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Abstract— In this paper, we present a new image sensor
architecture for fast and accurate compressive sensing (CS)
of natural images. Measurement matrices usually employed in
CS CMOS image sensors are recursive pseudo-random binary
matrices. We have proved that the restricted isometry property
of these matrices is limited by a low sparsity constant. The
quality of these matrices is also affected by the non-idealities
of pseudo-random number generators (PRNG). To overcome
these limitations, we propose a hardware-friendly pseudo-random
ternary measurement matrix generated on-chip by means of class
III elementary cellular automata (ECA). These ECA present
a chaotic behavior that emulates random CS measurement
matrices better than other PRNG. We have combined this
new architecture with a block-based CS smoothed-projected
Landweber reconstruction algorithm. By means of single value
decomposition, we have adapted this algorithm to perform
fast and precise reconstruction while operating with binary
and ternary matrices. Simulations are provided to qualify the
approach.

Index Terms— CMOS image sensor architecture, compres-
sive sensing, Landweber reconstruction, power spectral density,
random binary matrix RIP proof, single value decomposition,
ternary measurement matrix.

I. INTRODUCTION

COMPRESSIVE Sensing (CS) is a data acquisition tech-
nique that can be used to represent the content of an

image with fewer samples than required by Shannon-Nyquist
theorem. These samples are called compressed samples.
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Reconstruction algorithms exploit the sparsity of the original
image in order to recover it by finding the unique solution
to an underdetermined linear system [1]. This system can be
expressed in matrix notation as:

y = �x (1)

where y ∈ R
M is the set of M compressed samples, x ∈ R

N

represents the N pixels values folded in a column vector,
i.e. the unknowns of the system of equations, and � ∈
R

M×N (M � N) is referred to as measurement matrix. It has
been shown in [2] that, if � holds the Restricted Isometry
Property (RIP), then the solution to this inverse linear problem,
by means of convex optimization, is unique and error free [3].

CS is a field of research that is located in-between the areas
of analog microelectronics and of signal processing. The link
between these areas is given by the feasible yet RIP-compliant
design of measurement matrices. Measurement matrices affect
both the performance of reconstruction algorithms as well as
the architecture of CS CMOS image sensors (CS-CIS).

CS differs from standard acquisition-plus-compression tech-
niques in that the image is not captured and then digitized
before compression. To benefit from the characteristics of CS,
the image needs to be sensed and compressed simultaneously.
For that reason, in CS-CIS, compressed samples are formed
in the analog domain and digital conversion occurs just before
their delivery.

Since each pixel has different coefficients for each
compressed sample, if the coefficients of a measurement
matrix (�) were real numbers, a CS-CIS would require the
implementation of in-pixel analog multipliers. This solution
would be impractical in terms of pixel sensitivity and spatial
resolution. Furthermore, each compressed sample is a linear
combination of the weighted readings of all pixels (N),
which means it is the sum of N products. The upper bound
on the amount of bits required to represent theses linear
combinations is:

BCS = �
log2 N

� + (B� + BI) (2)

where �·� denotes the smallest integer greater than the argu-
ment and BI and B� are the number of bits used to describe the
pixel values and the coefficients of the measurement matrix,
respectively.

It is virtually impossible to design analog to digital con-
verters (ADCs) with such resolutions in standard technolo-
gies. In fact, one of the main drawbacks of most CS-CIS
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implementations [4]–[6] is the lack of dynamic range to
properly represent compressed samples.

The use of binary measurement matrices and block based
compressed sampling (BCS) [7], which divides a pixel
array into smaller sub-arrays that are digitized independently,
is essential for the implementation of practical measurement
matrices in CS-CISs.

In signal processing literature, there are many works that
study deterministic binary measurement matrices; i.e. cyclic
matrices [8], sparse bipartite graphs [9] or other forms of
deterministic matrices that try to match the performance of
Gaussian random matrices [10]. These matrices are usu-
ally coined hardware-friendly by their authors, but, even
if they are binary, given the technology at our disposal,
they cannot be implemented in application specific integrated
circuits (ASICs). As compressive sampling an acquisition
technique, the fact that we cannot apply these theories to
actively design sensors is, in itself, the limitation of these
works. This happens because, even if these matrices are
binary in nature, they still disregards the fact that, on-chip,
they need hardware resources to be generated, transmitted
and/or stored. To store a binary measurement matrix in its
integrity a large memory would be required. This exceeds
nowadays CS-CIS capabilities in term of area occupation. If,
on the contrary, we were to introduce a connection between
sensor and reconstruction system to continuously send the
rows of the matrix, the amount of exchanged data would
void CS benefits as a compression technique. For this reason,
measurement matrices designed in analog microelectronics
[5], [6] solely focus on the use of pseudo random binary
numbers generators (PRNG) to recursively create the rows
of the matrix sample after sample. This solution employs the
minimum possible amount of on-chip resources and does not
need data feedback between sensor and reconstruction system.
These matrices though do not ascertain the quality of the
resulting samples because their primary focus is placed almost
entirely on electrical parameters such as power consumption
and compactness of the implementation.

PRNG are non-linear spatially discrete and temporally dis-
crete dynamic systems made of binary logic elements that
show high sensitivity to initial conditions and evolve in time
according to a divergent and fractal behavior [11]. A new state
in their time evolution is derived from their actual state using a
feedback mechanism that promotes this instability. Each state
corresponds to a row of the binary measurement matrix. Each
row of a measurement matrix is generated by the CS-CIS from
the previous row and there is no need to store the whole binary
matrix on chip or to receive it from outside the chip.

In this paper, the performance of binary measurement
matrices obtained using binary PRNG is evaluated in terms
of RIP. We introduce a new method for the generation of a
hardware-friendly measurement matrix that takes into account
both technology limits and quality of the resulting matrix.
A differential pixel readout system and an elementary cellular
automaton (ECA) are proposed to recursively create a ternary
measurement matrix in a row by row fashion. The performance
of the generated ternary measurement matrix is analyzed and
compared with other binary measurement matrices typically

found in analog microelectronics. To do so we introduce a
new reconstruction algorithm that uses this matrix to deliver
reconstruction results close to those of the more refined
matrices typically found in signal processing.

II. RIP OF BINARY MATRICES PRODUCED BY PSEUDO

RANDOM BINARY GENERATORS

PRNG commonly used to implement measurement matri-
ces into CS-CIS are Linear Feedback Shift Registers
(LFSRs) [12], [13]. LFSRs consist of a series of sequentially
connected flip-flops. Some of the outputs of these flip-flops,
besides being connected to the input of the flip-flop that
they precede, are also connected, by means of XOR logic
gates, to the input of the very first one. When considered
individually, the output of each flip-flop in this sequence
evolves in time with a behavior that resembles a symmetric
probability distribution. Using one flip-flop for each pixel it
is possible to sequentially create the pseudo-random binary
coefficients of the measurement matrix one row after the other.
The resulting matrix is an approximation of a very efficient
type of measurement matrix popular in CS: a matrix in which
each element is derived from the normalized Gaussian distrib-
ution. Early implementations of CS-CIS binary measurement
matrices were carried out incorporating a flip-flop inside each
pixel. These flip-flops were then connected sequentially to
form LFSRs. This solution though posed a heavy burden on
the design specifications of image sensors due to the large
area required at pixel level. Recent solutions have overcome
this problem placing LFSRs around the pixel array as row and
column drivers (Fig. 1) [6], [14], [15].

Inside of each pixel, the flip-flops are replaced by simple
and more compact selectors. These selectors are driven by
LFSRs surrounding the array. Selectors can be implemented
with few transistors, using for instance switches or gated
inverters. This simplification was possible because, at pixel
level, we can consider random row and column selection as
the multiplication of two independent binary random variables.
The multiplication of random variables still delivers random
outputs. Using PRNG, such as LFSRs, the recursive row and
column drivers also reduce the amount of on-chip memory
needed to store their elements to Ng = 2

√
N bits. Since this

recursive pseudo-random sequence can be reproduced from
an initial Ng bits seed, it allows the independent generation
of the same measurement matrix in the system in charge of
reconstruction, without continuous transmission of the mea-
surement matrix from the sensor. It is important to notice that
LFSRs produce binary matrices that are neither normalized nor
orthogonalized. To understand the quality of the compressed
samples that they produce, it is necessary to analyze them in
terms of RIP.

Suppose that an area of size
√

N × √
N pixels is sampled

by a measurement matrix generated row by row as described
above. Let us consider the simplest possible case in which
an element of the pseudo random generator is assigned to
each pixel of the imager so that each row of the measurement
matrix � corresponds to a time step in the discrete evolution
of the generator itself. Mathematically, this sampling process
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Fig. 1. Conceptual floor plan of a CS-CIS.

is formulated as Eq.(1), where x ∈ R
N is the

√
N × √

N
array of pixels folded in vector form. The reconstruction of
the original signal x from the compressed samples y is an
ill-posed problem. By making use of sparsity, a well-known
characteristic existing in natural signals, a k-sparse1 signal,
like images and videos, can be reconstructed from a few
samples obtained using an appropriate measurement matrix.

A sufficient condition for the unique and exact recovery
of the signal is the RIP of the measurement matrix � [2].
A matrix � ∈ R

M×N satisfies the RIP of order k if there
is constant δk (0 < δk < 1) such that, for all vectors x ∈ R

N

with �x�0 ≤ k (i.e. k-sparse signals2), it holds:

(1 − δk) �x�2
2 ≤ ��x�2

2 ≤ (1 + δk) �x�2
2 (3)

The smallest non-negative value for δk is called restricted
isometry constant (RIC) of order k. The construction of
a measurement matrix which satisfies the RIP is a central
problem in CS. If sparse signals with maximum possible
sparsity level k can be recovered exactly and stably, it is said
the measurement matrix � has sparsity order k. An upper
bound for the sparsity level is k ≤ C M/ log (N/M) where C
is a constant [16]. The signals with k above this bound can
only be approximately reconstructed. In practice, to recover a
signal x with a large k, is desirable to have a measurement
matrix with a δk as small as possible. The limit imposed on
the RIP of random binary measurement matrices has already
been studied in [17] Such binary matrices satisfy the RIP with:

δk = (3k − 2) m

(k − 2) m + 4d
if 3 ≤ d ≤ M/2 and 2 ≤ m ≤ d (4)

where d is the estimated number of non-zero elements in
each column of � and m is the maximum inner product

1x is called k-sparse or a signal with sparsity level k, if it has no more
than k non-zero components with k � N .

2�x�0 norm denotes the number of non-zero components in x.

between two distinct columns. The distribution of 1’s among
the elements of random binary matrices, generated by pseudo
random generators, can be associated with a Bernoulli proba-
bility distribution in which each element has a probability P
of being 1 and P̄ = 1 − P of being 0. Since these pseudo
random measurement matrices try to emulate the normalized
Gaussian distribution, which is a symmetric probability distri-
bution, usually, circuit designers choose LFSR because their
distribution is akin to P = P̄ = 0.5.

Let us consider the ideal case of an ideal pseudo random
generator capable of recursively producing independent binary
elements with a symmetric Bernoulli probability distribution
having P = 0.5. If we consider a large enough pseudo random
binary generator (a large enough number of pixels N), since
each of its elements, by construction, is independent from the
others and the probability distribution is symmetrical, we will
obtain a measurement matrix � with an equal amount of 0s
and of 1s row-wise. If the acquisition process is long enough
(a large enough number of acquired compressed samples M),
we will have an equal amount of 0s and of 1s column-
wise as well. Such measurement matrix, whose entries are
randomly drawn from pseudo random generators, satisfies the
RIP with Eq.(4). Following [17], let us define the mutual
coherence of � as:

μ (�) = m
�

d (5)

We can derive m and d as functions of the number of
pixels in the image N , the sampling subrate of the sensor
S = M

�
N , and the probability of each element of being differ-

ent from 0, P. From the definition of subrate (S), it is straight
forward that M = S × N . Moreover, using the probability
that each element of the matrix has of being different from 0,
we can define the number of non-zero elements in a column
of � as:

d = S · N · P (6)

Mutual coherence μ (�) of a matrix represents the maximum
absolute value of the cross-correlations among its normalized
columns and is defined as:

μ (�) = max j 	=k

���ϕH
j ϕk

��� (7)

where ϕk is the k-th normalized column of matrix � and ϕH
j

is the conjugate transpose of the j -th normalized column of
the same matrix. For a matrix to be column-wise normalized it
means that for each column: ϕH

j ϕ j = 1. Given the definition
of mutual coherence and the randomness of ϕH

j and ϕk ,
to approximate m, we will make use of the most probable
outcome of a dot product between normalized columns of �:

m = E
�
ϕH

j ϕk

�
d (8)

Remember that ϕH
j ϕk is the sum of M element by element

products. Each one of these M products will be different
from zero if and only if the two elements that are being
multiplied differ from 0 as well. By construction, we are
multiplying independent random variables; the probability
that their product be different from 0 is equal to the joint
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probability of the single elements. For this reason, the expected
amount of non-zeros among the M products is:

E
�
Tr

�
ϕH

j · ϕk

	�
= P2 · S · N (9)

where Tr (·) is the trace of the matrix obtained by the vector
multiplication of ϕH

j and ϕk . Furthermore we can derive the
value of each product in terms of P, N and S by using
the definition of normalization and remembering that � is
binary. Normalizing a vector involves dividing each one of its
non-zero elements by the Euclidean norm of the vector itself.
Since each non-zero element in a binary vector has to take the
value of 1, all elements of a normalized binary vector will be
equal to the inverse of the vector Euclidean norm itself. For
this reason, if the i -th elements in column ϕ j and column ϕk
are non-zeros, then their normalized product will be:

ϕH
j iϕki

= 1

P · N · S
(10)

Combining Eq.(9) and Eq.(10), we can deduce the most prob-
able cross-correlation between two columns of a binary matrix
� This correlation only depends on P and it is independent
from the number of pixels and the sampling subrate:

E
�
ϕH

j ϕk

�
= P2 · S · N

P · N · S
= P (11)

Joning Eq.(4), Eq.(5) and Eq. (11) we obtain:

δk = (3k−2)

(k−2)+4/P
if 3/(S ·N)≤P≤1/2 and 2/(S ·N)≤P2 ≤P

(12)

For P = 0.5 and N ≥ 6, it is possible to see that all of the
conditions hold and that random binary matrices that follow
a symmetric probability distribution will have RIP (δk ≤ 1)
only if k ≤ 4.

A recovery algorithm can deliver error free reconstructions
only if the measurement matrix holds RIP. Eq. (12) poses a
harsh limitation on matrices that need to be implemented in
CS-CISs. Block based CS-CIS, in many occasions, need small
blocks in order to maintain acceptable errors during ADC.
ADC dynamic range is determined by noise and the maximum
signal range. It is very difficult to allocate large dynamic range.
Small blocks reduce the requirement for signal range and
consequently making it feasible for implementation. This in
turn introduces asymmetries in the pixel array. These asymme-
tries create artefacts in the captured images in correspondence
of the borders of the blocks. Reconstruction of block based
compressive sampled images usually entails smoothing of
those regions. When using a CS-CIS the smoothing process
needs to take care of physical discontinuities as well. Because
these two effects combine themselves they can potentially
deteriorate the quality of the recovered images. It would be
desirable to implement a measurement matrix that did not
add errors during reconstruction to facilitate the smoothing
process. But, since the RIP of random binary matrices holds
only if k ≤ 4, errors during reconstruction are to be expected.

III. TERNARY MATRICES GENERATED USING CLASS III
ELEMENTARY CELLULAR AUTOMATA

We have bound the RIP of binary measurement matrices
usually implemented in a CS-CIS with a limit (k ≤ 4) that,
in practice, is too small to grant the error free reconstruction
of natural images. As explained in the introduction, PRNG
generated measurement matrices are necessary to design feasi-
ble CS-CIS architectures. However, to overcome the limitation
imposed by Eq.(12), we propose to use them to generate
ternary measurement matrices instead of the commonly used
binary ones.

The resulting ternary matrices present smaller coherence
than the aforementioned binary ones of same size thus improv-
ing RIP and diminishing reconstruction errors. Similar results
have been obtained using binary matrices with binary corre-
lations between columns applied to CS in [18].

Ternary measurement matrices can be generated by deliv-
ering two independent binary coefficients to each pixel: one
to define the number either 0 or 1 and the other to define the
sign of the contribution. As mentioned in section II, if one
set of row/column selectors (or driving signal) can be used
to produce a binary matrix having one bit per element we
could use two sets (or driving signals) to produce a ternary
matrix that needs two bits per element. If each pixel received
two driving signals, it would be possible to use one of them
to determine if the pixel took part in a compressed sample
and, in case it did, use the other to select the sign of its
contribution. Since recent CS-CIS examples [6], [14], [15]
have shown that as few as Ng = 2

√
N bits of information

are needed to generate binary measurement matrices on-chip,
the amount of resources (number of transistors) needed to
incorporate a ternary matrix would still be implementable in a
CS-CIS design. Each coefficient of the resulting matrix would
have a probability distribution of:⎧⎪⎨

⎪⎩
P+1 = 0.25

P0 = 0.5

P−1 = 0.25

(13)

where P−1 represents the probability that a pixel has of
contributing negatively in a compress sample, P+1 represents
the probability that a pixel has of contributing positively and
P0 represents the probability that a pixel has of not contributing
at all. Furthermore, a ternary measurement matrix would have
a positive effect on the limit, imposed by Eq. (2), on the
amount of bits required to represent a compressed sample.
In hardware, the sign associated to a pixel contribution can
be implemented by means of a differential readout system
that routes the output of the pixels through one of two output
lines [5]. These lines, outside of the pixel array can then be
digitized separately or used as input of differential circuits,
such as analog subtractors or transimpedance amplifiers. Using
a differential readout system to divide the pixel contribution
to different output lines to be treated separately would in fact
reduce the amount of bits needed for ADC thus relaxing the
converter design parameters.

Another important factor to study in order to improve
the quality of CS-CISs measurement matrices are LFSRs
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performances. Even if LFSRs are good candidates to emulate
random probability distributions thanks to their low impact on
on-chip area consumption, ultimately the matrices that they
produce still follow a row-by-row deterministic pattern. For
this reason it is necessary to analyze this pattern to understand
how well the generated measurement matrix approximates
the functionality of one that is extracted directly from a
real binary probability distribution. Moreover, LFSRs are not
the only example of circuits that can serve as PRNG in a
CS-CIS. A valid alternative are elementary cellular automata
(ECA) [19]. An ECA is a spatially and temporally discrete
dynamic system made of identical interconnected cells. Each
ECA cell is a triple-input single-output binary unit. Based on
this setup there are 256 possible ECA configurations. Each
configuration, also known as rule, corresponds to a particular
logic implementation. We will focus our attention on rules that
belong to class III, in particular rule 30 [20]. We will study rule
30 hardware implementation and the matrices that it produces
in order to establish if it is better suited than LFSRs to be
used as PRNG in the design of CS-CIS.

Let us consider the simple case of binary measurement
matrices. This simplification poses no loss of generality
because the elements of the aforementioned ternary matrices
are generated following the same pattern used for binary
measurement matrices and the bits are grouped in sets of
two only at pixel level. Let us define �G ∈ {0, 1}M×N as a
binary measurement matrix obtained using a PRNG and �R ∈
{0, 1}M×N as a binary measurement matrix obtained selecting
each element at random from a binary probability distribution
with P = P̄ = 0.5. �G will be a good approximation of
�R if it holds three characteristics: the number of non-zero
elements in a row of �G must approximate P ≈ 0.5; the
temporal evolution of the elements of the PRNG do not present
repeating patterns; and the temporal evolution of the elements
of the PRNG present no correlation with one another. The
first and second requirements bind the number of non-zero
elements in �G with the average of the probability distribution
used to create �R . The second and third requirements can be
used to bind the mutual coherence of �G as:

E [μ (�G)] ≈ E [μ (�R)] = P (14)

We will analyze how binary measurement matrices generated
using LFSRs and ECA fulfill these criteria in order to compare
the performances of the two types of PRNGs in CS imagers.

A. Density of the PRNG Output

To study the number of non-zero elements in a row of �G

let us define the density of a PRNG output (DO (t)) as the
average of all the states of its binary elements at a given
discrete time step t (following a notation similar to [21]):

DO (t) = 1

N

�N

h=1
ϕh (t) where t = 1, 2, · · · , M (15)

being ϕh (t) the state of the h-th element of the PRNG at
time t as well as the t-th element of the h-th column of �G ,
N the number of elements of the PRNG as well as the number
of columns in �G and M the number of discrete time steps
of the PRNG as well as the number of rows in �G . Let t = 1

Fig. 2. Density of the output over a varying random initial seed for rule-30
ECA and LFSR.

be the initial condition when the first row of �G coincide with
the seed that has been loaded in the memory on-chip. Since
the elements of �R are extracted from a symmetric probability
distribution, an optimal seed should have half of its elements
set to 0 and half set to 1 and as such DO (1) = 0.5.

To analyze the performance of LFSRs and ECA it is neces-
sary to evaluate how fast their states can reach DO (t) = 0.5 in
the eventuality of having a suboptimal initial seed in which the
number of elements set to 0 differs from the number of those
set to 1 (Fig. 2). To do so we devise a MATLAB experiment
in which we evolve a 64-cells rule-30 ECA and a 64-flip-flops
LFSR using 65 different initial seeds having an density that
varies from DO (1) = 0 all the way to DO (1) = 1.

In the result of the experiment we represent DO (t) using
greyscale elements in which DO (t) = 0 is colored black and
DO (t) = 1 is colored white. In Fig. 2 the top line represents
these initial seeds with increasing density, from the leftmost
DO (1) = 0 to the rightmost DO (1) = 1. Each step underneath
shows the temporal evolution of the PRNG output density
evolving from each initial seed configuration.

Fig. 2 shows that LFSRs density changes in time at a
much slower rate than class III ECA. This implies that in the
presence of sub-optimal initial seed, the DO of LFSRs would
take several time steps longer than ECAs to achieve a stable
situation centered around DO (t) = 0.5. As reported in [22],
the behavior of LFSRs is more similar to class IV ECA,
where randomness in the evolution is linked to the randomness
of the initial configuration, rather than class III ECA where
the chaotic evolution is introduced by the rule itself. For this
reason, in order to approximate �R using LFSRs much care
should be placed in the selection of an appropriate initial seed.
ECA appears to be a safer choice to generate a �G rather than
LFSRs at least in terms of number of distribution of non-zero
elements starting from seeds that are not ideal.

Fig. 2 also shows an interesting behavior for ECA when
its seed is either DO (1) = 0 or DO (1) = 1 and for
LFSR when its seed is DO (1) = 0. These particular seeds
represent the forbidden states of these PRNGs. All PRNGs
have forbidden states. A forbidden state is a state in which
the PRNG continuously delivers a fixed output. These states
though do not pose any issues in real-world implementa-
tions because it is impossible for a PRNG to stumble upon
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Fig. 3. Power spectral density of rule-30 ECA and LFSR.

them accidentally. Even though these states do not pose
any problem during standard operation, to use PRNGs in
CS-CIS, it is important to be aware of their presence in
order to avoid sending them accidentally. The only particular
concern regarding forbidden states happens when power is first
applied to a circuit. Since each register can randomly start up
containing either a zero or a one, a PRNG could power up
containing its forbidden state, but this can be quickly taken
care of initializing the PRNG with an opportune seed value.

B. Power Spectral Density

To understand if the rows in �G present repeating patterns
and to compare dynamical behaviors of LFSRs and rule-30
ECAs we will use Power Spectral Density (PSD) analysis.
This technique has been extensively applied to analyze discrete
dynamical systems such as ECA [21] or LFSRs [13]. For
a spatially discrete and temporally discrete dynamic system,
the DFT can be expressed as:

φh ( f ) = 1

M

N�
i=1

ϕh (t) e
−i2π t f/M where t = 1, 2, · · · , M

(16)

where, following a notation similar to [21], φh ( f ) is the DFT
value of the h-th element of the PRNG at frequency f , M once
again is the number of discrete time steps of the PRNG as
well as the number of rows in �G and ϕh (t) is the state
of the h-th element of the PRNG at time t as well as the
t-th element of the h-th column of �G .

PSD expresses the distribution of the energy of a waveform
among its different frequency components. Any peak in a
graphic of PSD ( f ) over f at a given frequency f p would
represent a strong repeating pattern of period 1

�
f p among

the rows of �G Given all φh ( f ) PSD can be computed as:

PSD ( f ) = 1

N

�N

e=1
|φh ( f )|2 (17)

where N is the number of elements of the PRNG as well as
the number of columns in �G .

The PSD profile of a suitable and efficient PRNG for CS
should closely resemble white noise since its energy should
equally spread throughout the entire spectrum. Once again we
devise a MATLAB experiment in which we evolve a 64-cells
rule-30 ECA and a 64-flip-flop LFSR. Fig. 3 shows the PSD
profiles of rule-30 ECA and LFSR. These graphics have been

produced for t = 1000 time steps starting from an initial
random binary seed with DO (1) = 0.5.

The first thing that we can notice is that both PSD profiles
are similar to white noise. That was to be expected because
otherwise neither of them would be suitable for CS but,
the amplitude of the pattern of the LFSR presents a greater
variation than that of rule-30 ECA as well as some unwanted
fluctuation.

Rule-30 ECA appears to a better choice over LFSRs to
extract quasi-independent coefficients from a random like
distribution. Furthermore, as we said in the introduction,
a necessary requirement to design a measurement matrix for
CS is that said matrix respects the RIP which means that
it must be nearly orthonormal, at least when operating on
sparse vectors [2]. Orthogonal matrices have uncorrelated
columns and rows. For this reason, even though RIP and
mutual coherence are two different concepts, a matrix �G ,
compliant with RIP, and its transpose �T

G will both have
low mutual coherence by definition [23]. Class III ECA PSD
profile offers better guaranties over LFSRs that the mutual
coherence of the generated matrix will be low. We opted to
use a single class III rule elementary cellular automaton over
other solutions like multi-rule hybrid cellular automata for two
reasons: to facilitate the circuit design and because we are
interested in the patterns that the individual cells produce and
not the generated number in its decimal representation.

C. Hardware Implementation

To analyze the correlations among temporal evolutions of
the elements of a PRNG is equivalent to analyze mutual
coherence of �T

G . To do so it is necessary to study how
these patterns are generated by the feedback mechanism that
promotes the PRNG’s instability.

Fig. 4 is an example that represents the feedback needed to
evolve an 8-bit LFSR. This feedback is imposed on the first
flip-flop of the sequence through XOR gates tapping flip-flops
4, 5, 6 and 8. The flip-flops that must be tapped to allow an
N-bit LFSR to cycle through all 2N −1 combinations are tied
to primitive polynomials with binary coefficients and degree
equal to N [24].

On the contrary, the feedbacks needed for the evolution of
a cell in a cellular automaton are spatially local. The block
diagram of Fig. 5 is an example of a cell of a rule-30 ECA,
in it we have defined as S the actual state of the cell. L and R
are the actual states of its two closest neighbors, to the left
and to the right respectively. NS corresponds to the cell’s next
state.

This is in sharp contrast with the feedback of LFSRs which
is unique for all its elements. The only drawback that ECA
present with respect to LFSRs is that while the basic element
of a LFSR is a flip-flop, to implement a cell of a rule-30 ECA
it takes two extra logic gates.

Even though ECA require more resources (transistors) to be
implemented than LFSRs it has been shown in [22] that, due to
the shifting of data, inside large LFSRs, the outputs of the indi-
vidual flip-flops have strong correlation between each other.
A consequence of this fact is that the mutual coherence of �G
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Fig. 4. 8-bit LFSR.

Fig. 5. ECA cell implementation of rule 30.

could inadvertently increase, thus reducing k, the maximum
amount of non-zero coefficients, in an appropriate domain,
that the signal to be sampled can have before incurring in
reconstruction errors.

IV. RECOVERY ALGORITHM FOR PRNG GENERATED

MEASUREMENT MATRICES

When the signal to be acquired is a large image, the receiver
needs a large memory to store the generated measure-
ment matrix. Furthermore, the reconstruction algorithm under-
goes a huge computational burden due to this large size.
BCS [7], [25], [26] solves these issues by dividing the
scene to be acquired into H non-overlapping blocks of size√

N b × √
N b. With BCS, the acquisition is achieved indepen-

dently, block by block, using the same measurement matrix
� ∈ R

Mb×N b . For each block we can reformulate Eq. (1) as:

yi = �xi (18)

where xi ∈ R
Nb is the vector representation of the i -th block of

the image and yi ∈ R
Mb are the corresponding samples. At the

receiver side, each block can be reconstructed separately.
In order to avoid creating unpleasant blocking arte-

facts, recently, several BCS reconstruction algorithms have
been designed [25], [27]–[29]. BCS with smoothed-projected
Landweber reconstruction (BCS-SPL) is a fast and efficient
reconstruction algorithm [25]. It is based on successive pro-
jections and thresholding in the transform domain and pro-
vides a good trade-off between computational complexity and
reconstruction quality. While this method is simple to derive,
convergence is only guaranteed for a limited class of matrices
that hold the strong RIP condition, e.g. Gaussian random
measurement matrices with real coefficients. Recently, Akbari
and Trocan [26] proposed a way to improve the performance
of the BCS-SPL algorithm to a wide range of random measure-
ment matrices, including Bernoulli and Gaussian measurement
matrices.

Binary PRNG such as those used in hardware implemen-
tations deliver matrices that, a priori, would destabilize the
BCS-SPL algorithm. In this paper, we propose one way to
adapt this algorithm to work with these generators. To this
purpose, we combine the BCS-SPL algorithm with singular
value decomposition in order to design a more robust and
stable reconstruction algorithm, called BCS-SVD. Let x̂[k]

i be
the estimated image at the k-th iteration, partitioned into H
blocks. Furthermore, suppose that the SVD decomposition of
the measurement matrix � is given by:

� = UDVT (19)

where U and V are orthogonal matrices of size Mb × Mb

and Nb × Nb respectively, and their column are known as the
singular vectors of the matrix �. D is a diagonal matrix of
size Mb × Nb and its element along its diagonal are known
as the singular values [30]. The proposed algorithm updates
the i -th block x̂[k]

i iteratively by means of the following
approximating operator:

x̂[k+1]
i = x̂[k]

i + �TUSUT
�

yi−�x̂[k]
i

	
(20)

where S is a diagonal matrix of size Mb×Mb whose entries are
obtained by taking the reciprocal of the corresponding squared
non-zero elements of the matrix D. The most useful feature
of the approximating operator in BCS-SVD is that it partially
generalizes matrix inversion of the measurement matrix �.
This operator is based on the error between the original
samples of each block and the corresponding approximated
samples, obtained by the estimated block at the previous
iteration. Using this residual, it forms a correction equation
for which this process is repeated.

In the next step, all the reconstructed blocks at iteration k are
put back into the full-image plane to update the reconstructed
image x̂[k+1] using the same smoothing and thresholding
operations, proposed in the BCS-SPL algorithm [25]. The
smoothing operation is done by Wiener filtering which reduces
the blocking artefacts. The aim of thresholding process is
controlling the local sparsity that is well-known in the natural
image and video signals. To this purpose, soft thresholding is
done in the transform domain � by:

x̃[k+1] =
�

x̃[k+1] ��x̃[k+1]�� ≥ τ

0 else
(21)

where τ is a predetermined threshold and x̃[k+1] is the trans-
formed image. A wide range of sparse transforms can be used,
such as discrete cosine and wavelet transforms. The most
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TABLE I

BCS-SVD ALGORITHM

effective one, as proposed in [25], is the dual-tree discrete
wavelet transform (DDWT). Such a procedure is iterated until
the difference of successive approximations of the image is a
very small value, i.e.

��x̂[k+1] − x̂[k]�� ≤ ε. The details of the
proposed BCS-SVD algorithm are summarized in Table 1.The
operator R (·) splits the image into H non-overlapping blocks
and the operator R−1 (·) puts back the reconstructed blocks
into the corresponding positions in the reconstructed image,
padded with zeros elsewhere.

Eq. (20) is derived to solve the following minimization
problem

argminxi
{�yi − �xi�2 + λ �xi�1 (22)

where λ is the regularization parameter. Eq. (20) is the
enhanced version of the projected Landweber step proposed
in BCS-SPL [25] which, with the thresholding operator
of Eq. (21), iteratively improves the reconstruction quality.
This iterative threshing process has been analyzed extensively
in the literature. Different theoretical analyses of the BCS-SPL
algorithm applied to the CS recovery problem have been given
in [31]–[33]. BCS-SPL is guaranteed to converge to a local
minimum of Eq. (22). The argument for BCS-SVD follows
the same line as that in [31].

V. EXPERIMENTAL RESULTS

In this section, the performance of the CS measurement
matrix, described in sections III, and the BCS-SVD algorithm,
proposed in the section IV, will be evaluated via a suite of sim-
ulations carried out on 8-bit grayscale standard images of size
512×512 pixels. Here, as shown in Fig. 6, we report the results
of four classic images often used in image processing: Boat,
Lena, Livingroom, and Baboon.3 The Peak Signal-to-Noise
Ratio (PSNR) is chosen as objective quality measure for our
experimental framework. PSNR is an approximation to human
perception of reconstruction quality from lossy compression.
When used for this purpose the original data is considered the

3The MATLAB implementation of the ternary measurement matrix obtained
using ECA and the BCS-SVD recovery algorithm can be found, along with
more test at the address: www2.imse-cnm.csic.es/icaveats/tcsvt

Fig. 6. Test images: (a)Boat, (b)Lena, (c) Livingroom, (d)Baboon.

signal and the error introduced by compression is the noise:

PSNR = 10 log10
max (x)2

1
M N

��x − x̂
��

2

(23)

being max (x) the highest possible pixel value. The simulations
were carried out in MATLAB. In each set of simulations,
30 trials are performed due to the random nature of generated
measurement matrices and the average PSNR is computed.
For the BCS sampling, we use the block dimension of size
32 × 32, i.e. Nb = 1024. The value of threshold in the
reconstruction algorithm is set to ε = 10−4. We remind
the reader that dividing the pixel array into smaller sub-
arrays that can be digitized independently is essential for two
reasons. It helps the implementation of practical measurement
matrices in CS-CISs and it reduces software resources needed
during reconstruction. Usually fast and accurate reconstruction
algorithms opt for small blocks, typically 8 × 8. On the other
hands, blocks that are too small deteriorate the quality of
the sensor introducing asymmetries within the pixel array.
We chose a block size of 32×32 as a compromise between the
two divergent necessities. We have set the value of threshold
in the reconstruction algorithm to be ε = 10−4 because we
saw that it was a good compromise between reconstruction
time and accuracy of the reconstruction result.

Experiments are designed with two goals: first, the per-
formance of ECA-based ternary matrices for CS should be
compared with other types of matrices; second, the stability
and robustness of the proposed measurement matrices with
different recovery algorithms should be evaluated. This test
set up includes 480 trials. More examples can be found in our
online repository.

A. Validation of the Proposed Measurement Matrices

In this subsection, the performance of the proposed ternary
and binary pseudo random measurement matrices based on
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Fig. 7. PSNR of the reconstructed images as a function of subrate (S).

ECA is compared to performance of the pseudo random
measurement matrices based on LFSR. In addition, we have
included the Gaussian random matrices, whose entries are
randomly selected from a Gaussian distribution, as a reference.
We conducted a series of test during which we applied the
CS using four matrices: �Gaussian a Gaussian random matrix
chosen i.i.d. from N (0, 1) and then normalized; �B

LFSR a
binary pseudo random measurement matrix based on LFSR;
�B

ECA a Binary pseudo random measurement matrix based on
ECA; and �T

ECA a ternary pseudo random measurement matrix
based on ECA.

First, the test images are divided into non-overlapping
blocks of size 32 × 32 pixels and each block is compressed
with the abovementioned measurement matrices. Then, the test
images are recovered using the proposed recovery algorithm
in section IV. This process is repeated several times per image
and then the results are averaged.

Fig. 7 demonstrates the quality of reconstructed images
in terms of PSNR as a function of subrate (S), where S
varies from 0.1 to 0.5. As shown in Fig. 7, ternary matrices
can be used to compressive sample the images and their
performances degrade when the subrate decreases. An inter-
esting observation is that the ternary matrix �T

ECA outperforms

binary matrices almost reaching the Gaussian random matrix
�Gaussian. Fig. 9 represent Lena reconstructed using a ternary
measurement matrix generated using ECA with a subrate
of 0.1. We will provide more images and results along
with the MATLAB code used to obtain them in the online
repository. Depending on the subrate, on average, the proposed
ternary matrix improves the PSNR of the reconstructed images
from 0.08 dB to 0.35 dB when compared with the binary
measurement matrix �B

ECA and from 0.27 dB to 1.90 dB
when compared with the binary measurement matrix �B

ECA.
As can be seen, the performance the binary measurement
matrix �B

ECA is lower than that of the ternary matrix �T
ECA at

lower subrates. However, it shows a good performance when
higher subrates are considered. For example, at S = 0.5,
the PSNR of reconstructed images using the samples obtained
from the matrix �B

ECA matrix is almost 0.08 dB lower on
average than that of the matrix �T

ECA. Finally, it should be
particularly noted that the ternary matrix �T

ECA competes
with the performance of the Gaussian random matrix, which
is an optima theoretical measurement matrix. It should be
reminded that the proposed ternary matrix is much easier to
implement in hardware and that adds a valuable advantage
to it.
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Fig. 8. PSNR of the reconstructed images using different recovery algorithms as a function of subrate (S).

B. Stability of the Ternary Measurement Matrices

The aim of the simulation in this section is to show that the
images can be recovered almost perfectly from the compressed
samples obtained by the proposed ternary measurement matrix,
when different recovery algorithms are used. To this purpose
we use NESTA algorithm [34], gradient projection for sparse
reconstruction (GPSR) [35], and sparsity adaptive matching
pursuit (SAMP) [36] and we compare their performances with
that of BCS-SVD algorithm. We chose these algorithms due
to the fact that they are robust and perform well for recovering
images sampled using sub-optimal matrices obtained from
PRNGs. During this simulation, the test images are divided
into non-overlapping blocks of size 32×32 pixels. We applied
the measurement process of CS with the ternary measurement
matrix �T

ECA. Then, the test images are recovered using
NESTA and BCS-SVD respectively. The same measurement
matrix is used for both algorithms.

Fig. 8 shows the quality of reconstructed images in terms
of PSNR at different subrates. It can be observed that both
algorithms can recover the images, although the proposed
BCS-SVD recovery algorithm has better performance in terms
of PSNR compared with the other algorithms. As another
result, at the same subrate S, the test images like Boat and Lena
are recovered with ∼1dB gain w.r.t. NESTA. This is due the

fact that these images are more compressible, i.e. have a higher
sparsity level in the wavelet domain. A visual comparison of
the various algorithms is shown in Fig. 9.

C. Complexity

Finally, it should be noted that the proposed scheme is
valuable because it reduces the complexity of both the mea-
surement and recovery processes of CS; at the sensor side,
encoding is achieved without a huge memory requirement
and, at the decoder side, the proposed BCS-SVD recovery
algorithm is able to provide a fast and accurate solutions. The
BCS-SVD algorithm is very simple. Each iteration involves
the application of two operators, � and �T, as well as two
vector additions. It should be noted that SVD decomposition
is carried out once for the whole recovery and its complexity
is ignored. The thresholding process Eq. (21) also involves
a partial ordering of the elements x̂[k]

i in magnitude and has
ignorable complexity. Apart from the storage of samples yi,
we only require the storage of vector x̂[k]

i for each block,
which is of length Nb . The bottle neck, both in terms of
storage and computation time, is due to the operators � and
�TUUT. So, the computational complexity of each iteration
is O(Mb × Nb). To justify our claim regarding the fast imple-
mentation recovery using the BCS-SVD algorithm, we have
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Fig. 9. The reconstructed image Lena at subrate = 0.1: (a)BCS-SVD,
(b) SAMP, (c)NESTA, (d)GPSR.

TABLE II

LENA RECONSTRUCTION TIME FOR SUBRATE=0.3

compared the required time for reconstructing the test image
Lena using the above-mentioned algorithms at the subrate
0.3 in Table 2. As can be seen in Table 2, the proposed
algorithm indicates a lower order of complexity.

VI. CONCLUSIONS

In this paper we have presented a new hardware-friendly
ternary measurement matrix for CS acquisition of natural
images and a reconstruction algorithm capable of exploiting
this matrix for fast and accurate recovery. We have modeled
through a set of equations the challenges and limitations that
arise during the design of compressive sampling CMOS image
sensors and we have established why PRNG are essentials for
the practical implementation of this type of circuits. We have
bound the RIP of the binary measurement matrices that these
generators produce with a constant that is very strict. We over-
came this shortcoming presenting a novel sensor’s topology
capable of delivering ternary pseudo-random matrices by
means of ECA and a differential readout system. The proposed
measurement matrix approaches closely the ideal case of nor-
malized Gaussian random measurement matrix. Further, a fast
and accurate acquisition and reconstruction system is proposed
with the BCS-SVD algorithm. The experiments are promising
and show the possibility of using this system in real time
applications such as video surveillance or data transmission
with channels that have a high noise and/or limited bandwidth.
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