21 research outputs found

    UNDERSTANDING THE ROLE OF OVERT AND COVERT ONLINE COMMUNICATION IN INFORMATION OPERATIONS

    Get PDF
    This thesis combines regression, sentiment, and social network analysis to explore how Russian online media agencies, both overt and covert, affect online communication on Twitter when North Atlantic Treaty Organization (NATO) exercises occur. It explores the relations between the average sentiment of tweets and the activities of Russia’s overt and covert online media agencies. The data source for this research is the Naval Postgraduate School’s licensed Twitter archive and open-source information about the NATO exercises timeline. Publicly available lexicons of positive and negative terms helped to measure the sentiment in tweets. The thesis finds that Russia’s covert media agencies, such as the Internet Research Agency, have a great impact on and likelihood for changing the sentiment of network users about NATO than do the overt Russian media outlets. The sentiment during NATO exercises becomes more negative as the activity of Russian media organizations, whether covert or overt, increases. These conclusions suggest that close tracking and examination of the activities of Russia’s online media agencies provide the necessary base for detecting ongoing information operations. Further refining of the analytical methods can deliver a more comprehensive outcome. These refinements could employ machine learning or natural language processing algorithms that can increase the precision of the sentiment measurement probability and timely identification of trolls’ accounts.Podpolkovnik, Bulgarian Air ForceApproved for public release. Distribution is unlimited

    The Extent and Coverage of Current Knowledge of Connected Health: Systematic Mapping Study

    Get PDF
    Background: This paper examines the development of the Connected Health research landscape with a view on providing a historical perspective on existing Connected Health research. Connected Health has become a rapidly growing research field as our healthcare system is facing pressured to become more proactive and patient centred. Objective: We aimed to identify the extent and coverage of the current body of knowledge in Connected Health. With this, we want to identify which topics have drawn the attention of Connected health researchers, and if there are gaps or interdisciplinary opportunities for further research. Methods: We used a systematic mapping study that combines scientific contributions from research on medicine, business, computer science and engineering. We analyse the papers with seven classification criteria, publication source, publication year, research types, empirical types, contribution types research topic and the condition studied in the paper. Results: Altogether, our search resulted in 208 papers which were analysed by a multidisciplinary group of researchers. Our results indicate a slow start for Connected Health research but a more recent steady upswing since 2013. The majority of papers proposed healthcare solutions (37%) or evaluated Connected Health approaches (23%). Case studies (28%) and experiments (26%) were the most popular forms of scientific validation employed. Diabetes, cancer, multiple sclerosis, and heart conditions are among the most prevalent conditions studied. Conclusions: We conclude that Connected Health research seems to be an established field of research, which has been growing strongly during the last five years. There seems to be more focus on technology driven research with a strong contribution from medicine, but business aspects of Connected health are not as much studied

    Achieving Causal Fairness in Machine Learning

    Get PDF
    Fairness is a social norm and a legal requirement in today\u27s society. Many laws and regulations (e.g., the Equal Credit Opportunity Act of 1974) have been established to prohibit discrimination and enforce fairness on several grounds, such as gender, age, sexual orientation, race, and religion, referred to as sensitive attributes. Nowadays machine learning algorithms are extensively applied to make important decisions in many real-world applications, e.g., employment, admission, and loans. Traditional machine learning algorithms aim to maximize predictive performance, e.g., accuracy. Consequently, certain groups may get unfairly treated when those algorithms are applied for decision-making. Therefore, it is an imperative task to develop fairness-aware machine learning algorithms such that the decisions made by them are not only accurate but also subject to fairness requirements. In the literature, machine learning researchers have proposed association-based fairness notions, e.g., statistical parity, disparate impact, equality of opportunity, etc., and developed respective discrimination mitigation approaches. However, these works did not consider that fairness should be treated as a causal relationship. Although it is well known that association does not imply causation, the gap between association and causation is not paid sufficient attention by the fairness researchers and stakeholders. The goal of this dissertation is to study fairness in machine learning, define appropriate fairness notions, and develop novel discrimination mitigation approaches from a causal perspective. Based on Pearl\u27s structural causal model, we propose to formulate discrimination as causal effects of the sensitive attribute on the decision. We consider different types of causal effects to cope with different situations, including the path-specific effect for direct/indirect discrimination, the counterfactual effect for group/individual discrimination, and the path-specific counterfactual effect for general cases. In the attempt to measure discrimination, the unidentifiable situations pose an inevitable barrier to the accurate causal inference. To address this challenge, we propose novel bounding methods to accurately estimate the strength of unidentifiable fairness notions, including path-specific fairness, counterfactual fairness, and path-specific counterfactual fairness. Based on the estimation of fairness, we develop novel and efficient algorithms for learning fair classification models. Besides classification, we also investigate the discrimination issues in other machine learning scenarios, such as ranked data analysis

    Data Informed Health Simulation Modeling

    Get PDF
    Combining reliable data with dynamic models can enhance the understanding of health-related phenomena. Smartphone sensor data characterizing discrete states is often suitable for analysis with machine learning classifiers. For dynamic models with continuous states, high-velocity data also serves an important role in model parameterization and calibration. Particle filtering (PF), combined with dynamic models, can support accurate recurrent estimation of continuous system state. This thesis explored these and related ideas with several case studies. The first employed multivariate Hidden Markov models (HMMs) to identify smoking intervals, using time-series of smartphone-based sensor data. Findings demonstrated that multivariate HMMs can achieve notable accuracy in classifying smoking state, with performance being strongly elevated by appropriate data conditioning. Reflecting the advantages of dynamic simulation models, this thesis has contributed two applications of articulated dynamic models: An agent-based model (ABM) of smoking and E-Cigarette use and a hybrid multi-scale model of diabetes in pregnancy (DIP). The ABM of smoking and E-Cigarette use, informed by cross-sectional data, supports investigations of smoking behavior change in light of the influence of social networks and E-Cigarette use. The DIP model was evidenced by both longitudinal and cross-sectional data, and is notable for its use of interwoven ABM, system dynamics (SD), and discrete event simulation elements to explore the interaction of risk factors, coupled dynamics of glycemia regulation, and intervention tradeoffs to address the growing incidence of DIP in the Australia Capital Territory. The final study applied PF with an SD model of mosquito development to estimate the underlying Culex mosquito population using various direct observations, including time series of weather-related factors and mosquito trap counts. The results demonstrate the effectiveness of PF in regrounding the states and evolving model parameters based on incoming observations. Using PF in the context of automated model calibration allows optimization of the values of parameters to markedly reduce model discrepancy. Collectively, the thesis demonstrates how characteristics and availability of data can influence model structure and scope, how dynamic model structure directly affects the ways that data can be used, and how advanced analysis methods for calibration and filtering can enhance model accuracy and versatility

    Achieving Causal Fairness in Recommendation

    Get PDF
    Recommender systems provide personalized services for users seeking information and play an increasingly important role in online applications. While most research papers focus on inventing machine learning algorithms to fit user behavior data and maximizing predictive performance in recommendation, it is also very important to develop fairness-aware machine learning algorithms such that the decisions made by them are not only accurate but also meet desired fairness requirements. In personalized recommendation, although there are many works focusing on fairness and discrimination, how to achieve user-side fairness in bandit recommendation from a causal perspective still remains a challenging task. Besides, the deployed systems utilize user-item interaction data to train models and then generate new data by online recommendation. This feedback loop in recommendation often results in various biases in observational data. The goal of this dissertation is to address challenging issues in achieving causal fairness in recommender systems: achieving user-side fairness and counterfactual fairness in bandit-based recommendation, mitigating confounding and sample selection bias simultaneously in recommendation and robustly improving bandit learning process with biased offline data. In this dissertation, we developed the following algorithms and frameworks for research problems related to causal fairness in recommendation. • We developed a contextual bandit algorithm to achieve group level user-side fairness and two UCB-based causal bandit algorithms to achieve counterfactual individual fairness for personalized recommendation; • We derived sufficient and necessary graphical conditions for identifying and estimating three causal quantities under the presence of confounding and sample selection biases and proposed a framework for leveraging the causal bound derived from the confounded and selection biased offline data to robustly improve online bandit learning process; • We developed a framework for discrimination analysis with the benefit of multiple causes of the outcome variable to deal with hidden confounding; • We proposed a new causal-based fairness notion and developed algorithms for determining whether an individual or a group of individuals is discriminated in terms of equality of effort

    Achieving Causal Fairness in Recommendation

    Get PDF
    Recommender systems provide personalized services for users seeking information and play an increasingly important role in online applications. While most research papers focus on inventing machine learning algorithms to fit user behavior data and maximizing predictive performance in recommendation, it is also very important to develop fairness-aware machine learning algorithms such that the decisions made by them are not only accurate but also meet desired fairness requirements. In personalized recommendation, although there are many works focusing on fairness and discrimination, how to achieve user-side fairness in bandit recommendation from a causal perspective still remains a challenging task. Besides, the deployed systems utilize user-item interaction data to train models and then generate new data by online recommendation. This feedback loop in recommendation often results in various biases in observational data. The goal of this dissertation is to address challenging issues in achieving causal fairness in recommender systems: achieving user-side fairness and counterfactual fairness in bandit-based recommendation, mitigating confounding and sample selection bias simultaneously in recommendation and robustly improving bandit learning process with biased offline data. In this dissertation, we developed the following algorithms and frameworks for research problems related to causal fairness in recommendation. • We developed a contextual bandit algorithm to achieve group level user-side fairness and two UCB-based causal bandit algorithms to achieve counterfactual individual fairness for personalized recommendation; • We derived sufficient and necessary graphical conditions for identifying and estimating three causal quantities under the presence of confounding and sample selection biases and proposed a framework for leveraging the causal bound derived from the confounded and selection biased offline data to robustly improve online bandit learning process; • We developed a framework for discrimination analysis with the benefit of multiple causes of the outcome variable to deal with hidden confounding; • We proposed a new causal-based fairness notion and developed algorithms for determining whether an individual or a group of individuals is discriminated in terms of equality of effort
    corecore