10,967 research outputs found

    Design of an Efficient Interconnection Network of Temperature Sensors

    Get PDF
    Temperature has become a ïŹrst class design constraint because high temperatures adversely affect circuit reliability, static power and degrade the performance. In this scenario, thermal characterization of ICs and on-chip temperature monitoring represent fundamental tasks in electronic design. In this work, we analyze the features that an interconnection network of temperature sensors must fulïŹll. Departing from the network topology, we continue with the proposal of a very light-weight network architecture based on digitalization resource sharing. Our proposal supposes a 16% improvement in area and power consumption compared to traditional approache

    Analog/RF Circuit Design Techniques for Nanometerscale IC Technologies

    Get PDF
    CMOS evolution introduces several problems in analog design. Gate-leakage mismatch exceeds conventional matching tolerances requiring active cancellation techniques or alternative architectures. One strategy to deal with the use of lower supply voltages is to operate critical parts at higher supply voltages, by exploiting combinations of thin- and thick-oxide transistors. Alternatively, low voltage circuit techniques are successfully developed. In order to benefit from nanometer scale CMOS technology, more functionality is shifted to the digital domain, including parts of the RF circuits. At the same time, analog control for digital and digital control for analog emerges to deal with current and upcoming imperfections

    Configurable 3D-integrated focal-plane sensor-processor array architecture

    Get PDF
    A mixed-signal Cellular Visual Microprocessor architecture with digital processors is described. An ASIC implementation is also demonstrated. The architecture is composed of a regular sensor readout circuit array, prepared for 3D face-to-face type integration, and one or several cascaded array of mainly identical (SIMD) processing elements. The individual array elements derived from the same general HDL description and could be of different in size, aspect ratio, and computing resources

    CMOS-3D smart imager architectures for feature detection

    Get PDF
    This paper reports a multi-layered smart image sensor architecture for feature extraction based on detection of interest points. The architecture is conceived for 3-D integrated circuit technologies consisting of two layers (tiers) plus memory. The top tier includes sensing and processing circuitry aimed to perform Gaussian filtering and generate Gaussian pyramids in fully concurrent way. The circuitry in this tier operates in mixed-signal domain. It embeds in-pixel correlated double sampling, a switched-capacitor network for Gaussian pyramid generation, analog memories and a comparator for in-pixel analog-to-digital conversion. This tier can be further split into two for improved resolution; one containing the sensors and another containing a capacitor per sensor plus the mixed-signal processing circuitry. Regarding the bottom tier, it embeds digital circuitry entitled for the calculation of Harris, Hessian, and difference-of-Gaussian detectors. The overall system can hence be configured by the user to detect interest points by using the algorithm out of these three better suited to practical applications. The paper describes the different kind of algorithms featured and the circuitry employed at top and bottom tiers. The Gaussian pyramid is implemented with a switched-capacitor network in less than 50 ÎŒs, outperforming more conventional solutions.Xunta de Galicia 10PXIB206037PRMinisterio de Ciencia e InnovaciĂłn TEC2009-12686, IPT-2011-1625-430000Office of Naval Research N00014111031

    Compressive Imaging Using RIP-Compliant CMOS Imager Architecture and Landweber Reconstruction

    Get PDF
    In this paper, we present a new image sensor architecture for fast and accurate compressive sensing (CS) of natural images. Measurement matrices usually employed in CS CMOS image sensors are recursive pseudo-random binary matrices. We have proved that the restricted isometry property of these matrices is limited by a low sparsity constant. The quality of these matrices is also affected by the non-idealities of pseudo-random number generators (PRNG). To overcome these limitations, we propose a hardware-friendly pseudo-random ternary measurement matrix generated on-chip by means of class III elementary cellular automata (ECA). These ECA present a chaotic behavior that emulates random CS measurement matrices better than other PRNG. We have combined this new architecture with a block-based CS smoothed-projected Landweber reconstruction algorithm. By means of single value decomposition, we have adapted this algorithm to perform fast and precise reconstruction while operating with binary and ternary matrices. Simulations are provided to qualify the approach.Ministerio de EconomĂ­a y Competitividad TEC2015-66878-C3-1-RJunta de AndalucĂ­a TIC 2338-2013Office of Naval Research (USA) N000141410355European Union H2020 76586
    • 

    corecore