107 research outputs found

    Design of a wearable sensor system for neonatal seizure monitoring

    Get PDF

    Design of a wearable sensor system for neonatal seizure monitoring

    Get PDF

    A Novel smart jacket for blood pressure measurement based on shape memory alloys

    Get PDF
    Smart textiles with medical applications offer the possibility of continuous and non-invasively monitoring which benefit patients and doctors. To measure blood pressure in premature infants a miniature actuator that can be sewn to the fabric is required. For this reason, an actuator based on shape memory alloys has been designed so that it compresses as a conventional air cuff but with 3.5W power consumption and can be controlled by applying different Pulse-Width Modulation (PWM) signals, thus offering several levels of compression. In addition, the first concept prototype of the smart jacket is achieved; made of a natural fiber fabric that incorporates: an optical sensor, a capacitive pressure sensor with great accuracy, the force actuator and a Lilypad Simblee control board which can be sewn to the fabric, is washable and has a Low Energy Bluetooh module (BBE) to connect to other devices. All this allows the systolic, diastolic and cardiac pressure to be measured for the first time in the world with the smart jacket by a semi-occlusive method. Altogether with a mobile application which allows doctors to monitor the patient at every moment, perform remote control, data measurement and recording in a comfortable and intuitive way that satisfies the necessity for a better clinical management to the growing number of patients and is a source of savings for the clinical services

    Can pervasive sensing address current challenges in global healthcare?

    Get PDF
    Important challenges facing global healthcare include the increase in the number of people affected by escalating healthcare costs, chronic and infectious diseases, the need for better and more affordable elderly care and expanding urbanisation combined with air and water pollution. Recent advances in pervasive sensing technologies have led to miniaturised sensor networks that can be worn or integrated within the living environment without affecting a person's daily patterns. These sensors promise to change healthcare from snapshot measurements of physiological parameters to continuous monitoring enabling clinicians to provide guidance on a daily basis. This article surveys several of the solutions provided by these sensor platforms from elderly care to neonatal monitoring and environmental mapping. Some of the opportunities available and the challenges facing the adoption of such technologies in large-scale epidemiological studies are also discussed

    Mimo pillow : an intelligent cushion designed with maternal heart beat vibrations for comforting newborn infants

    Get PDF
    Premature infants are subject to numerous interventions ranging from a simple diaper change to surgery while residing in Neonatal Intensive Care Units (NICUs). These neonates often suffer from pain, distress and discomfort during the first weeks of their lives. Although pharmacological pain treatment often is available, it cannot always be applied to relieve a neonate from pain or discomfort. This paper describes a non-pharmacological solution, called Mimo, which provides comfort through mediation of a parent's physiological features to the distressed neonate via an intelligent pillow system embedded with sensing and actuating functions. We present the design, the implementation and the evaluation of the prototype. Clinical tests at MĂĄxima Medical Centre in the Netherlands show that among the 9 of 10 infants who showed discomfort following diaper change, a shorter recovery time to baseline Skin Conductance Analgesimeter (SCA) values could be measured when the maternal heartbeat vibration in the Mimo was switched on and in 7 of these 10 a shorter crying time was measure

    Mimo : a non-pharmacological comforting solution for preterm neonates

    Get PDF
    Preterm neonates often suffer from pain, distress and discomfort during the first weeks of their lives. While residing in special Neonatal Intensive Care Units (NICUs) that are designed for optimal care, they are subject to numerous interventions ranging from a simple diaper change to surgery. Although pharmacological pain treatment often is available, it cannot always be applied to relieve a neonate from pain or discomfort. Therefore, new non-pharmacological solutions are required to reduce the discomfort experienced by these babies during the first weeks of their lives. This paper describes a novel solution, called Mimo, that provides comfort through mediation of a parent’s physiological features to the distressed neonate. We discuss the design and the implementation and pilot-evaluation of a first prototype. Results show that the concept is promising enough to pursue a full-scale clinical trial

    Graphene textile smart clothing for wearable cardiac monitoring

    Get PDF
    Wearable electronics is a rapidly growing field that recently started to introduce successful commercial products into the consumer electronics market. Employment of biopotential signals in wearable systems as either biofeedbacks or control commands are expected to revolutionize many technologies including point of care health monitoring systems, rehabilitation devices, human–computer/machine interfaces (HCI/HMIs), and brain–computer interfaces (BCIs). Since electrodes are regarded as a decisive part of such products, they have been studied for almost a decade now, resulting in the emergence of textile electrodes. This study reports on the synthesis and application of graphene nanotextiles for the development of wearable electrocardiography (ECG) sensors for personalized health monitoring applications. In this study, we show for the first time that the electrocardiogram was successfully obtained with graphene textiles placed on a single arm. The use of only one elastic armband, and an “all-textile-approach” facilitates seamless heart monitoring with maximum comfort to the wearer. The functionality of graphene textiles produced using dip coating and stencil printing techniques has been demonstrated by the non-invasive measurement of ECG signals, up to 98% excellent correlation with conventional pre-gelled, wet, silver/silver-chloride (Ag / AgCl) electrodes. Heart rate have been successfully determined with ECG signals obtained in different situations. The system-level integration and holistic design approach presented here will be effective for developing the latest technology in wearable heart monitoring devices

    Wearable Technologies for Healthcare Innovation

    Get PDF
    Healthcare is becoming more and more prone to technology. For this reason products are being developed geared toward implementing more sufficient ways of providing healthcare. Wearable technology has become one of the leading and considerably most valuable assets within the category. There are many types of wearable technology that do various tasks concerning health. Whether intended focus is on filling a void where human-error can be present or creation of a process where one was obsolete, wearable technology’s presence is felt within healthcare today. This exploratory study reviews wearable technologies that exist, are being used, as well as those that are developing or in the ideation phase concerning healthcare. We present a summary of wearable technologies used in healthcare and sample categorization to serve as a working framework for understanding the future direction of the field. Exemplar cases are provided
    • 

    corecore