1,687 research outputs found

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Smart Vehicle to Grid Interface Project: Electromobility Management System Architecture and Field Test Results

    Full text link
    This paper presents and discusses the electromobility management system developed in the context of the SMARTV2G project, enabling the automatic control of plug-in electric vehicles' (PEVs') charging processes. The paper describes the architecture and the software/hardware components of the electromobility management system. The focus is put in particular on the implementation of a centralized demand side management control algorithm, which allows remote real time control of the charging stations in the field, according to preferences and constraints expressed by all the actors involved (in particular the distribution system operator and the PEV users). The results of the field tests are reported and discussed, highlighting critical issues raised from the field experience.Comment: To appear in IEEE International Electric Vehicle Conference (IEEE IEVC 2014

    Real-time Monitoring of Low Voltage Grids using Adaptive Smart Meter Data Collection

    Get PDF

    Impact of Distributed Denial-of-Service Attack on Advanced Metering Infrastructure

    Get PDF
    The age of Internet of Things has brought in new challenges specifically in areas such as security. The evolution of classic power grids to smart grids is a prime example of how everything is now being connected to the Internet. With the power grid becoming smart, the information and communication systems supporting it is subject to both classical and emerging cyber-attacks. The article investigates the vulnerabilities caused by a distributed denial-of-service (DDoS) attack on the smart grid advanced metering infrastructure. Attack simulations have been conducted on a realistic electrical grid topology. The simulated network consisted of smart meters, power plant and utility server. Finally, the impact of large scale DDoS attacks on the distribution system’s reliability is discussed

    Insights from the Inventory of Smart Grid Projects in Europe: 2012 Update

    Get PDF
    By the end of 2010 the Joint Research Centre, the European Commission’s in-house science service, launched the first comprehensive inventory of smart grid projects in Europe1. The final catalogue was published in July 2011 and included 219 smart grid and smart metering projects from the EU-28 member states, Switzerland and Norway. The participation of the project coordinators and the reception of the report by the smart grid community were extremely positive. Due to its success, the European Commission decided that the project inventory would be carried out on a regular basis so as to constantly update the picture of smart grid developments in Europe and keep track of lessons learnt and of challenges and opportunities. For this, a new on-line questionnaire was launched in March 2012 and information on projects collected up to September 2012. At the same time an extensive search of project information on the internet and through cooperation links with other European research organizations was conducted. The resulting final database is the most up to date and comprehensive inventory of smart grids and smart metering projects in Europe, including a total of 281 smart grid projects and 90 smart metering pilot projects and rollouts from the same 30 countries that were included in the 2011 inventory database. Projects surveyed were classified into three categories: R&D, demonstration or pre-deployment) and deployment, and for the first time a distinction between smart grid and smart metering projects was made. The following is an insight into the 2012 report.JRC.F.3-Energy securit

    Smart Electric Meter Deployment in Tanzania: A Survey

    Get PDF
    Using information and communication technologies (ICT) to make the electrical power network intelligent and smarter (smart grid) has been the focal point in transforming electrical power industry. The idea behind smart grid is to transform the Tanzanian power sector into a secure, adaptive, sustainable, and digitally enabled ecosystem that provides reliable and quality energy for all with active participation of stakeholders. Smart metering is a central segment in realizing smart grid. However, a big question is whether Tanzanian power stakeholders are ready for smart metering technology investments for household applications. Operation and maintenance of a smart metering solution is a relatively new business in Tanzania and requires investment in resources and capacity building. A case study was conducted at the utility company in Dar es Salaam offices, to investigate the deployment status and services offered. Fixed tariff rates, high cost, low rates on returns of investment and non-customization of the features, were some of the shortcomings identified by the study in terms of non-deployment in residential homes. Further, the authors, propose development of standardization document for smart metering technologies and the adoption of software based smart meter for residential applications using Internet of Things platform. Its low cost of development and ease installation would be ideal for residential applications. Keywords:  Smart grid, Utility Company, Smart meter, Advanced Metering Infrastructure, Deployment Status

    Smart Grid Systems in Nigeria: Prospects, Issues, Challenges and Way Forward

    Get PDF
    The ability of the power system to deliver to its consumer electrical energy at an expected level of reliability is correlated with the economic development of a country. The Nigerian power system faces many challenges, varying from overdue infrastructure maintenance, obsolete tools and appliances, insufficient electricity supply, corruption, etc. A gradual shift from manual to smart digital technologies include; smart metering, distributed generation (renewable energy and microgrid), and management using Information and Communication Technology (ICT) tools. In response, research, investments, and upgrade to the power sector are fundamental. This paper discusses and analyses the various smart grid technologies utilised in the Nigerian power system with their effects, impacts, deployment, and integration into the traditional Nigerian power grid. Also discussed are issues and challenges of smart grid deployment and ways of mitigating these challenges

    Enabling Micro-level Demand-Side Grid Flexiblity in Resource Constrained Environments

    Full text link
    The increased penetration of uncertain and variable renewable energy presents various resource and operational electric grid challenges. Micro-level (household and small commercial) demand-side grid flexibility could be a cost-effective strategy to integrate high penetrations of wind and solar energy, but literature and field deployments exploring the necessary information and communication technologies (ICTs) are scant. This paper presents an exploratory framework for enabling information driven grid flexibility through the Internet of Things (IoT), and a proof-of-concept wireless sensor gateway (FlexBox) to collect the necessary parameters for adequately monitoring and actuating the micro-level demand-side. In the summer of 2015, thirty sensor gateways were deployed in the city of Managua (Nicaragua) to develop a baseline for a near future small-scale demand response pilot implementation. FlexBox field data has begun shedding light on relationships between ambient temperature and load energy consumption, load and building envelope energy efficiency challenges, latency communication network challenges, and opportunities to engage existing demand-side user behavioral patterns. Information driven grid flexibility strategies present great opportunity to develop new technologies, system architectures, and implementation approaches that can easily scale across regions, incomes, and levels of development
    • …
    corecore