10,875 research outputs found

    Immunochromatographic diagnostic test analysis using Google Glass.

    Get PDF
    We demonstrate a Google Glass-based rapid diagnostic test (RDT) reader platform capable of qualitative and quantitative measurements of various lateral flow immunochromatographic assays and similar biomedical diagnostics tests. Using a custom-written Glass application and without any external hardware attachments, one or more RDTs labeled with Quick Response (QR) code identifiers are simultaneously imaged using the built-in camera of the Google Glass that is based on a hands-free and voice-controlled interface and digitally transmitted to a server for digital processing. The acquired JPEG images are automatically processed to locate all the RDTs and, for each RDT, to produce a quantitative diagnostic result, which is returned to the Google Glass (i.e., the user) and also stored on a central server along with the RDT image, QR code, and other related information (e.g., demographic data). The same server also provides a dynamic spatiotemporal map and real-time statistics for uploaded RDT results accessible through Internet browsers. We tested this Google Glass-based diagnostic platform using qualitative (i.e., yes/no) human immunodeficiency virus (HIV) and quantitative prostate-specific antigen (PSA) tests. For the quantitative RDTs, we measured activated tests at various concentrations ranging from 0 to 200 ng/mL for free and total PSA. This wearable RDT reader platform running on Google Glass combines a hands-free sensing and image capture interface with powerful servers running our custom image processing codes, and it can be quite useful for real-time spatiotemporal tracking of various diseases and personal medical conditions, providing a valuable tool for epidemiology and mobile health

    A handheld high-sensitivity micro-NMR CMOS platform with B-field stabilization for multi-type biological/chemical assays

    Get PDF
    We report a micro-nuclear magnetic resonance (NMR) system compatible with multi-type biological/chemical lab-on-a-chip assays. Unified in a handheld scale (dimension: 14 x 6 x 11 cm³, weight: 1.4 kg), the system is capable to detect<100 pM of Enterococcus faecalis derived DNA from a 2.5 μL sample. The key components are a portable magnet (0.46 T, 1.25 kg) for nucleus magnetization, a system PCB for I/O interface, an FPGA for system control, a current driver for trimming the magnetic (B) field, and a silicon chip fabricated in 0.18 μm CMOS. The latter, integrated with a current-mode vertical Hall sensor and a low-noise readout circuit, facilitates closed-loop B-field stabilization (2 mT → 0.15 mT), which otherwise fluctuates with temperature or sample displacement. Together with a dynamic-B-field transceiver with a planar coil for micro-NMR assay and thermal control, the system demonstrates: 1) selective biological target pinpointing; 2) protein state analysis; and 3) solvent-polymer dynamics, suitable for healthcare, food and colloidal applications, respectively. Compared to a commercial NMR-assay product (Bruker mq-20), this platform greatly reduces the sample consumption (120x), hardware volume (175x), and weight (96x)

    Bioengineered Textiles and Nonwovens – the convergence of bio-miniaturisation and electroactive conductive polymers for assistive healthcare, portable power and design-led wearable technology

    Get PDF
    Today, there is an opportunity to bring together creative design activities to exploit the responsive and adaptive ‘smart’ materials that are a result of rapid development in electro, photo active polymers or OFEDs (organic thin film electronic devices), bio-responsive hydrogels, integrated into MEMS/NEMS devices and systems respectively. Some of these integrated systems are summarised in this paper, highlighting their use to create enhanced functionality in textiles, fabrics and non-woven large area thin films. By understanding the characteristics and properties of OFEDs and bio polymers and how they can be transformed into implementable physical forms, innovative products and services can be developed, with wide implications. The paper outlines some of these opportunities and applications, in particular, an ambient living platform, dealing with human centred needs, of people at work, people at home and people at play. The innovative design affords the accelerated development of intelligent materials (interactive, responsive and adaptive) for a new product & service design landscape, encompassing assistive healthcare (smart bandages and digital theranostics), ambient living, renewable energy (organic PV and solar textiles), interactive consumer products, interactive personal & beauty care (e-Scent) and a more intelligent built environment

    Rapid Quantification of SARS-Cov-2 Spike Protein Enhanced with a Machine Learning Technique Integrated in a Smart and Portable Immunosensor

    Get PDF
    An IoT-WiFi smart and portable electrochemical immunosensor for the quantification of SARS-CoV-2 spike protein integrated with machine learning features was developed. The immunoenzymatic sensor is based on the immobilization of monoclonal antibodies directed to SARS-CoV-2 S1 subunit on Screen-Printed Electrodes functionalized with gold nanoparticles, the analytical protocol involving a single-step sample incubation. Immunosensor performance was assessed by validation carried out in viral transfer medium, which is commonly used for de-sorption of nasopharyngeal swabs. Remarkable specificity of the response was demonstrated by testing H1N1 Hemagglutinin from swine-origin influenza A virus and Spike Protein S1 from Middle East respiratory syndrome coronavirus. Machine learning was successfully used for data processing and analysis: different support vector machine classifiers were evaluated proving that algorithms affect the classifier accuracy. The test accuracy of the best classification model in terms of true positive/true negative sample classification was 97.3%. In addition, ML algorithm can be easily integrated into the developed cloud-based portable Wi-Fi device. Finally, the immunosensor was successfully tested using a third generation replicating incompetent lentiviral vector pseudotyped with SARS-CoV-2 spike glycoprotein, thus proving the applicability of the immunosensor to whole virus detection

    An overview of technologies and devices against COVID-19 pandemic diffusion: virus detection and monitoring solutions

    Get PDF
    none5siThe year 2020 will remain in the history for the diffusion of the COVID-19 virus, originating a pandemic on a world scale with over a million deaths. From the onset of the pandemic, the scientific community has made numerous efforts to design systems to detect the infected subjects in ever-faster times, allowing both to intervene on them, to avoid dangerous complications, and to contain the pandemic spreading. In this paper, we present an overview of different innovative technologies and devices fielded against the SARS-CoV-2 virus. The various technologies applicable to the rapid and reliable detection of the COVID-19 virus have been explored. Specifically, several magnetic, electrochemical, and plasmonic biosensors have been proposed in the scientific literature, as an alternative to nucleic acid-based real-time reverse transcription Polymerase Chain Reaction (PCR) (RT-qPCR) assays, overcoming the limitations featuring this typology of tests (the need for expensive instruments and reagents, as well as of specialized staff, and their reliability). Furthermore, we investigated the IoT solutions and devices, reported on the market and in the scientific literature, to contain the pandemic spreading, by avoiding the contagion, acquiring the parameters of suspected users, and monitoring them during the quarantine period.openR. de Fazio, A. Sponziello, D. Cafagna, R. Velazquez, P. Viscontide Fazio, R.; Sponziello, A.; Cafagna, D.; Velazquez, R.; Visconti, P

    A self-calibrating IoT portable electrochemical immunosensor for serum human epididymis protein 4 as a tumor biomarker for ovarian cancer

    Get PDF
    Nowadays analytical techniques are moving towards the development of smart biosensing strategies for point-of-care accurate screening of disease biomarkers, such as human epididymis protein 4 (HE4), a recently discovered serum markers for early ovarian cancer diagnosis. In this context, the present work represents the first implementation of a competitive enzyme-labelled magneto-immunoassay exploiting a homemade IoT Wi-Fi cloud-based portable potentiostat for differential pulse voltammetry readout. The electrochemical device was specifically designed capable of autonomous calibration and data processing, switching between calibration and measurement modes: in particular, firstly a baseline estimation algorithm is applied for correct peak computation, then calibration function is built by interpolating data with a four-parameter logistic function. The calibration function parameters are stored on the cloud for inverse prediction to determine the concentration of unknown samples. Interpolation function calibration and concentration evaluation are performed directly on-board, reducing the power consumption. The analytical device was validated in human serum, demonstrating good sensing performance for analysis of HE4 with detection and quantitation limits in human serum of 3.5 and 29.2 pM, respectively, reaching the sensitivity required for diagnostic purposes, with high potential for applications as portable and smart diagnostic tool for point-of-care testing

    Route Towards a Label-free Optical Waveguide Sensing Platform Based on Lossy Mode Resonances

    Get PDF
    According to recent market studies of the North American company Allied Market Research, the field of photonic sensors is an emerging strategic field for the following years and it is expected to garner $18 billion by 2021. The integration of micro and nanofabrication technologies in the field of sensors has allowed the development of new technological concepts such as lab-on-a-chip, which have achieved extraordinary advances in terms of detection and applicability, for example in the field of biosensors. This continuous development has allowed that equipment consisting of many complex devices that occupied a whole room a few years ago, at present it is possible to handle them in the palm of the hand; that formerly long duration processes are carried out in a matter of milliseconds and that a technology previously dedicated solely to military or scientific uses is available to the vast majority of consumers. The adequate combination of micro and nanostructured coatings with optical fiber sensors has permitted us to develop novel sensing technologies, such as the first experimental demonstration of lossy mode resonances (LMRs) for sensing applications, with more than one hundred citations and related publications in high rank journals and top conferences. In fact, fiber optic LMR-based devices have been proven as devices with one of the highest sensitivity for refractometric applications. Refractive index sensitivity is an indirect and simple indicator of how sensitive the device is to chemical and biological species, topic where this proposal is focused. Consequently, the utilization of these devices for chemical and biosensing applications is a clear opportunity that could open novel and interesting research lines and applications as well as simplify current analytical methodologies. As a result, on the basis of our previous experience with LMR based sensors to attain very high sensitivities, the objective of this paper is presenting the route for the development of label-free optical waveguide sensing platform based on LMRs that enable to explore the limits of this technology for bio-chemosensing applications

    Smartphone as a Portable Detector, Analytical Device, or Instrument Interface

    Get PDF
    The Encyclopedia Britannia defines a smartphone as a mobile telephone with a display screen, at the same time serves as a pocket watch, calendar, addresses book and calculator and uses its own operating system (OS). A smartphone is considered as a mobile telephone integrated to a handheld computer. As the market matured, solid-state computer memory and integrated circuits became less expensive over the following decade, smartphone became more computer-like, and more more-advanced services, and became ubiquitous with the introduction of mobile phone networks. The communication takes place for sending and receiving photographs, music, video clips, e-mails and more. The growing capabilities of handheld devices and transmission protocols have enabled a growing number of applications. The integration of camera, access Wi-Fi, payments, augmented reality or the global position system (GPS) are features that have been used for science because the users of smartphone have risen all over the world. This chapter deals with the importance of one of the most common communication channels, the smartphone and how it impregnates in the science. The technological characteristics of this device make it a useful tool in social sciences, medicine, chemistry, detections of contaminants, pesticides, drugs or others, like so detection of signals or image

    Communication system for a tooth-mounted RF sensor used for continuous monitoring of nutrient intake

    Get PDF
    In this Thesis, the communication system of a wearable device that monitors the user’s diet is studied. Based in a novel RF metamaterial-based mouth sensor, different decisions have to be made concerning the system’s technologies, such as the power source options for the device, the wireless technology used for communications and the method to obtain data from the sensor. These issues, along with other safety rules and regulations, are reviewed, as the first stage of development of the Food-Intake Monitoring projectOutgoin
    • …
    corecore