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Abstract: A popular approach for solving the indoor dynamic localization problem based on WiFi
measurements consists of using particle filtering. However, a drawback of this approach is that
a very large number of particles are needed to achieve accurate results in real environments. The
reason for this drawback is that, in this particular application, classical particle filtering wastes many
unnecessary particles. To remedy this, we propose a novel particle filtering method which we call
maximum likelihood particle filter (MLPF). The essential idea consists of combining the particle
prediction and update steps into a single one in which all particles are efficiently used. This drastically
reduces the number of particles, leading to numerically feasible algorithms with high accuracy. We
provide experimental results, using real data, confirming our claim.

Keywords: indoor tracking; particle filter; channel state information; WiFi fingerprinting

1. Introduction

Wireless positioning is the most popular approach for indoor location-based services.
It finds applications in emergency rescue, smart home, security monitoring and many
other areas. In contrast to outdoor positioning, whose dominant approach is based on the
global positioning system (GPS), indoor positioning is hindered by multiple sources of
interference and multipath effects in time-varying environments. In view of this, multiple
techniques for indoor positioning are currently being investigated. The most popular ones
are based on radio frequency identification [1,2], Bluetooth signals [3,4], ultra-wideband
signals [5,6] and WiFi signals [7,8]. Due to their large coverage, low implementation cost
and availability in existing mobile devices, WiFi-based indoor positioning is the most
promising technique.

A broad classification of indoor localization methods can be done in two categories,
namely, geometric mapping and fingerprinting [9]. In geometric mapping, the target’s
position is estimated using geometric information like distances and angles from the
target to a set of access points (APs) [10]. Typical techniques for obtaining geometric
information are time of flight (ToF) [11] and angle of arrival (AoA) [12]. This approach
typically requires obtaining information from more than three APs. the resulting methods
are based on line of sight (LOS) signals, and therefore are easily influenced by obstacles.
Strict synchronization is also needed between different devices. The above limitations are
overcome by the fingerprinting method [13]. It consists of building a database containing
the values of certain received signal features at a given set of known locations. Localization
is then done by comparing the features obtained at the target’s location with those of the
database. Localization based on fingerprinting is more immune to distortions caused by
the environment, since the latter are coded in the feature database. However, it suffers from
poor positioning accuracy when the target is in a position far from anyone in the database.
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The most commonly WiFi signal feature used for indoor localization is its received
signal strength (RSS) [14]. It measures the signal power strength at the receiver side.
Although RSS measurements are easy to obtain, only a very rough estimation of the
receiver’s position can be obtained from it. This is due to the fading and distortion suffered
by signals propagating through multipaths. To tackle this problem, in recent years channel
state information (CSI) has been used instead of RSS [9]. CSI contains information of
the phase and amplitude value of each subcarrier of an orthogonal frequency division
multiplexing (OFDM) channel. It can be readily obtained from any OFDM system based on
the 802.11n protocol. Since multipath and fading information is represented in the CSI, its
use for indoor localization leads to more accurate and stable results in comparison to RSS.

To improve the accuracy of any given localization method, extra information can
be obtained from a motion model of the target. The common solution for fusing the
information from the motion model with that from measurements consists of using some
Bayesian tracking technique. We refer to resulting techniques as dynamic localization
methods [15]. One such techniques is the Kalman filter [16–18]. While being optimal
and having a closed-form, it only applies to linear Gaussian model. This assumption can
be relaxed using the extended Kalman filter [19]. However, since this method is simply
based on linearizing a non-linear model, it often leads to inaccurate results. This can be
overcome by using particle filtering [20–23]. This essentially consists of approximating
non-Gaussian probability distributions using a number of samples (particles) multiplied
by their associated weights.

As it is known, a Bayesian tracking method consists of alternating two steps called
prediction and update. In a particle filter, a set of new particles is drawn during each
prediction step, whose weighs are determined during the subsequent update step. A
drawback of this approach is that this weighting results in little use of those particles whose
weights are very small. The number of wasted particles can be very large in the case where
measurements already provide enough information to determine the target’s location with
a reasonable accuracy, without using the information provided by the motion model. This
is often the case in localization setups, for otherwise, algorithms not using a motion model
would not work with reasonable accuracy. Consequently, a very large number of particles
are required to avoid particle depletion after the update step, which would result in an
inaccurate result. The vast number of required particles renders the approach numerically
intractable in many applications.

In order to tackle the above shortcoming, a number of methods are available to reduce
the estimation error resulting from using particle filtering with a restricted number of
particles. In [21], a machine learning classifier is added to decide whether particles are in
the correct room. In [22], a context variable, with values in the set {‘free space’, ‘constrained
space’, ‘static space’}, is added to the state to account for the movement constraints at the
target’s current position. Also, the authors of [23] divide the environment into reachable
and unreachable areas, so as to discard particles falling into an unreachable area.

Generally speaking, the above methods aim to reduce the particle depletion phe-
nomenon described above by complementing the motion model with environment-
dependent information to decide where to draw particles. The aim of this work is to
make the most of this principle, i.e., ideally to totally avoid particle depletion. To this
end, we propose a novel particle filtering scheme which combines the prediction and
update steps into a single one. In other words, we avoid drawing unnecessary particles
during the prediction step that will afterwards disappear during the subsequent update
step. This drastically reduces the required number of particles, making the approach
numerically feasible in virtually any application. In deriving our method, we exploit the
principle underlying a Bayesian tracking method called maximum likelihood Kalman
filtering (MLKF) [24]. We then call the proposed method the maximum likelihood particle
filter (MLPF).

The authors used the MLKF in [25] to propose a dynamic localization method which
only applies to the case in which the motion model is linear and Gaussian. In this sense, the
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method proposed in this work can be thought of as the generalization of the method we
proposed in [25] to the case of non-linear motion models. This kind of models are typically
used in robotics [26], and as we show with experiments using real data, leads to great
accuracy improvements.

The rest of the paper is organized as follows: In Section 2, we state the dynamic
localization problem. In Section 3, we describe the particle filtering approach for solving it.
In Section 4, we derive the proposed MLPF method. In Section 5, we present experimental
evidence, showing the numerical advantages offered by the proposed method. Concluding
remarks are given in Section 6. For ease of readability, all proofs appear in Appendix C .

2. Problem Description

We assume there is a target moving in an indoor environment. The target’s Cartesian
coordinates at time t are yt = [at, bt]

> ∈ R2 and θt ∈ (−π, π] is its orientation in radians,
as shown in Figure 1. The target’s motion model is described by the following non-linear
state-transition equation

Figure 1. Target’s Cartesian coordinates.

yt+1 = g(yt, θt, ut, et), (1)

θt+1 = h(yt, ut, et) + a(yt, ut, et)θt + b(yt, ut, et)nt, (2)

where ut is the target’s control input and et =
[
ãt, b̃t

]> and nt are process noises accounting
for the model’s inaccuracy. To write the above in compact form we define the target’s pose

xt =
[
y>t , θt

]> ∈ R3 and the process noise wt =
[
e>t , nt

]
. We then write

xt+1 = f (xt, ut, wt), (3)

with f defined according to (1) and (2). We assume that x1 = 0 and the sequence wt ∼
N (0, Q(ut)) is i.i.d., with Q(u) being a diagonal positive definite matrix for each u.

Remark 1. We state the motion model in the general form (1) in order to make our presentation
valid for the different models used in the literature. In Appendix A we briefly describe the most
popular models falling into this general form.

At each time t ∈ N, we obtain the following measurement

zt = m(yt) + vt. (4)



Sensors 2021, 21, 1090 4 of 18

where the map m : R2 → RN is known and the measurement noise vt ∼ N (0, R) is i.i.d.
and independent of wt.

Problem 1. Let Z>T =
[
z>1 , . . . , z>T

]
denote the set of all measurements available up to time T.

The dynamic localization problem consists of using, at time T, the measurements ZT to obtain an
estimate x̂T of xT .

3. Available Solution Using Particle Filtering

As described in Section 1, the dynamic localization problem can be solved using the
well-known particle filtering method [27]. In this section, we describe this approach.

The Bayesian filtering equations are initialized by p(x1|Z1) = δ(x1), and proceed
as follows

p(xt|Zt−1) =
∫

p(xt|xt−1)p(xt−1|Zt−1)dxt, (5)

p(xt|Zt) =
p(zt|xt)

p(zt|Zt−1)
p(xt|Zt−1). (6)

Equations (5) and (6) are called the prediction and update steps, respectively. These
equations do not have close form expressions, in general. Hence, a numeric method is
needed to approximately compute them. This can be done using particle filtering. More
precisely, we start with

p(x1|Z1; m) '
I

∑
i=1

vi
1|1δ
(

x1 − xi
1|1

)
, (7)

xi
1|1 = 0,

vi
1|1 =

1
I

.

Then, at time t > 1, the prediction step is computed by

p(xt|Zt−1; m) ' 1
I

I

∑
i=1

δ
(

xt − xi
t|t−1

)
, (8)

with xi
t|t−1 obtained by drawing it from the following distribution

xi
t|t−1 ∼

I

∑
i=1

vi
t−1|t−1 p

(
xt|xi

t−1|t−1

)
δ
(

xt − xi
t−1|t−1

)
.

Also, the update step is computed by

p(xt|Zt; m) '
I

∑
i=1

vi
t|tδ
(

xt − xi
t|t

)
, (9)

xi
t|t = xi

t|t−1,

vi
t|t ∝ p

(
yt|xi

t

)
.

with vi
t|t normalized so that ∑I

i=1 vi
t|t = 1.

The use of particle filtering for solving the localization problem permits accommo-
dating the accuracy by increasing the number of particles. As mentioned in Section 1, a
problem that often occurs is that the desired accuracy requires a very large number of
particles. This can result in a numerically very expensive algorithm. To address this issue,
in the next section we propose a variant of the particle filtering algorithm, which drastically
reduces the number of particles required to achieve a given accuracy.
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4. Proposed Algorithm

In the particle filtering algorithm described in Section 3, at time t, we use the approx-
imation (9) of the updated distribution p(xt−1|Zt−1), together with the state-transition
Equation (1), to generate the approximation (8) of the predicted distribution p(xt|Zt−1).
The latter is then used in combination with the likelihood function p(zt|xt) to approxi-
mate the new updated distribution p(xt|Zt). This is done by weighting the i-th particle
xi

t|t by a weight vi
t|t proportional to the particle’s likelihood p

(
yt|xi

t
)
. As mentioned in

Section 1, a drawback of this approach is that this weighting wastes many particles. In
order to avoid this, we combine the prediction and update steps into a single one. More
precisely, particles for approximating the updated distribution p(xt|Zt) are directly drawn
using the knowledge of the particle approximation of the previous updated distribution
p(xt−1|Zt−1), without drawing particles to represent the predicted distribution p(xt|Zt−1).
We describe below how this is done.

Notation 1. In order to simplify the notation we remove the dependence of Q on ut, i.e., we use Q
instead of Q(ut).

Notation 2. Let

f i
t−1(w) = f

(
xi

t−1|t−1, ut−1, w
)

,

gi
t−1(e) = g

(
yi

t−1|t−1, θi
t−1|t−1, ut−1, e

)
,

and, for ξ = h, a, b,
ξ i

t−1(e) = ξ
(

yi
t−1|t−1, ut−1, e

)
.

We assume that at time t we know the following approximation

p(xt−1|Zt−1) '
I

∑
i=1

vi
t−1|t−1δ

(
xt−1 − xi

t−1|t−1

)
. (10)

Our goal is to use the above to build an approximation of the form

p(xt|Zt) '
I

∑
i=1

vi
t|tδ
(

xt − xi
t|t

)
. (11)

Our first step is to derive a convenient decomposition of p(xt|Zt). This is done in the
following lemma.

Lemma 1. The following equality holds in the system given by (1), (2) and (4)

p(xt|Zt) = p(θt|yt, Zt)p(yt|Zt), (12)

where

p(yt|Zt) ∝ p(zt|yt)p(yt|Zt−1), (13)

p(θt|yt, Zt) ∝ p(θt|yt, Zt−1). (14)

It follows from Lemma 1 that, in order to find an expression of p(xt|Zt) we need
expressions of p(yt|Zt−1) and p(θt|yt, Zt). Under the approximation (10), the desired
expressions are given in the following lemma.



Sensors 2021, 21, 1090 6 of 18

Lemma 2. If (10) holds, then

p(yt|Zt−1)
∼
∝

I

∑
i=1

ψi
t(yt), (15)

p(θt|yt, Zt−1)
∼
∝

I

∑
i=1

ψi
t(yt)N

(
θt; µi

t(yt), ρi
t(yt)

)
. (16)

where to simplify the notation we use g−i
t−1 =

(
gi

t−1
)−1, and

∼
∝ denotes the approximately propor-

tional sign. Also

ψi
t(yt) = vi

t−1|t−1γi
t(yt)

∣∣∣∣∣ det Jg−i
t−1(yt)

bi
t−1 ◦ g−i

t−1(yt)

∣∣∣∣∣,
where J denoted the Jacobian operator,

ρi
t(yt) =

1

ςi
t(yt)

>Q−1ςi
t(yt)

,

µi
t(yt) = −νi

t(yt)
>Q−1ςi

t(yt)ρ
i
t(yt)

γi
t(yt) =

√
2πρi

t(yt)

det(2πQ)
exp

(
−1

2
νi

t(yt)
>Q−1ζ i

t(yt)

)
,

ζ i
t(yt) = νi

t(yt) + µi
t(yt)ς

i
t(yt),

and

νi
t(yt) =

 g−i
t−1(yt)

−hi
t−1◦g

−i
t−1(yt)−ai

t−1◦g
−i
t−1(yt)θt−1

bi
t−1◦g

−i
t−1(yt)

,

ςi
t(yt) =

 0
0
1

bi
t−1◦g

−i
t−1(yt)

.

In order to build an approximation of the form (11) we need a method for draw-
ing samples from p(xt|Zt). In view of (12), this can be done by drawing samples from
p(θt|yt, Zt) and p(yt|Zt). It follows from (16) that p(θt|yt, Zt) is a Gaussian mixture distri-
bution. Hence, we can readily draw samples from it. On the other hand, from (13) and (15)
we obtain

p(yt|Zt) ∝ p(zt|yt)
I

∑
i=1

ψi
t(yt),

from where it is not clear how to draw samples. Our strategy to go around this consists
finding a convenient Gaussian approximation p̃t(yt) of p(yt|Zt), from where we can draw
samples, and then weight these samples to account for the difference between p̃t(yt) and
p(yt|Zt).

To derive the Gaussian approximation p̃t(yt) we use (13) and proceed in three steps.
In Lemma 3 we do a Gaussian approximation of p(yt|Zt−1), in Lemma 4 we do the same
with p(zt|yt), and in Lemma 5 we combine these two approximations to obtain p̃t(yt).

Lemma 3. If (10) holds, then

p(yt|Zt−1) '
I

∑
i=1

vi
t−1|t−1N

(
yt; gi

t−1(0), Jgi
t−1(0)QeJgi>

t−1(0)
)

,

where Qe = SQS> with S = [I2, 0] and I2 denoting the 2× 2 identity matrix.
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Lemma 4. The following approximation holds

p(zt|yt)
∼
∝ N (yt; λt, Λt), (17)

where

λt = arg max
y∈R2

Ξt(y), (18)

Λt = −
[
∇2Ξt(λt)

]−1
. (19)

with
Ξt(y) = logN (zt; m(y), R).

Combining Lemmas 3 and 4 we obtain the Gaussian approximation of p(yt|Zt) given
in the following lemma.

Lemma 5. The following approximation holds

p(yt|Zt) ' p̃t(yt),

where

p̃t(yt) =
I

∑
i=1

vi
t−1|t−1αi

tN
(

yt; ξ i
t, Ξi

t

)
,

with

αi
t = N

(
0; gi

t−1(0)− λt, Λt + Jgi
t−1(0)QeJgi>

t−1(0)
)

,

Ξi
t =

[
Λ−1

t +
(

Jgi
t−1(0)QeJgi>

t−1(0)
)−1

]−1
,

ξ i
t = Ξi

t

[
Λ−1

t λt +
(

Jgi
t−1(0)QeJgi>

t−1(0)
)−1

gi
t−1(0)

]
.

Combining the results in Lemmas 1, 2 and 5 we can build the desired approximation (11)
following the procedure described in Algorithm 1.

Algorithm 1 Proposed localization algorithm.
At t = 1, initialize p(x1|Z1) using (7). At each t > 1:
1. Compute λt and Λt using (18) and (19).
2. For each j = 1, · · · , I, do:

(a) Pick an index i ∈ {1, · · · , I} by drawing it from the discrete distribution such
that i has probability proportional to vi

t−1|t−1αi
t.

(b) Draw yj
t|t from N

(
yt; ξ i

t, Ξi
t
)
.

(c) Compute the particle weight using v
j
t|t =

p
(

yj
t|t |Zt

)
p̃t

(
yj

t|t

) .

(d) Pick an index i ∈ {1, · · · , I} by drawing it from the discrete distribution such

that i has probability proportional to ψi
t

(
yj

t|t

)
.

(e) Draw θ
j
t|t from N

(
µi

t

(
yj

t|t

)
, ρi

t

(
yj

t|t

))
.

(f) Put xj
t|t =

[
yj>

t|t , θ
j
t|t

]>
.

3. Normalize the weights so that ∑I
j=1 v

j
t|t = 1.

4. Estimate the position using x̂t = ∑I
i=1 vi

t|tx
i
t|t.
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5. Experimental Validation

In this section, we evaluate the performance of our proposed indoor localization
method. To this end, we compare it with that of two methods based on particle filtering
(PF). The first one is a newly proposed RSS-based method described in [20], which we refer
to as PF-RSS. In order to assess the advantage resulting from using CSI measurements
instead of RSS ones, the second method is the CSI-based version the PF-RSS one. It is
obtained by using the PF method, described in Section 3, instead of the proposed MLPF
method. We refer to it as PF-CSI. We also consider the dynamic localization method
from [25], which we call MLKF, and only applies to linear Gaussian motion models like the
one given in Appendix B. We also consider the localization performance obtained via static
localization. To this end, we use the static localization method proposed in [25], which, as
shown in that work, outperforms other available static positioning methods like FILA [28],
DeepFi [29], and PhaseFi [30].

As APs we used TP-Link TL-WDR4310 routers with the OpenWrt platform installed.
To acquire CSI values we use the Atheros CSI tool [31]. It provides CSI values of 56 subcar-
riers, and for each one, two 10 bit values are used to represent its phase and amplitude.
Motion capture cameras with millimeter-level accuracy are used to obtain the ground
truth position.

For the target we use a two-wheel robot controlled by a NVIDIA Jetson Nano devel-
oper board, equipped with an Atheros AR9590 network interface controller. We consider
a target whose motion is described by the velocity model given in Appendix A.1, with
σ2

v = 0.36, σ2
ω = 0.072 and σ2

γ = 0.072. To generate the measurements we pass the acquired
CSI phase values through the linear calibration stage proposed in [30] (§ II.B), then unwrap
the resulting phases and use the resulting phase differences as fingerprints. The whole
procedure for generating fingerprints is described in [25]. The measurement model is given
by the following Gaussian kernel expansion

m(yt) =
N

∑
n=1

κn exp
(
−χ‖yt − pn‖2

)
, (20)

where pn ∈ R2, n ∈ [1, 2, . . . , N], denote the positions used to build the fingerprint database.
Following [32] (Chapter 4.3.2) we choose χ = 1

2 I1/3. Also, κ = [κ1, . . . , κN ]
> is computed

so that, for each n = 1, . . . , N, m(pn) matches the CSI measured at pn.
As performance metric we use the mean squared localization error ε, i.e., if the

estimated pose at time t is x̂t =
[
ŷ>t , θ̂t

]>
and the ground truth is yt, then

ε =
1
T

T

∑
t=1
‖ŷt − yt‖2.

For the PF method, following [23] we use I = 1000 particles. Also, for the MLKF
method, we use the linear Gaussian motion model described in Appendix B, with σ2

p = 0.12
and σ2

ι = 0.25.
In the first experiment, we aim to evaluate the performance in large environments. To

this end we use an empty room of 7× 16 m2. Only one AP is placed at the corner of the
room as shown in Figure 2. To build the fingerprinting database, we measured CSI’s at
N = 70 positions, one meter apart from each other, on a grid as also shown in the same
figure. As the target moves within the room, we estimate its position every τ = 0.5 seconds.

As we can see from Table 1, the proposed MLPF method, with only 10 particles, clearly
outperforms the outcomes of static positioning and particle filtering. Its performance is
comparable to that of the MLKF. However, it outperforms the latter if we increase the
number of particles to 50. This is due to the use of a non-linear motion model which yields
more accurate statistical knowledge of the target’s position at each sample time. Also,
although particle filtering should yield the theoretically optimal result if the number of
particles is large enough, the very large number of required particles result in that, even
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with 1000 particles, its accuracy is significantly inferior than that of the proposed MLPF
method with 10 particles. Figure 3 shows how the positioning accuracy of the proposed
method improves with the number of particles. In Figure 4 we show the error cumulative
distribution (ECD) of each method, i.e., for each error (in meters), we show the proportion
of positions whose localization error is smaller than that error. The estimated trajectory
and ground truth of the experiment are shown in Figure 5.

AP

7
  
m

e
te

rs

Initialization Points16  meters

Figure 2. Layout and database points of the empty room. The access point (AP) is placed at the
lower-right corner.

Table 1. Positioning Error (empty room).

Methods Mean Squared Error [m2] 90% Acc. [m2]

Static positioning 1.4153 3.0437
MLKF 0.6506 1.2848

PF-RSS (1000 particles) 12.1310 28.3569
PF-CSI (1000 particles) 2.0834 5.8151

MLPF (10 particles) 0.5607 1.3724
MLPF (50 particles) 0.3370 1.0891

10 20 30 40 50

Particle number

0.3

0.35

0.4

0.45

0.5

0.55

0.6

M
ea

n 
sq

ua
re

d 
er

ro
r 

(m
2
)

Figure 3. Impact of particle numbers on positioning accuracy.
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The second experiment aims to show the performance of our method in living and
working environments. To this end we use two adjacent offices of 7.1× 11.3 m2 connected
by a corridor. We build the fingerprint database using N = 72 positions, as shown in
Figure 6, together with the AP’s location.

0 1 2 3 4 5 6 7 8 9 10

Mean squared error (m2)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
E

C
D

Static positioning
MLKF
PF-RSS (1000 particles)
PF-CSI (1000 particles)
MLPF (10 particles)
MLPF (50 particles)

Figure 4. Positioning error cumulative distribution (ECD) (empty room).

AP

Start

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
2

3
4

5
6

7

True Trajrectoy

MLPF(10 particles)

MLPF(50 particles)

Figure 5. Tracking result of maximum likelihood particle filter (MLPF) with 10 and 50 particles in an
empty room.

We see from Table 2 that, while in the empty room the proposed method with 10
particles performed similarly to the MLKF method, in this second experiment it largely
outperforms the latter. The table also shows the clear advantage of the proposed method
over its rivals. The reason for this advantage is as follows. Due to the signal distortion
and attenuation caused by multipaths, walls and furnitures, the localization information
provided by measurements is not enough to yield accurate estimates at certain locations.
This can be seen in the ECD shown in Figure 7. At those locations, dynamic localization
methods resort to motion model information to produce an estimate. Figure 7 shows
that only the proposed MLPF method can produce accurate estimates at those locations.
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This is because it is the only method that is able to make full use of the rich information
provided by a non-linear motion model. While methods based on PF potentially have the
same possibility, the extremely large number of required particles make this unfeasible
in practice. To conclude the experiment, we show in Figure 8 the ground truth and
estimated trajectories.

AP

Initialization Points

11.3 meters

7
.1

 m
e

te
rs

Figure 6. Layout and database points for the two office rooms. The AP is placed at the lower-right
corner of the right room.
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Figure 7. Positioning ECD (office rooms).
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MLPF(50 particles)

Figure 8. Tracking result of MLPF with 10 and 50 particles in the office rooms.

Table 2. Positioning Error (office rooms).

Methods Mean Squared Error [m2] 90% Acc. [m2]

Static positioning 2.3962 5.6935
MLKF 11.7255 50.8279

PF-RSS (1000 particles) 8.2366 18.3872
PF-CSI (1000 particles) 2.9418 11.1606

MLPF (10 particles) 0.7755 1.5712
MLPF (50 particles) 0.4939 0.9970

6. Conclusions

We proposed a new indoor positioning method, which we called maximum likelihood
particle filtering. Its essential idea consists of combing the prediction and updates steps of
a traditional particle filter into a single step, which requires solving a maximum likelihood
estimation problem. This results in a better utilization of particles. The method so obtained
achieves high accuracy indoor positioning with a drastically smaller number of particles
in comparison with particle filtering. This makes it numerically feasible for real-time
applications. We validated our claims in a WiFi indoor positioning experiment using
real data. Our experiment show that our method leads to great accuracy improvements
achieving sub-meter level indoor localization accuracy, which exceeds the requirements of
the 5G NR Release 16 standard from 3GPP [33].
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Appendix A. Non-Linear Robot Motion Models

Appendix A.1. Velocity Model

The input is ut = [vt, ωt], with vt and ωt being the robot’s measured linear and angular
speeds, respectively. Also et = [ṽt, ω̃t], nt = γ̃t, Q(ut) = diag

(
σ2

v , σ2
ω, σ2

γ

)
with

σ2
v = α1|vt|+ α2|ωt|,

σ2
ω = α3|vt|+ α4|ωt|,

σ2
γ = α5|vt|+ α6|ωt|,

and α1, . . . , α6 being system parameters. The motion model is given by

at+1 = at −
v̂t

ω̂t
sin θt +

v̂t

ω̂t
sin(θt + ω̂tτ),

bt+1 = bt +
v̂t

ω̂t
cos θt −

v̂t

ω̂t
cos(θt + ω̂tτ),

θt+1 = θt + (ω̂t + γ̃t)τ,

where τ denotes the sampling time and

v̂t = vt + ṽt,

ω̂t = ωt + ω̃t.

Appendix A.2. Odometry Model

In this case ut =
[
x̄>t+1, x̄>t

]>
, where x̄t =

[
āt, b̄t, θ̄t

]> denotes the odometry measure-
ment at time t. Using ut we compute

δrot1 = arctan
b̄t+1 − b̄t

āt+1 − āt
− θ̄t,

δtrans =

√
(āt+1 − āt)

2 +
(
b̄t+1 − b̄t

)2,

δrot1 = θ̄t+1 − θ̄t − δrot1.

Then, wt =
[
δ̃rot1, δ̃trans, δ̃rot2

]
and Q(ut) = diag

(
σ2

rot1, σ2
trans, σ2

rot2
)

with

σ2
rot1 = α1

∣∣δ̂rot1
∣∣+ α2

∣∣δ̂trans
∣∣,

σ2
trans = α3

∣∣δ̂trans
∣∣+ α4

∣∣δ̂rot1 + δ̂rot2
∣∣,

σ2
rot2 = α5

∣∣δ̂rot2
∣∣+ α6

∣∣δ̂trans
∣∣,
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and α1, . . . , α6 being system parameters. The motion model is given by

at+1 = at + δ̂trans cos
(
θt + δ̂rot1

)
,

bt+1 = bt + δ̂trans sin
(
θt + δ̂rot1

)
,

θt+1 = θt + δ̂rot1 + δ̂rot2,

where

δ̂rot1 = δrot1 + δ̃rot1,

δ̂trans = δtrans + δ̃trans,

δrot2 = δrot2 + δ̃rot2.

Appendix A.3. Differential Drive Model

As in the velocity model, ut = [vt, ωt]. Also wt = [ṽt, η̃t, ω̃t], where Q(ut) =

diag
(

σ2
v , σ2

η , σ2
ω

)
with σ2

v , σ2
η , and σ2

ω being system parameters. The motion model is
given by

at+1 = at + τ cos(θt)(vt + ṽt)− τ sin(θt)η̃t,

bt+1 = bt + τ sin(θt)(vt + ṽt) + τ cos(θt)η̃t,

θt+1 = θt + τω̃t,

where τ denotes the sampling time.

Appendix B. Linear Motion Model

In the linear motion model, pζ and vζ , ζ ∈ {x, y}, denote the position and velocity,
respectively, in the ζ axis. The model is given by

px(t + 1) = px(t) + τvx(t) + wx(t),

py(t + 1) = py(t) + τvy(t) + wy(t),

vx(t + 1) = vx(t) + ιx(t),

vy(t + 1) = vy(t) + ιy(t),

where wx, wy, ιx and ιy are mutually independent, wx ∼ wy ∼ N
(

0, σ2
p

)
, and ιx ∼ ιy ∼

N
(
0, σ2

ι

)
.

Appendix C. Proofs

Proof of Lemma 1. We have

p(xt|Zt) = p(θt|yt, Zt)p(yt|Zt).

Now

p(yt|Zt) =
1

p(zt|Zt−1)
p(yt, zt|Zt−1)

∝ p(zt|yt)p(yt|Zt−1),
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and

p(θt|yt, Zt) ∝ p(θt, yt|Zt)

∝ p(θt, yt, zt|Zt−1)

∝ p(zt|θt, yt)p(θt, yt|Zt−1)

∝ p(zt|yt)p(θt, yt|Zt−1)

∝ p(θt, yt|Zt−1)

∝ p(θt|yt, Zt−1).

Proof of Lemma 2. We split the proof in steps:

1. It follows straightforwardly from [34] (§ 5.4) that

p
(

xt|xi
t−1|t−1

)
= ∑

w:xt= ft−1(w)

∣∣∣det J f i
t−1(w)

∣∣∣−1
p(wt−1 = w).

Since the variance of nt−1 is small, we can do the following approximation,

p
(

xt|xi
t−1|t−1

)
'
∣∣∣det J f i

t−1

(
f−i
t−1(xt)

)∣∣∣−1
N
(

f−i
t−1(xt); 0, Q

)
'
∣∣∣det J f−i

t−1(xt)
∣∣∣N( f−i

t−1(xt); 0, Q
)

(A1)

where to simplify the notation we used f−i
t−1 =

(
f i
t−1
)−1.

2. We have

f−i
t−1(xt) =

 g−i
t−1(yt)

θt−hi
t−1◦g

−i
t−1(yt)−ai

t−1◦g
−i
t−1(yt)θt−1

bi
t−1◦g

−i
t−1(yt)

 (A2)

=νi
t(yt) + ςi

t(yt)θt. (A3)

Then, from (A2),

J f−i
t−1(xt) =

[
Jg−i

t−1(yt) 0
∗ 1

bi
t−1◦g

−i
t−1(yt)

]
,

where ∗ denotes a non-zero term whose value is irrelevant. Then∣∣∣det J f−i
t−1(xt)

∣∣∣ = ∣∣∣∣∣ det Jg−i
t−1(yt)

bi
t−1 ◦ g−i

t−1(yt)

∣∣∣∣∣. (A4)

3. Now, using (10) and (A1), we get

p(yt, θt|Zt−1) =p(xt|Zt−1)

=
∫

p(xt|xt−1)p(xt−1|Zt−1)dyt−1θt−1

'
I

∑
i=1

vi
t−1|t−1 p

(
xt|xi

t−1|t−1

)
'

I

∑
i=1

vi
t−1|t−1

∣∣∣det J f−i
t−1(xt)

∣∣∣N( f−i
t−1(xt); 0, Q

)
. (A5)

But, from (A3),

N
(

f−i
t−1(xt); 0, Q

)
= N

(
νi

t(yt) + ςi
t(yt)θt; 0, Q

)
.
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Now (
νi

t(yt) + ςi
t(yt)θt

)>
Q−1

(
νi

t(yt) + ςi
t(yt)θt

)
=ςi

t(yt)
>Q−1ςi

t(yt)θ
2
t + 2νi

t(yt)
>Q−1ςi

t(yt)θt + νi
t(yt)

>Q−1νi
t(yt)

=ςi
t(yt)

>Q−1ςi
t(yt)θ

2
t − 2ςi

t(yt)
>Q−1ςi

t(yt)µ
i
t(yt)θt

+ ςi
t(yt)

>Q−1ςi
t(yt)µ

i
t(yt)

2 + νi
t(yt)

>Q−1νi
t(yt)− ςi

t(yt)
>Q−1ςi

t(yt)µ
i
t(yt)

2

=

(
θt − µi

t(yt)
)2

ρi
t(yt)

+ νi
t(yt)

>Q−1νi
t(yt) + νi

t(yt)
>Q−1ςi

t(yt)µ
i
t(yt)

=

(
θt − µi

t(yt)
)2

ρi
t(yt)

+ νi
t(yt)

>Q−1
(

νi
t(yt) + ςi

t(yt)µ
i
t(yt)

)
Hence

N
(

f−i
t−1(xt); 0, Q

)
=

1√
det(2πQ)

exp

(
−
(
θt − µi

t(yt)
)2

2ρi
t(yt)

)
× exp

(
− 1

2
νi

t(yt)
>Q−1ζ i

t(yt)

)
=γi

t(yt)N
(

θt; µi
t(yt), ρi

t(yt)
)

, (A6)

4. Putting (A4) and (A6) into (A5) we obtain

p(yt, θt|Zt−1)
∼
∝

I

∑
i=1

ψi
t(yt)N

(
θt; µi

t(yt), ρi
t

(
yi

t

))
,

and the result follows.

Proof of Lemma 3. If xt−1 = xi
t−1|t−1, doing a first order Taylor expansion we obtain

yt = gi
t−1(et)

' gi
t−1(0) + Jgi

t−1(0)et.

So

p
(

yt|xi
t−1|t−1

)
' N

(
yt; gi

t−1(0), Jgi
t−1(0)QeJgi>

t−1(0)
)

.

The result then follows since

p(yt|Zt−1) =
I

∑
i=1

vi
t−1|t−1 p

(
yt|xi

t−1|t−1

)
=

I

∑
i=1

vi
t−1|t−1N

(
yt; gi

t−1(0), Jgi
t−1(0)QeJgi>

t−1(0)
)

.

Proof of Lemma 4. Let

Lt(y) = p(zt|yt = y).

Recall that N is the dimension of zt. It follows from ([24], Theorem 6) that, for all
ε ∈ R2, we can do the following approximation

lim
N→∞

1
Lt(λt)

Lt

(
(Λt)

−1/2ε + λt

) w.p.1
= exp

(
− εTε

2

)
, (A7)
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with

Ξt(y) = log Lt(y)
= logN (zt; m(y), R).

In view of the above, for large N we have

Lt(y) ' Lt

(
λi

t

)
exp

(
−1

2
(y− λt)

TΛ−1
t (y− λt)

)
, (A8)

Hence

p(zt|yt) = Lt(yt)
∼
∝ N (yt; λt, Λt).

Proof of Lemma 5. From the above we get

p(yt|Zt) ∝p(zt|yt)p(yt|Zt−1)

'
I

∑
i=1

vi
t−1|t−1N (yt; λt, Λt)×N

(
yt; gi

t−1(0), Jgi
t−1(0)QeJgi>

t−1(0)
)

.

The result then follows since, from [35] (§ 8.1.8),

N (yt; λt, Λt)N
(

yt; gi
t−1(0), Jgi

t−1(0)QeJgi>
t−1(0)

)
= αi

tN
(

yt; ξ i
t, Ξi

t

)
.
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