2,304 research outputs found

    Location-Enabled IoT (LE-IoT): A Survey of Positioning Techniques, Error Sources, and Mitigation

    Get PDF
    The Internet of Things (IoT) has started to empower the future of many industrial and mass-market applications. Localization techniques are becoming key to add location context to IoT data without human perception and intervention. Meanwhile, the newly-emerged Low-Power Wide-Area Network (LPWAN) technologies have advantages such as long-range, low power consumption, low cost, massive connections, and the capability for communication in both indoor and outdoor areas. These features make LPWAN signals strong candidates for mass-market localization applications. However, there are various error sources that have limited localization performance by using such IoT signals. This paper reviews the IoT localization system through the following sequence: IoT localization system review -- localization data sources -- localization algorithms -- localization error sources and mitigation -- localization performance evaluation. Compared to the related surveys, this paper has a more comprehensive and state-of-the-art review on IoT localization methods, an original review on IoT localization error sources and mitigation, an original review on IoT localization performance evaluation, and a more comprehensive review of IoT localization applications, opportunities, and challenges. Thus, this survey provides comprehensive guidance for peers who are interested in enabling localization ability in the existing IoT systems, using IoT systems for localization, or integrating IoT signals with the existing localization sensors

    From data acquisition to data fusion : a comprehensive review and a roadmap for the identification of activities of daily living using mobile devices

    Get PDF
    This paper focuses on the research on the state of the art for sensor fusion techniques, applied to the sensors embedded in mobile devices, as a means to help identify the mobile device user’s daily activities. Sensor data fusion techniques are used to consolidate the data collected from several sensors, increasing the reliability of the algorithms for the identification of the different activities. However, mobile devices have several constraints, e.g., low memory, low battery life and low processing power, and some data fusion techniques are not suited to this scenario. The main purpose of this paper is to present an overview of the state of the art to identify examples of sensor data fusion techniques that can be applied to the sensors available in mobile devices aiming to identify activities of daily living (ADLs)

    Robustness, Security and Privacy in Location-Based Services for Future IoT : A Survey

    Get PDF
    Internet of Things (IoT) connects sensing devices to the Internet for the purpose of exchanging information. Location information is one of the most crucial pieces of information required to achieve intelligent and context-aware IoT systems. Recently, positioning and localization functions have been realized in a large amount of IoT systems. However, security and privacy threats related to positioning in IoT have not been sufficiently addressed so far. In this paper, we survey solutions for improving the robustness, security, and privacy of location-based services in IoT systems. First, we provide an in-depth evaluation of the threats and solutions related to both global navigation satellite system (GNSS) and non-GNSS-based solutions. Second, we describe certain cryptographic solutions for security and privacy of positioning and location-based services in IoT. Finally, we discuss the state-of-the-art of policy regulations regarding security of positioning solutions and legal instruments to location data privacy in detail. This survey paper addresses a broad range of security and privacy aspects in IoT-based positioning and localization from both technical and legal points of view and aims to give insight and recommendations for future IoT systems providing more robust, secure, and privacy-preserving location-based services.Peer reviewe

    Design criteria for Indoor Positioning Systems in hospitals using technological, organizational and individual perspectives

    Get PDF
    This dissertation considers three different studies that handle Indoor Positioning Systems (IPS) in hospitals. Study 1 uses the Reasoned Action Approach by questioning hospital visitors and employees about their intention to use IPS in hospitals. Study 2 reviews IPS in hospitals. Study 3 is based on the results of the first two studies. It handles expert interviews that were conducted with different hospitals and IPS developers to evaluate the determined propositions. Then, the insights were used to conduct and evaluate experiments by testing an ultrasound-based IPS for hospitals

    Indoor Localization Techniques Based on Wireless Sensor Networks

    Get PDF

    Technologies that assess the location of physical activity and sedentary behavior: a systematic review

    Get PDF
    Background: The location in which physical activity and sedentary behavior are performed can provide valuable behavioral information, both in isolation and synergistically with other areas of physical activity and sedentary behavior research. Global positioning systems (GPS) have been used in physical activity research to identify outdoor location; however, while GPS can receive signals in certain indoor environments, it is not able to provide room- or subroom-level location. On average, adults spend a high proportion of their time indoors. A measure of indoor location would, therefore, provide valuable behavioral information. Objective: This systematic review sought to identify and critique technology which has been or could be used to assess the location of physical activity and sedentary behavior. Methods: To identify published research papers, four electronic databases were searched using key terms built around behavior, technology, and location. To be eligible for inclusion, papers were required to be published in English and describe a wearable or portable technology or device capable of measuring location. Searches were performed up to February 4, 2015. This was supplemented by backward and forward reference searching. In an attempt to include novel devices which may not yet have made their way into the published research, searches were also performed using three Internet search engines. Specialized software was used to download search results and thus mitigate the potential pitfalls of changing search algorithms. Results: A total of 188 research papers met the inclusion criteria. Global positioning systems were the most widely used location technology in the published research, followed by wearable cameras, and radio-frequency identification. Internet search engines identified 81 global positioning systems, 35 real-time locating systems, and 21 wearable cameras. Real-time locating systems determine the indoor location of a wearable tag via the known location of reference nodes. Although the type of reference node and location determination method varies between manufacturers, Wi-Fi appears to be the most popular method. Conclusions: The addition of location information to existing measures of physical activity and sedentary behavior will provide important behavioral information
    corecore