
1

1.5

2

2.5

3

st
re

ss

CNN home page
BBC news

Figure 3.17: Average results for one-day periods for the CNN and BBC news front pages

news. We retrieve their home pages (http://www.cnn.comandhttp://news.bbc.co.ukre-

spectively) at a minute granularity and record the time that their content has been modi-

fied. To determine that, we extract the officialLast Updatedstring from the page and also

directly compare the files1. Each page is preprocessed withHTML Tidy [48]. Taking

advantage of the fact that the overall structure of the same page rarely changes, we dis-

card code, advertisements and pictures that change after each browser refresh, focusing

on content. We monitor the changes over a period of 2 weeks, from Feb. 16th to Mar. 1st,

2004.

The CNN home page changes every 18.1 minutes on average, while BBC’s news

page changes every 8.6 minutes. In our experiments, we use the same 10,000-Node

power-law graphs of the previous sections and a group size of 1,000 requesters, making

requests with exponentially distributed interarrival times (λr = 0.1/min) for those two

pages. The notification phases occur each time a page is updated, as given by our col-

1This method was developed as part of a project for the CS724 Database graduate course in University

of Maryland

75

lected data. At exponentially distributed intervals (an average of 1/15minutes), we choose

with equal probability among the following events: 10% of the members stop requesting

the pages or 80% of inactive members resume their requests or nothing happens. On av-

erage, we vary our setup over 60 times per run. Figure 3.17 shows the results over the

14 1-day periods (averaged over all graphs with multiple runs for each).AGNOmanages

to exhibit very high accuracy and adapts its notification mechanism such that the stress

value always remains stable between 1.6 and 1.7.

Finally, we test the behavior of our scheme in a much more dynamic environment.

We use real traces taken from NYSE stock trades, which describe the accesses, volumes

and values of all quotes in a 10-day period (Apr. 3-14, 2000). Aggregating to minute gran-

ularity, we monitor quote activity (accesses-updates) during a busy time interval (11:00-

11:59am) each day. For our simulation, using the same power-law topologies as in the

previous experiment, we assume a standard client population (group members) equal to

the maximum number of accesses recorded at any minute per individual quote. We model

our system such that, given there wereQ accesses at a given minute, only the firstQ clients

are assumed to query for that object. This is equivalent to having a variable request rate

for each member. Pushes were conducted whenever a quote’s value was updated, with a

maximum of one notification per minute.

Figure 3.18 shows the results for three of the most active quotes, SUNW (Sun Mi-

crosystems Inc.), MSFT (Microsoft Corp.) and ORCL (Oracle Corp.) The statistics for

each of these quotes are presented in Table 3.3. The interesting statistic here is the high

standard deviation value for all three quotes, which translates to a wide range of different

λr rates for each requester in our experiments. Updates (=push transmissions) were per-

76

0 10 20 30 40 50
Time (min)

0

20

40

60

80

100

%
 o

f c
on

ta
ct

ed
 c

lie
nt

s

MSFT
SUNW
ORCL

0 10 20 30 40 50
Time (min)

1

1.2

1.4

1.6

1.8

2

st
re

ss

MSFT
SUNW
ORCL

Figure 3.18: Results for a 7-day period for the Microsoft, SUN and Oracle quotes between
11:00am and 11:59am

Mean Max STD

SUNW 148 1037 118

MSFT 240 1171 184

ORCL 165 1137 101

Table 3.3: Access statistics for the three quotes

formed almost every minute. For all three datasets,AGNOachieves a high success rate

with few small spike-shaped decreases occurring. A more detailed analysis of the data

shows that these coincide with sudden increases (often more than 400%) in the group size

(or accesses per minute), as were observed in the data. Given traces for more days, those

spikes would have less weight on the averages. We also depict the average stress values

for the quotes, which are kept at a very low level throughout the whole interval. These

results also show that our adaptive forwarding and aging mechanisms work effectively

even in the most dynamic environments. Results for less popular quotes or for time inter-

vals outside high-access periods are qualitatively similar and were not selected since the

average group size was less than 100.

77

3.4 Summary

AGNOis an adaptive and scalable message dissemination scheme for unstructured

Peer-to-Peer networks. Our method integrates knowledge accumulated during searches to

enable content-providers contact interested peers with very small overhead. We described

in detail our adaptive mechanisms to regulate message forwarding according to the quality

of existing knowledge as well as to ensure efficient performance in all group operations. A

variety of simulations using both synthetic and real traces show thatAGNOadapts quickly

to variable request rates and group sizes, being at least twice as bandwidth-efficient as the

compared methods.

78

Chapter 4

Adaptive Replication for Unstructured Overlays

4.1 Introduction and Overview of our Approach

While Peer-to-Peer’s success can still be largely attributed to file-sharing applica-

tions (e.g., [49–51]), an increasing number of different utilizations of this technology have

emerged. P2P has been proposed to assist in web caching [52], instant messaging [53],

e-mails [54], update propagation [36], conferencing [37], etc.

A basic requirement for every P2P system is fault-tolerance. Since the primary ob-

jective is resource location and sharing, we require that this basic operation takes place

in a reliable manner. Nevertheless, in a variety of situations, the distributed and dynamic

nature of the environment stresses the system’s ability to operate smoothly. For example,

the demand for certain content can become overwhelming for the peers serving these ob-

jects, forcing them to reject connections.Flash crowds, regularly documented surges in

the popularity of certain content, are also known to cause severe congestion and degrada-

tion of service [55]. Failing or departing nodes further reduce the availability of various

content. Consequently, resources become scarce, servers get overloaded and throughput

can diminish due to high workloads.

Data replication techniques are commonly utilized in order to remedy these situa-

tions. Replicating critical or frequently accessed system resources is a well-known tech-

nique utilized in many areas of computer science (distributed systems, databases, file-

79

systems, etc) in order to achieve reliability, fault-tolerance and increased performance.

Resources such as content, location of replicas, routing indices, topology information etc,

are cached/replicated by multiple nodes, alleviating single points of contact in routing

and sharing of data. This has the additional benefit of reducing the average distance to

the objects. Replication can be performed in a variety of manners: Mirroring, Content

Distribution Networks (CDNs [56,57]), web caching [58], etc.

However, these approaches often require full control and provide static replication.

Static replication schemes require a priori knowledge of the popularity/workload distri-

bution in order to compute the amount of replicas needed. In large scale unstructured P2P

networks, peers usually operate on local knowledge, having variable network connectiv-

ity patterns and no control over the induced topology or workload. Data availability and

efficient sharing dictate replication in this challenging environment. Structured P2P sys-

tems (DHTs) provide with the state necessary to accurately identify the paths that requests

take. This information can be used to point out, with high probability, all possible repli-

cation locations. However, such information is not available in unstructured overlays.

File-sharing applications implicitly handle replication through object downloads, while

some force their users to maintain the new replicas for the benefit of others. Yet, this

does not tackle the issue of real-time replication responsive to workload for unstructured

environments.

In this part of our work we presentAPRE(Adaptive Probabilistic REplication), a

replication method for unstructured overlays based on soft-state routing indices. Our ap-

proach focuses on providing an adaptive solution to the problem of availability together

with minimizing the instances of server overloads and serious service degradation. Our

80

Figure 4.1: Part of the overlay network of our model. Dark nodes inside the bold dotted
ellipse representMi , while those inside the thin dotted ellipse representM j . Peers with a
file attached also serve objectsi or j

system dynamically “expands” and “contracts” its resources according to the workload

as perceived locally. New replicas are created in areas of high demand in the overlay,

thus disposing of the need to advertise them. Moreover, this will be done in a completely

decentralized manner, with minimal communication overhead and using absolutely af-

fordable memory space per node.

The framework we use to describe our system is a model as general and realistic as

possible, avoiding many unnecessary assumptions, thus following the general description

of Section 1.3. As a motivating example, assume an unstructured P2P system, where

peers share and request replicated resources. Objects are assumed to be requested reg-

ularly, since their content changes over time: results of a live sports meeting, weather

maps, security updates, real time aggregated statistics, tactical data, etc. Some of the

nodes provide fresh content, while others share versions they have recently downloaded.

Peers that are interested in an object conduct searches for it in order to locate a fresh or

closer replica.

81

Figure 4.1 gives a graphic representation of theAPREframework. For each objecti,

there exists a set of peers called theserver setSi = {si1,si2, . . . ,sik} that serve the specific

object. These are the nodes that, at a given time, are online, store objecti and are willing

to share it. A subset ofSi , themirror set Mi ⊆ Si (the shaded peers) represents the set

of peers that, if online,alwaysservei. This does not imply that all peers inMi will

always be online, their connectivity in the overlay will remain the same, or that they will

never refuse connections. But we can assume, without loss of generality, that these nodes

will be mostly available. Our assumption is not unrealistic: Imagine that these servers

can represent mirror sites/authority nodes that provide up-to-date content. Apart from

the mirror set, other peers that already host or have recently retrieved an object can serve

requests for it (nodes with files attached to them in Figure 4.1). A server set comprises of

these nodes plus the corresponding mirror set.

Naturally, peers may belong to server or mirror sets for multiple objects. While this

is a symmetric environment, it is clear that nodes exhibit different sharing abilities. A

variety of parameters, including storage and CPU capability, popularity of stored objects,

system workload, connectivity, etc, contribute to this fact. Some of these factors remain

more or less static over time (e.g., processing power or the maximum available bandwidth

of a host), while others change dynamically.

Whichever the case, it is safe to assume that each peer in this system imposes a

limit on the services it provides to other peers. This is something that is already utilized

by several file-sharing applications (e.g., Kazaa [49], FTP servers, etc). There exist a

variety of metrics that can be used to realize those limits. Peers may set restrictions

on the number of concurrent connections, their upload bandwidth, the number of shared

82

files, the rate of received requests, etc. In this work, we focus on two of these parameters,

namely workload and object popularity as they are manifested through a single observable

quantity, the request rateλ. It is obvious that servers of popular (or temporally popular)

items receive a larger number of requests, which can possibly affect their sharing ability

as well as the system’s behavior.

Given this general framework, our goal is to design and implement a replication

protocol that will provide efficient sharing of objects (in terms of providing low load

operation), scalability and bandwidth-efficiency.APREis a distributed protocol that au-

tomatically adjusts the replication ratio of every shared item according to the current

demand for it. By utilizing inexpensive routing indices during searches, loaded servers

are able to identify “hot” areas inside the unstructured overlay with a customizable push

phase. Chosen nodes receive copies thus sharing part of the load. Under-utilized replicas

are released, allowing their hosts to store more popular content. The rationale behind

APREis the tight coupling between replication and the lookup protocol which controls

how searches get disseminated in the overlay. By utilizing search state, in a manner simi-

lar toAGNO, we are able to identify in real-time “hot” or “cold” paths and avoid the need

of advertising constantly created replicas. Our experimental evaluation shows that this

method proves very efficient in a variety of metrics and environments.

4.2 Adaptive Replica Expansion/Contraction: APRE

Our main goal is to provide a completely decentralized mechanism through which

the system will adaptively expand its replica size when demand is increased and will

83

Contract Expand

Contract

Normal Operation

Overloaded

Under−utilized

Pe
er

 L
oa

d
Figure 4.2: State transitions in our system

shrink when demand will fall.APRE is based on two basic operations:Expandand

Contract.

The high-level behavior of our system can be described using a simple model (Fig-

ure 4.2): In normal mode, nodes can adequately serve requests and also retrieve objects.

As load increases due to incoming requests, some reach their self-imposed limits. By in-

voking theExpandprocess, we aim at bringing the node status back to normal and lower

the average load for a specific object through the creation of more replicas. Normal op-

eration through the distribution of load will not be necessarily achieved in a single step.

Consider, for example, that a peer initiatingExpandmay receive requests for multiple

objects. Expanding with respect to one of them will probably lower its load, but will not

necessarily bring its level back to normal. As load decreases, nodes can free up space

(and the respective resources) and thus share a bigger portion of the workload.

Let us now discuss why the system would benefit from these two operations. When

parts of the server setSi receive too many requests for objecti, the following may occur:

Clients’ connections get refused, while servers receive an increasing amount of requests

and their performance deteriorates. Both groups would benefit from an increase in the

number of replicas available, especially if those replicas were placed inside the areas of

84

Figure 4.3: The shaded oval represents a server set for a specific object. Our system
expands by creating replicas inside two areas where demand (depicted by arrows) is high.

Algorithm 1 Expand
1: if Replicai at nodes reaches its limitthen
2: P← FindPossibleServers(i); {P∩Si = /0}
3: Activate(i) atY ⊆ P {Replicate at a subset of the nodes in the high-demand area}
4: end if

high demand in the overlay.

Conversely, consider that one or more subsets ofSi have recently received very

few requests for objecti. This practically means that an amount of their storage space is

under-utilized. They could removei to free up space or replace it with another object of

higher demand. We have to stress here the point that the system will not force any peer

to store or serve an object until this becomes necessary. Peers with available storage can

play that role. Contractwill also be invoked when a peer is called to joinSi but cannot do

so without exceeding its limits (e.g., available storage). Note that peers can still choose

to reject a certain action, e.g., refuse to remove an object in order to serve a new one.

Algorithm 1 describes the high-level operation of theExpandprocess. It is invoked

by peers receiving more requests than those that they are willing to accept. Overloaded

peers have to identify the setP, i.e., candidate nodes for replication inside query intensive

areas. A subsetY of these nodes is selected and, upon their agreement, the new replicas

are transfered (Activate). Figure 4.3 shows an example of our system expanding in re-

85

Figure 4.4: Due to low demand in certain regions of the server set (depicted as white areas
inside the dotted line), our system contracts its replica set

Algorithm 2 Contract
1: if (Replicai at nodes is under-utilized)or (s receivesActivate(j)) then
2: i←ChooseOb ject(); {i is among the candidates for eviction}
3: Deactivate(i);
4: if (s received anActivate(j)) then
5: Activate(j);
6: end if
7: end if

sponse to increased demand for a specific object. On the left, we see some initial server

set (gray oval) and the demand fori (arrows from various parts of the network). Servers

in two areas are overloaded with requests, thus forcing extra replicas in those two areas

to be activated.Si expands, as we see on the right part of the picture, in response to the

current demand for objecti.

Algorithm 2 describes ourContract process. It is invoked by a peer that either

receives a low amount of requests for the object(s) it serves or is requested to serve a

more popular one but cannot do so without freeing up some space. In any case, peers stop

serving the object(s) that fall into these categories (Deactivate). FunctionChooseObject

decides at each point which object should be deactivated at nodes that have decided to

serve a new object (i.e., received anActivate) but have reached their storage capacities.

Natural choices are to have the new replica replace the least recently requested or the least

popular one. Figure 4.4 shows that two areas of the server set (the areas inside the dotted

86

line) do not receive any requests for objecti. This leads to the contraction ofSi which is

now the gray oval on the right part of the figure. Our goal is to achieve a system behavior

that resembles the buffer management techniques in databases: Viewing the P2P network

as a large buffer, we want to decide (in a distributed and dynamic manner) the ratios of

objects in the buffer according to user-specified queries (i.e., workload).

4.2.1 Protocol Implementation

In this section we describe the actual implementation of theAPREprotocol as de-

scribed by theExpandandContractalgorithms. We assume that servers measure load

and perform replication on a per-object basis, at the same level of granularity with lookup

and reverse indices ofAPSandAGNOrespectively. Vital to the success of our scheme

are the following:

1. A mechanism to identify object popularity

2. A mechanism to create replicas inside high-demand areas

3. Minimization of communication within each server set

The conditions of line 1 in Algorithms 1 and 2 describe whenExpandor Contract

are initiated. We believe that each peer can independently choose when to initiate an

expansion or when to deactivate a replica. Therefore, there is no need for any message

exchange between servers.

We assume that each serversdefines the maximum number of requests that replicai

can accept per time unitLimitup
s,i . If it receives less thanLimitdown

s,i requests for objecti, this

87

Figure 4.5: Visual representation of a sample power-law graph, after several searches for a
single object using the APS method. Solid line arcs show high index value links between
nodes

replica is deactivated/deleted from the node’s cache without any further communication.

Alternative measures such as the maximum number of allowed connections can be used.

These limits can be optionally advertised inside the network upon connection or replica

activation. If a peer cannot sustain its advertised rates, then it may choose to advertise

new maximum capacities. This can potentially assist requesters by hinting them to avoid

very high request rates. Nevertheless, it is not required by our approach. Obviously, the

total maximum capacity for servers is equal to∑
i

Limitup
s,i , wherei refers to every object

thats serves.

In order to identify “hot” areas inside the overlay (i.e., locate setP), we utilize

a push phase similar to the one featured inAGNO. Paths with large APS-index values

connect the requesters to the content providers (Figure 4.5). Peers storereverse index

values for each of their neighbors. Reverse indices are used to identify (paths to) active

88

s s

Figure 4.6: After searches for an object ats take place, reverse index values are updated
and a push phase creates new replicas inside areas of high demand (dotted links)

requesters in the overlay on a per-object basis.

In order to discover candidate new servers to host replicas ofi, whenever the local

load for objecti (measured in requests per time unit)λs
i (t) exceeds the limitLimitup

s,i , the

respective servers issues a special message which is forwarded tok neighbors with thek

highest reverse index values. The push message contains the tuple(s, i,size(i),TTL, Di(t)):

The overloaded server’s ID, the ID and size of the object that caused the overload, the

hop distance left and the amount of overloadDi(t) = λs
i (t)− Limitup

s,i . Each node that

receives this message, independently decides whether to joinSi according to our imple-

mented replication policy. This phase continues with each intermediate node forwarding

this message tok neighbors in a similar fashion until either its TTL value reaches zero or

a duplicate reception is detected. Figure 4.6 shows an example of our scheme at work:

Black nodes represent requesters of the item held at nodes. APSsearches are depicted

by arrows. In the push phase, paths with high index values are visited (links with dotted

lines). The new shaded nodes with bold outline represent possible replicas created.

Reverse indices get updated in the same manner as inAGNO, while anagingfactor

forces their values to decrease with time. InAGNO, push phases are assumed to be less

89

frequent than request rates (λr� λpush), thus the need for an estimate ofλr , through which

the tolerance parameterT is defined (see Section 3.2.1). However, since our priority is

for the system to be as reactive as possible, we assume that servers may initiateExpand

frequently (checking for overloads onevery time unit). In this case, the aging scheme

can be made simpler by avoiding the estimation ofλr . Instead, we can setT ≤ 1/λs
i (t) in

equation 3.2.1.(1), substituting the estimator with the observed rate at each time step.

Each node on the path independently decides whether it will joinSi according to our

replication policy. Currently, we have implemented three:FurthestFirst, ClosestFirstand

Uniform. In FurthestFirst, the probability of a node joiningSi increases with the message

distance, while the opposite occurs inClosestFirst. All nodes are given the same chance

in Uniform. After subsetY has been identified, replicas are transmitted and activated.

In order forAPREto adapt to various workloads and avoid system oscillation [59]

due to replicas with perceived load a little above or below the limits frequently enter-

ing and leavingSi , we introduce ascaledreplication policy: We regulate the number

of replicas activated per push phase according to the amount of overload for objecti,

Di(t), as observed by the server initiating the push at time t. To achieve that, we de-

fine a set of intervals{d1,d2, . . . ,dm} that group the different values ofDi . Each inter-

val dk : {(lk,uk),{pk1, pk2, . . . , pkTTL}} is defined by an upper and lower value and TTL

probability values, one for each hop distance. For the interval limits, we require that

l1 < u1 = l2 < u2 . . . < um. When a server receives a push message, it joinsSi with prob-

ability pkδ , if lk < Di ≤ uk and the TTL value in the message isδ. Probability values

increase asD falls into higher number intervals (i.e.,pkδ < p(k+1)δ
). Thus, a heavily

overloaded server will create more replicas than a less overloaded one and marginally

90

overloaded peers will not alterSi significantly. We note here that each server locally

estimatesλi(t), the number of requests for objecti per time unit.

Our experimental evaluation confirms that expanding relative to the size of excess

load D is necessary to achieve smooth changes in the server-set. Our results also show

that peers can further avoid oscillations by monitoring the number of times they joined or

left Si inside a small window of time. Peers that repeatedly leave and re-join a server set

can choose a single state (either host the object or not) for the followingτ time steps. If

the size of the object and the peer’s free space allow it, it is preferable that the node serves

objecti for τ time steps, regardless ifλi(t) < Limitdown
i .

4.3 Performance Evaluation

We test the effectiveness ofAPREusing a message-level simulator written in C.

Requests for objecti occur at rateλi with exponentially distributed inter-arrival times. At

each run, we randomly choose asinglenode that plays the role of the initialMi ≡ Si set

and a number of requesters, also uniformly at random. Our experiments involve a single

object each time (thusλi ≡ λr). This is done for two reasons: First, the only dependency

that exists between replication of different objects relates to a possible deactivation of

an object before the activation of a new replica. In the previous section we described

howAPREtackles this issue. The more practical reason relates to the amount of memory

required to simulate multiple objects for our graphs.

Periodically, 10% of the current requesters stop querying for the object and are

replaced by an equal number of other (previously non-requester) nodes. Results are av-

91

eraged over several tens of runs over sets of 10,000-noderandomandpower-lawgraphs

with average node degrees around 4 (similar to gnutella snapshots [45]). These are created

with the BRITE [46] and Inet-3.0 [33] topology generators.

To evaluate the replication scheme, we utilize the following metrics: The average

loadΛ which is the number of received requests per time unit averaged over the number

of servers|Si |. Obviously, regarding our load-balancing requirement, we also need to

measure the disparity of the load distribution. To that direction, we compute the standard

deviationσΛ and theGini coefficient [60]. High values for both these metrics indicate

that load is unevenly balanced acrossSi . Besides the size of the server set, we also keep

track of the number of replica activations/de-activations. Frequent changes inSi incur

huge overheads in terms of messages and bytes transferred.

APRE Parameters:We assume that(Limitup
s ,Limitdown

s) = (18,3) requests/sec, for

each servers. To calculate the decay of the reverse indices, we choose an aggressive value

of T = 0.5
λi(t)

. Different values ofT ≤ 1 sec produce similar results. During theExpand

push phase, peers forward to the two neighbors with the largest reverse index values.

Servers check whether to initiateExpandandContractevery time unit for fast response.

We assume no item can be replicated at more than 40% of the network nodes (maximum

replication ratio). This external condition simulates the natural limitations in storage that

exist in most systems. We present experiments that show our method’s performance by

altering this ratio.

We utilize a scheme with 3 distinct intervals for values ofD: [0,5],(5,20] and

(20,∞). The results did not vary considerably for schemes with more intervals. As the

intervals get fewer,APREbecomes less responsive toD, with the number of created

92

replicas having smaller variation. This affects the performance of the replication during

the warm-up state as well as during sudden surges in requests. The chosen configuration

works well and is used in the entirety of our simulations. For the first interval andClosest-

First, we use probabilitiesp1 = {.12, .06, .03, .02, .01}, p2 = {.22, .10, .06, .04, .02}, p3 =

{.35, .18, .10, .07, .04}. These are reversed when we useFurthestFirst. Uniform uses a

(.05, .08, .15) probability for each of the 3 intervals. Thus, we roughly double thepkδ

value from one interval to the next and halve it from one hop to the next in the same

interval. ForUniform, we roughly select the average of thepkδ ’s of the other methods

as thepk value. Increasing these probabilities causes more objects to be created, often

reaching the maximum replica count, while much smaller values delay the responsive-

ness ofAGNO(in high-demand settings). Increasing the difference betweenpkδ andpkδ+1

changes the ratio of replicas created at different distances, while decreasing it produces

an effect similar toUniform. While we experimented with different configurations, our

results are based on the described one.

We compareAPREagainst the following methods: In therandom replicationscheme

(henceRandom), we randomly create the same number of replicas as our method in its

steady state at the start of the simulation. In path replication (hencepath-cache), each

time a server is overloaded we replicate the object along the reverse path to the requester.

This is similar to the replication applied by Freenet [61]. In all cases, theAPSmethod

is used for lookups, while inpath-cachereplica deactivation occurs using ourContract

scheme. Obviously, by varying the push method and the replication probabilities,APRE

can behave either aspath-cache, Randomor in between, with a variable rate of replica cre-

ation per workload. This allows for full customization according to the system’s primary

93

5 10 15 20
lambda (requests/sec)

0

5

10

15

20

25

A
ve

ra
ge

 L
oa

d
(r

eq
ue

st
s/

se
c)

APRE-FurthestFirst
APRE-ClosestFirst
APRE-Uniform
Path-cache

5 10 15 20
lambda (requests/sec)

0

500

1000

1500

2000

2500

3000

3500

4000

|S
i|

APRE-FurthestFirst
APRE-ClosestFirst
APRE-Uniform
Path-cache

Figure 4.7: Variation inΛ and|Si | over increasingλr values

objects, namely low load (more replicas) or space (replicas only where necessary).

4.3.1 Basic Performance Comparison

For our default setting, we assume 2000 requesters and vary theirλr . The results

are presented in figure 4.7.

APREeffectively expandsSi in order to accommodate the increased demand and

manages to keep the average load into the “Normal Operation” zone, well belowLimitup
s

(identified by the bold horizontal line). Our first observation is thatFurthestFirstachieves

lower Λ values by creating more replicas thanClosestFirst. The paths traversed during

the push phase contact an increasing number of nodes as their distance from the initiator

increases, thus givingFurthestFirstan increased probability of replication.Uniform be-

haves in-between, creating replicas equally at all distances.Path-cacheexhibits a steeper

increase inΛ and fails to keep its value within the acceptable region for largeλr . Choosing

only single successful paths to replicate along prevents the algorithm from doing further

replication. Increased demand merely forces the algorithm to utilize a few more paths,

which is the reason why this method fails to increase the replica set to meet the limits.

94

5 10 15 20
lambda (requests/sec)

0

20

40

60

80

%
 o

f o
ve

rl
oa

de
d

se
rv

er
s

APRE-FurthestFirst
APRE-ClosestFirst
Path-cache
Random

Figure 4.8: Ratio of overloaded servers vs.
variableλr

5 10 15 20
lambda (requests/sec)

0

10

20

30

40

50

60

70

80

%
 c

ha
ng

e
in

 S
i

APRE-FurthestFirst
APRE-ClosestFirst
Path-cache

Figure 4.9: Percentage of change in|Si | vs.
variableλr

Figure 4.8 displays the average percentage of overloaded servers at any time for

all three methods. Our technique clearly outperforms the two competing methods: For

λr < 10/sec, less than 4% of servers are overloaded, while about 10% and 25% are doc-

umented as overloaded for the largest demand.Random, having the same number of

servers, exhibits twice as many overloaded nodes. Even though the learning feature of

APShelps in redirecting queries, yet the load cannot be evenly distributed.Path-cache

shows the worst performance (at least 3 times larger ratio of overloaded peers thanAPRE),

reaching 75% at the highestλr value. Replicating closer to requesters creates, as we saw,

more service points, thus marginally reducing the number of overloaded instances for

FurthestFirst(Uniformexhibits the same curve).

Moreover, we show thatAPREachieves a much more robust replication. The sta-

bility of the server population constitutes an important metric to the evaluation of a repli-

cation scheme. This is measured by the average ratio of new replicas entering the server

set per replication phase over the size of the server set. This quantity approximates the

amount of marginally under-utilized replicas in the overlay: Receiving few requests, they

95

5301088 2219 2874 3355
3703

3999

3999

687

1040

1704

2122

2340

2528

2730

3068

772 1583 3210
3999

3997

3999

3998

3997

5 10 15 20
lambda (requests/sec)

0

5

10

15

20

25

30

35

A
ve

ra
ge

 L
oa

d
(r

eq
ue

st
s/

se
c)

APRE-FurthestFirst
APRE-ClosestFirst
Path-cache

Figure 4.10: Variation in the average load
vs. variableλr (5000 requesters)

5 10 15 20
lambda (requests/sec)

0

10

20

30

40

50

%
 o

f c
ha

ng
e

in
 S

i

APRE-FurthestFirst
APRE-ClosestFirst
Path-cache

Figure 4.11: Percentage of change in|Si |
vs. variableλr (5000 requesters)

get deactivated. Server overloads force them to get re-activated, producing an oscillat-

ing effect. Obviously, this is a highly undesirable situation: network and local resources

are burdened by a multiplicative factor, since replicas need both control messages and

data transfer for reactivation. Figure 4.9 shows thatAPRE is particularly robust, alter-

ing at most 3% ofSi per push phase, whilePath-cacheoscillates and performs poorly in

most runs. altering a large percentage of the server set. The variability in the amount

of oscillation is due to the effect we described before: An increase in the demand is not

always followed by an increase in the number of replicas. In these situations, the existing

ones receive the extra amount of requests (assisted by theAPSscheme), thus reducing the

marginally idle servers.

The same experiment is repeated with 5,000 requesters, which constitute 50% of

the overlay (see Figure 4.10 where we annotate the respective|Si | value over each point).

APREagain manages to keep the system within its limits, except for the two cases where

even the largest replica set cannot achieve that (75k and 100k total queries per second).

Our method documents its largest ratio of overloaded servers in those two settings (30%

96

100 200 300 400 500 600 700 800 900 1000
Time (sec)

0

10

20

30

40

50

60

A
ve

ra
ge

 L
oa

d
(r

eq
ue

st
s/

se
c)

lambda = 10/sec
lambda = 8/sec
lambda = 4/sec
lambda = 2/sec

100 200 300 400 500 600 700 800 900 1000
Time(sec)

1000

2000

3000

4000

|S
i|

lambda = 10/sec
lambda = 8/sec
lambda = 4/sec
lambda = 2/sec

Figure 4.12:Λ and|Si | over time for 5000 requesters and multipleλr values

and 60% respectively). Figure 4.11 shows the amount of change in the server sets of the

two methods.APREis much more stable in theSi population for both strategies, while

Path-cachedeteriorates compared to the results for 2000 requesters.

Finally, Figure 4.12 shows howΛ and|Si | vary with time, usingClosestFirst. For

all values ofλr , APREmanages to bringΛ to a steady state within few time steps, a state

which is hence maintained with almost no deviation. The same is true for the size ofSi ,

with the exception that for high total demand, it takes longer to reach the steady state.

This is due to the fact that there is a limit to the maximum amount of replication per push

phase for our method (as there is forpath-cache) that causes the delay in reaching the

constant values.

Table 4.1 summarizes our observations for this setup by documenting the perfor-

mance of the three schemes for a variety of metrics.APREmanages to keep bandwidth

consumption steadily low in all runs: The number of push messages duringExpandre-

mains constant, while replicating inside query-intensive areas allows for an active reduc-

tion to the average distance between requesters and servers. TheRandommethod shows

an increased average distance to the objects compared toAPREandpath-cachethat repli-

97

Table 4.1: Performance Comparison under a variety of metrics (5000 Requesters)

Method λr = 1/secλr = 4/secλr = 8/secλr = 20/sec

Search Mesg 9.6 7.8 7.8 7.8

APRE Push Mesg 41.7 39.7 39.2 39.4

(ClosestFirst) Hit Distance 3.4 2.2 2.0 1.9

% Overloaded servers 1.6 6.8 20.2 60.8

Search Mesg 10.2 8.4 7.9 7.7

Path-cache Hit Distance 3.6 2.5 2.2 2.0

% Overloaded servers 11.1 23.5 37.8 94.3

Search Mesg 10.4 10.3 9.4 9.0

Random Hit Distance 3.7 3.0 2.5 2.2

% Overloaded servers 8.9 15.0 23.0 54.4

cate along search paths. Our method exhibits a far smaller percentage of overloaded

servers compared topath-cachebut it is comparable toRandomfor the largest value of

λr . This happens becauseAPREhas reached the maximum replication ratio by exhausting

all possible paths where requests are coming from in the overlay.

4.3.2 Load Distribution Between Replicas

While a low number of overloaded servers and a lowΛ value are important, we

have not yet investigated how load is distributed among the replicas. Obviously, balanced

distributions are preferred to those showing a high degree of variation. Various metrics

that quantify the degree of disparity of a number or measurements have been proposed.

We investigate two of them, namely thestandard deviationand theGini coefficient.

Returning to our 2000 requesters experiment, Figure 4.13 compares the standard

deviation ofΛ for the three methods. We note thatAPREexhibits smallσΛ values, rang-

98

5 10 15 20
lambda (requests/sec)

0

5

10

15

20

A
ve

ra
ge

 L
oa

d
St

an
da

rd
 D

ev
ia

tio
n

APRE - ClosestFirst
APRE - FurthestFirst
Path-cache
Random

Figure 4.13: Variation ofσΛ vs. variable
λr (2000 requesters)

2 4 6 8 10 12 14 16 18 20
lambda (requests/sec)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

G

5000requ
2000requ

Figure 4.14: Average values ofG as a
function ofλr for theClosestFirststrategy

ing from 3.3 to 11. It increases to 14.9 only whenλr = 20/sec. These values are either

smaller or at most comparable toΛ, a good indication of load balancing. On the other

hand, randomly placing the same number of replicas yields significantly worse load dis-

tributions, withσΛ values roughly twice as large. This is a clear indication of the need for

correct placement inside structureless multi-path overlays. Finally,path-cachebehaves

in-between, with larger deviation values thanAPREthat converge as load increases. This

happens since both methods base their replication on paths connecting requesters and

servers. Our method utilizesmultiple paths that consistently carry requests, thus it out-

performspath-cachein almost every setting.

TheGini coefficient(or Gini ratio)G is a summary statistic that serves as a measure

of inequality in a population [60]. The Gini coefficient is calculated as the sum of the

differences between every possible pair of individuals, divided by the mean size:

G =

n
∑

i=1

n
∑
j=1
|xi−x j |

2n2µ
,

wheren is the number of observations whose values are given byxi , andµ=

n
∑

i=1
xi

n is their

99

mean. The Gini coefficient has been used as a measure of inequality in size and fecundity

in plant populations in numerous studies (e.g., Weiner 1985, Geber 1989, Knox et al.

1989, Preston 1998). Its value ranges between 0 and 1, where 0 corresponds to perfect

equality and 1 corresponds to the theoretic case of an infinite population with only one

individual having a non-zero value. Recent work [62] proposed its use as a load-balancing

metric. Assuming our population comprises of the number of received requests by each

replica, we calculate the value ofG as an index of load distribution among servers. Note

here that a low value ofG is a strong indication that load is equally distributed among

them, but does not necessarily imply that this load is low.

Figure 4.14 shows the average values ofG for all different values of request rates in

both settings (2k and 5k requesters). In low-load runs, servers show very similar loads. As

the total load increases (either through an increase inλr or the requester population), so

does the inequality between the received requests. The authors in [62] identify thatG <

0.5 presents very well-balanced configurations, while whenG is approximately between

0.5 and 0.65, relatively fair distributions are achieved.

Our scheme, while not explicitly providing any mechanism to balance load inside

Si , manages to provide very well-balanced configurations for medium to low loads and

fair ones for medium to high loads. The reason for that is because the push phase (thus,

by extension, the creation of new replicas) operates symmetrically on multiple (k) high-

quality paths. So, neither the originating server gets starved of requests, nor the newly

established ones differ substantially in their positioning. Only when|Si | approaches our

artificial limit of 4000 peers we notice that load allotment gets uneven.

To visualize and confirm these findings, Figures 4.15, 4.16 plot the load distribution

100

.

.

...

0 200 400 600 800 1000
Si

1

10

100

L
oa

d
(r

eq
ue

st
s/

se
c)

APRE.

...
................
........

200 400 600 800 1000
Si

Path-cache.
...

..................................
........................

.......................................
500 1000

Si

Random.

Figure 4.15:Si load distribution forλr = 4/sec(2000 requesters)

...

0 500 1000 1500
Si

1

10

100

L
oa

d
(r

eq
ue

st
s/

se
c)

APRE. ..

..
......

500 1000 1500
Si

Path-cache.
...

.........................
.............................

500 1000 1500
Si

Random.

Figure 4.16:Si load distribution forλr = 10/sec(2000 requesters)

of the server set at a random point in time forλr = 4/secandλr = 10/sec. Servers are

sorted in decreasing order of load. First, we notice that in both casesAPREhas less

servers aboveLimitup (the dotted line). Our method exhibits a less steep curve, with

fewer groups of replicas with similar loads.Path-cacheshows more unbalanced load

and a larger number of servers belowLimitdown. Random replication causes even more

unbalanced load in all runs.

Thus far we established our basic premise, that replication along high demand paths

in the overlay proves an effective and highly robust solution in a variety of metrics and

workloads. Although our method does not explicitly offer load-balancing, it achieves a

well-proportionate load distribution. We also showed that our method is advantageous

to randomly replicating inside the network or merely choosing a single path and fully

101

replicating along it. In the first case, few replicas receive the majority of requests, while in

the second case the composition of the replica sets changes very frequently. Our method

outperforms both alternatives by keeping fewer peers over the sharing limit and showing

less disparity in the distribution of load among servers.

4.3.3 Flash Crowds

In the next set of simulations, we examine the behavior of our method when we

experience a sudden surge in the workload. This is often referred to as aflash crowd, an

unexpected rise in requests towards specific content, typically due to some newsworthy

event that just took place. Flash crowds have been regularly documented in web traffic

history (e.g., September 11th) and are known to cause severe congestion at the network

layer. Requests may never reach the servers, while others do so with significant delays

caused by packet loss and retransmission attempts. Content holders are unable to han-

dle the volume of requests, while end-users experience long delays and failures in their

queries.

To simulate this situation, we initiate our system with 500 requesters querying at

rateλr = 2/sec. At time t=401sec, 10 times as many requesters start querying for this

item at rateλr = 12/sec. The parameters return to their initial values at time t=601sec.

On average, the total demand during the flash-crowd period increases by a factor of over

70. Note that this is the worst case scenario, when simultaneously both requesters and

rates increase. We present the variations inΛ and|Si | in the first 2 graphs of Figure 4.17.

APREpromptly manages to meet the surge in requests by increasing the replication

102

.
................ ..

..........
....................

100 200 300 400 500 600 700 800 900 1000
Time (sec)

0

10

20

30

A
ve

ra
ge

 L
oa

d
(r

eq
ue

st
s/

se
c)

APRE. .
Path-cache

....................

...
..
.....

....................
0 100 200 300 400 500 600 700 800 900 1000

Time(sec)

1000

2000

3000

4000

|S
i|

APRE. .
Path-cache

....................
..............................

100 200 300 400 500 600 700 800 900 1000
Time (sec)

0

10

20

30

A
ve

ra
ge

 L
oa

d
(r

eq
ue

st
s/

se
c)

APRE. .
Path-cache

....................

...
.

..........................
0 200 400 600 800 1000

Time (sec)

1000

2000

3000

4000

|S
i|

APRE. .
Path-cache

Figure 4.17: Effect of flash crowds inΛ and|Si | in two different settings

ratio by a factor of 30. Excluding a very short window due to our mechanism’s response,

our method succeeds in keeping the load factor below the limit (withσΛ < 10) and steady

through time. At both times that load changes, replicas are activated and de-activated

rapidly to meet the extra requests and reduced traffic. Whilepath-cacheshows simi-

lar response speed, it creates more servers in the low-workload period and less than the

minimum number required to keep content providers from overloading during the surge.

The bottom two figures show how the same two metrics vary in a more challenging

flash-crowd setting. Here, we initially have 500 requesters withλr = 1/sec, while for

time t ∈ (400,480] we setλr = 10/secfor 5000 requesters. On average, the workload

inside the overlay increases by a factor of 120. Our results show that, even for shorter and

steeper changes,APREvery successfully adapts to the surge in requests. On average,Si

103

2 4 6 8 10 12 14 16 18 20
lambda (requests/sec)

0

2000

4000

6000

8000

10000

|S
i|

Max Repl = 1
Max Repl = .8
Max Repl = .4
Max Repl = .2
Max Repl = .1

Figure 4.18: |Si | variation for different
maximum allowed replication ratio

2 4 6 8 10 12 14 16 18 20
lambda (requests/sec)

0

4

8

12

16

20

24

28

32

36

40

A
ve

ra
ge

 L
oa

d
(r

eq
ue

st
s/

se
c)

Max Repl = 1
Max Repl = .8
Max Repl = .4
Max Repl = .2
Max Repl = .1

Figure 4.19:Λ variation for different max-
imum allowed replication ratio

2 4 6 8 10 12 14 16 18 20
lambda (requests/sec)

0

0.2

0.4

0.6

0.8

1

ra
tio

 o
f o

ve
rl

oa
de

d
se

rv
er

s

Max Repl = 1
Max Repl = .8
Max Repl = .4
Max Repl = .2
Max Repl = .1

Figure 4.20: Percentage of overloaded
nodes for different maximum allowed
replication ratio

2 4 6 8 10 12 14 16 18 20
lambda (requests/sec)

0

2

4

6

8

10

%
 c

ha
ng

e
in

 S
i

Max Repl = 1
Max Repl = .8
Max Repl = .4
Max Repl = .2
Max Repl = .1

Figure 4.21: Percentage of change inSi for
different maximum allowed replication ra-
tio

is expanded by a factor of 175 in order to reduce and balance load (our results document

an averageσΛ ' 8.6).

4.3.4 Effect of the Maximum Replication Ratio andLimitup

Our default scenarios assumed a set value of 0.4N for the maximum allowed|Si |

(whereN = 10k = size of our overlay). In the next figures, we plot the performance of

APRE(usingClosestFirstand 2000 requesters) while we vary the maximum replication

ratio from 0.1 to 1.0. Too small values should force the system to quickly saturate, while

104

2 4 6 8 10 12 14 16 18 20
lambda (requests/sec)

0

5

10

15

20

25

30

35

40

A
ve

ra
ge

 L
oa

d
(r

eq
ue

st
s/

se
c)

limit_up = 10
limit_up = 18
limit_up = 30

Figure 4.22:Λ variation for different val-
ues ofLimitup

s,i

2 4 6 8 10 12 14 16 18 20
lambda (requests/sec)

0

0.2

0.4

0.6

0.8

1

ra
tio

 o
f o

ve
rl

oa
de

d
se

rv
er

s

limit_up = 10
limit_up = 18
limit_up = 30

Figure 4.23: Percentage of overloaded
nodes for different values ofLimitup

s,i

complete freedom to replicate should exhibit the best behavior. The results are presented

in Figures 4.18, 4.19, 4.20 and 4.21.

When the ratio is too small (at most 1000 nodes are allowed to host the object),Si

quickly reaches this limit. This affects the values ofΛ as well as the number of servers

overLimitup, which rapidly increase. As more peers are allowed to become servers,|Si |

increases and so does the percentage of servers below the limit. The interesting obser-

vation here is that even for the most optimistic case (no replication restriction),APRE

manages to keep the ratio of change in the server-set below 3%.

In the next experiment, we vary the maximum advertised capacityLimitup uni-

formly. Sample results are presented in Figures 4.22 and 4.23. As we would expect, the

smaller the upper limit gets, the faster our algorithm reacts to load, thus creating replicas

sooner. Obviously, given some storage restriction (such as a maximum allowed number

of peers able to enterSi), smallLimitup values cause system saturation and more over-

loaded instances. On the other hand, for larger upper limits, the server-set increases more

gracefully and significantly fewer server overloads are observed.

105

100 200 300 400 500 600 700 800 900 1000
Time (sec)

0

5

10

15

20

25

30

35

40

A
ve

ra
ge

 L
oa

d
(r

eq
ue

st
s/

se
c)

FurthestFirst-2k requ
ClosestFirst-2k requ
FurthestFirst-1k requ
ClosestFirst-1k requ

Figure 4.24: Average load for 1k and 2k requesters in power-law topologies (λr = 6/sec)

4.3.5 Simulations with Different Topologies

We tested our method on a set of 4,000-node power-law graphs created with the

Inet-3.0 generator [33]. These graphs have an average degree ofd = 4.3 (maximum

degree equals to 855), while over 30% of the nodes have only one neighbor. Figure 4.24

shows howΛ varies with time forClosestFirstand FurthestFirstusing 1000 or 2000

nodes as requesters.

These topologies noticeably affect performance compared to our previous simula-

tions. Even for average-rangeλr values,Λ moves close to the overload line, while Expand

shows diminished ability to extendSi . This is consistent with results documented in previ-

ous work [15]. The tested topologies offer fewer paths between servers and clients, while

a large percentage of the nodes only have one neighbor. This also explains whyFur-

thestFirstoutperformsClosestFirst. Favoring replication close to the requesters quickly

saturates available nodes due to lack of alternate paths. Nevertheless, its is worth noticing

that our method still manages to keepΛ at lower levels. Even at the 2k-ClosestFirstrun,

whereΛ > Limitup, 14% of the servers are overloaded compared to 20% bypath-cache.

106

We must note here that the replication protocol is not always responsible for over-

loaded servers. In many occasions, the amount of demand or the overlay connectivity

cannot allow for more extensive or balanced replication. As we experiment with more

densely connected graphs,APREperforms inside the load limits where it failed to do

so over more sparse overlays. Moreover, with biased forwarding, as happens with most

informed approaches, certain nodes will unavoidably receive a bulk of requests. This sit-

uation can only be corrected through maintaining additional state at each peer (such as

the location of other servers) and changing the forwarding scheme. In an environment

with rapid changes in workload and server sets, this locally maintained metadata can be-

come frequently stale, thus incurring larger communication (besides the local storage)

overhead. Our approach, on the other hand, does not require a change inAPS, but relies

on its ability to independently create and store that state through new object discoveries

and reverse index built-up.

4.4 Conclusions

In this part of our work we presented our adaptive replication scheme for unstruc-

tured Peer-to-Peer systems based on probabilistic soft state.APREaims at providing a

direct response to workload changes, by creating server points in needy areas or releasing

redundant servers in areas of low demand. Our approach couples lookup indices together

with an aging mechanism in order to identify, in real-time, query intensive areas inside

the overlay. Peers then individually decide on the time and extent of replication, based on

local workload computation.

107

Our work shows that it is important to couple replication with the search proto-

col in unstructured systems. Random replication performs poorly with informed lookup

schemes, unless extra state is added to enhance searches. ApplyingAPREover a scheme

such asAPSsolves this problem.APS-indices store local, per-object state to direct queries

to objects. While peers only keep metadata about their neighbors, this information can be

used to identify, hop-by-hop, where the queries are coming from. Moreover, our scheme

is highly customizable, allowing control of both the size and the location (as defined

through reverse-indices) of replication.

Using thorough simulations, we show thatAPREis extremely robust in eliminating

server overloads, while minimizing the communication overhead and balancing the load.

Specifically, we show that replicating along the reverse path is an extreme case of our

protocol. By effectively discovering all reverse paths,APREmanages to distribute content

proportional to demand in a variety of overlays and workloads. Finally, we show that our

method succeeds in creating a very stable server set with minimal amount of oscillation.

108

Chapter 5

Related Work

Peer-to-Peer networks have been studied a lot in the last few years. A large amount

of information for P2P computing with taxonomies, definitions, current trends, appli-

cations and related companies can be obtained at [63, 64], as well as individual sources

(e.g., [7,8]). P2P computing is also described in [65], with basic terminology, taxonomies

and description of some systems. A brief summarization ofGnutella[6] andNapster[5],

together with approaches for structured networks are also included. Gnutella and Napster

are the focus of two measurement studies: Reference [66] attempts a detailed charac-

terization of the participating end-hosts, while the work in [21] measures the locality of

stored and transferred documents. In [67], a traffic measurement for three popular P2P

networks is being conducted at the border routers of a large ISP. Extensive results for

traffic attributed to HTTP, Akamai and P2P systems are also presented in [68].

In this part of our dissertation, we present work related to each of our contributions:

Search algorithms, group communication schemes and replication methods for unstruc-

tured P2P networks.

5.1 Search Algorithms for P2P Systems

As part of this thesis, we present a thorough description of many representative

search algorithms for unstructured P2P networks. We first describe blind search algo-

109

rithms and proceed with several informed techniques. Appendix A presents a direct ex-

perimental comparison between many of these schemes.

5.1.1 Blind Search Methods

GNUTELLA [6]: The original Gnutella algorithm (orfloodingscheme) contacts all

accessible nodes within TTL hops. Its basic characteristics are its simplicity and the huge

overhead it produces by contacting many nodes (and possibly multiple times each).

Modified-BFS [22]: In this variation of the flooding scheme, peers randomly choose

only a ratio of their neighbors to forward the query to. This reduces the average message

production, but still contacts a large number of peers.

Iterative Deepening: Two similar approaches that use consecutive BFS searches at

increasing depths are described in [14, 69]. These algorithms achieve best results when

the search termination condition relates to a user-defined number of hits and it is possible

that searching at small depths will satisfy the query. In a different case, they produce even

bigger loads than the standard flooding mechanism.

5.1.2 Informed Search Methods

Super-Peer approaches: In Gnutella2 (G2)[70], when a super-peer (orhub) re-

ceives a query from a leaf, it forwards it to its relevant leaves and also to its neighboring

hubs. These hubs process the query locally and forward it to their relevant leaves. No

other nodes are visited with this algorithm. Neighboring hubs regularly exchange local

repository tables to filter out unnecessary traffic.

110

Both G2 andGUESS[27] rely on a dynamic hierarchical structure of the network.

They present similar solutions for reducing the effects of flooding by utilizing the struc-

ture of hybrid networks. The number of leaf-nodes per super-peer must be kept high,

even after node arrivals/departures. This is the most important condition in order to re-

duce message forwarding and increase the number of discovered objects.

Intelligent-BFS [22]: This is an informed version ofmodified-BFS. Nodes store

(query, neighborID) tuples for recently answered requests from (or through) their neigh-

bors in order to rank them. First, a peer identifies all queries similar to the current one,

according to a query similarity metric; it then chooses to forward to a set number of its

neighbors that have returned the most results for these queries. If a hit occurs, the query

takes the reverse path to the requester and updates local indices. This approach focuses

more on object discovery than message reduction. At the cost of an increased message

production compared tomodified-BFS(because of the update process), the algorithm in-

creases the number of hits. It achieves high accuracy, enables knowledge sharing and

induces no overhead during node arrivals/departures. On the other hand, its message pro-

duction is very large and only increases with time as knowledge is spread over the nodes.

It shows no easy adaptation to object deletions or peer departures, because the algorithm

does not utilize negative feedback and forwarding is based on ranking. Finally, its accu-

racy depends highly on the assumption that nodes specialize in certain documents.

Local Indices (LI) [69]: Each node indexes the objects stored at every peer within a

certain radiusr and can answer queries on behalf of all of them. A search is performed in

a BFS-like manner, but only nodes accessible from the requester at certain depths process

the query. To minimize the overhead, the hop-distance between two consecutive depths

111

must be 2r + 1. This approach resembles the two search schemes for hybrid networks.

The method’s accuracy and hits are very high, due to the indexing scheme. On the other

hand, message production is comparable to flooding, even if the processing time is smaller

because many nodes just forward the query. The scheme requires a flood with TTL = r

whenever a node joins/leaves the network or updates its local repository, so the overhead

becomes even larger for dynamic environments.

GIA [28]: In GIA, requesting nodes deploy biased walkers in order to discover var-

ious objects. Each peer chooses to forward the query to the neighbor with the highest

announcedcapacity. This is a user-defined metric that reflects the processing power of a

node inside the system. Moreover, the protocol requires that each peer indexes the docu-

ments of its neighbors. This scheme also utilizes a topology-adaptation algorithm which

re-configures the overlay connectivity such that each node is connected to a number of

peers proportional to its capacity. The biased walkers are then directed towards highly

connected neighbors and, probabilistically, to those with the highest number of indexed

objects. Finally, the scheme provides a flow-control mechanism which allows peers to

control the rate at which they can accept and process requests from their neighbors. Once

the topology has been set, we expectGIA to perform very bandwidth-efficient searches

with several hits. On the other hand, the adaptation algorithm plus the indexing of the

neighbors’ repositories increase the responsibilities of each peer as well as the communi-

cation overhead. Another issue is how fast can the algorithm work for joining peers and

at what cost for their neighborhood.

Routing Indices (RI) [26]: Documents are assumed to fall into a number of thematic

categories. Each node stores an approximate number of documents from every category

112

that can be retrieved through each outgoing link (i.e., not only from that neighbor but

from all nodes accessible from it). The forwarding process is similar to DFS: A node

that cannot satisfy the query stop condition with its local repository will forward it to the

neighbor with the highest “goodness” value. Three different functions which rank the

out-links according to the expected number of documents discovered through them are

also defined. The algorithm backtracks if more results are needed. This approach trades

index maintenance overhead for increased accuracy. While a search is very bandwidth-

efficient, RIs require flooding in order to be created and updated, so the method is not

suitable for highly dynamic networks. Moreover, stored indices can be inaccurate due to

thematic correlations, errors in the categorization of documents and network cycles.

In [23], each node holds a number ofbloomfilters for each neighbor. Theith filter

summarizes documents that can be foundi hops away through that specific link. Nodes

forward queries to the neighbor whose smaller depth bloom filter matches a hashed rep-

resentation of the object ID. After a certain number of steps, if the search is unsuccessful,

it is handled by a deterministic algorithm instead of backtracking. The scheme’s expec-

tation is to find only one replica of the object with high probability. Index maintenance

requires flooding messages initiated from nodes that arrive or update their collections.

Distributed Resource Location Protocol (DRLP) [24]: Nodes with no information

about the location of a document forward the query to each of their neighbors with a

certain probability. If an object is found, the query takes the reverse path to the requester,

storing the document location at those nodes. In subsequent requests, nodes with indexed

location information directly contact the specific node. If that node does not currently

obtain the document, it just initiates a new search as described before. This algorithm

113

initially utilizes flooding to find the locations of an object. In subsequent requests, it

might use a single message to discover it. A low message production is achieved only

with a large workload that enables the initial cost to be amortized over many searches.

In rapidly changing networks, this approach fails and more nodes have to perform blind

search. This also affects the number of hits: If many blind searches are made, then many

results are found; if many direct queries take place, then only one replica is discovered.

Gnutella with Shortcuts (GS) [25]: In this work, the authors propose the addition of

shortcuts(i.e., direct links to peers that have recently proved useful in answering queries)

to a Gnutella-like overlay. The original flooding mechanism is initially used to locate

documents. Peers that provide answers are indexed by the requesters, following the as-

sumption that they could provide answers to more requests. When a new query is made,

nodes first forward it to their shortcuts (ranked in a descending order of usefulness —

usually the success rates). If all shortcuts fail, the standard flooding scheme is again used

to locate the object. This approach resembles theDRLP scheme but stores more than

one pointer and keeps statistics on them. For semantically related queries, we expect it to

quickly identify relevant peers and mostly use the shortcuts for object location. Moreover,

we anticipate a very high success rate since the fall-back mechanism is flooding. On the

other hand, if peers make many unrelated queries or they do not store relevant content, it

is possible that the shortcuts will fail, which in turn means that the system pays the price

with a full-scale flooding. The same is true when objects are removed or peers depart

frequently.

New Approaches: Recently, there has been an effort to combine the advantages of

structured systems (DHTs) and unstructured ones. In [71], animmediate neighborhood

114

area is defined for each peer. Object placement inside these overlapping areas is per-

formed in a DHT-like fashion. Searches use the standard flooding mechanism except that

only certain areas are probed. In [72], peers are grouped intopossession rules, according

to whether they contain a specific item or not. Nodes search inside one possession rule in

a blind fashion. The possession rule is chosen by a greedy mechanism according to past

query results. Finally, the work in [73] combines random walks in unstructured overlays

with DHT-like replica placement: The owner of each object places replicas of the object

on several nodes. The replicas are assigned to nodes which have IDs numerically close to

the object. During a search, random walks are used to locate severalminimafor a given

object (i.e., nodes inside a neighborhood that have the closest ID to the object).

Finally, we describe a family of algorithms which are based on traditional rein-

forcement learning and inspired by dynamics observed in biological colonies. Several

algorithms have been proposed to mimic the collective foraging behavior of ants that self-

organize in order to locate and transfer food back to the nest in an almost-optimal manner.

They are known asant-based algorithms[30]. The problem of routing data packets in dy-

namic communication networks has characteristics well-suited for ant-based solutions.

Indeed, a variety of schemes based on mobile agents (orants) have been proposed in or-

der to discover shortest routes between any pair of nodes in data networks (e.g., [74,75]).

These schemes utilize some ideas similar to our probabilisticAPSwalkers.

The main characteristics of ant-based routing (as seen inAntNET) [75] can be sum-

marized as follows:

- Each node holds probability values per neighbor per destination. These values are

used to guide the ants. Moreover, it holds statistics for network traffic as seen locally.

115

- At regular intervals,forward ants are launched from nodes to randomly selected

destinations. Forward ants keep memory of the visited nodes and traffic characteristics

during their route.

- If the destination is reached, the agent creates abackwardant that travels along the

reverse path and updates probability values and local traffic measurements. Specifically,

the probability of taking the successful path is increased using the standard reinforcement-

learning rule:P← P+ r(1−P).

These algorithms feature a plethora of tunable parameters that actively affect perfor-

mance: The rate at which forward ants are created, the reinforcement learning parameter

r (should depend on the roundtrip time and the local traffic measurements), the probabil-

ity of exploration versus exploitation, etc.APSdiffers from such schemes as it updates

probabilities on both success and failure with respect to message minimization. Second,

it deploys multiple walks thus actively exploring and exploiting at the same time, while it

requires neither a regular query dissemination nor the calibration of many parameters.

5.2 Data Dissemination

The problem of distributing content to multiple hosts is well-studied. We cate-

gorize existing methods into general application-layer multicast protocols, multicast for

structured P2P overlays and, finally, approaches for unstructured networks.

116

5.2.1 Application-layer Multicast

Proposed approaches roughly fall into three categories: The mesh-first category

(e.g.,Narada[76]), where nodes form a random mesh between them and then compute

unicast paths for each pair of members. This approach requires control overhead quadratic

to the group size with refresh messages. In the tree-first approach (e.g.,Yoid [77]), peers

directly form a data delivery tree and also maintain a few extra links to exchange control

messages. Finally, in the implicit approach (e.g.,NICE [38]), both control and delivery

structures are implicitly defined by the underlying routing protocol. For example,NICE

arranges members into a hierarchy of layers and clusters and defines processes for mem-

ber arrival/departure and cluster merge/split. All these approaches require the existence

of a designated host to initiate the membership process, periodic exchange of control

messages and also significant overhead for member joins/leaves.

5.2.2 Multicast over P2P Overlays

The algorithm described in [40] describes a broadcast mechanism that operates over

CAN [13]. Nodes forward to their neighbors in the d-dimensional space, as this is defined

in CAN. There are also provisions made to eliminate duplicate messages and prevent

looping of the packets around the coordinate space.

Scribe [39] is implemented onPastry [10]. Interested hosts route their requests

towards the node responsible for the group’s key (the root). Each node on the path checks

if it is a current member of the group. If this is the case, it registers the source node as

its child in the multicast tree and stops the forwarding process. Otherwise, it stores the

117

ID of the source and makes a join request towards the root. Scribe is a decentralized

and scalable protocol that takes advantage of the overlay structure to produce a balanced

delivery tree.

Bayeux[34] is implemented onTapestry[11]. The difference with Scribe is that

join/leave operations go through the root of the tree, making it less scalable.Overcast

[35] also requires coordination with the root node, while it builds its multicast tree in a

manner similar to Yoid. The work in [78] contains thorough descriptions and performance

comparisons for representative schemes from this category.

5.2.3 Group Communication in Unstructured Overlays

Many search schemes for unstructured P2P networks have been proposed that im-

plement flooding or its modifications in order to contact large numbers of nodes. Ex-

amples include the gnutella flooding algorithm [6], the modified-BFS scheme [22], the

iterative deepening method [69], etc. All these techniques produce a large number of

messages, cannot adapt to variable group sizes and use blind forwarding, which results in

many non-members receiving the message.

An alternative solution to the problem is presented by a variety of gossip algorithms,

where each member is responsible for forwarding a notification to a randomly selected

subset of the group. These approaches have been used in a variety of different scenarios

(e.g., distributed databases [79], publish-subscribe systems [80]) and have proved to be a

robust solution in the face of member/network failures at the cost of inducing extra traffic

to the network.

118

In Lpbcast[80], membership is achieved by a periodic gossiping of subscriptions:

peers transmit a set of subscriptions that they recently heard to a random subset of their

locally known group members. Upon receiving such a message, nodes replace a random

subscription from their local lists with the new one. To achieve the probabilistic guaran-

tees offered by similar schemes, the size of the group and the local list size must be fixed,

which is not the case in highly dynamic networks.

SCAMP[47] is a decentralized membership protocol that utilizes gossiping. Joining

members subscribe by contacting a random existing member. Upon receiving a subscrip-

tion request, a member forwards it to all the members in its local repository. Nodes decide

probabilistically whether to store or forward the subscription. For the unsubscription pro-

cess, a node notifies the locally known members to replace its ID with the IDs of the

members it has received messages from. Group communication is performed in the stan-

dard gossip-based manner. SCAMP is shown to converge to a local state of slightly over

log(n) member IDs, which guarantees with high probability that all members will receive

a notification.

In [36], the push phase of an update algorithm for unstructured P2P networks is a

rumor-spreading scheme: each peer receives an update message along with a partial list of

other peers to which the update has been sent. If the update has not been received before, it

is forwarded to a different subset of members with a certain probability. In [41], peers that

have received a message less than F times, forward it to B randomly selected neighbors,

but only those that the node knows have not yet received it. The deterministic version of

that algorithm requires global knowledge of the overlay. Nodes forward messages to all

neighbors with degree equal to 1, plus to B remaining neighbors that have the smallest

119

degrees.

In contrast, our approach requires no group subscription/unsubscription process

nor any centralized or distributed storage of the current group members. Its forwarding

scheme is an adaptive selection between neighbors and shortcuts, relative to the quality

of the local search knowledge.

5.3 Replication

Replication is a well-known technique utilized to achieve high availability and fault-

tolerance in large-scale systems. While applied to a variety of contexts, we focus in the

area of distributed (P2P) systems.

Structured overlays (DHTs) balance routing between network nodes, due to the

nature of the hashing functions used. Moreover, in systems likeCFS [81] and PAST

[82], each item (or chunk of it) is replicated on a set number of network nodes. DHTs

take advantage of the routing structure, which in effect allows for almost-deterministic

paths between two nodes, thus identifying “hot” areas easily. Nevertheless, DHTs are not

optimized for skewed access patterns and direct such traffic to few nodes responsible for

popular content.

DHash[83] is a replication method applied onChord [12]. The protocol allows for

r copies to be stored at ther immediate successors of the initial copy’s home. In [84],

the authors propose the storage of at mostR replicas for an object. Their location is

determined by a hash function, allowing requesters to pro-actively redirect their queries.

The work in [85] proposes replicating one hop closer to requester nodes as soon as peers

120

are overloaded.

Lar [86] is a DHT-based approach similar toAPRE, in that it adapts in response

to current workload. Overloaded peers replicate at the query initiator and create routing

hints on the reverse path. Hints contain some other locations that the content has been

previously replicated, so queries are randomly redirected during routing. The method

takes advantage of the DHT substrate in order to place the hints. Our scheme does not

attempt to re-route queries or shed load to the initiator, but rather places replicas inside

forwarding-intensive areas using multiple paths. Moreover, the state kept is accessible at

any time, not only at the time of the query arrival. Finally, it appears thatlar would suffer

from a slow propagation of hints in lower-demand scenarios as well as from stale caches

in dynamic settings.

HotRoD[62] presents a load-balancing approach for DHTs handling range queries

for relational database systems. It is based on a locality-preserving DHT and replication

of overloaded arcs (consecutive modes on the DHT ring). The work in [87] employs a

minimization function that combines high availability with low load to replicate video

content inside a DHT. The approach requires knowledge of peer availabilities, workload

and data popularity. In [59], the authors show that load-balancing based on periodic load

statistics suffers from oscillation. By directing queries towards the maximum capacity

replica location, both heterogeneity and oscillation issues are tackled. However, this ap-

proach assumes knowledge of all existing replicas and that replicas regularly advertise

their capacities to the network.

The work in [14] discusses static replication in unstructured networks that useRan-

dom Walksas a lookup method. Various replication strategies are compared and it is

121

concluded that replicating proportionally to the square root of the access frequencies of

objects (which must be known a priori) minimizes the size of a search. In [88], replicas

install pointers to their locations onO(γ
√

n) random peers using a random walk (n being

the number of peers andγ a parameter). Searches are conducted in the same manner,

contactingO(γ
√

n) random nodes with a single walk. This approach utilizes replication

of object locations in order to provide guarantees for the success of a search and not for

load-balancing or adaptive replication purposes.

The replication method utilized byPlanetP[89] attempts to tackle the problem of

resource availability in unstructured environments. Peers regularly gossip metadata about

their online status, free space and stored objects to other nodes. Each peer periodically

chooses an object it hosts and decides, based on information collected from all peers, on

its availability in the network. Given a low estimate, it fragments the file and pushes all

fragments to nodes using hints about their free space. This approach relies heavily on the

collection of data from all network nodes to achieve high-availability.

In most P2P file-sharing applications, replication is naturally handled through con-

tent sharing among users. In general, the following two approaches exist: Files comprise

of equal size chunks and are individually indexed, or peers dynamically decide the por-

tion that is retrieved from each source peer. The first approach is utilized byOvernet[90],

BitTorrent [91] and Slurpie [92]. Each file is divided into a number of standard-size

fragments (9500KB, 256KB, 256KB for those systems respectively). A peer may then

download different fragments from various sources. Upon completion, each fragment

becomes available for sharing with other nodes.

The second approach [93] (or modifications of it [94]) is currently used by other P2P

122

applications (e.g.,Morpheus[95]). A requester contacts many source peers and retrieves

small portions of the file from each of them. When each small chunk is retrieved, more

is asked from that specific source. There also exist several schemes (e.g. [96, 97]) which

allow for increased robustness in reconstructing a file by receiving a few extra parts of it.

There has also been considerable amount of work on flash crowd avoidance. In

[98], overloaded servers redirect future requests to mirror nodes to which content has

been pushed. This approach does not tackle the issue of which node to replicate to.

PROOFS[99] explicitly constructs a randomized overlay to locate content under heavy

load conditions or unwilling participants. In effect, the method relies on the combination

of a custom overlay and a gossip-based lookup scheme to locate objects, without involving

any replication.

123

Chapter 6

Conclusions

In the last few years, the research community has provided a plethora of powerful

tools in the area of distributed communications. The interest in P2P computing produced

a variety of systems and schemes that facilitate the two important primitives in large

decentralized environments: Content sharing and open communication.

While we are still unsure about the future applications of P2P, no one can deny their

popularity and attractive features that favor them as a choice to become the basis of future

platforms. Our thesis focuses exclusively on providing adaptive, bandwidth-efficient pro-

tocols for data search, retrieval and one-to-many communication in unstructured overlays.

Our schemes offer deployable, low-cost solutions for current applications (in the case of

APS-AGNO-APRE), with a look towards the future and scientific collaborations (in the

case ofGrouPeer, described in Appendix B).

There exists a set of common characteristics in all these methods. First and fore-

most, we aim for algorithms that are adaptive to the environment they operate on. To

achieve that, we enable alearning feature in each of our protocols: Peers learn from ex-

perience and interactions with other peers in order to both increase their performance and

adapt to changes. Second, we aim for a collaborative operation among the users. In order

to achieve that, we design our schemes such that individual experience (in the form of state

stored at nodes) can be shared and refined collectively. Third, we identify the need for

124

bandwidth-efficient operation in such systems. Consequently, we utilizedirected walkers

instead of flooding in order to locate content. We regulate our push phases such that only

the interested peers participate. Finally,clustering/groupingof peers according to content

or demand is used in order to improve data sharing or our communication flexibility.

In the future, we expect an increase in the number and size of P2P collaborative ap-

plications. While our focus will still be on efficient distributed algorithms, more attention

will be given to security, reputation and trust issues. The combination of lack of central

authority with the reality that not all users are equal or play fair, is the biggest, in our

opinion, bet that P2P has to win and decisively so.

125

Appendix A

Analysis and Comparison of P2P Search Methods

A.1 Overview

With the increasing interest in P2P systems, a plethora of search schemes for un-

structured P2P networks has been proposed. In this supporting work, we try to analyze

the performance of many representative lookup protocols alongsideAPS. We focus on the

behavior of these algorithms for each of the following metrics: Efficiency in object dis-

covery (accuracyand number ofhits), bandwidth consumption and adaptation to changes

in topology and object locations. While discovering many objects is very important, as it

enables efficient object retrieval, minimizing search messages always represents a high-

priority goal for distributed systems. Finally, it is important that any search algorithm

adapts to changing conditions, since in most P2P networks users frequently enter and

leave the system, as well as update their collections.

To evaluate our analysis, we simulate nine methods and present a direct quantitative

comparison of their performance. We identify the relative advantages and disadvantages

of each method as well as the conditions under which they can be most or least effective.

To our knowledge, this is the first work that attempts a direct comparison of such a diverse

set of search techniques proposed for unstructured P2P systems. We believe this is an

important contribution that can provide a better understanding of the various mechanisms

and assist in choosing an algorithm that best fits a particular application.

126

A.2 Performance Evaluation

A.2.1 Algorithm Implementations

In this section we present results for nine of the methods described in the Related

Work Chapter:G2, Modified-BFS, Intelligent-BFS, Local Indices, DRLP, GSandGIA,

together with the already describedAPSand Random Walks. The simulated methods

are representative blind and informed schemes, both flood and non flood-based, with

or without user-initiated index updates (that is, updates triggered strictly by the search

process). In our experiments, we utilize the GT-ITM [32] and Inet-3.0 [33] topology

generators to produce sets of random and power-law graphs respectively. For each setup,

the results are averaged over a set of 10 similar graphs for each described topology. We

also present results on a real gnutella graph [100], with 61,685 nodes and average degree

d = 4.6.

For the default parameters, we mainly follow the model described for theAPSeval-

uation (see Table 2.1). Requester nodes are randomly chosen and represent about 20% of

the total number of nodes. Each requester makes about 1,500 queries over a time period.

We do not allow extra replicas to be stored (i.e., we only consider the search phase, not

object retrieval). Finally, besides keeping a dynamic node population, we also redistribute

objects to model file insertions and deletions. Object re-location always follows the initial

distribution parameters.

The Intelligent-BFSmethod was modified to allow for object-ID requests. Index

values at peers now represent the number of replies for an object through each neighbor

and nodes choose the neighbors with the highest index values when forwarding a query.

127

For Modified-BFS’s, DRLP’s andIntelligent-BFS’s flood-based search, nodes choose an

equal number of neighbors to forward a query in order to make direct comparisons. For

G2, peers randomly choosek neighbors to forward the query to. The chosen nodes for-

ward the query to all their neighbors. By modifying the value fork we can simulate the

operation of bothG2 (with k always larger than the number of neighbors) andGUESS.

In our simulations,G2/GUESSoperate on a pure (instead of a hybrid) model in order

to achieve uniformity in our results. Moreover, they both function in a blind manner, so

no cache or repository table exchange takes place. We name this approachHG2 (Hybrid

G2/Guess). For ourLI implementation, nodes index the objects of their neighbors (r = 1).

To ensure that the search is equivalent to a flood with TTL=5, only peers at depths 1 and

4 process the query. We also ensure that no object from the same peer is being discovered

multiple times. Finally, ourGIA implementation deploysk walkers, with each peer for-

warding to the neighbor with the highest out-degree, while the overlay adaptation process

is not simulated. Peers index the documents of their immediate neighbors. For ourGS

implementation, we use 5 shortcuts and rank them by their success rates.

A.2.2 Basic Comparison

In our first set of experiments, we use a set of 10,000-Node random graphs (aver-

age degreed = 4) to compare the nine methods over 5 different environments: A static

one, one with low/high object relocation frequency and one with low/high peer departure

frequency. In the two low-frequency scenarios, relocation and departures/arrivals occur

about 300 times per run, while in the high-frequency ones they occur 10 times more often.

128

Int-BFS LI HG2 RWalks s-APSMod-BFS DRLP GS GIA
0

20

40

60

80

100

Su
cc

es
s

R
at

e(
%

)

High relocation
Low relocation
Static
Low departures
High departures

Int-BFS LI HG2 RWalks s-APSMod-BFS DRLP GS GIA
1

10

100

1000

M
es

sa
ge

s
pe

r R
eq

ue
st

High relocation
Low relocation
Static
Low departures
High departures

Figure A.1: Success rate and message production of the methods using a set of 10,000-
node random graphs with average degreed = 4

DRLP and Int/Mod-BFSforward to 3 neighbors, whilek = 7 for s-APS, GIA, HG2and

Random Walks. Figures A.1 and A.2 present the results.

Blind methods show a fairly stable performance between the static and dynamic set-

tings, since the dynamic operations do not interfere with the forwarding scheme. Flood-

based schemes discover many objects at a higher cost. Nevertheless, onlyLI and GS

with the pure-flooding scheme achieve very high accuracy. This happens because of the

small out-degree of our network. We also notice that blind and flood-based techniques

do not get affected by object relocation, but only by peer joins/leaves. While our relo-

129

cation process does not substantially alter anything in those algorithms’ operation, peer

arrivals/departures alter the topology and the amount of available resources.

Mod/Int-BFSshow relatively high accuracy and return many hits. Their perfor-

mance is very similar, with the informed method showing marginally better results. For

environments resembling this setup,Mod-BFSwill be preferred, since its performance is

equally high and it is much simpler. We expect the informed method to perform better

in richer or more specialized environments (like the one described in [22]), mainly in the

number of hits.

Random Walksdisplays low accuracy (<34%) and finds less than 0.5 objects on

average. Its bandwidth consumption is quite low (about 15 messages), while its perfor-

mance is hardly affected by the dynamic operations.HG2 behaves similarly, with the

exception of producing about 5 more messages per search. In general, these algorithms

exhibit poor performance and appear very robust to increased network variability. This

is reasonable, as walkers are randomly directed with no regard to topology or previous

results.

Thes-APSmethod achieves a success rate of over 75% in the static run, a number

that drops by around 30% in the highly dynamic settings, but only around 12% in the two

less dynamic ones. The metric that is reasonably affected is the number of discovered

objects, which are almost cut to a third. This happens because it takes some time for the

learning feature to adapt to the new topology and paths to discovered objects frequently

“disappear”. On the other hand, it manages to keep its messages almost as low asRan-

dom Walks. The scheme is equally affected by relocations and departures/arrivals, since

walkers are directed towards specific locations which are altered by both types of events.

130

Int-BFS LI HG2 RWalks s-APSMod-BFS DRLP GS GIA
0.1

1

10

100

H
its

 p
er

 R
eq

ue
st

High relocation
Low relocation
Static
Low departures
High departures

Figure A.2: Hits per query of the methods using the set of 10,000-node random graphs
with average degreed = 4

Nevertheless, it exhibits a good overall performance compared to the non-BFS related

schemes, without indexing other peers’ repositories.

The DRLP algorithm exhibits some interesting characteristics. First, its message

production is very low (less than 6 messages per request). Our simulations count the

direct contact of a node (both forDRLPandGS) as one message, although a link between

them might not exist in the overlay. Dynamic behavior causes the stored addresses to

become more frequently “stale”, thus the initial flooding is performed more often. This

is the reason for the decrease in its accuracy from 99% in the static case to 77% and 15%

in the highly dynamic ones.DRLPproduces the same amount of messages for its initial

search withModified-BFS, so it needs many successful requests to amortize this initial

cost. The number of objects it discovers is very small, ranging from 1.4 to 0.2. IfDRLP

is forced to use flooding many times, then the number of hits increases. If it is successful

and produces few messages, then it only finds one replica per request. Despite this, we

notice that it proves very bandwidth-efficient and flooding is scarcely used. This is due to

131

the fact that, with many nodes making requests, most of them obtain a pointer for every

object after a while. So, even if some node initiates a flood, most of its neighbors will

only forward to one other node. The large number of requests per run helpsDRLPachieve

a very low average message consumption. This scheme seems ideal for relatively static

environments and large workloads, with the exception that the number of hits will be very

close to one. Another important observation is thatDRLP is affected far more by object

relocation than by node departures. This is reasonable if we consider that with departures

there still exist nodes with a valid pointer to an object, whereas object relocation may

make many pointers become stale at once.

TheLI scheme proves the most productive in terms of discovered locations and the

most costly in message production. It produces one order of magnitude more messages

than the other BFS-related methods but also discovers about 10-20 times more objects,

taking advantage of its index scheme. Its performance is only affected by the dynamic

joins and leaves, with a decrease of more than 50% in located objects. The cost of the

index updates, even under the more dynamic settings, is negligible compared to the cost

of a search (at most 2% over the total number of messages). On the other hand, this cost

is considerable for nodes that stay idle (and possibly alter their local repositories), since

it induces traffic without any search involved.

GSshows very high accuracy, since it can always fall back to the flooding scheme.

Nevertheless, when peers do not have shortcuts or when these fail (this happens mostly

when objects get relocated), message consumption increases dramatically. On the other

hand, similarly toDRLP, the more flood searches are performed, the more objects are

discovered. Shortcuts are mostly used in the static and dynamic arrival/departure modes,

132

Table A.1: Comparison on 10,000-node random graphs with degreed = 10

Metric ModBFS IntBFS LI HG2 RWALKS s-APS DRLP GS GIA

Success(%) 98.8 99.8 100 70.2 53.4 91.7 100 100 97.0

Messages 875 1233 39710 108.7 43.6 43.0 8.0 2344 35.0

Duplicates(%) 10.3 0.4 18.7 8.3 0.2 0.1 1.8 17.8 0.9

Hits 20.2 32.6 300.0 2.9 1.2 6.1 1.4 18.9 9.5

Hit Distance 4.58 4.61 3.99 1.88 2.78 3.16 1.90 4.60 3.1

since 5 shortcuts proved sufficient for at least one of them to provide an answer most of

the times.

Finally,GIAmanages to perform as well asMod/Int-BFSbut being more bandwidth-

efficient. The combination of one hop indexing and biased walkers achieves a good, ro-

bust performance at relatively low cost. Only in the high relocation setting we notice a

considerable increase (200%) in the average message consumption since peers have to

refresh their indices frequently.

A.2.3 Results on Denser Graphs

In the next set of simulations we use a random graph set with an average degree

d = 10 to compare the 9 methods over two different environments: A static one, and one

where both object relocation and peer departures occur about 600 times per run.DRLP

andInt/Mod-BFSforward to 4 neighbors at each step, whilek = 12 for s-APS, Random

Walks, HG2, GIA. All other parameters remain the same. The results for the static case

are shown in Table A.1. We also report the percentage of messages per search that are

duplicates and the average distance of the hits in overlay hops.

Blind forwarding causes a large amount of messages to be dropped. Informed meth-

133

Int-BFS LI HG2 RWalks s-APSMod-BFS DRLP GS GIA
0

0.2

0.4

0.6

0.8

1

R
at

io
 o

f H
its

 p
er

 H
op

-c
ou

nt

hop=1
hop=2
hop=3
hop=4
hop=5

Figure A.3: Hits per hop distance from the requesters

ods with no direct indices perform much better (s-APS, Int-BFSwasting only 0.1% and

0.4% of their messages respectively). Flood-based schemes also exhibit large hop dis-

tances for their hits.

All algorithms produce a larger number of messages per request in the new graph,

taking advantage of the larger number of connections.DRLPstill averages less than 10

messages per request.Random Walksands-APSroughly double their hits and increase

their accuracy. On the other hand,Int/Mod-BFSproduce 10 times more messages.HG2

performs in between, producing about 5 times more messages.LI increases its bandwidth

production by more than an order of magnitude. The overhead due to update messages is

even less apparent now, since its search messages overshadow their effect.GS’s perfor-

mance increases similarly toLI ’s since they use the same underlying mechanism. Finally,

GIA exhibits a very good performance again, having low message consumption and in-

creased accuracy/hits.

Another interesting metric is the percentage of hits discovered at various distances

by the methods (Figure A.3). It shows how many objects each method locates with few or

134

Object Popularity

20

40

60

80

100

Su
cc

es
s

R
at

e(
%

)
Int-BFS
LI
Mod-BFS
s-APS
HG2
RWalks
DRLP
GS
GIA

Object Popularity

0.1

1

10

100

1000

M
es

sa
ge

s
pe

r R
eq

ue
st

Int-BFS
LI
Mod-BFS
s-APS
HG2
RWalks
DRLP
GS
GIA

Figure A.4: Accuracy and message production vs. object popularity in the dynamic set-
ting

more messages. Our discussion is based on the static setting. Flood-based schemes dis-

cover the vast majority of the objects TTL hops away, since the available nodes increase

exponentially with distance.LI always locates about 99% of its objects 4 hops away, and

the rest only 1 hop away from the requesters (since only nodes at these two depths pro-

cess the queries), whileHG2 discovers about 90% of the objects with its flooding phase

(2 hops away).Random Walksdiscovers almost the same number of objects per distance,

since the query forwarding is done randomly.GIA also uses walkers and exhibits a similar

behavior as requesters are randomly chosen in our simulations.DRLPfinds almost 70%

of its hits using its indices (which also explains why its hit average is close to one).s-APS

displays a symmetric curve. After a certain distance, possible paths become too many

and the accuracy of the indices drops. Finally, we notice thatGSonly discovers about

5% of its hits using the shortcuts, whereas in the smaller graph the respective number was

50%. This can be explained by the fact that the flooding scheme now finds 2 orders of

magnitude more objects than in the previous graph, while shortcuts still find one object.

Figure A.4 shows how object popularity affects the methods’ accuracy and message

production in the dynamic environment. Popularity decreases as we move to the right

135

along the x-axis. The first data point represents the accuracy/messages of the methods for

the top-10%, the second for objects ranked between 11–20%, etc. This is an important

comparison, because different applications or users target objects of varying popularity.

The three BFS-related methods together withGSexhibit very high accuracy, with

Mod-BFSshowing a noticeable decrease only for the least popular items.Random Walks,

HG2, s-APSandGIA show decreasing accuracy as popularity drops, withGIA ands-APS

clearly performing better.DRLP performs very poorly for the very popular documents

(about 20%), but its accuracy increases as popularity drops. This can be explained by

the fact that less popular objects receive considerably fewer queries. Therefore, object

relocations and node departures which affect the algorithm happen less frequently during

requests for such objects. All algorithms — exceptDRLPandGS— waste roughly the

same amount of messages per request for each popularity group.DRLPandGSincrease

their consumption with a popularity decrease for the sole reason that the cost of the initial

floods is now amortized over a smaller number of requests. Finally, we noticed that all

algorithms exceptDRLP andGSdiscover a decreasing number of objects as popularity

drops, exactly because this means there exist fewer objects to be located.

In the dynamic environment, we also measure the percentage of messages per re-

quest sent due to index updates (for relevant methods only). We found thatInt-BFSre-

quires 11%(=131 mesg) of its messages for index updates. The respective numbers for

LI, GIA ands-APSare 14.4%(= 2968 mesg), 31.7%(= 14 mesg) and 18.5%(= 8 mesg).

Although GIA ands-APSappear to require a larger portion of updates, they are much

more bandwidth-efficient than the other methods in absolute numbers.

Our previous simulations depicted the relative performance characteristics of the

136

Table A.2: Comparison on 10,000-node random graphs with degreed = 20

Metric Mod-BFSInt-BFS HG2 RWALKSs-APSDRLP GS GIA

Success(%) 63.6 67.6 63.5 62.2 93.4 100 90.8 99.9

MessagesMessages 73.4 83.0 77.0 72.5 70.6 79.2 77.0 70.0

Hits 1.9 2.3 2.1 2.0 10.7 5.3 1.12 14.9

Success(%) 75.8 77.0 71.9 75.0 80.2 100.0 100.092.2

Hits Messages 134.4 117.1 115.1 125.2 31.4 43.0 356.532.1

Hits 3.5 3.2 3.1 3.2 3.8 3.4 3.6 3.8

nine algorithms. To some extent, that sort of comparison was not direct either because

of the different nature of the methods or because of the single choice of the various pa-

rameters. Since it is impossible to directly compare the methods for the same parameter

values (e.g.,k, TTL), we select simulations on a third set of 10,000-node random graphs

(d = 20), where the algorithms had similar performance in one of two important metrics:

Messages and hits per query. These results were obtained by experimenting on various

values fork, TTL, number of neighbors to forward and number of requester nodes. The

results are presented in Table A.2 and the comparison metric is typed in boldface.LI

is omitted from this table because its large number of messages and hits could not be

matched by the other methods.

For similar message consumption, firstGIA, thens-APSdiscover the most objects

(followed byDRLPwith about 10 extra messages per search). These three methods also

prove extremely accurate, while the rest of the schemes (either flood-based or random)

do not perform well. For similar hits per search, againGIA ands-APSstand out above

DRLP, which wastes a few more messages but is perfectly accurate. From the rest of the

methods, onlyGSis 100% successful, but exhibits the highest message consumption.

137

Table A.3: Comparison of the nine methods with a 20,000-object pool

Graph Mod-BFSInt-BFS LI HG2 RWALKSs-APSDRLP GS GIA

Succ(%) 68.4 69.7 89.9 30.7 29.8 75.2 99.0 89.2 74.4

RAND Mesg 118.8 115.4 1511.6 24.9 18.6 24.1 7.1 563.518.3

Hits 2.3 2.4 37.7 0.5 0.4 2.2 1.2 5.0 3.2

Succ(%) 56.8 62.3 93.3 76.7 22.9 75.7 98.3 88.4 85.7

PLAW Mesg 73.3 82.0 1473.0750.3 13.1 15.1 5.0 355.919.1

Hits 1.5 1.8 86.1 17.7 0.3 1.9 1.2 3.0 13.9

Succ(%) 67.8 76.2 94.7 63.3 33.7 70.1 99.1 83.6 78.8

GNUT Mesg 145.6 217.4 1325.1282.1 24.3 33.1 17.1 886.520.9

Hits 2.6 4.4 59.8 5.7 0.5 3.0 2.0 15.3 6.0

A.2.4 Increased Number of Objects

Our previous model was mainly tailored for a system where peers continuously

search for specific objects. The wide range of replication ratios together with the net-

work dynamics best enables us to observe the effect of popularity, dynamic behavior and

forwarding scheme. We now consider a more general situation, with a large number of

objects (20,000) and 5,000 requester nodes, each making 2,000 queries. This could be

an example of a P2P search engine application, with users having their own preferences

(changing with time). Table A.3 presents our comparison using three sets of graphs, our

original 10,000-node set (d = 4, RAND), a 10,000-node power-law graph set (d = 4.4,

PLAW) and a Gnutella topology snapshot (d = 4.6, GNUT). For larger graphs (simula-

tions up to 50,000 nodes), results are qualitatively similar.

Compared to the previous results, we clearly notice a small performance degrada-

tion, which is natural if we consider that now more queries are made for sparsely located

138

objects, while flooding is used more by some of the methods. Nevertheless, firstDRLP,

followed bys-APSandGIA achieve numbers closest to the original ones. With the power-

law topology, although the average out-degree is the same as with the random graphs,

various neighborhoods differ substantially, since there are few nodes with very high con-

nectivity. GIA clearly takes advantage of this to increase its discovered objects. Another

observation is that pure flood-based schemes also discover substantially more objects

(compared to the respective runs over the random topologies with 20,000 objects).HG2

achieves more than 10 times more hits with a 150% increase in accuracy, using 30 times

more messages.LI doubles its hits without any message increase. The rest of the schemes

perform very similarly to the previous simulation. The results for the real topology resem-

ble those for the power-law graphs if we also take into account the size increase as well as

an increase in the average out-degree and the number of poorly connected neighborhoods

(possibly due to crawling imperfections). In general, most methods show increased mes-

sages and hits compared to the random topologies. While they effectively locate popular

objects, they either fail to be as accurate or greatly increase their message production for

the bulk of the non-popular items.

A.3 Conclusions

In this work we presented many of the search techniques available for unstructured

P2P networks, along with a quantitative comparison through simulation. Our analyses

focus on the performance metrics of search accuracy, bandwidth consumption, discovered

objects and behavior under dynamic operations.

139

The specifics of the problem play a big role in choosing the appropriate method.

Each scheme has its own goals and it is important that these goals match the applica-

tion’s. Important parameters that could influence our decision include the primary pur-

pose of the application (e.g., fast discovery, many hits, bandwidth-efficient and accurate,

easy deployment, etc), the underlying topology, expected workload, etc. We offer some

general-purpose observations based on our analysis and simulations, hoping they will

prove useful in evaluating the plethora of different schemes.

a) Blind forwarding is not adequate for both high numbers of hits and low message

production.

b) Index semantics play an important role: Direct location information is effective

but sensitive to changes and more demanding (becomes obsolete if a failure/relocation

occurs, requires update messages). Indirect information (e.g., success rates ins-APS,

Int-BFSor connectivity/capacity inGIA) is much more robust but less accurate.

c) Indexing other peers’ repositories is very useful but must be carefully applied,

since it requires updates to keep the indices up-to-date.

d) Adaptation is a key characteristic through which peers that have a prolonged

stay in the network enhance their knowledge with time.GS, s-APSand Int-BFS learn

from system searches and improve their performance.

e) In many cases, the simple protocols are the preferred ones. The simplicity of the

mechanisms behind flooding or Random Walks make them powerful and easy to imple-

ment. They can be used either by themselves or in combination with other schemes to

improve their performance.

140

Appendix B

Sharing Relational Data in Unstructured Overlays

B.1 Introduction

In this Appendix we describe the problem of sharing relational data in unstruc-

tured overlays. This is joint work with Verena Kantere and Professor Timos Sellis of the

Department of Electrical and Computer Engineering, National Technical University of

Athens, Greece.

In the past few years, there has been a growing interest in the Peer-to-Peer (P2P)

paradigm, primarily boosted by popular applications that enable massive data sharing

among millions of users. Our research, thus far, has been focusing on applications with

exact-match queries: Users are requesting for an object by either providing a unique

identifier (e.g., filename, system-wide file-ID, etc) or a singleattribute-value pair,

evaluated always asTRUE or FALSE. While this formulation covers a significant portion of

real-life scenarios, it is certainly not restrictive. Scientific collaborations, enterprise data

integration and sharing in the World Wide Web are only examples of applications that

require more powerful data and query formulations.

In contrast to data integration architectures, P2P data sharing systems do not as-

sume a mediated schema to which all sources of the system should conform in order to

share data. In such a system, each peer is an autonomous source that has a local schema

and individually stores and manages its data, revealing only part of its schema to the rest

141

of the peers. Due to the lack of global schema, users express and answer queries based

on their local schema. In a P2P data management system, peers also perform local co-

ordination with theiracquaintees, i.e., their one-hop neighbors in the overlay. During

the acquaintance procedure, the two peers exchange information about part of their local

schema and create a mediating mapping semi-automatically [101]. The establishment of

an acquaintance implies an agreement for the performance of data coordination between

the acquaintees based on the respective schema mapping. However, peers do not have

to conform to any kind of data or schema transformation to establish acquaintances with

other peers and participate in the system.

As we mentioned before, many popular P2P applications operate on unstructured

networks, with peers joining and leaving the system in an ad-hoc fashion, while main-

taining only local knowledge. In such systems, joining peers usually become acquainted

to the first randomly available nodes and not to the ones that best meet their need for

information. Therefore, they have to direct queries not only to their neighbors, but to a

greater part of the system. One can roughly identify two common approaches in order to

query and retrieve answers in such a system:

The first approach is to propagate queries on paths of bounded length in the overlay.

At each routing step, the query is rewritten to the schema of its new host based on the

respective acquaintance mappings (see Figure B.1). A query may have to be rewritten

several times from peer to peer till it reaches nodes that are able to answer it sufficiently

in terms of quality but also quantity. It is obvious that the successive rewritings decrease

or restrict the information that can be returned by a query and, thus, also reduce the

possibility of accurate query answering. Moreover, it is the case that peers may not be able

142

Q

Q1’

Q2’’

Q1’’= 0

Q1’’’= 0

Q2’

Q1’= Q2’

Figure B.1: Propagation of queries among
acquaintees. The size of the rectangles re-
flects the amount of degradation after a
rewriting. Q′′′1 6= Q′′2 because the queries
followed different paths

Group
Schema

Q

Figure B.2: Query directed towards a
group schema which holds mappings with
all group members

to sufficiently answer received queries, not because their local schema does not match the

initial query adequately, but because the incoming rewritten version has been gradually

reduced or corrupted. Therefore, the performance of the query processing procedure is

degraded during the rewritings on intermediate peers.

In the second approach, nodes are organized (usually by one or more administra-

tors and application experts) into groups of peers that store semantically related data. The

administrators, using schema matching tools as well as domain knowledge, create a medi-

ated schema that is representative of the group. Group schemas hold mappings with each

of the local databases. This configuration corresponds to multiple data integration system

realizations, one per semantic group. Queries are then globally expressed on this me-

diated schema (see Figure B.2). Obviously, this approach requires human involvement,

143

P2P Layer

DavisDB

StuartDB

LuDB

P2P Layer

P2P Layer

DavisDB :

Visits(Pid, Date, Did)
Disease (Did, DisDescr, Ache)
Treatment (Did, Drug, Dosology)

LuDB :
Disease(Did, AvgFever, Drug)
Patients(Insurance#, Did, Age, Ache)

StuartDB :
Treatment(Pid, Did, Date, Symptom,

TreatDescr, DisDescr)

Figure B.3: Part of a P2P system from a health-related environment

extensive peer coordination and repetition of the process each time the group changes.

B.1.1 Motivating Example

As a motivating example, envision a P2P system where the participating peers are

databases of private doctors of various specialties, diagnostic laboratories and databases

of hospitals. Figure B.3 depicts a small part of this system, where nodes are: DavisDB -

the database of the private doctor Dr. Davis, LuDB - the database of pediatrician Dr Lu

and StuartDB - the database of the pharmacist, Mr Stuart. A P2P layer on top of each

database is responsible for all data exchange between a peer and its acquaintees. The

P2P layer is also responsible for the creation and maintenance of mappings between local

schemas during the establishment of acquaintances towards the line of [101]. Moreover,

each peer owns a query rewriting and a query-schema matching mechanism. The local

schemas exported by these peers are shown in Figure B.3.

Suppose that Dr Davis would like to collect from the system general information

about patients that have had diseases. He expresses the following query on his database:

Qorig:

SELECT V.Pid, D.DisDescr, D.Ache, T.Drug, T.Dosology

144

FROM Disease D, Treatment T, Visits V
WHERE V.Did = D.Did AND D.Did = T.Did

Having only one acquaintance, the pharmacist’s database, Dr. Davis’s database

propagatesQorig to it. We assume GAV, LAV, or GLAV (i.e. Global, Local, Global and

Local As View) mappings between acquaintees [102]. We assume the following LAV

mapping between DavisDB and StuartDB databases:

MStuartDBDavisDB: Treatment(Pid,, , Symptom, TreatDescr, DisDescr) :-

Visits(Pid, , Did), Disease(Did, DisDescr, Ache), Treatment(Did, Drug,),

where correspondences Symptom = Ache, TreatDescr = Drug are implied1. Thus, the

rewritten query on StuartDB is the following:

QStuartDBsr:

SELECT T.Pid, T.DisDescr, T.Symptom, T.TreatDescr
FROM Treatment T

Obviously, the new query has lost the attribute referring to information about drug

dosology, since it cannot be mapped in StuartDB. The node of Mr Stuart passes the rewrit-

ten versionQStuartDBsr to Dr Lu with whom he has the following GAV mapping:

MStuartDBLuDB: Treatment(Pid,, , Symptom, ,) :-

Disease(Did, AvgFever,), Patients(Insurance], Did, ,), Age< 132,

1The mapping is actually a view defined on StuartDB.Treatment, which is matched with a join on

DavisDB relations such as: View1(Pid, Symptom, TreatDescr, DisDescr):-Treatment(Pid,Did, Date, Symp-

tom, TreatDescr, DisDescr)

View1(Pid, Ache, Drug, DisDescr):- Visits(Pid, Date, Did),Disease(Did, DisDescr, Ache), Treatment(Did,

Drug, Dosology). We summarize mappings by omitting view definitions and introducing ’’ for attributes

that are not matched.
2Because he treats children

145

where correspondences Pid = Insurance], Symptom = AvgFever are implied. Thus, the

rewritten query on LuDB is the following:

QLuDB sr:

SELECT P.Insurance#, D.AvgFever
FROM Disease D, Patients P
WHERE D.Did = P.Did, P.Age < 13

Clearly, the new query has lost more attributes, which refer to the description of

the disease and the respective drug. Moreover, the new query is more restrictive than the

original, since it has an additional condition on ‘Age’. Finally, it is clear that the ‘Ache’

attribute of the original query has been poorly rewritten to ‘AvgFever’, even though the

schema of LuDB contains an attribute that represents the exact same concept. Yet, if Dr

Davis was acquainted with Dr Lu, among the supported mappings could be:

M′LuDB DavisDB: Visits(Pid, , Did), Disease (Did,, Ache), Treatment (Did, Drug,) :-

Disease(Did,, Drug), Patients(Insurance], Did, , Ache),

where the correspondence Pid = Insurance] is implied. Using the above mapping, Dr

Davis would ideally like his query to be translated as follows:

QLuDB ideal:

SELECT P.Insurance#, D.Ache, D.Drug
FROM Disease D, Patients P
WHERE D.Did = P.Did

The above version overcomes the degradation of successive rewriting in terms of

query information loss and further query restriction, as well as the poor matching of the

‘Ache’ attribute.

Our approach enables DavisDB to evaluate Dr Lu’s query translations (e.g., suggest

that Ache = AvgFever is not a good correspondence and Pid = Insurance is a good one)

146

and gradually help him improve the quality of its query rewriting. Through iterative

evaluations, Dr Davis notices the average answer quality from Dr Lu is high enough to

add him as an acquaintee.

Following the clustering of peers into semantic neighborhoods, our system can ini-

tiate the creation of a mediating schemaG representative of all three databases.G holds

mappings with each of the creating nodes and functions as a point of contact for all incom-

ing queries, whether from inside or outside the cluster. Thus, requesters need only eval-

uate answers and mappings against one schema, instead of multiple ones. Furthermore,

they can effectively speed-up the learning process by directing queries to semantically

relevant clusters known system-wide.

B.1.2 Our Contribution:GrouPeer

GrouPeer is a system designed to enable accurate query evaluation through se-

mantic overlay clustering and automatic creation and maintenance of semantic groups in

relational P2P databases without prior schema or meta-schema information.GrouPeer’s

contributions are twofold:

• Clustering of semantically related peers: Nodes individually decide whether to an-

swer the successively rewritten query or automatically rewrite its original version.

Requesters evaluate the replies along with the returned rewritings and gradually

build mappings with remote peers. Eventually, peers with similar local schemas

become acquainted and clusters are created around active peers.

147

• Group schema creation and maintenance: Nodes in well-formed semantic clus-

ters are candidates for initiating the group inference process. The process contacts

nodes similar to the initiator inside the already formed cluster, creating a schema

representative of the participants. Group schemas are then propagated inside the

network, enabling all nodes to direct relevant queries towards a single mediated

schema.

Our focus will be on the second part ofGrouPeer, i.e., the creation of group schemas

from semantically similar nodes in a completely distributed manner. In Section B.2 we

present a brief overview of the clustering process. A detailed description can be found

in [103]. Section B.3 discusses group schema creation, while Section B.4 presents our

experimental evaluation.

B.2 Clustering Peers for Accurate Query Answers

GrouPeerproposes a procedure that supports the evasion of successive rewritings

along every query’s propagation path. This methodology enables peers to discover others

with similar interests and schemas, given that no form of global knowledge (e.g., each

peer’s schema [104]) is assumed system-wide. Learning is performed through making

queries and evaluating their answers, and is formed through mappings between the re-

spective schemas. As pairs of peers build more mappings, query rewriting becomes more

accurate. Eventually, peers with similar schemas become acquainted, gradually restruc-

turing the overlay into semantic neighborhoods. This process is referred to as theclus-

tering process. We should note here thatGrouPeerfocuses on queries and mappings that

148

can be expressed as SPJ queries (or else conjunctive queries with arithmetic comparisons)

B.2.1 Query Reformulation and Similarity for P2P Database Systems

The goal of the reformulation mechanism is to transform a query so that it can

be answered, fully or in part, by an acquaintee. We assume that each peer exports a

relational schema to its acquaintees. For the remainder of this work, we shall refer to

it as the peer’s schema, regardless if it represents the whole schema or a part of it (e.g.,

for security/anonymity purposes). Each pair of acquaintees holds peer mappings between

their schemas, which are considered to be of the well-known GAV/LAV/GLAV form.

The available query rewriting algorithms restrict their usage to queries that can be

completely rewritten under a set of mappings. Yet, this is not suitable for a P2P envi-

ronment, where peers are satisfied with information that shares characteristics similar to

those of their query, not necessarily (and precisely) all of them.

In GrouPeer, peers utilize a modified reformulation mechanism based on existing

rewriting algorithms. Our mechanism allows a rewritten version of a query to maintain

only the attributes and conditions that “survive” the query translation that is performed

among acquaintees.

After the translation of a query to their local schemas, peers can proceed with its

computation. Our goal is to measure the similarity between different versions of a query

and its original formulation in order to decide which constitutes a more accurate rewriting.

The similarity functionMsim proposed inGrouPeermeasures the semantic deviation of

the target queryQrewr from the originalQorig. Assuming that every query is defined as a

149

set of elements, one for each ‘select’ attribute and one for each ‘where’ condition, the

rewritten version can deviate from the original one in the following ways: Elements of

Qorig cannot be mapped inQrewr, or extra conditions are introduced inQrewr.

Formally, for two query versionsQorig, Qrewr and a set of user-specified weights

wQorig that denote the importance of each element in the semantics ofQorig, the similarity

of the rewritten version to the original is:

Msim(Qorig,Qrewr) = 1−

 ∑
elements i

not mapped

wi

+# of conditions inQrewr but not inQorig

∑
i

wi

Msim is structured such that dissimilar elements diminish its value. Perfect similarity is

represented byMsim = 1.

B.2.2 Description of the Clustering Process

In order to achieve the discovery of remote relevant peers, the key idea of our

method is to propagate along the query path not only the successively rewritten version,

but also the original one. In this way, peers can individually decide which one to answer.

Peers are assumed to be equipped with a query rewriting mechanism and an automatic

schema-matching tool. The rewriting mechanism is used to reformulate queries received

from acquaintees based on the respective mappings. The automatic schema-matching

tool is used in order to translate queries (or parts of them) expressed on schemas for

which mappings are not available.

Successive query reformulation produces query versions that deviate from the orig-

150

inal query. Obviously, if the chain of peer mappings used for the rewriting is poor in infor-

mation relevant to the query (i.e., query elements cannot be reformulated accurately), this

can result in fast degradation within a few hops. Query elements that cannot be translated

through existing mappings are eliminated in the rewritten version. Although the follow-

ing nodes on the query path may encapsulate the eliminated concepts in their schemas,

they still cannot contribute them to the original query, because the version they receive

does not include them. Our approach keeps the eliminated concepts and tries to match

them in subsequent reformulations.

Overall, an initiated queryQorig is propagated along the query path. On each node,

the query is rewritten through mappings with the previous node toQsr, which is aug-

mented with automatically rewritten query elements toQsra. Also, Qorig is automatically

rewritten from scratch toQar. The answering node compares the two rewritten versions

with the original one, using our similarity function and answers the version it seems most

similar to it. The query initiator evaluates the satisfiability of the received answer and

sends its feedback to the answering peer about the query version it chose to reply to. Ac-

cording to the evaluation, the query replier keeps record of bad and good rewritings on the

initiator’s schema elements. Gradually, content providers build mappings with the initia-

tors through the queries they receive and answer on their behalf. Moreover, the initiators

log the evaluation of query answers from each replier. Based on this, the initiators can

decide that they have common interests with a remote peer and ask to become acquainted.

New acquaintees can base their communication on mappings already created.

151

B.2.3 GrouPeer Protocol Internals

In the following we describe basic algorithm internals, specifically the query routing

scheme and the addition/deletion of acquaintances.

1) Routing:Our method utilizes informed walks with a TTL parameter in order to

propagate queries to nodes in the overlay. The requester deploysk walkers, each following

independent paths. A node forwards a query to the neighbor(s) whose schemas have the

highest similarity value with respect to this query. Note that these values can be computed,

since neighbors share this information by default in our protocol.

2) Adding/dropping acquaintees:We augment our clustering algorithm by allow-

ing the dropping of existing neighbors in order to gradually improve on the random initial

setup: New acquaintees are added whenever the local evaluation average is overθPI and

existing ones are dropped when its value is belowθPI Low, provided we have received at

leastTHR replies from that node. This confidence parameter is important to ensure that

the local evaluation is based on an adequate number of queries. We also define a maxi-

mum number of connections per peer, MAXDEGREE, which forces a neighbor addition

to be preceded by the dropping of the neighbor with the smallest schema similarity if this

limit is reached. A link is dropped whenever the local evaluation average is belowθPI Low,

provided the degrees of both nodes are at least MINDEGREE. This ensures that peers do

not get disconnected from the network.

152

B.3 Interest Groups inGrouPeer

We now describeGrouPeer’s group schema creation process. Our goal is to mate-

rialize the creation of semantic clusters by combining the overlay clustering presented in

the previous section with a distributed process that iteratively merges local schemas into

the final group schema.

After the performed clustering, peers with similar information are close in the over-

lay, achieving an increase in the number and quality of answers. Yet, this overlay clus-

tering is implicit, in that there is no information about the identity and characteristics of

a cluster or the peers that participate in it. We define explicit knowledge of a cluster to

consist of knowledge about its participants, their schemas, the cluster’s schema and the

relations between each participant’s schema and the group schema. Such information has

multiple advantages:

First, it enables peers to direct relevant queries towards a single, authoritative,

schema. Instead of traversing multiple paths and performing learning with multiple

sources, query initiators interact with a single “virtual” schema (the group schema). Par-

ticipants already hold complete mappings with this target schema.

Joining nodes can also benefit by selecting appropriate acquaintees or speeding up

the learning process instead of choosing random entry points. Finally, since our system

operates in a dynamic environment, with node arrivals/departures and possible schema or

workload changes, dynamically created group metadata can be automatically refreshed.

We call these explicit clustersinterestor semanticgroups and the process of creat-

ing them thegroup inferenceprocess.

153

B.3.1 Group Inference

The process comprises the following steps: (a) Initialization - who and when initi-

ates the group inference, (b) Propagation - how does the process advance among peers of

the same group, and (c) Termination and Refinement - when is the process over/reiterated.

Initialization: There are two main considerations in the initialization process:

First, the nature of our application requires that the group inference is performed in a

distributed manner, without global coordination. Hence, peers should independently de-

cide to start the process that creates the respective schema. Second, we must ensure that

the initiator(s) are qualified representatives of a semantic group. Given that, the only

proof of group existence in our system is implied by the changed overlay topology and

local state stored at each node. InGrouPeer, a peer may consider itself part of a semantic

cluster and initiate the group inference process if the following requirements are met:

• The similarity of answered queries to the original ones (measured at this node) is

above a certain thresholdTo.

• The average rate of queries sent from this node is over a certain threshold.

For example, we may require that any prospectiveinitiator has received replies of average

similarity greater than 0.7 and that it has made at least 50 queries in the last 2 hours. These

requirements satisfy both conditions described before, by ensuring that the respective

peer is an active participant (rate of queries) and is a member of a well-formed cluster

(similarity threshold).

Since any prospective initiator is a qualified representative of the group, its local

schema will also become a point-of-reference regarding the inferred one. Thus, the peer

154

schemas considered for the formation of the group schema should not substantially differ

(in semantic distance) from the schema of the initiator. The following function calculates

thedirectedsemantic similarity,SS, of two relational schemas:

SS(S,T) =
∑
i

∑
j
wi j MappedT(SRi j)

∑
i

∑
j
wi j SRi j

In the above function,S is the source schema andT is the target schema.SScalculates

the portion ofS’s attributes (SR) that are mapped onT. Obviously,SS(S,T) 6= SS(T,S)

in general. In order forSSto be computable, we have to know the mapping betweeni, j.

This requires a composition of mappings between acquaintees until a mapping fromi to

j is produced. Related work [105] describes efficient composition schemes that can be

utilized. Nevertheless,GrouPeerassumes mappings that are simple 1-1 correspondences

and can be easily composed.SSachieves to measure semantic similarity because it takes

into consideration the mapping of concepts beyond their structural interpretations on the

schema level. Moreover, sinceSSignores the schema structure, it is very easily calculated.

In GrouPeer, we require that all considered local schemas be at leastt-similar to

the initiator’s schema:SS(SI ,T) ≥ t,∀T. The initiator peerI is called theoriginator of

the group, its schemaSI is theorigin of the group schema and the maximum similarity

distance between the origin and the peer schemas that participate in this process is the

semantic radius tof the group.

Propagation: Initiator I (with schemaSI) initializes the group schema to its own

and creates a stackST(I) with its acquaintees that are part of the cluster. Specifically,

ST(I) = {A1,A2, ...,Am} is an ordered set of elementsA j = {Pj ,SS(SI ,SPj)}, wherePj is a

peer with schemaSPj . ElementsA j refer to theI ’s most similar acquaintees:SS(SI ,SPj)≥

155

t, j = 1, ..,m andSS(SI ,SPj)≥ SS(SI ,SPj+1), j = 1, ..,m−1. The initiator propagates the

inference procedure to the first peer on the stack. Each intermediate nodeP merges its

own schema with the group schema it receives.P then determines its acquainteesPj for

which SS(SI ,SPj) ≥ t, adds the respective pair{Pj ,SS(SI ,SPj)}, to ST(I) and orders it.

SS(SI ,SPj) is calculated indirectly, as the product:SS(SI ,SP) ·SS(S′P,SPj), whereS′P is

the part ofSP mapped onSI . Essentially,SS(SI ,SP) aims to measure how much of the

semantics ofSI can be found on schemaSP, independently of other semantics that the

latter captures. The only way to measure this (without automatic matching) is through the

chain of mappings ofSI all the way toSP. As such, the value ofSS(SI ,SP) depends on

the path that the inference process follows and fails to consider concepts that exist both in

SI andSP but not in the schemas of intermediate nodes. However, this formula produces

a satisfactory result, since nodes are visited in decreasing order of similarity withI and

clustering precedes this process, so a peerP will have higher similarity with the originator

than successor nodes in the stack. Moreover, if a peerP already inST(I) is considered

for addition, the entry with the highestSS(SI ,SP) value is kept.

Even though the participation or not of peers in the inference process is judged by

a part of their schemas, their whole schema contributes to the inferred group schema.

The goal of the inference process is to produce a schema that represents semantics en-

capsulated in the cluster. In order to determine the cluster’s semantic borders, we use the

semantics of the initiator as a reference. In this way, the process is safe from producing a

schema much broader or distorted from the initiator’s interests.

Termination: The group inference procedure ends when the stack of participating

peers becomes empty. However, if many peers have schemas very similar to the origina-

156

tor’s schema or the similarity thresholdt is small, (i.e., the semantic radius is big), then it

may be the case that the stack grows at each step. The inference procedure is prolonged,

taking into account a large number of peers. After a certain number of iterations, there

is usually no point in considering more schemas, because they do not contribute signifi-

cantly. In order to reduce the time of the inference and save valuable network resources,

we add a limit to the maximum number of encountered peer schemas,MaxP, as a termi-

nation condition.MaxP is not a TTL condition, since successive hops are not always on

the same path;MaxPrefers to the total number of participating nodes.

Finally, there may be situations where the inference procedure terminates due to

MaxP while important semantic information is still added, or continues untilMaxP is

reached while little information is assimilated. To rectify this,GrouPeeralso considers

thedegree of changethat occurs to the inferred schema during each merging step. In case

of a poorly chosenMaxPvalue, this criterion can be used to calibrate this parameter.

B.3.2 Discussion on the Group Inference Process

In this section we briefly cover issues related to the inferred groups, such as schema

creation and merging, group broadcast, maintenance and interaction.

Group Schema Creation:As mentioned earlier, the inference of the interest group

schema is achieved gradually by merging the schemas of peers in consecutive steps. The

goal of this procedure is to produce a schema that represents the majority of the peers that

belong to the respective cluster. Therefore, the merged schema is neither the intersection

nor the union of the members of the cluster. Assuming that such a cluster comprises of nu-

157

merous peers, it is straightforward that the intersection of their schemas would probably

be empty and their union would be too large. Thus, our merging procedure has to incor-

porate only the most “popular” elements of the respective peer schemas in the merged

schema.

Yet, inferred schemas should also be representative of almost all their source peer

schemas, therefore our merging procedure should also perform high compression be-

fore discarding schema elements. Finally, we note that the whole procedure is based

only on available information in the peers, i.e., schemas and mappings between them.

Specifically, we assume that peer mappings are GAV/LAV/GLAV and peer schemas are

relational, (i.e. the only internal mappings are foreign key constraints). One mapping is

considered to be a set of 1-1 correspondences between attributes that hold with an op-

tional set of value constraints on some attributes. Moreover, peers do not carry semantic

information about their schemas and mappings. Following is the description of the merg-

ing algorithm:

Input : the merged schemaSIG; the peer schemaSP and a set of mappingsM between

them; a set of intra-schema mappingsMi

Output : the new merged schemaS′IG, a set of mappingsM′ with the following node on

the path, a set of intra-schema mappingsM′i and a dictionaryD

Initialization : SIG = /0, M = /0, Mi = /0, D = /0

On each peer of the network path perform the following steps:

Step1: Add toSIG all the relations ofSP

Step2: If M = /0 setS′IG = SIG and go to step 7

Step3: Merge relations that share the same key

158

Step4: While the number of relations is over the limit do:

a. Select pairs of relations that have the most correspondences between their attributes

and that do not depend on value constraints

b. From pairs of (a) select the pairs of relations that have the fewest not mapped attributes

and merge them

c. Remove fromM the mappings used for the merge of (b) and add the involved corre-

spondences in the dictionaryD

Step5: SetS′IG = SIG, M′i = Mi ∪M

Step6: Select the next node,P′, of the network path from the acquaintees of peerP. Set

M′ equal to the set of mappings betweenP, P′. Change attribute and relation names ofP

in M′ to the respective names in the merged schemaS′IG

Step7: SendS′IG, M′i andM′ to P′ 2

Steps 3 and 4 refer to the merging of a pair of relations. The following procedure

performs the merging of two relations:

Input : A pair of relationsR1, R2 a set of mappingsM

Output : The merged relationR

Initialization : R= /0

Step1: Add toRall attributes of the relationsR1, R2

Step2: Until the number of attributes is above the limit, if it is possible do:

a. if there are any, merge attributes that are involved only in one correspondence; else go

to b

b. merge the attributes that are involved in at least one correspondence, starting from

those participating in the fewest correspondences2

159

At the end of the schema merging procedure, i.e., when all relevant peer schemas

have been merged, relations and relation attributes that have been met very rarely during

the procedure can be dropped.

Example: Assume that Dr Davis is a doctor with a peer database the schema of

which is:

SDavisDB :

Visits(Pid, Date, Did)

Disease (Did, DisDescr, Symptom)

Treatment (Did, Drug, Dosology)

And Dr Lu is another doctor with a peer database, the schema of which is:

SLuDB :

Sickness(Did, AvgFever, Drug)

Patients(Insurance], Did, Age, Ache)

The schemas of DavisDB and LuDB are presented in Figure B.4. The databases

have the following mapping:

M1LuDB DavisDB:

Disease (Did,, Symptom), Treatment (Did, Drug,):-Sickness(Did, AvgFever, Drug),

where the correspondences Symptom = AvgFever and Disease = Sickness are implied.

In this case, as shown in Figure B.5, there are three correspondences that are encap-

sulated in mappingM1. We assume that the peer of Dr Davis initializes the schema merge.

Thus,SIG is initialized toSDavisDB. After the 1st step of the schema merging algorithm,

SIG contains all the relations ofSDavisDB and SLuDB. Since there is a mapping among

the relations,the algorithm goes on to Step3: relationsDiseaseandSicknessare merged

160

Figure B.4: Two schemas to be semantically merged

Figure B.5:SIG is initialized toSDavisDBand there is mappingM1 betweenSIG andSLuDB

Figure B.6: Relations Disease and Sickness of Figure B.5 are merged

161

Figure B.7: Relations Disease/Sickness and Treatment of Figure B.6 are merged

in one, since they share the same key (seeFgure B.6). Thus, attributesSymptomand

AvgFeverare merged. The correspondenceDisease/Sickness.Drug = Treatment.Drug

is kept as an internal one. Also, the dictionaryD is enriched with correspondences

Disease= SicknessandSymptom= AvgFever; actually the schema keeps one name for

each relation or attribute from the alternative ones. At the end of the schema merging

procedure we propose that the schema keeps for relation and attribute names the most

common ones encountered during the procedure.

Assuming that the algorithm goes on to Step4, relationsDisease/Sicknessand

Treatmentare merged (Figure B.7), since they are the only ones related with a map-

ping. Now there is one attribute named ’Drug’ and it is part of the relation key, even

though just one of the attributes that where merged was a key. Additional iterations can

merge relations based on foreign key constraints, since no other internal mappings exist.

The schema merging procedure produces the interest group schema but also a set

of internal mappings and a dictionary. The internal mappings are the peer mappings that

were not consumed in the successive schema merges. These hold additional syntactic

and implicitly semantic information for the interest group schema elements; thus, they

can be very helpful to peers that would like to join the group and create mappings with

their local schema. Moreover, this set of mappings has the collection of all mappings

162

with value constraints met during the merging procedure. These kind of mappings cannot

be consumed: the involved relations/attributes cannot be merged, since they are mapped

under certain conditions (the value constraints).

Group Broadcast: After a group schema is created, metadata about this group is

periodically propagated across the overlay. This metadata includes the group schema,

some or all of the IDs of participating nodes (contact list), the time of creation and the

originator. Any peer in the system can rewrite its queries to the group schemas available.

Queries can then be directly forwarded to the group members. In this way, we manage to

bypass the information loss of multiple rewritings, since a query is translated only once,

through the group schema. Making the participating nodes known to all peers enables any

remote node to enter the cluster. Peers can now become acquainted with group nodes that

have very similar schemas with them, without having to wait to be gradually clustered.

Group Interaction and Merging: While our completely decentralized approach

in group creation is necessary, it also raises some consistency issues, since more than

one groups can be created, even simultaneously. This can affect correct behavior only if

nodes similar to the initiator choose to create a groupandthe two processes overlap in the

overlay. Topologically close peers initiating the process over different semantic groups

pose no problem. The same is true if the initiators’ hop distance is such that would not

allow either procedure to incorporate both groups in its progress.

In order to avoid extended negotiation rounds between competing potent origina-

tors, we require that initiators announce their intention to create a group to their neighbor-

hood. In effect, this forces competing initiators with schemas similar to the first initiator

to postpone or abort their process, if they are inside the announcement neighborhood. We

163

note that the announcement neighborhood must have a radius proportional to the seman-

tic radius of the group to be inferred. If such peers do not eventually participate in the

group inference, they can add themselves to the overlay neighborhood or participate in

the consequentmaintenanceof the group.

Nevertheless, peers are eligible to initiate a new group if they have not received

a relevant announcement or if they incorrectly calculate their similarity with a known

initiator. It is possible that such originators will create groups that have a significant

semantic overlap with existing ones. Thus, these groups are subject to be merged into a

unified schema. After both groups are advertised, the respective originators can detect the

similarity between the inferred schemas and initiate the merging process. This involves

choosing a new originator among the two existing ones, merging the two schemas and

advertising the new group using the new initiator and the union of the contact lists.

We must note that an important property must hold: Groups created by similar

initiators will also be similar and groups by dissimilar initiators will be dissimilar. This is

essential because it justifies that authoritative peers can independently initiate the process

(and thus block other similar ones from doing it).GrouPeer’s clustering process assures

that this property holds, something also evident in our evaluation.

Group Maintenance: The maintenance process refers to updates in the contact

list as well as the group schema itself. Maintenance is necessary, since peers join the

group while others that belong to the group leave or change their local databases in time.

There are two ways to decide how to maintain a group schema: The first is to allow the

originator to initiate the inference process periodically. The second is to allowanyeligible

peer re-start the process. In order for both approaches to work, we define anepochfactor

164

to represent the maximum life-span of a group, after which it will become invalid. Then,

the originator can invoke the inference process everyepochminutes and re-transmit the

new group inside the overlay. This way, group metadata are kept in a form of soft state

inside our network and get promptly updated. By allowing any eligible peer to undertake

the role of the originator, we eliminate inconsistencies created by changes in the original

initiator and also ensure that the inferred schema does not specialize. Obviously, there is a

trade-off between the cost of repeating the process over the anticipated query performance

using stale groups.

B.4 Experimental Evaluation

To evaluate the performance ofGrouPeer, we use a message-level simulator written

in C. By default, we randomly choose 100 nodes that play the role of the requesters, each

making 100 queries to the system. We present results for 1,000-node random graphs (an

adequate number of participants regarding our motivating application) with average node

degrees around 4, created by theBRITE [46] topology generator. Results are averaged

over 20 graphs of the same type and size, with 100 runs in each.

For the schemas stored at each node, we use two initial relational schemas, whose

tables and attributes are uniformly distributed at nodes. The initial schema comprises of

5 tables and 33 attributes. Seven attributes are keys with a total of 11 mappings (corre-

spondences) between them. Each peer stores 10 table columns (attributes) on average.

Queries are formed on a single or multiple tables if applicable (join queries). We exper-

imented with larger schemas (90 attributes over 12 tables) and a flat 100-attribute single

165

table (no mappings between attributes). Because the creation of the individual schemas

is computer-generated, an increase in the schema reduces the amount of the default sim-

ilarity between nodes (unless more attributes are distributed per node). Nevertheless, the

important observation is that, in all cases,GrouPeermaintains its relative advantages and

behaves in a similar fashion.

Our basic performance metrics are the average similarity oraccuracyof answers

to the original queries (i.e., the similarity of the answered query over the original one

evaluated at the requester), as well as the number of nodes that provide an answer.

B.4.1 Clustering Results

For the automatic rewriting of the original query, we simulate the possible erroneous

outcome by altering the “perfect” rewriting by 50%. This is then gradually ameliorated

through our learning process. We set the maximum number of allowed hops per query

TTL=6, the number of deployed walkersk= 3, as well asθPI = 0.7 andθPI Low = 0.3 using

a threshold parameter ofTHR=5 replies. Finally, we assume that the returned tuples do

not play any role to the answer evaluation.

Figure B.8 shows the performance of our algorithm by varying the number of

queries posed by each of the 100 randomly selected requesters. Our method manages to

return far more accurate results, achieving a similarity of around 85% in the steady state.

The accuracy increases fast as more queries are created, since new acquaintees are added

and neighbors with no contribution are dropped. We also present the respective values

for answering the original and the rewritten versions of the query. Both the original and

166

100 200 300 400 500
Queries per Requester

50

60

70

80

90

100

Si
m

ila
ri

ty
 (%

)

GrouPeer total
GrouPeer original Qu
GrouPeer rewritten Qu
Naive

Figure B.8: Similarity of answers to the
original and rewritten query versions over
variable queries per requester

100 200 300 400 500
Queries per Requester

40

50

60

70

80

90

100

Si
m

ila
ri

ty
 (%

)

GrouPeer
Naive-NoJoins
Naive

Figure B.9: Similarity of answers to join
queries over variable queries per requester

the consecutive rewritten queries are answered with more precision. Our method’s learn-

ing feature allows the automatic rewriting of the original query to improve over time as

mappings are built between requester-replier pairs. Our clustering mechanism helps into

bringing more information-rich nodes closer to requesters which also increases the accu-

racy of the consecutive rewritings. Our scheme is compared againstNaive, which uses the

same forwarding scheme as our method but answers only the successively rewritten query

version. Our method can never fall belowNaive’s performance but steadily performs bet-

ter with more queries. Finally, it is almost as bandwidth-efficient asNaive, since the

few additional messages reported are due to the communication between sources and re-

questers during the learning mechanism, as well as the message exchange when a new

acquaintance is made.

Next, we monitorGrouPeer’s performance by specifically tracking join queries in

the same setting as the previous experiment. Figure B.9 shows the results for our method

and two different versions ofNaive: The regular one we described before (which allows

the rewriting of a join query even if the join is not mapped – likeGrouPeer) and one

167

100 200 300 400 500
Queries per Requester

40

50

60

70

80

90

100

%
 o

f o
pt

im
al

 c
lu

st
er

in
g

500 requ
100 requ
10 requ

Figure B.10: Ratio ofGrouPeer’s clustering versus the optimal, given an equal number
of acquaintees

that returns an empty query if the join(s) are not preserved. As before, we notice that

GrouPeerperforms at least as good as the original naive method and quickly increases

in accurate answers as more queries are generated. The more strict naive method returns

more similar results for few queries compared to our scheme. This happens as this method

favors a complete (and thus more accurate) rewriting. Nevertheless, this comes at a cost

of retrieving an answer from about 1/3 of the peers thatGrouPeergets answers from.

We also examine the quality of the clustering process as a means of locating nodes

with similar schemas. For each requester, we measure the average similarity with its

acquaintees at the end of the querying process and compare it with the best possible

scenario: Having all top-mnodes in the overlay with schemas most similar to the initiator

being its acquaintees, wherem is equal to the total number of acquaintees this node has

at the end of the querying process. We report the ratio of the actual average similarity to

this optimal value in Figure B.10.

168

Table B.1: Performance varying the number of query attributes
Similarity Clustering

attr = 2,queries= 100 0.87 80.2%

attr = 2,queries= 500 0.89 82.1%

attr = 4,queries= 100 0.80 86.1%

attr = 4,queries= 500 0.84 88.4%

attr = 6,queries= 100 0.71 83.0%

attr = 6,queries= 500 0.76 84.5%

attr = 8,queries= 100 0.67 80.0%

attr = 8,queries= 500 0.71 81.0%

Our methodology achieves clustering that is very close to the best achievable value

in the steady state, while its quality quickly reaches that level. As more nodes become

active, the process improves, since inGrouPeernodes can take advantage of their neigh-

bors’ knowledge/connectivity. The ideal restructuring is hard to be achieved because of

the random initial connectivity: The most similar nodes may not all receive queries and

thus are not considered by the clustering process. Specifically, nodes may either be out-

side the query range or be left out of walkers’ paths. By having more active nodes, our

method effectively reduces the influence of the latter, since query initiators get replies by

better nodes, taking advantage of other requesters’ clustering. Figure B.10 shows that in

the steady state and with 10, 100 and 500 requesters,GrouPeerachieves 77%, 88% and

91% of the optimal clustering respectively. We can identify 88% of the optimal nodes in

the entire network by having only 10% active nodes and each of them contacting at most

k×TTL= 18 nodes per query (this amounts to less than 2% of the peers).

Table B.1 summarizes the performance ofGrouPeerwith a different number of

query attributes (each requester making 100 or 500 queries). As the number or attributes

169

per query increases, the accuracy of the answers slightly drops, since a smaller percentage

of attributes has the chance to be satisfied. Note that the quality of the clustering increases

up to a point, after which it starts to slightly decrease. This is due to the fact that there are

two competing factors that affect the clustering process: The more attributes in a query,

the more precise the clustering process becomes, since the initiator learns more informa-

tion for its schema as a whole; the query similarity (which affects clustering through the

Ev function), on the other hand, decreases with the number of attributes.

We tested our method in graphs of different sizes (from 100 to 4K nodes) and dif-

ferent connectivities (power-law). Results of these runs are qualitatively similar to the

presented ones.

B.4.2 Group Inference Results

In this section we present results on the group schema creation ofGrouPeer. Our

basic setup remains the same, with the exception that queries on created groups are refor-

mulated using the inferred schema(s). Our metrics are the percentile increase/decrease in

accuracy and number of replies compared to clustering as these are measured on thefirst

created group. The maximum size of the inferred schema is always in the order of the size

of the initial schema used to produce the local ones during start-up. When the first group

is created, we direct relevant queries to the inferred schema and measure their similarity

compared to the clustering produced at the time of group creation. Initiators that belong

to the group hold the complete mappings with the group schema, avoiding reformulation

errors. Non-members utilize the same learning feature as with normal nodes, assuming a

170

0.2 0.4 0.6 0.8 1
t

0

5

10

15

20

25

30

Si
m

ila
ri

ty
 In

cr
ea

se
 (%

)

maxP=200
maxP=80
maxP=40
maxP=20

Figure B.11: % Increase in answer simi-
larity over variable MaxP and t

0.2 0.4 0.6 0.8 1
t

-200

0

200

400

600

800

1000

1200

1400

%
 In

cr
ea

se
 in

 A
ns

w
er

s

maxP=200
maxP=80
maxP=40
maxP=20

Figure B.12: % Increase in number of an-
swers over variable MaxP and t

“virtual” host holding the group schema as their contact.

First, we vary the maximum group size limit,MaxP, as well as the minimum sim-

ilarity of participating peers to the initiator node,t. Figures B.11 and B.12 show the

obtained results for 100 requesters and maximum 100 queries each. Ast increases, the

group becomes more specialized and less general. In contrast, small similarity values pro-

duce groups too general that incorporate many concepts foreign to the initiator. Initiators

choose to send queries to a schema if they deem it advantageous. This has the effect that

specializedgroups (i.e., high value oft) receive fewer queries, while more “general” ones

receive more but cannot answer them all satisfactorily. Thus, there exists a point where

grouping ceases to increase its relative gains to clustering, as our graphs show.

Both metrics increase asMaxP increases. This is reasonable since more nodes

can participate and produce results. Very specialized grouping causes significantly less

populated groups, which in turn affects the number of returned answers. As groups get

more general (aroundt = 0.6), an improvement of 13-23% in accuracy is achieved, while

the gains in replies are 40-900%. Ast decreases, the gains in accuracy decrease but more

171

5000 10000 15000 20000 25000 30000 35000 40000
query number where group is created

0

10

20

30

Si
m

ila
ri

ty
 In

cr
ea

se
 (%

)

50 requesters
100 requesters
200 requesters
400 requesters

Figure B.13: % Increase in answer simi-
larity over variable group creation time

5000 10000 15000 20000 25000 30000 35000 40000
query number where group is created

0

100

200

300

400

500

600

700

800

900

1000

%
 In

cr
ea

se
 in

 A
ns

w
er

s 50 requesters
100 requesters
200 requesters
400 requesters

Figure B.14: % Increase in number of an-
swers over variable group creation time

results are generated. These curves show that at value of around 0.65 with the group

initiator andMaxP= 80 achieve good results without too much generalization. These

will be our default values for the rest of this discussion. Also, in all experiments, we set

To = 0.7.

Next, we try to determine the quality of the created group based on its creation

time, i.e., the number of queries at which it was created. Figures B.13 and B.14 show

the percentile improvement in our basic metrics when the first group is created at various

points in the clustering process. Our observations show a decrease in the relative gains in

accuracy and an increase in the corresponding number of answers. This happens because

clustering improves with time while the number of results slightly decreases due to the

forwarding process: now more walkers cross paths on relevant nodes. What is important

is that groups that are allowed to be created as soon as possible (which would be the

frequent case) show about 20% more accurate answers and return about three times more

results compared to clustering, even though the inference procedure is performed on a less

optimally clustered overlay. Groups that are created later exhibit noticeable gains, espe-

172

Table B.2: Performance comparison with clustering
100 requ 400 requ

qu/requ Sim #Answ Sim #Answ

10 0.68 (+17.8%) 55.0 (+411%) 0.70(+19.9%) 53.7 (+387%)

50 0.71(+17.7%) 51.8 (+370%) 0.71(+19.0%) 61.6 (+461%)

100 0.72(18.2%) 55.8 (+413%) 0.72(+19.2%) 60.0 (+444%)

cially in terms of the number of replies. When more requesters are active, the clustering

process is expedited, which suits the purposes of grouping.

Table B.2 shows the exact performance figures using our default parameters for

various requesters/queries-per-requester combinations. The figures in parentheses show

the percentile increase compared to simple clustering for the same number of queries. We

notice that querying the inferred groups results in an average 18% increase in accuracy

and around 400% increase in number of replies. This is true regardless of the requesters

or their querying rates. It is interesting to note that, in all these results, the queries from

nodes inside the created groups are less than 10% of the total. This proves that group

creation and propagation effectively helps all nodes in the overlay.

One of the basic assumptions of our scheme is that each peer can individually

choose to initiate the group inference process. This allows for completely distributed be-

havior only if semantically close initiators produce similar groups and the opposite. We

measure the similarity between the first and randomly selected thereafter initiators as well

as of the group schemas created respectively. Figure B.15 displays results over different

runs, where either the two initiators were over 70% or less than 40% similar. Clearly,

for very similar initiators the process yields very similar groups. On the other hand, for

fairly dissimilar initial schemas, the created groups are 40-50% similar. This value is a

173

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Initiator similarity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

G
ro

up
 s

ch
em

a
si

m
ila

ri
ty

similarity>0.7
similarity<0.4

Figure B.15: Relationship between initiator and inferred schema similarity

little higher than expected due to the high overlap and semantic relations between stored

attributes at various peers. When data is placed in a non-overlapping manner, such groups

have less than 20% similarity. So, there clearly exists a correlation between initiator and

inferred schema similarity value.

As we just showed, peers with similar schemas generate similar groups. To do so

simultaneously is undesirable for two reasons: First, the system will perform a redundant

operation and second, it will force our merging process to be invoked regularly. As we

mentioned in Section B.3.2, initiators broadcast their intention to create a semantic group.

Nevertheless, broadcasts that reach many nodes are very costly. Furthermore, our clus-

tering process assures that a non-negligible number of semantically close nodes will also

be close to the initiator in the hop-distance metric. To demonstrate this, we measure the

hop-distance distribution of peers not included in the group creation process with similar-

ity greater or equal to D to the initiator, given our default parameters. Table B.3 presents

our results.

We notice that the minimum distance increases as we search for more similar peers,

174

Table B.3: Estimating group broadcast range
D = 0.5 D = 0.7 D = 0.8 D = 0.9 D = 1.0

Min/Max Distance 1.1/5.9 1.9/5.6 2.1/5.3 2.9/4.8 3.8/4.2

#nodes 597 235 113 27 17

%nodes≤ 4 hops 78 80 80 78 70

2000 4000 6000 8000 10000
query

0.4

0.5

0.6

0.7

0.8

0.9

1

Si
m

ila
ri

ty

individually, t=0.65
merged, t=0.65
individually, t=0.8
merged, t=0.8

2000 4000 6000 8000 10000
query

0

10

20

30

40

50

60

70

80

90

#A
ns

w
er

s

individually, t=0.65
merged, t=0.65
individually, t=0.8
merged, t=0.8

Figure B.16: Similarity and number of answers of the initial and merged groups vs cre-
ation time

while the maximum decreases. This is due to the clustering process: Similar peers get

closer in the overlay. Grouping includes most of these peers, so the minimum distance

to a non-grouped similar node increases. Moreover, the ones that have been left out of

the group inference are now closer than before. The results show that a broadcast range

of 4 contacts around 80% of our target nodes. Nevertheless, as D increases, these nodes

become scarce. Thus, assuming thatD ' 0.65 for practical reasons, a TTL=4 would

suffice. In our experiments, a broadcast of that scope blocks an increasing number of

nodes with time. For larger values of D, broadcasting with large range causes the majority

of messages to be delivered to dissimilar peers.

Finally, we present some results concerningGrouPeer’s merging process. When

two similar groups are identified (through broadcasting of the group metadata), the merge

process is initiated. We measure the similarity and number of replies by the two groups

175

as well as the merged one and present the results in Figure B.16. We notice that, while the

two groups and the merged one do not substantially differ in the accuracy of the results

(although the merged group always outperforms them), the new schema delivers almost

twice as many. A very important observation is that the time of creation of the individual

groups plays almost no role in their performance, which shows thatGrouPeerwill keep

operating without performance degradation.

B.5 Related Work

The Chatty Web [106] considers P2P systems that share (semi)-structured informa-

tion. The authors are concerned about the gradual degradation, in terms of syntax and

semantics, of a query propagated along a network path. This approach considers peers

that own very simple relational schemas and GAV mappings with their acquaintees. In-

stead, we are interested in more complex schemas and we consider GAV, LAV or GLAV

mappings.

In [104], the authors propose optimization techniques for query reformulation in

P2P database systems. They focus on minimizing the rewriting of a query and prun-

ing the propagation path in order to avoid redundant reformulations. It is indicated that

pre-computation of the query reformulation path-tree proves to accelerate the procedure

despite the disadvantage of the necessary maintenance of pre-computed mappings. Our

approach is designed for large-scale unstructured overlays. First, it evades reformula-

tion at peers poor in query-relevant information by adaptively choosing the version of the

query to be answered. Also, while in [104] central knowledge of the system structure

176

is required, our scheme enables nodes to operate in a completely decentralized fashion,

utilizing the standard lookup operations to refine their local knowledge.

PeerDB [107] features relational data sharing without schema knowledge. Query

matching and rewriting is based on keywords. First all nodes within a TTL radius are

contacted, returning prospective answer meta-data. Then the user selects those that are

relevant to the query and the selected sources are contacted directly for the results to

the various rewritten versions of the query. Instead, our approach employs an automated

technique based on a combination of successive query rewriting and query-schema match-

ing, while it utilizes bandwidth-efficient walks compared to the costly flooding scheme.

Some of the well-known projects that deal with the data heterogeneity problem in

P2P systems are [108–111]. Piazza [108] presents a solution to the heterogeneity issue

in P2P data management systems and proposes a language for schema mediation between

peers. It also presents algorithms for query reformulation based on GAV/LAV query

answering.

Edutella [109] is a schema-based network that holds RDF data. Peers have ser-

vices (e.g. querying, mapping, mediating etc) that they share with other peers. Peers

can formulate complex queries that are translated in wrappers to queries on the Edutella

Common Data Model. Peers register the query-types they can answer to mediators, which

route queries to appropriate peers. Edutella is an effort towards the solution of the hetero-

geneity problem of data and services. However, it does not focus on semantic clustering,

neither does it propose sophisticated methods for distributing queries to semantically rel-

evant peers.

GridVine [110], and pSearch [111], are based on a structured P2P overlay. Grid-

177

Vine hashes and indexes RDF data and schemas, and pSearch represents documents as

well as queries as semantic vectors, which are the keys of a DHT structure. Both these

projects base search efficiency on the underlying DHT, and, thus, do not solve the seman-

tic diversity problem in an unstructured P2P system. Another disadvantage of p-Search is

that documents of newly-joined peers, with terms that are not encapsulated in the existing

vector, cannot be indexed by them.

Beyond semantic clustering, the work in [112] looks into the problem of discov-

ering connectivity clusters of nodes in P2P networks, detecting the transmission of the

same query multiple times at the same node. In [72], peers are grouped intopossession

rules, according to whether they contain a specific item or not. Nodes search inside one

possession rule in a blind fashion. The possession rule is chosen by a greedy mechanism

according to past query results.

B.6 Summary

GrouPeeris a system that effectively implements both popular approaches of an-

swering queries in P2P data management systems: Propagation along paths of bounded

depth and querying a mediated schema. First, it performs a gradual formulation of se-

mantically similar clusters. Our system creates and maintains, in an automated way, a

schema representative of the cluster. Requesters can direct relevant queries to the adver-

tised groups and join relevant (or interesting) ones in a more effective and timely manner.

Our results show that grouping results in significant gains in both the answer quality and

quantity compared to the original clustering method.

178

BIBLIOGRAPHY

[1] Clay Shirky. What Is P2P ... And What Isn’t.OpenP2P.com, 2000.

[2] A. Oram, editor.Peer-to-Peer: Harnessing the Power of Disruptive Technologies.
O’Reilly, 2001.

[3] RFC 1036. Standard for Interchange of USENET Messages.

[4] RFC 1034. Domain Names - Concepts and Facilities.

[5] http://www.napster.com. Napster website.

[6] http://www.gnutella.com. Gnutella website.

[7] http://www.jxta.org. Project JXTA.

[8] http://www.microsoft.com/net. Microsoft .NET.

[9] The impact of file sharing on service provider networks. An Industry White Paper,
Sandvine Inc.

[10] A. Rowstron and P. Druschel. Pastry: Scalable, Decentralized Object Location,
and Routing for Large-Scale Peer-to-Peer Systems.Lecture Notes in Computer
Science, 2001.

[11] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An infrastructure for fault-
tolerant wide-area location and routing. Technical Report UCB/CSD-01-1141, UC
Berkeley, 2001.

[12] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A scal-
able Peer-To-Peer lookup service for internet applications. InSIGCOMM, 2001.

[13] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A Scalable Content
Addressable Network. Technical Report TR-00-010, University of Berkeley, CA,
2000.

[14] C. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and Replication in Unstruc-
tured Peer-to-Peer Networks. InICS, 2002.

[15] D. Tsoumakos and N. Roussopoulos. Adaptive Probabilistic Search for Peer-to-
Peer Networks. In3rd IEEE Intl Conference on P2P Computing, 2003.

[16] D.Tsoumakos and N. Roussopoulos. A Comparison of Peer-to-Peer Search Meth-
ods. InWebDB, 2003.

[17] D.Tsoumakos and N. Roussopoulos. Analysis and Comparison of P2P Search
Methods. InINFOSCALE, 2006.

[18] D.Tsoumakos and N. Roussopoulos. AGNO: An Adaptive Group Communication
Scheme for Unstructured P2P Networks. InEuro-Par, 2005.

179

[19] D. Tsoumakos and N. Roussopoulos. APRE: An Adaptive Probabilistic Replica-
tion Method for Unstructured P2P Networks. InCoopIS, 2006.

[20] D. Fallows, L. Rainie, and G. Mudd. The popularity and importance of search
engines, 2004. ComScore data Memo.

[21] J. Chu, K. Labonte, and B. Levine. Availability and Locality Measurements of
Peer-to-Peer File Systems. InSPIE, 2002.

[22] V. Kalogeraki, D. Gunopulos, and D. Zeinalipour-Yazti. A Local Search Mecha-
nism for Peer-to-Peer Networks. InCIKM, 2002.

[23] S. Rhea and J. Kubiatowicz. Probabilistic Location and Routing. InINFOCOM,
2002.

[24] D. Menasće and L. Kanchanapalli. Probabilistic Scalable P2P Resource Location
Services.SIGMETRICS Perf. Eval. Review, 2002.

[25] K. Sripanidkulchai, B. Maggs, and H. Zhang. Efficient Content Location Using
Interest-Based Locality in Peer-to-Peer Systems. InINFOCOM, 2003.

[26] A. Crespo and H. Garcia-Molina. Routing Indices for Peer-to-Peer Systems. In
ICDCS, July 2002.

[27] S. Daswani and A. Fisk. Gnutella UDP Extension for Scalable Searches (GUESS)
v0.1.

[28] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker. Making
Gnutella-like P2P Systems Scalable. InSIGCOMM, 2003.

[29] R. Sutton and A. Barto.Reinforcement Learning: An Introduction. MIT Press,
1998.

[30] E. Bonabeau, M. Dorigo, and G. Theraulaz.Swarm Intelligence: From Natural to
Artificial Systems. Oxford University Press, 1999.

[31] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On Power-law Relationships of the
Internet Topology. InSIGCOMM, 1999.

[32] E. Zegura, K. Calvert, and S. Bhattacharjee. How to model an internetwork. In
Infocom, 1996.

[33] C. Jin, Q. Chen, and S. Jamin. Inet: Internet Topology Generator. Technical Report
CSE-TR443-00, Department of EECS, University of Michigan, 2000.

[34] S. Zhuang, B. Zhao, A. Joseph, R. Katz, and J. Kubiatowicz. Bayeux: An architec-
ture for scalable and fault-tolerant wide-area data dissemination. InProceedings
of NOSSDAV, 2001.

180

[35] J. Jannotti, D. Gifford, K. Johnson, F. Kaashoek, and J. O’Toole. Overcast: Reli-
able multicasting with an overlay network. InOSDI, 2000.

[36] A. Datta, M. Hauswirth, and K. Aberer. Updates in highly unreliable, replicated
peer-to-peer systems. InICDCS, 2003.

[37] Y. Chu, S. Rao, S. Seshan, and H. Zhang. Enabling conferencing applications on
the internet using an overlay muilticast architecture. InSIGCOMM, 2001.

[38] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable application layer
multicast. InSIGCOMM, 2002.

[39] A. Rowstron, A. Kermarrec, M. Castro, and P. Druschel. Scribe: The design of a
large-scale event notification infrastructure. InNGC, 2001.

[40] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Application-level multicast
using content-addressable networks.Lecture Notes in Computer Science, 2001.

[41] Marius Portmann and Aruna Seneviratne. Cost-effective broadcast for fully decen-
tralized peer-to-peer networks.Computer Communications, 26, 2003.

[42] A. Ganesh, A. Kermarrec, and L. Massoulie. Peer-to-peer membership manage-
ment for gossip-based protocols.IEEE Trans. Comp., 2003.

[43] Z. Bar-Yossef, T. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan. Counting
distinct elements in a data stream. InRANDOM, 2002.

[44] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the
frequency moments. InSTOC, 1996.

[45] M. Ripeanu and Ian Foster. Mapping the gnutella network: Macroscopic properties
of large-scale peer-to-peer systems. InIPTPS, 2002.

[46] A. Medina, A. Lakhina, I. Matta, and J. Byers. BRITE: An Approach to Universal
Topology Generation. InMASCOTS, 2001.

[47] A. Ganesh, A. Kermarrec, and L. Massoulie. SCAMP: Peer-to-peer lightweight
membership service for large-scale group communication. InNetworked Group
Communication, 2001.

[48] http://tidy.sourceforge.net/. HTML Tidy Project Page.

[49] http://www.kazaa.com. Kazaa website.

[50] http://www.emule project.net/. eMule project.

[51] http://www.bittorrent.com/index.html. BitTorrent home page.

[52] S. Iyer, A. Rowstron, and P. Druschel. Squirrel: A decentralized peer-to-peer web
cache. InPODC, 2002.

181

[53] http://web.icq.com/. ICQ web site.

[54] J. Kangasharju, K. Ross, and D. Turner. Secure and Resilient Peer-to-Peer E-Mail:
Design and Implementation. InIEEE Intl Conf. on P2P Computing, 2003.

[55] J. Jung, B. Krishnamurthy, and M. Rabinovich. Flash crowds and denial of service
attacks: Characterization and implications for CDNs and web sites. InWWW,
2002.

[56] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and B. Weihl. Globally
Distributed Content Delivery.IEEE Internet Computing, September 2002.

[57] M. Freedman, E. Freudenthal, and D. Mazires. Democratizing Content Publication
with Coral. InNSDI, 2004.

[58] http://www.squid-cache.org/. Squid Web Proxy Cache.

[59] M. Roussopoulos and M. Baker. Practical load balancing for content requests
in peer-to-peer networks. Technical Report cs.NI/0209023, Stanford University,
2003.

[60] C. Damgaard and J. Weiner. Describing Inequality in Plant Size or Fecundity.
Ecology, 81, 2000.

[61] I. Clarke, O. Sandberg, B. Wiley, and T. Hong. Freenet: A Distributed Anonymous
Information Storage and Retrieval System.Lecture Notes in Computer Science,
2001.

[62] Theoni Pitoura, Nikos Ntarmos, and Peter Triantafillou. Replication, Load Balanc-
ing and Efficient Range Query Processing in DHTs. InEDBT, 2006.

[63] http://www.openp2p.com. openP2P website.

[64] http://www.peer-to-peerwg.org/. Peer-to-Peer working group.

[65] D. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B. Richard,
S. Rollins, and Z. Xu. Peer-to-Peer Computing. Technical Report HPL-2002-57,
HP, 2002.

[66] S. Saroiu, P. Gummadi, and S. Gribble. A measurement study of peer-to-peer file
sharing systems. Technical Report UW-CSE-01-06-02, Un. of Washington, 2001.

[67] S. Sen and J. Wang. Analyzing peer-to-peer traffic across large networks. InSIG-
COMM Internet Measurement Workshop, 2002.

[68] S. Saroiu, K. Gummadi, R. Dunn, S. Gribble, and H. Levy. An Analysis of Internet
Content Delivery Systems. InOSDI, 2002.

[69] B. Yang and H. Garcia-Molina. Improving Search in Peer-to-Peer Networks. In
ICDCS, 2002.

182

[70] M. Stokes. Gnutella2 Specifications Part One:
http://www.gnutella2.com/gnutella2search.htm.

[71] P. Ganesan, Q. Sun, and H. Garcia-Molina. YAPPERS: A peer-to-peer lookup
service over arbitrary topology. InINFOCOM, 2003.

[72] E. Cohen, A. Fiat, and H. Kaplan. Associative search in peer to peer networks:
Harnessing latent semantics. InINFOCOM, 2003.

[73] R. Morselli, B. Bhattacharjee, M. Marsh, and A. Srinivasan. Efficient Lookup on
Unstructured Topologies. InPODC, 2005.

[74] D. Subramanian, P. Druschel, and J. Chen. Ants and reinforcement learning: A
case study in routing dynamic networks. InIJCAI, 1997.

[75] G. Di Caro and M. Dorigo. AntNet: Distributed Stigmergetic Control for Commu-
nications Networks.Journal of Artificial Intelligence Research, 9:317–365, 1998.

[76] Y. Chu, S. Rao, and H. Zhang. A case for end system multicast. InSIGMETRICS,
2000.

[77] P. Francis. Yoid: Extending the internet multicast architecture, 2000. White Paper.

[78] M. Castro, M. Jones, A. Kermarrec, A. Rowstron, M. Theimer, H. Wang, and
A. Wolman. An evaluation of scalable application-level multicast built using peer-
to-peer overlays. InINFOCOM, 2003.

[79] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis,
D. Swinehart, and D. Terry. Epidemic algorithms for replicated database mainte-
nance. InPODC, 1987.

[80] P. Eugster, S. Handurukande, R. Guerraoui, A. Kermarrec, and P. Kouznetsov.
Lightweight probabilistic broadcast. InDSN, 2001.

[81] F. Dabek, M. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area cooperative
storage with CFS. InSOSP, 2001.

[82] A. Rowstron and P. Druschel. Storage Management and Caching in PAST, A
Large-scale, Persistent Peer-to-peer Storage Utility. InSOSP, 2001.

[83] J. Cates. Robust and efficient data management for a distributed hash table. Mas-
ter’s thesis, Massachusetts Institute of Technology, May 2003.

[84] M. Waldvogel, P. Hurley, and D. Bauer. Dynamic replica management in dis-
tributed hash tables. Technical Report RZ–3502, IBM, 2003.

[85] T. Stading, P. Maniatis, and M. Baker. Peer-to-peer caching schemes to address
flash crowds. InIPTPS, 2002.

183

[86] V. Gopalakrishnan, B. Silaghi, B. Bhattacharjee, and P. Keleher. Adaptive replica-
tion in peer-to-peer systems. InICDCS, 2004.

[87] W. Poon, J. Lee, and D. Chiu. Comparison of Data Replication Strategies for Peer-
to-Peer Video Streaming. InICICS, 2005.

[88] R. Ferreira, M. Ramanathan, A. Awan, A. Grama, and S. Jagannathan. Search with
Probabilistic Guarantees in Unstructured Peer-to-Peer Networks. InIEEE P2P,
2005.

[89] F. Cuenca-Acuna, R. Martin, and T. Nguyen. Autonomous Replication for High
Availability in Unstructured P2P Systems. InSRDS-22, 2003.

[90] http://www.overnet.com/. eDonkey2000-Overnet.

[91] Bram Cohen. Incentives build robustness in bittorrent, 2003.

[92] Rob Sherwood, Ryan Braud, and Bobby Bhattacharjee. Slurpie: A cooperative
bulk data transfer protocol. InIEEE Infocom, 2004.

[93] Pablo Rodriguez and Ernst W. Biersack. Dynamic parallel access to replicated
content in the Internet.IEEE/ACM Transactions on Networking, 10(4), August
2002.

[94] John W. Byers, Michael Luby, and Michael Mitzenmacher. Accessing multiple
mirror sites in parallel: Using tornado codes to speed up downloads. InINFOCOM,
1999.

[95] http://www.morpheus.com. Morpheus website.

[96] Michael G. Luby, Michael Mitzenmacher, M. Amin Shokrollahi, Daniel A. Spiel-
man, and Volker Stemann. Practical loss-resilient codes. InSTOC, 1997.

[97] Michael O. Rabin. Efficient dispersal of information for security, load balancing,
and fault tolerance.JACM, 36(2), 1989.

[98] P. Felber, T. Kaldewey, and S. Weiss. Proactive hot spot avoidance for web server
dependability, 2004.

[99] A. Stavrou, D. Rubenstein, and S. Sahu. A lightweight, robust p2p system to handle
flash crowds. InICNP, 2002.

[100] M. Ripeanu and I. Foster. Mapping the Gnutella Network: Macroscopic Properties
of Large-Scale Peer-to-Peer Systems. InIPTPS, 2002.

[101] V. Kantere, I. Kiringa, J. Mylopoulos, A. Kementsientidis, and M. Arenas. Coor-
dinating P2P Databases Using ECA Rules. InDBISP2P, 2003.

[102] M. Lenzerini. Data Integration: A Theoretical Perspective. In21th ACM PODS,
2002.

184

[103] V. Kantere, D. Tsoumakos, T. Sellis, and N. Roussopoulos. GrouPeer: Dynamic
Clustering of P2P Databases. Technical Report DBLAB–2006/4, National Tech-
nical University of Athens, Department of Electrical and Computer Engineering,
2005. http://www.dbnet.ece.ntua.gr/pubs/.

[104] I. Tatarinov and A.Halevy. Efficient Query Reformulation in Peer-Data Manage-
ment Systems. InSIGMOD, 2004.

[105] J. Madhavan and A. Halevy. Composing mappings among data sources. InVLDB,
2003.

[106] K. Aberer, P. Cudre-Mauroux, and M. Hauswirth. The Chatty Web: Emergent
Semantics Through Gossiping. InWWW Conference, 2003.

[107] B. Ooi, Y. Shu, K.L. Tan, and A.Y. Zhou. PeerDB: A P2P-based System for Dis-
tributed Data Sharing. InICDE, 2003.

[108] A. Halevy, Z. Ives, D. Suciu, and I. Tatarinov. Schema Mediation in Peer Data
Management Systems. InICDE, 2003.

[109] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson, M. Palmer,
and T. Risch. Edutella: A p2p networking infrastructure based on rdf. InWWW,
2002.

[110] K. Aberer, P. Cudre-Mauroux, M. Hauswirth, and T. Van Pelt. Gridvine:Building
internet-scale semantic overlay networks. InInternational Semantic Web Confer-
ence, 2004.

[111] C. Tang, Z. Xu, and S. Dwarkadas. Peer-to-peer information retrieval using self-
organizing semantic overlay networks. InSIGCOMM, 2003.

[112] L. Ramaswamy, B. Gedik, and L. Liu. A Distributed Approach to Node Clustering
in Decentralized Peer-to-Peer Networks. InIEEE Transactions on Parallel and
Distributed Systems, 2005.

185

Index
acquaintance, 142, 144, 149
acquaintee, 142, 147, 151
Adaptive Group Notification,seeAGNO
Adaptive Probabilistic REplication,see

APRE
Adaptive Probabilistic Search,seeAPS
AGNO, 11, 52, 83

aging, 56, 59, 69
backpointers, 54, 56, 61
Estimation ofλr , 60, 68, 70
performance, 65
reverse indices, 54, 56
stress, 62

ant-based algorithms, 31, 115
AntNET, 115

APRE, 11, 80, 83, 87, 107
ClosestFirst, 90, 94, 104
Contract, 81, 84, 87, 93
Expand, 81, 84, 87, 106
FurthestFirst, 90, 94
Gini coefficient, 99
mirror set, 82
path-cache, 93
Performance, 94
replication policy, 90
server set, 82, 84, 94
Uniform, 90

APS, 9, 16, 17, 53, 62, 88, 107
learning, 22
optimistic, 18, 21, 22
performance, 37, 127
pessimistic, 18, 21, 22, 39
s-APS, 23, 37
w-APS, 23, 30, 35, 36, 42

bloom filters, 113

client/server architecture, 2

DHT, 4, 51, 80, 114, 120
DNS, 1

Flash crowds, 79, 102
Freenet, 93

Gnutella, 50, 62, 110, 114

Gnutella2, 110, 127
gossip-based algorithms, 50
GrouPeer, 178

automatic matching, 150
clustering, 147, 150, 153
clustering evaluation, 166
grouping, 148, 153
grouping evaluation, 170
initiator, 155
originator,seeinitiator
query rewriting, 150
schema semantic similarity, 155
semantic radius, 155

GUESS, 15, 31, 47, 127

Internet, 1, 2, 13

leaf-node, 15, 110

Markov Decision Process,seeMDP
multicast, 49

overlay, 3
neighbors, 6

P2P, 1, 13, 79, 144
Centralized, 4
Decentralized, 4, 6
Hybrid, 4, 31
Pure, 4, 6, 31
Structured,seeDHT
Unstructured, 4–6, 50, 51, 62, 80,

142
P2P Data Management System, 142
Peer-to-Peer computing, 1, 141

query distribution, 7, 32
query rewriting, 144

Random Walks, 15, 37, 127
Reinforcement Learning, 10, 24

Bellman’s equation, 26, 28
discount factorγ, 25, 28
MDP, 25, 27
policy, 25
reward, 24

186

state value, 25
optimal value functions, 26, 28

Value Iteration, 30
replication distribution, 7, 32

SCAMP, 63, 67
search, 14

accuracy,seesuccess rate
blind, 14, 110, 129
hit, 7, 126, 131, 134, 139
informed, 15, 110
success rate, 7, 129, 134, 136, 139

soft state, 7
super-peer, 4, 15, 110
system model, 6

time-to-live (TTL), 7, 14

USENET, 1

187

