42 research outputs found

    Wi-Fi Finger-Printing Based Indoor Localization Using Nano-Scale Unmanned Aerial Vehicles

    Get PDF
    Explosive growth in the number of mobile devices like smartphones, tablets, and smartwatches has escalated the demand for localization-based services, spurring development of numerous indoor localization techniques. Especially, widespread deployment of wireless LANs prompted ever increasing interests in WiFi-based indoor localization mechanisms. However, a critical shortcoming of such localization schemes is the intensive time and labor requirements for collecting and building the WiFi fingerprinting database, especially when the system needs to cover a large space. In this thesis, we propose to automate the WiFi fingerprint survey process using a group of nano-scale unmanned aerial vehicles (NAVs). The proposed system significantly reduces the efforts for collecting WiFi fingerprints. Furthermore, since these NAVs explore a 3D space, the WiFi fingerprints of a 3D space can be obtained increasing the localization accuracy. The proposed system is implemented on a commercially available miniature open-source quadcopter platform by integrating a contemporary WiFi - fingerprint - based localization system. Experimental results demonstrate that the localization error is about 2m, which exhibits only about 20cm of accuracy degradation compared with the manual WiFi fingerprint survey methods

    Improving Security Performance in Smart Campuses

    Get PDF
    The idea of a smart campus is to combine devices, apps, and people to achieve enhanced operational and educational efficiency. One of the major aspects of the establishment of smart campuses is the building of a smart security system. This research is an effort to review the security technologies and how to increase the security performance of a smart campus using these technologies. The main objective of this study is to discuss asset security and facility access technologies in a smart campus setting. Universities spend millions of dollars on specialized equipment, yet maintaining track of such assets may be challenging. We discussed how security personnel can monitor the whereabouts of high-value items by installing IoT on them and how Smart locks, intelligent ID, and Geofencing can enable the facilities managers to manage campus access, tracking, and define zones. Finally, we review the optimal mix of other technologies and strategies to produce successful deterrent, preventive, protection, and reaction measures. This study argued that using these technologies smart campuses can alter the education system by improving campus security and by offering students and educators an engaged, creative, and safe environment

    Efficient AoA-based wireless indoor localization for hospital outpatients using mobile devices

    Get PDF
    The motivation of this work is to help outpatients find their corresponding departments or clinics, thus, it needs to provide indoor positioning services with a room-level accuracy. Unlike wireless outdoor localization that is dominated by the global positioning system (GPS), wireless indoor localization is still an open issue. Many different schemes are being developed to meet the increasing demand for indoor localization services. In this paper, we investigated the AoA-based wireless indoor localization for outpatients’ wayfinding in a hospital, where Wi-Fi access points (APs) are deployed, in line, on the ceiling. The target position can be determined by a mobile device, like a smartphone, through an efficient geometric calculation with two known APs coordinates and the angles of the incident radios. All possible positions in which the target may appear have been comprehensively investigated, and the corresponding solutions were proven to be the same. Experimental results show that localization error was less than 2.5 m, about 80% of the time, which can satisfy the outpatients’ requirements for wayfinding

    Indoor positioning of shoppers using a network of bluetooth low energy beacons

    Get PDF
    In this paper we present our work on the indoor positioning of users (shoppers), using a network of Bluetooth Low Energy (BLE) beacons deployed in a large wholesale shopping store. Our objective is to accurately determine which product sections a user is adjacent to while traversing the store, using RSSI readings from multiple beacons, measured asynchronously on a standard commercial mobile device. We further wish to leverage the store layout (which imposes natural constraints on the movement of users) and the physical configuration of the beacon network, to produce a robust and efficient solution. We start by describing our application context and hardware configuration, and proceed to introduce our node-graph model of user location. We then describe our experimental work which begins with an investigation of signal characteristics along and across aisles. We propose three methods of localization, using a “nearest-beacon” approach as a base-line; exponentially averaged weighted range estimates; and a particle-filter method based on the RSSI attenuation model and Gaussian-noise. Our results demonstrate that the particle filter method significantly out-performs the others. Scalability also makes this method ideal for applications run on mobile devices with more limited computational capabilitie

    Iterative point-wise reinforcement learning for highly accurate indoor visible light positioning

    Get PDF
    Iterative point-wise reinforcement learning (IPWRL) is proposed for highly accurate indoor visible light positioning (VLP). By properly updating the height information in an iterative fashion, the IPWRL not only effectively mitigates the impact of non-deterministic noise but also exhibits excellent tolerance to deterministic errors caused by the inaccurate a priori height information. The principle of the IPWRL is explained, and the performance of the IPWRL is experimentally evaluated in a received signal strength (RSS) based VLP system and compared with other positioning algorithms, including the conventional RSS algorithm, the k-nearest neighbors (KNN) algorithm and the PWRL algorithm where iterations exclude. Unlike the supervised machine learning method, e.g., the KNN, whose performance is highly dependent on the training process, the proposed IPWRL does not require training and demonstrates robust positioning performance for the entire tested area. Experimental results also show that when a large height information mismatch occurs, the IPWRL is able to first correct the height information and then offers robust positioning results with a rather low positioning error, while the positioning errors caused by the other algorithms are significantly higher

    Improving bluetooth beacon-based indoor location and fingerprinting

    Get PDF
    The complex way radio waves propagate indoors, leads to the derivation of location using fngerprinting techniques. In this cases, location is computed relying on WiFi signals strength mapping. Recent Bluetooth low energy (BLE) provides new opportunities to explore positioning. In this work is studied how BLE beacons radio signals can be used for indoor location scenarios, as well as their precision. Additionally, this paper also introduces a method for beacon-based positioning, based on signal strength measurements at key distances for each beacon. This method allows to use diferent beacon types, brands, and location conditions/constraints. Depending on each situation (i.e., hardware and location) it is possible to adapt the distance measuring curve to minimize errors and support higher distances, while at the same time keeping good precision. Moreover, this paper also presents a comparison with traditional positioning method, using formulas for distance estimation, and the position triangulation. The proposed study is performed inside the campus of Viseu Polytechnic Institute, and tested using a group of students, each with his smart-phone, as proof of concept. Experimental results show that BLE allows having < 1.5 m error approximately 90% of the times, and the experimental results using the proposed location detection method show that the proposed position technique has 13.2% better precision than triangulation, for distances up to 10 m.info:eu-repo/semantics/publishedVersio

    Dynamic indoor localization using maximum likelihood particle filtering

    Get PDF
    A popular approach for solving the indoor dynamic localization problem based on WiFi measurements consists of using particle filtering. However, a drawback of this approach is that a very large number of particles are needed to achieve accurate results in real environments. The reason for this drawback is that, in this particular application, classical particle filtering wastes many unnecessary particles. To remedy this, we propose a novel particle filtering method which we call maximum likelihood particle filter (MLPF). The essential idea consists of combining the particle prediction and update steps into a single one in which all particles are efficiently used. This drastically reduces the number of particles, leading to numerically feasible algorithms with high accuracy. We provide experimental results, using real data, confirming our claim.Fil: Wang, Wenxu. Guangdong University of Technology; ChinaFil: Marelli, Damian Edgardo. Guangdong University of Technology; China. Centro Científico Nacional e Internacional Francés Argentino de Ciencias de la Información y Sistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Fu, Minyue. Universidad de Newcastle; Australia. Guangdong University of Technology; Chin
    corecore