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Abstract

Abstract
Seizures in neonates, the most common sign of neurological dysfunction, require immediate 
medical attention. The continuous monitoring of neonatal seizures is critical for their 
optimal treatment and outcomes. The work presented in this thesis aims to solve the 
problems in neonatal seizure detection regarding designing a neonatal multi-parameter 
sensor system. The system is a combination of flexible sensor network and multi-modal 
signal fusion technology to achieve comfortable, continuous and efficient neonatal seizure 
detection.
We first reviewed the current situation of neonatal seizure detection, wearable sensor 
systems for infant monitoring and signal processing methods for neonatal seizure detection.
The approach of the “Medical Technology Innovation Process” guided our design and 
development of the neonatal multi-parameter sensor platform for neonatal seizure 
monitoring. Experiments were conducted to systematically test the sensing-related 
characteristics of the proposed flexible materials and the performance of the proposed 
multi-sensor platform. 
Furthermore, an algorithm for automatic detection of neonatal seizures based on ECG, 
respiration and acceleration was proposed. The proposed system was tested on 38 neonates 
at the Children’s Hospital affiliated to Fudan University, Shanghai, China. The algorithmic 
evaluation of the records of 4 patients with seizures was performed. To evaluate the utility 
of combining ECG, respiration and movement, we compared the performance of three 
seizure detectors. The first detector included features from both the ECG, respiration and 
acceleration recordings, the second incorporated respiratory-motion based features from 
respiration and acceleration recordings, and the third used ECG-based features from only 
the ECG recordings.  The experimental results showed that the overall performance was 
better when multi-modal features were included.
In order to improve the comfort of the system and the stability of the signal, we further 
study the different flexible sensors, including textile electrodes and Carbonized Foam 
Electrode for ECG monitoring, and Mesh PDMS-G Compound Sensor for respiration 
Monitoring. The feasibility of these sensors was verified by systematic experiments.
To conclude, this thesis contributes to the design and development of the neonatal multi-
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parameter sensor system aims to solve the problems in neonatal seizure detection. 
The system is a combination of flexible sensor network and multi-modal signal fusion 
technology to achieve comfortable, continuous and efficient neonatal seizure detection. 
The research focuses on the design and development of a non-invasive sensor system 
for physiological and behavioral signal measurements, signal quality tests, multi-modal 
physiological and motion signal fusion, and neonatal seizure detection.



1
Introduction
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1.1 Neonatal Seizure 

Neonatal seizure is an important clinical sign of brain dysfunction that occurs more 
commonly during infancy compared to childhood [1]. Seizures often manifest as behavioral 
and physiological signal changes, such as the repetitive motion of an arm, hand, leg and 
eye and sometimes are accompanied by the contraction of muscles at a fluctuant velocity 
in opposite directions [2], as well as pattern changes of electroencephalogram (EEG), 
electrocardiogram (ECG), respiration, etc.. An overall occurrence rate of seizure about 
1~5‰ in neonates is reported. As for the preterm infants, it is about 6~13%, higher than 
the rate among normal newborns [2], [3]. Compared with children and adults, newborns 
are more likely to have convulsion persistence or electric seizure persistence. Although 
the immature brain has relatively stronger tolerance to convulsion, clinical follow-up 
and magnetic resonance spectroscopy (MRS) have proved that frequent and continuous 
convulsion damage brain development more seriously, even causing brain injury and 
neurological sequelae with different degrees [4], [5]. And brain dysfunction such as 
epilepsy, cerebral palsy, cerebral infarction, leukodystrophy etc. will appear in the later 
stage, with the total mortality rate reaching 30% [6].
Because newborns’ brain development is immature, thus always present different clinical 
seizures and EEG manifestations from children and adults[7]. The clinical features of 
neonatal convulsions may include one kind of or all situations of the following: (1) 
Repeated facial movements, including sucking, chewing or eye movements. (2) Unusual 
leg cycling or pedal movements. (3) Continuous eye opening, eye movement or short gaze. 
(4) Apnea or accompanied by atypical autonomic nerve symptoms (such as the drop in 
heart rate and blood pressure.). (5) Spasm seizure is manifested as rhythmic twitching and 
may involve the face, tongue muscles, arms, legs or other positions. (6) The tonic seizure is 
characterized by stiffness or tightening of muscle tissue; The head or eyes may turn to one 
side or the fetus to bend or stretch one or both arms or one or both legs. In addition, it is 
difficult to distinguish the clinical symptoms of some seizures from the abnormal movement 
without seizures among newborns, such as sucking, chewing, stretching, shaking, postures, 
convulsions and cycling exercises, which also occur in normal healthy infants, so EEG is 
clinically used to determine whether the newborn has a seizure.
The electrophysiological characteristics of neonatal seizures are abnormal discharge 
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electricity of the brain. Abnormal electroencephalogram is manifested as limited small sharp 
wave discharge electricity, limited single rhythm attack pattern, sharp (spike) wave, sharp 
(spike) slow wave, multi-spike slow wave under normal or abnormal background activity 
like rhythm disorder, low voltage, burst inhibition, etc. [8]. EEG is the most important and 
reliable tool in making the diagnosis of seizures, which can also support the treatment and 
follow-up of neonatal seizures. The recording time of conventional electroencephalogram 
is short, about thirty to sixty minutes generally. Due to the great randomness of convulsion 
attacks, the chance of capturing convulsion attacks is limited and the probability of 
detecting neonatal convulsions attacks is lower. Ambulatory electroencephalogram is also 
called portable electroencephalogram monitoring, which can record continuously for about 
twenty-four hours. Therefore, it is also called twenty-four-hour electroencephalogram 
monitoring. Although the seizure detection rate has been improved, its error rate is high 
due to too much artifact interference and the absence of video recording equipment. 
Digital Video-EEG (VEEG) also called Video-EEG Monitoring, adding synchronous 
video equipment on the basis of the EEG equipment can synchronously photograph the 
patient’s clinical seizure, display the seizure performance and EEG waveform on the same 
screen and monitor its clinical characteristics and EEG changes for a long time. At present, 
VEEG technology is widely used clinically. The seizure of newborns is diagnosed by the 
acquisition and analysis combining EEG and video action signals, as shown in Figure 1-1 a 
[8], [9]. 
However, in clinical practice, diagnosis based on the observation on EEG and/or video 
recording by experienced clinicians is time-consuming and limited by the inter-observer 
variability due to its subjective nature [10]. Moreover, EEG monitoring in neonates is 
available only in a dedicated hospital environment. Furthermore, cup surface electrodes 
and gel electrodes used for monitoring may cause skin lesions, as shown in Figure 1-1b. 
The deployment of electrodes with wires connected to monitoring devices may also 
interfere with the movement of infants and lead to missing detection, as shown in Figure 
1-1c. Therefore, a new seizure monitoring approach is needed with the advantages of 
high accuracy and comfort for neonates. Considering the rapid developments in the field 
of sensor and wireless communication technology in recent decades, a new concept of 
unobtrusive monitoring of infants using a wearable sensor system has been reported[11]–
[14]. Therefore, the neonatal seizure detection technology focusing on the technique of 
physiological signals instead of electroencephalogram has been a research emphasis in 
seizure monitoring for the neonate. [15], [16].
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                    a                                                      b                                          c

Fig. 1-1. (a) Video EEG acquisition; (b) Pressure sores; (c) Monitoring of multiple 
physiological parameters of infant. 

To sum up, it is vital to design a new type of neonatal seizure monitoring technology 
with high accuracy, high efficiency and comfort as well as easy operation for clinical 
use and future home monitoring. It is required to develop new sensing and data analysis 
technologies to solve the aforementioned challenges.

1.2. Wearable Technologies for Neonatal Monitoring

In recent years, with the soaring development of wearable sensors including accelerometers, 
gyroscopes, smart fabrics, as well as the progress in wireless communication networks, 
power supplies, and data-acquisition technology for signal processing and decision 
support[17],  various kinds of wearable sensors have emerged for many healthcare related 
applications [18]. For example, wearable equipment embedded with variable resistance 
bending sensors can be applied to human posture recognition and motion capture by 
detecting the bending angle of human joints[19]. A high sensitivity ultra-thin silicon stress 
sensor has been developed by Zhao et al, which is developed by reconfiguring a single 
sensor, used for the measurement of the human wrist pulse[20]. Salam et al. proposed a 
wearable surround sensor composed of multiple electrodes (antennas, excited at a single 
low frequency), which can be used to continuously measure the dielectric constant of 
biological tissues in the depth of the trunk, especially the lung and heart [21] Wearable 
sensor systems also create a new generation of continuous health monitoring for infants. 
For example, Linti et al. developed a sensor baby vest, including an integrated sensor for 
measuring electrocardiogram (ECG), respiration, temperature and humidity (detection of 
excessive sweating), which can detect early potentially life-threatening events[22]. In order 
to improve the comfort for infants, Chen et al. used conductive textile wires instead of 
traditional hard wires. The sensor was integrated into a prototype tape made of a negative 
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temperature coefficient (NTC) sensor for temperature monitoring[23]. Sibrecht et al. 
developed a smart and expandable jacket for neonates to measure ECG through the textile 
electrode, and carried out several experiments to prove the prototype [24]. Another example 
is a wearable multi-parameter monitor named BBA bootee, developed to monitor infants 
at risk of apparent life threatening events (ALTE). The sensors, electronics and the power 
supply are integrated into the bootee, providing reliable pulse oximetry measurements as 
well as useful information about the infant’s movement and position [25]. Yves Rimet et 
al. proposed a BBA bootee, which integrates sensors and electronics into shoes to detect 
the pulse oximetry, movement and position information of infants.  Cao, H et al. presented 
an infant monitoring system using CO 2 sensors to non-invasively monitor the exhaled air 
from an infant to reduce the potential risks for Sudden Infant Death Syndrome (SIDS)[26].
In order to achieve safe and reliable health monitoring, a wearable sensor system needs 
special design and non-invasive sensor integration. Continuous monitoring of neonatal 
physiological and behavioral parameters is essential for clinicians and parents to understand 
their exact health status. In addition, various dangerous situations exist in premature or 
severely ill neonates’ admission to hospital, including apnea, hypoglycemia, sepsis or sepsis 
like infection, seizure, arterial hypotonia, bradycardia, hypoxia, hypothermia, acidosis[27] 
and even sudden infant death syndrome (SIDS), which also need continuous monitoring. 
Furthermore, life-threatening accidents are prone to happen among infants aged 1-4, such 
as drowning in the bathroom or head injuries occurring from falls. Therefore, clinicians and 
parents need an inexpensive and non-invasive method to monitor infants’ health status and 
send an alarm if terrible status appears.
Traditional infant health monitoring methods are usually carried out under the direct 
supervision of specialized persons such as clinicians and parents. Sometimes it is difficult 
for them to monitor the infants’ emergencies, especially the irregular ones such as neonatal 
seizures.  The initial purpose of the application of wearable sensor systems in infant 
health monitoring was to provide infants with daily monitoring, ensuring proper care or 
treatment can be available for the onset of complications and reducing the cost of clinical 
interventions in hospitalization and the burden on parents. Therefore, the health monitoring 
system is an early indicator reflecting the change of patients’ condition, and a means to 
record, evaluate and control the effect of intervention and treatment[27]. These systems 
are usually able to monitor neonates in the Neonatal Intensive Care Unit (NICU) or at 
home without interfering with their daily activities (such as eating, sleeping, and natural 
communication with parents) and comfort. However, traditional sensors and medical 
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devices cannot be used for infants’ daily physiological monitoring because of the difficulty 
and discomfort of long-time wearing[28]. 
In conclusion, wearable sensing technology can provide infants with comfortable 
monitoring environment, and help doctors or parents obtain the infants’ long term 
physiological status. The wearable sensing technology together with advanced signal 
processing will provide a new exploration way for the neonatal seizure monitoring.

1.3 Objectives of the Thesis

 Although some studies have focused on the development of non-EEG seizure detection 
systems, and the development of long-term, comfortable and stable neonatal wearable 
devices, less attention has been paid to the detection of neonatal seizures through wearable 
devices. Accuracy, comfort and stability are noteworthy factors in neonatal convulsion 
wearable monitoring technology.
The design and development of the neonatal multi-parameter sensor system reported in this 
thesis aim to solve the problems in neonatal seizure detection. The system is a combination 
of a flexible sensor networks and multi-modal signal fusion technology to achieve 
comfortable, continuous and efficient neonatal seizure detection. The research focuses 
on the design and development of a non-invasive sensor systems for physiological signal 
measurements, signal quality tests, multi-modal physiological and motion signal fusion, and 
neonatal seizure detection.

1.4. Content of Thesis

Chapter 1 presents the thesis outline and research questions. Chapter 2 is the literature 
review, mainly about the state-of-art in the field of neonatal seizure detection and wearable 
sensor system for infant monitoring. Chapter 3 describes the development of a multi-
sensor platform (MSP) for neonatal seizures detection based on flexible materials. The 
development process of the platform was based on the innovative method of medical 
devices proposed by Meng Fei et al. [29]. The proposed system collects neonatal ECG 
signal, respiratory signal and motion signals by wearable motion sensors and flexible 
materials, and detects neonatal seizure by multi-signal fusions. Altogether this chapter 
introduces the collection of design requirements, the development of sensors and platforms, 
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and the verification of the system. In Chapter 4, we explore new wearable physiological 
sensors. The best textile electrode is selected by a systematic comparison of the signal 
quality of ECG electrodes made of different textile materials. In addition, ECG electrodes 
made of a new material-carbonized sponge have been developed. Finally, we explore the 
application of the mesh graphene sensor based on 3D printing technology in respiratory 
signals detection. 



2
State of The Art

This chapter is based on: 
1. Chen H, Xue M, Mei Z, et al. A review of wearable sensor systems 
for monitoring body movements of neonates[J]. Sensors, 2016, 
16(12): 2134.
2. Mei Z, Zhao X, Chen H, et al. Bio-signal complexity analysis in 
epileptic seizure monitoring: A topic review[J]. Sensors, 2018, 18(6): 
1720.
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2.1 The Basis and Current Situation of Neonatal Seizure Detection

2.1.1. The Physiological and Pathological Basis of Neonatal Seizure

Neonatal seizures are the most common clinical manifestations of neonatal neurological 
diseases. Neonatal epileptic seizures occur from birth to the end of the neonatal period[30]–
[32]. This is the most vulnerable of all the other periods of life for the development of 
epileptic seizures, particularly in the first 1 or 2 days from birth. The incidence among very-
low-birth-weight infants is 6% to 13%, and 1‰ to 5‰ among full-term newborns [2], [3], 
[33]. Seizures can indicate the severity of the disease, even accompanied by hypoventilation, 
apnea, and circulatory insufficiency, hypoxic-ischemic brain damage if it frequently 
occurs; Neonatal seizures differ from those of older children and adults. They may be 
short-term events lasting for just a few days, but they often signify serious malfunction 
or damage of the immature brain, and constitute a neurological emergency that demands 
urgent diagnosis and management. Most neonatal seizures are acute (provoked, occasional, 
reactive) symptomatic seizures caused by an acute illness such as hypoxic–ischaemic 
encephalopathy, stroke or infection. Seizures are the most common and important sign of 
acute neonatal encephalopathy; they are a major risk for death or subsequent neurological 
disability and, by themselves, may contribute to an adverse neurodevelopmental outcome 
[34].
Due to no recognizable postictal state, neonatal seizures are paroxysmal, repetitive and 
stereotypical usually clinically subtle, inconspicuous and difficult to recognize from the 
normal behaviors of the interictal periods or physiological phenomena. International League 
Against Epilepsy (ILAE) revised the classification of neonatal seizures in 2017, as shown in 
the Table 1-1[35]. 
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Table 1-1Types of clinical seizure in the infant. Adapted from ILAE, 2017
Type Clinical manifestation
Automatisms A more or less coordinated motor activity usually occurring 

when cognition is impaired. This often resembles a voluntary 
movement and may consist of an inappropriate continuation 
of preictal motor activity.

Clonic Jerking, either symmetric or asymmetric, that is regularly 
repetitive and involves the same muscle groups.

Epileptic spasms A sudden flexion, extension, or mixed extension–flexion 
of predominantly proximal and truncal muscles that is 
usually more sustained than a myoclonic movement but not 
as sustained as a tonic seizure. Limited forms may occur: 
Grimacing, head nodding, or subtle eye movements.

Myoclonic A sudden, brief (<100 msec) involuntary single or multiple 
contraction(s) of muscles(s) or muscle groups of variable 
topography (axial, proximal limb, distal).

Tonic A sustained increase in muscle contraction lasting a few 
seconds to minutes.

Autonomic A distinct alteration of autonomic nervous system function 
involving cardiovascular, pupillary, gastrointestinal, 
sudomotor, vasomotor, and thermoregulatory functions.

Behavioral arrest Arrest (pause) of activities, freezing, immobilization, as in 
behavior arrest seizure.

Sequential seizure This term is used in the instruction manual for the ILAE 
2017 operational classification of seizure types for events 
with a sequence of signs, symptoms, and EEG changes at 
different times.

Electrographiconly seizure Subclinical, without clinical manifestation.
Unclassified seizure type Due to inadequate information or unusual clinical features 

with inability to place in other categories.

In some cases, the symptoms of seizures may be overlooked when infants are unmonitored, 
especially when they are asleep, which increases the difficulty of diagnosis. On such 
occasions, a shortage of immediate medical assistance can even cause higher risks of 
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mortality[36].
Seizures can be recognized as repetitive movements of an arm, hand, leg and eye in general 
with an alternating slow and fast contraction of muscles in opposite directions. Apart from 
these manifestations, infants can feature subtle convulsions, including eye deviation, fixed 
open stare, blinking, apnea, cycling, boxing, stepping, swimming movements of the limbs, 
mouthing, chewing and lip smacking, or tonic and clonic seizure like stiffening, decerebrate 
posturing, and unifocal/multifocal repetitive jerking, or myoclonic seizure, more specifically 
[2], [30].
Besides, non-motion phenomena have been reported, but mistaken as an action events since 
they're difficult to record. These nonmotor clinical episodes in neonates include vasomotor 
changes, apnea, and pale skin, changes in breathing, heart rate, excessive salivation, 
elevated blood pressure, etc. [34]. 
On the  o ther  hand,  c l in ica l  se izures  can  be  accompanied  by  episodes  of 
electroencephalogram (EEG) recorded by EEG - if the two are closely related, they are 
called "electric-clinical" events. The characteristics and clinical significance of EEG seizure 
activity have been reported in many literatures. However, not all neonatal seizures occur in 
the form of electro-clinical manifestations, because there exist changes in the relationship 
between EEG and clinical events, and some only have EEG seizures. These EEG episodes 
can be accompanied by no clinical onset, regardless of the prognosis, which depends to a 
large extent on the cause of primary neurological disease. Diagnostic methods based on 
EEG and video (VEEG) observation have been widely used clinically[34].
However, since VEEG is not convenient for continuous long-term monitoring, it may not be 
able to detect neonatal seizures in time. Furthermore, the diagnosis based on signal analysis 
is currently based on the observation on EEG and/or video recording by experienced 
clinicians, which is quite time-consuming and limited by the inter-observer variability in 
clinical practice due to its subjectivity [2], [30].

2.1.2. Current Practice of Seizure Detection

Due to the immature development of newborns’ brains, neonates often manifest as clinical 
seizures with the EEG totally different from children and adults. VEEG is the clinical gold 
standard in determining whether a newborn has a seizure. In the past decade, with the rapid 
development of related technologies in the Body Sensor Network (BSN) [12], [37]–[42], 
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researchers have searched for new automatic monitoring methods different from video 
EEG methods for seizures in children [15], [16]. It has been studied to monitor seizures 
from a variety of electrophysiological and behavioral signals through diverse modern signal 
processing methods, including electrocardiogram, myoelectricity, electrodermal activity, 
respiratory, and behavioral signals. Below please find the description of different signals 
and their correlation to seizure monitoring.

2.1.2.1. Electroencephalogram (EEG) Signal for Seizure Detection
As the important electrophysiological feature of seizures is the abnormal synchronous 
discharge of brain neurons, the abnormal discharge pattern can originate from one side of 
the brain and spread to the entire hemisphere and even the contralateral hemisphere [2], 
[43]. Abnormal EEG manifests as a localized small spike discharge of normal background 
activity, a localized single rhythm pattern, a sharp (spine) wave, a sharp (spine) slow wave, 
a multi-spine slow wave, and abnormal background activity (rhythm disorder, low voltage), 
burst suppression) and so on. At present, the common standard for the diagnosis of seizures 
in clinical practice is video electroencephalography (V-EEG) [44]. By combining the EEG 
waveform, the simultaneously recorded video, and other clinical manifestations, medical 
history, etc., the clinician comprehensively confirms the seizure episode and diagnoses 
the epilepsy syndrome. Seizures can cause different degrees of nervous system damage 
to the newborn, like brain dysfunction and even death, so it is required that clinicians 
have strong professional knowledge and clinical experience, timely detect and promptly 
intervene convulsions and seizures. Therefore, exploring the automatic detection technology 
based on EEG signal analysis has been a hot topic [45], [46]. Amplitude-integrated 
electroencephalogram (AEEG) or cerebral function monitor is a simplified method which 
uses a fewer number of electrodes to collect EEG information compressed in time to 
generate a tracing that can be used for detection and evaluation of seizures, providing 
information in real time [47]. This modality has been adopted by neonatal units in many 
parts of the world [48], [49]. Although the seizure detection rate has been improved, the 
error rate is high due to too much artifact interference and the absence of video recording 
equipment.

2.1.2.2. Electrocardiography (ECG) Signal for Seizure Detection
At present, there are many researches based on ECG, mainly using heart rate (HR) signals 
and Heart Rate Variability (HRV) signals for seizure monitoring [50]. HRV, defined as 
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fluctuations in the heartbeat interval, is widely recognized as a reflection of the balance 
of sympathetic and vagal activity in association with the Autonomous Nervous System 
(ANS). The seizures are modulated by the autonomic nervous system, and accompanied 
by autonomic symptoms such as breathing, heart rate, blood pressure, pupil changes or 
salivation [44], so heart rate variability is helpful to judge and predict seizures.
Based on the automatic R wave detection algorithm, heart rate monitoring is very mature 
[51]. The method to quantify heart rate variability is to continuously detect the R wave in 
the ECG signal, calculate the interval between adjacent R waves, and obtain the respiratory 
rate (RR) interval sequence. For example, it is set to start at 0 and obtain the first R wave, 
then the second R wave is obtained at time t1, the third R wave at time t2, the fourth R 
wave at time t3, and so on. Then on the time axis, the heart rate variability signal consists of 
the following data points:

The waveform of ECG and the corresponding heart rate variability signals are shown in 
Figure 2-1.

Fig. 2-1. ECG waveform and corresponding heart rate variability signal

Osorio and others [52], [53] made use of large-scale clinical data (a total of 6935 hours of 
cortical EEG collected from 81 patients and simultaneous acquisition of ECG, including 
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241 seizures) to explore heart rate in Application value for clinical seizures detection. The 
results indicate that heart rate, a marker reflecting the modulation of the autonomic nervous 
system, is valuable for convulsion detection.
Based on the researches of heart rate variability in children with refractory seizures [54], 
the results suggest that heart rate variability has the potential to serve as a biomarker for 
predicting seizures. Control studies have found that heart rate variability in children with 
refractory epilepsy is generally suppressed compared with healthy children. At the time of 
seizures, the ratio of low-frequency and high-frequency components (LF/HF) of heart rate 
variability increased, indicating an increase in sympathetic activity.
In addition to clinical medicine focusing on the above research results, researchers in the 
field of information science have also explored it.
By time-frequency signal analysis methods, researchers have found that the first-order 
conditional moments of low-frequency components and the variance of high-frequency 
components in heart rate variability are effective features. By virtue of linear discriminant 
analysis (LDA), a machine learning method, the researchers achieved detection of neonatal 
seizures with a sensitivity of 85.7% and a specificity of 84.6% [55]; In the last two years, 
based on the multivariate process control method, the characteristics extracted from heart 
rate variability have been used to predict the seizure episode, achieving a sensitivity of 91% 
[56].

2.1.2.3. Electromyography (EMG) Signal for Seizure Detection
The onset of certain types of seizures is likely to cause twitching of the muscles[34], so 
using myoelectricity to judge seizures is a direction worth exploring. Some researchers 
have developed a wearable wireless surface electromyography module that embeds a 
comprehensive spectrum analysis and zero-cross test to determine the occurrence of 
generalized tonic-clonic seizure (GTCS) [57]. Seizures may cause skin electrical impedance 
responses. In 2012, some researchers used a support vector machine to detect tonic-clonic 
convulsions for more than 4000 hours by a series of features extracted from skin electrical 
signals and acceleration signals. The sensitivity reached 94%, and the level of false positive 
rate was about 0.74 times per day, which explored the application of skin electricity in 
convulsion monitoring and prediction [58]. The main shortcomings of this research are as 
follows: a) only several specific types of seizures with obvious behavioral abnormalities at 
the time of the attack can be monitored; b) the false positive rate is higher; c) it’s difficult to 
confirm the detected seizures one more time.
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2.1.2.4. Respiration Signal for Seizure Detection
Respiration can provide important information about neonatal seizures and help identify 
artifacts in EEG. When neonatal seizures occur, the respiration of the neonatal slows down, 
accompanied by apnea occasionally. Seizures can cause neonatal ventilation disorders and 
a large amount of oxygen, energy consumption, further aggravating neonatal brain injury, 
serious life-threatening, or central nervous system sequelae. According to the American 
society for clinical neurophysiology’s guidelines for clinical electroencephalography (EEG), 
neonatal non-brain electrodes should include channels for recording respiration [59]. 
Breathing helps identify physiological delusions, such as the apparent simplex delta activity 
in electroencephalography, which usually can be recognized as respiratory delusions, since 
babies breathe more than 100 times a minute. In addition, recording changes in breathing is 
more significant to diagnose neonates with convulsive asphyxia.

2.1.2.5. Behavioral Signal for Seizure Detection
Some seizures may lead to clinical observation of characteristic movements (such as 
tonic seizure, colonic seizure, and tonic-colonic seizure). By measuring motion-related 
data, information reflecting motion can be obtained to support the automatic diagnosis of 
seizures. Studies using behavioral signals to diagnose seizures in adults have only recently 
emerged, see [15], [60], [61].

2.2 Research Status of Wearable Sensor System for Infant 
Monitoring

2.2.1. Related Parameters of Infant Monitoring

In the NICU or at home, the vital signs of the infant are monitored to ensure their 
physical health. The changes of these signs represent potential changes within the body, 
manifested through external physical characteristics. The most frequently monitored human 
physiological vital signs and related sensing principles and sensors in neonatal intensive 
care are shown in table 1-2 [27].
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Table 1-2. The main physiological vital signs and parameters monitored during 
neonatal intensive care, with relative sensing principles and transducers.
Parameter or Vital Sign Sensing Principles Transducers
ECG, EEG Electrical, bio-potential Skin electrodes, textile 

electrodes, 
flexible conductive electrodes

Heart rate, Pulse Optical, pressure Photodetector, force sensitive 
resistor

Non Invasive Blood Pressure Auscultatory Pneumatic cuff & microphone
Invasive Blood Pressure Electrical, impedance,

Optical, reflection
Strain gauge, piezoresistor, 
Photodetector & emitter

Temperature Electrical, resistance
Electrical, thermoelectric
Optical, IR emission
Optical, fluorescence

Thermistor
Thermocouple
IR pyroelectric detector
Photodetector

Respiration Mechanical, expansion Strain gauge
Electrical, impedance Skin electrodes

SpO2 Optical, absorption Photodetector & emitters (red 
and IR)

PO2 Optical, fluorescent Photomultiplier tube
Electrochemical, 
amperometric 

Clark oxygen electrode

PCO2 Optical, fluorescent Photomultiplier tube
Electrochemical, 
potentiometric

Ion-sensitive electrode

Electrocardiogram (ECG), temperature, respiratory frequency and oxygen saturation [2] are 
the four major vital signs of standard clinical evaluation on neonates with acute diseases. As 
a result, these parameters regularly serve as early warning scores in pediatric assessments. 
Clinicians often diagnose infants in a critical state and take appropriate action based on 
the monitoring results. Effective monitoring protects these premature babies from various 
threats such as apnea, hypoglycemia, epilepsy, bradycardia, hypoxia and hypothermia. In 
addition to these physiological monitoring parameters, some researchers attempt to achieve 
health monitoring by detecting neonatal exercise parameters.
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It is a recent development to study infants’ movements by wearable motion sensing 
technology. Based on the application of micro motion sensors, the long-term monitoring of 
the infants’ daily activities is more feasible than ever before, which is of great significance 
for the research on infants’ movement patterns, but the clinical effects still need exploration.  
What’s more, wearable motion sensor systems can be used in healthcare and patient 
monitoring for some special situations. For example, a tri-axial acceleration sensor is 
connected to an infant’s clothes to detect whether the baby sleeps on the back, side or 
abdomen of the prototype [62]. Another monitoring system measures the fluctuation of the 
water in the bathtub to prevent infants’ drowning injury at home [63].

2.2.2. Wearable Sensing for Physiological Vital Signs Monitoring

Continuously monitoring physiological parameters was only carried out in hospital 
settings in the past. However, with the evolvement of sensor technology, different types of 
sensors have been proposed to obtain physiological parameters of infants, even at home. 
To be effective and non-invasive, sensors for neonatal monitoring have been continuously 
improved in recent years. At present, most infant wearable sensors focus on the newborns’ 
vital signs including electrocardiogram, body temperature and breathing, which are 
important physiological parameters in the neonatal intensive care unit. The limitations of 
the baby health monitoring sensor mainly include the position of the sensor on the body, 
its fixed clothes to reduce the influence of moving parts and motion artifacts, integration 
with other sensors, the interference with the external environment (such as temperature, 
humidity, sound, etc.), and the difficulty to be miniaturized, low-cost, low-power and 
unobtrusive, etc., which should be taken into consideration when designing wearable sensor 
systems [64]. This section briefly describes the main wearable sensors currently used to 
detect neonatal physiological parameters or vital signs.

2.2.2.1. Wearable Sensors for ECG Monitoring
Electrocardiogram, a widely studied biological signal describes the electrical activity 
of the heart, usually composed of QRS waves, P waves, and T waves [65]. The 
electrocardiographic electrode often transmits an electrical signal near the heart to the 
electrocardiograph through a lead wire, wherein the impedance, polarization, and the like 
of the electrocardiographic electrode greatly affect the accuracy of the electrophysiological 
signal. At present, electrodes for measurement of ECG signals include metal plate 



Design of a wearable sensor system for neonatal seizure monitoring

·20·

electrodes, adsorption electrodes, disk electrodes, suspension electrodes, dry electrodes, and 
soft electrodes, which also can be divided into copper alloy silver plating electrodes, nickel 
silver alloy electrodes, zinc silver-copper alloy electrodes, stainless steel electrodes and 
silver-silver chloride electrodes according to the electrode materials. Currently, the Ag/AgCl 
electrodes with conductive paste are widely used, but will cause the following problems if l 
using for long-term: 
(1) Since the electrode materials are lack of breathability and moisture permeability, 
prolonged use will cause skin discomfort; 
(2) The conductive paste will gradually dry up after long-time use, causing significant 
changes in the contact resistance between the electrode and the skin and affecting the 
stability of ECG signals; 
(3) The conductive paste is also a factor of skin allergy and other uncomfortable reactions.
As a result, some researchers have developed other types of electrodes, such as textile 
electrodes, conductive polymer electrodes, capacitive electrodes and conductive ink printed 
electrodes.
The measurement of biological signals is more effective and user-friendly with the 
development of textile electrodes, including conductive fabrics, metal-coated fabrics and 
flexible electronics.
Textile electrodes, usually woven from conductive yarns are often used in wearable 
devices because of their compatibility with clothing. In terms of conducive yarns, there 
are several types to choose from, such as complete metal yarns and polymer-metal yarns. 
Complete metal yarns are made of stainless steel, copper or other alloys filaments. Polymer-
metal blends made of co-spinning metal filaments with polymers, metal-filled polymer 
filaments, or metal-coated polymer fibers, can be coated with conductive metals like silver, 
and coated or mixed with conductive polymers, such as polyaniline (PANI) or poly (3, 
4-ethodioxythiophene) (PEDOT) [66]. The main structure of conductive yarns is a non-
conductive fiber (nylon, polyester, etc.) coated with a thin layer of silver or some other 
conductive materials. Different coating materials lead to different properties of textile 
electrodes. For example, textile electrodes coated with gold and silver can get good 
signals because of the low resistance of these two materials. However, compared with 
the silver-plated electrode, the gold-coated textile electrode is not hypoallergenic and 
loses its electrical conductivity after washing because gold is more chemically active than 
silver[37]. They may be adhesive and corrosion resistant, although textile electrodes may 
be very compatible with textiles. Two patches with different versions of gold and silver 
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textile electrodes (a) and a blanket with large silver electrodes (b) are shown in Figure 
2-2. Textile electrodes typically have a knit structure in which the metal material is woven 
or woven into cloth by a fabric. To avoid babies’ direct contact with the wires, electrical 
components and circuitry, replacing the conventional device and hard wire with textile 
electronics and conductive fabrics and integrating them reliably into the garment can make 
the ECG measurement on the baby convenient and comfortable. On the other hand, textile 
electrodes also have some disadvantages. For instance, textile electrodes with a knitted or 
woven structure are generally of poor quality and poor skin-to-electrode contact, requiring 
high sensitivity to motion artifacts[64]. Furthermore, the effect of abrasion and washing on 
the brittleness of the metal remains a problem in textile electrodes. As a result, it is badly 
needed to find a good method for fixing the textile electrode to the cloth and optimizing 
ECG measurement. Chen et al. integrated the textile electrodes into a smart jacket to detect 
a baby’s ECG signal, whose quality can be increased by optimizing the electrode structure 
and fixing.

a                                                                 b              
Fig. 2-2. Two types of non-contact electrodes[38]

Various conductive electrodes are conductive polymer additives in the polymer or applied 
polymer surface, made of a dry electrode. Typically, conductive additives such as carbon, 
stainless steel fibers and carbon nanotubes are combined with some flexible polymers. 
Chen and the team developed a conductive polymer electrode, made by mixing carbon 
into ethylene propylene diene monomer (EPDM) [67], as shown in Figure 2-3a. Baek 
and the team etched a gold pattern on titanium and deposited it on a flexible elastomeric 
poly(dimethylsiloxane) (PDMS) [68], as shown in Figure 2-3b. Conductive polymer 
electrodes are not very comfortable compared to textile electrodes, not used to monitor 
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newborns yet.

a                                                                        b              
Fig. 2-3. (a) Conductive polymer dry electrodes based on EPDM[68]; (b) conductive 

polymer dry electrodes based on PDMS[69]

Figure 2-4 showed two capacitive electrodes [69], [70], most of which are used as non-
contact electrodes, utilizing capacitive coupling. Peng et al. tested the non-contact electrodes 
and reported the ability to measure the ECG through cotton shirts without physical 
contact[69]. No direct contact with the skin is required, but the capacitance is very sensitive 
to the distance between the electrode and the skin, which makes it difficult to get stable 
and accurate signals. Another drawback of capacitive electrodes is the change of dielectric 
properties caused by sweat which may induce the erosion of the dielectric interface [71]. 
A silicon dioxide dielectric layer supported a foam cushioning layer, providing protection 
for the dielectric layer without the risk of wearing out or corrosion [72], which is shown 
in an example of a capacitive electrode fabricated on silicon. However, most non-contact 
electrodes are made of rigid material, so they are not flexible or comfortable. As a result, 
capacitive electrodes are considered to be a challenge for integration into textiles for long-
term use.

Fig. 2-4. Two types of non-contact electrodes[69], [70]
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The electrodes can also be made of conductive ink. First, the conductive ink must contain 
a suitable highly conductive metal precursor such as silver, copper, gold, NPs, and support, 
most of which are water-based, that is, water is the main component of the ink, as pure 
as possible to limit the contaminants. These special inks can be printed on a variety of 
materials like textiles to create electroactive patterns. Screen printing also makes integration 
and planar electronics simpler than conductive yarn systems. There are several technologies 
for printing conductive materials on different substrates. Inkjet and screen printing based 
on sheetfed are best suited for low-volume, high-precision work [73]. Examples of screen-
printed electrodes integrated into different substrates are presented in Figures 2-5. The 
combination of printed conductive elements and textiles has great potential for developing 
new products. The textiles for daily use are comfortable, while the printed electrodes are 
light, flexible and not sharp, so the functionality is added without deteriorate the comfort. 
The multi-layer structure is flexible and easy to implement in different designs. Improved 
wear resistance, abrasion resistance and wash fastness are current challenges for screen 
printed electrodes [72].

  a                                               b                                                c
Fig. 2-5. (a) Three electrode contingent on a stress ball; (b) Screen-printed electrodes on the 

textile substrate; (c) Screen-printed electrodes on the epidermis.

2.2.2.2. Wearable Sensors for Respiration Monitoring
Respiratory rate is very critical in neonatal monitoring [18]. Respiratory rate, also called 
breathing rate, refers to the number of breaths and exhalations per unit of time. Actually, 
the respiration rate is usually determined by counting the number of times the diaphragm 
expands and contracts per minute. Respiration is usually classified as either contact or non-
contact, though monitored in many ways.
Sensing devices are attached to the patients’ bodies as the contact method. The commonly 
measured parameters by this method are breath sounds, respiratory airflow, respiratory-
related chest or abdominal movements, respiratory CO2 emissions, and oximetry probe 
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SpO2 [74].  Thoracic electrical impedance is the most common method of respiratory 
monitoring in the clinic, which uses adhesive electrodes attached to the skin to obtain 
signals, but long-term attachment to the skin may cause irritation. Researchers studied 
the feasibility of several sensors for wearable respiratory monitoring systems, such as 
piezoelectric sensors or three-dimensional accelerometer signals [75], [76], both of which 
make the respiratory signal collected contain a large number of motion artifacts, affecting 
the accuracy of the respiratory rate measurement. Therefore, the respiratory-induced 
plethysmography (RIP) proposed by T. Chadha et al., including an inductive band that can 
be attached to the abdomen or chest [75]. The resistance of the strip varies with stretching. 
Surveillance based on respiratory flow is an effective method of respiratory monitoring 
due to changes in the circumference of the chest during abdominal breathing. Zhang and 
the team proposed a RIP-based wearable respiratory monitoring device for respiratory 
biofeedback training, however, the device’s frequency band making method is complicated 
and difficult to embed in a wearable device [77].

For the non-contact method, some researchers used a CO2 sensor placed around the 
crib on the railing to provide enough information about the breath [78]. There are many 
commercially available CO2 sensors on the market with multiple sensing principles, such 
as electrochemical sensors, infrared sensors and metal oxide sensors. The electrochemical 
sensor has good performance but short life, and the infrared sensor has high sensitivity, 
large volume but high cost. Metal oxide sensors are low-cost but susceptible to temperature 
and humidity [26]. Hsu and Chi have proposed a thermal sensor-based respiratory rate 
monitoring system, another typical example of non-contact respiratory monitoring. The 
thermal sensor placed on the mask is sensitive to temperature changes of breathing, and 
the sensor data is simultaneously collected and analyzed by the personal computer and 
connected to the central nursery. With the thermal sensor array, the sensor mask has 
the ability to sense the temperature change caused by breathing, and in order to avoid 
undetection, an ellipsoidal mask is prepared which can be adjusted to accommodate the 
baby's face in different directions [79].

The main disadvantage of contact monitoring methods is the direct connection to the baby 
like face or abdomen, which makes many babies uncomfortable and difficult to tolerate. 
The advantage of the non-adhesion monitoring method is the no contact with the baby’s 
skin, avoiding any possible skin irritation or other hazards, as compared to the respiratory 
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monitoring contact method. However, non-contact monitoring equipment can be more 
complex and susceptible to external environmental disturbances (such as temperature 
changes, gas flow and breathing by nurses or parents). At the current, non-contact 
respiratory monitoring methods have not reached the maturity level of clinical routine 
applications, because of the concerns about infant safety, electromagnetic interference with 
existing medical devices, and operational complexity[74]. These two different respiratory 
monitoring methods will complement each other to achieve effective and reliable 
respiratory monitoring with the development of technology. Respiratory sensors used in 
future wearable sensor systems will be miniaturized, intelligent, user-friendly, and precise, 
making the baby’s respiratory monitoring more reliable and convenient.

2.2.2.3. Wearable Sensors for Spo2 Monitoring
Oxygen saturation is one of the important indicators for evaluating the oxygen content of 
hemoglobin in arterial blood. Transmission and reflection are two non-invasive techniques 
for pulse oximetry (SpO2) measurement [80], [81]. Currently, in hospitals, blood oxygen 
saturation is monitored by a light-transmissive pulse oximeter attaching to the newborn’s 
foot or palm[27]. The location of these sensors and the presence of all wires cause 
discomfort, and even when the pain is intensified, the sticky sensor should be removed 
[37], [82]. A reflectance oximeter that increases the flexibility of installation can avoid 
such problems and meet the needs of modern home healthcare, whereas the research of 
reflectance oximeters is still in a shortage relative to the transmittance type and there are 
few complete solutions for reflectance oximetry[83]–[85].
In reflectance oximetry, LED (Light Emitting Diode) and PD (Photo Diode) are placed on 
the same body surface side by side, and measuring the intensity of the reflected light with 
PD is helpful to measure photoplethysmography (PPG) signals from different parts of the 
body flexibly, making it more suitable for non-invasive wear.
Unlike conventional fingertip probes, a transmissive SpO2 sensor probe that can be 
embedded in a finger ring is proposed in [86], and a novel optical sensor and LED 
distributed around the square matrix are also proposed and mounted on a flexible 
PCB. Experiments were carried out on ten experimental subjects whose results were in 
accordance with the measurements of commercial fingertip oximeters. Cai and the team[83] 
designed a reflectivity probe to measure the photoplethysmography (PPG) signal, which 
can be worn as a wristband equipped with an RF transmission module to facilitate wireless 
communication between the measurements system and the medical center. The experimental 
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results show that the system can effectively detect changes in oxygen content in the blood 
and can be used in non-invasive, continuous, remote monitoring systems. Chen and the 
team demonstrated a neonatal non-invasive oxygen saturation monitoring system[87]. The 
reflectance sensor is embedded in a soft fabric, suitable for wearable long-term monitoring 
systems. The experimental results show the measured data is in good agreement with that of 
the commercial monitoring system. However, there is a need to further improve the design 
to minimize the effects of motion artifacts which can cause erroneous readings.

2.2.3. Wearable Sensing for Movement Monitoring

Unlike physiological parameters, the physical condition of the neonatal can be indirectly 
reflected by their motor signals. Patterns of motions, a crucial step in early life, can predict 
and identify impairments in neuro-motor development, then further perfect therapeutic 
approaches to evaluate infants’ physical activity patterns [88]–[90]. Cerebral palsy (CP) is 
a clinical diagnosis made by doctors’ observation of spontaneous movements and neurolo-
gical examinations. There is empirical evidence that markedly abnormal movements reflect 
the existence of serious brain dysfunction [91]. In addition, the clinical signs of brain dys-
function like neonatal seizures usually manifest as abnormal movements of the limbs and 
eyes. The occurrence and types of seizure can be appreciated by observing the nature, speed 
and amplitude of the movements [2], [30].
With the development of wearable sensors, research on the monitoring of newborn move-
ment signals has become a new trend recently, but its clinical application is not mature yet. 
The authors used the systematic review method to search for the literature published bet-
ween 2010 and 2016 in order to study the technology of infant movement monitoring based 
on the wearable sensor systems.

2.2.3.1. Method
A search on the following publication database was conducted: PubMed (MEDLINE since 
1960), IEEE Xplore, SpringerLink and Science Direct, issued in Feb. 2016. Relevant 
articles in recent 7 years (2010-2016) were collected.  To seek out related articles, we target 
the following three aspects: infant, movement monitoring, and wearable sensor systems. 
Generic search terms (according to the thesaurus of each individual database) were used for 
the identification of relevant studies. Due to the different formats of each database, we used 
slightly different expressions of our search strategy for each database. Table 1-3 displays the 
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search strategy for the PubMed database. The search strategies for the other three databases 
resemble this. Only papers in English were included in the review process. 

Table 1-3. Literature search strategy (PubMed)
Infant Infant OR Baby OR Neonatal OR Newborn

AND
Movement “Seizure activity OR Convulsion OR “Motor behavior OR Movement 

OR Position OR Motion OR Moving
AND
Monitoring Monitoring OR Feedback

AND
Wearable Wearable OR Mobile OR Ambulatory OR garment OR soft suit OR 

exosuit
NEAR
Sensor Accelerometer OR “Motion sensing OR “Activity sensing OR Gyroscope 

OR MEMS OR IMUs OR bend sensor OR flexible sensor 

The selection procedure consists of two steps. The first selection was performed based on 
the title, the abstract and the identifying of exclusion criteria: 
Exclusion criteria were:
● No infant target population
● No wearable sensor technology 
● No “movement” or “monitoring” in the research
● Reviews
● Books of conference proceeding;
● Language other than English.
We applied such exclusion criteria for obtaining desired relevant results which were well 
confined within the scope we are interested in.
The second step was based on the full-text scan of the paper. Papers were included in the 
full-text review when they satisfied all of the following inclusion criteria. 
Inclusion criteria were: 
● All studies with infants as subjects
● Technology: wearable motion-sensing technology.
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● Related “body movement” or “moving” or “motor pattern” had to be reported.
During the second step, the other two persons decided whether the article should be 
included in the review.

Fig. 2-6. Procedure for study selection with databases used for the literature research

Figure 2-6 shows the selection procedure and results. There are 1165 articles selected by 
our search strategy.  After reading the titles and abstracts, we identified 145 papers based on 
the exclusion criteria. Two articles were excluded because they were written in languages 
other than English. After the application of the inclusion criteria, the number was reduced 
to 30. And after removing 4 duplicates, 26 papers remained for consideration. We manually 
searched the references for these 26 articles. Four articles were added after hand searching 
of references. Finally, 30 papers were taken into account in this review after two authors 
carried out the decision on the 30 selected papers. This resulted in 30 articles that were 
considered in this review.

2.2.3.2. Results
With the development of sensor technology and wireless communication technology, the 
research on movement monitoring with wearable sensor systems for infants has made a lot 
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of progress. Wearable sensor systems are becoming smaller, so many of them and more 
intelligent ones have been commercially available [92]. These sensor systems have been 
embedded in more and more diversified products such as shoes, buttons, belts, clothes etc., 
for movement monitoring. A typical infant movement monitoring system with the wearable 
sensor is commonly composed of sensors, power supplies, wireless communication 
modules and links, control and processing units, interface with the users (maybe for parents 
or doctors), software, and algorithms for signal processing, feature extraction and decision-
making. Table 1-4 summarizes recent work from 2010 to 2016.  

Table 1-4. Overview of the wearable sensor system to monitor infant movements
Research 

Work

Year Sensor Placement Form Evaluation Purpose

Andra Rihar 

et al. [93]

2014 6 Wireless 

IMUs, 

2 pressure 

mattresses

Trunk and 

arm

Silicone 

bracelets

Technical 

experiment(test 

baby doll)

technical report

user test

Infant motor 

pattern assessment

Fabrizio 

Taffoni et 

al.[94]

2012 2Wired 

magneto-inertial 

sensor

Wrist N/A Technical 

experiment

Study motor skill 

at risk for autism 

spectrum (ASD)

Beth A. 

Smith et al. 

[95]

2015 2 Inertial 

movement 

sensor(Opals, 

APDM)

IMUs

Leg Placed 

sensor on 

each leg 

using knee 

socks

Clinical test  

(n=12)

Quantification 

of daily infant 

legmovements

Mohan Singh 

et al. [96]

2010 4 Custom 

Accelerometer 

(Eco)

Wrist and 

ankle

N/A Clinical test  

(n=10)

Predict CP

Elham 

Saadatian et 

al.[97]

2011 1 Accelerometer N/A Wearable 

hardware

gadget

Technical 

experiment

Baby care

Franziska 

Heinze et al. 

[98]

2010 4 Accelerometer Extremities N/A Clinical test 

(n=23)

Predict CP
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Hirotaka 

Gima et al. 

[99]

2011 2 Accelerometer Ankle N/A Clinical 

test(n=8)

Infant motor pat-

tern assessment

Sabri Boug-

horbel et al. 

[100]

2010 4 Pressure sensi-

tive sensor

N/A Mat Technical experi-

ment, Usability 

Evaluation(n=1)

Infant care/ SIDS

Lee, E.[92] 2015 1 Accelerometer Ankle Ankle  

band

Commercial 

product

Baby safety

Mingming 

Fan et al. 

[101]

2012 4 Accelerometer Wrists and 

ankles

Clothes 

bands

Clinical 

validation(n=10)

Infant motor pat-

tern assessment / 

predict CP
Sandra Wald-

meier et al. 

[102]

2013 1 Accelerometer Hand Fixed to the 

infant with 

a tape

Preclinical 

test, Usability 

Evaluation(n=22)

Infant motor pat-

tern assessment

D. Gravem ei 

al.[103]

2012 5 Accelerometer Ankle, 

wrists and 

forehead

Cloth 

bands

Clinical test 

(n=10)

Comparison 

Experiment

Infant motor pat-

tern assessment/

diagnosis CP

Drew H. 

Abney et al. 

[104].

2014 4 Accelerometer Wrist and 

ankle

N/A Preclinical 

test, Usability 

Evaluation(n=2)

Characterizations 

of infant behavioral 

development
Wei Lin et al. 

[105]

2014 1 Accelerometer Chest Soft belt Technical experi-

ment

Prevent SIDS

Aryan Kaus-

hik et al. 

[106] 

2013 1 Accelerometer Chest Jacket Technical experi-

ment

Fall protection 

Gillian R. 

Hayes et al. 

[107]

2011 5Custom Acce-

lerometer (Eco)

Ankle, 

wrists and 

forehead

Cloth 

bands

Preclinical test, 

Usability Eva-

luation (n=10)

Infant motor pat-

tern assessment/ 

Predict CP
Philippe 

Jourand et al. 

[108] 

2010 2 Accelerometer Abdomen N/A Technical experi-

ment

Monitor SIDS

Gustavo 

López  et 

al.[109]

2013 1 Accelerometer N/A Bear  gad-

get

N/A Prevent SIDS
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H.DC Clercq 

et al. [110]

2010 2 Accelerometer Abdomen N/A Technical experi-

ment

Infant care/ SIDS

Marco Donati 

et al. [111]

2014 768 Pressure 

Sensor

N/A Mat Preclinical 

test, Usability 

Evaluation(n=1)

Infant motor pat-

tern

Fernandes, 

Duarte[112]

2016 1 Accelerometer Chest Belt Technical experi-

ment

Monitor SIDS

Bouwstra, S 

et al. [12]

2011 1 Accelerometer Right chest Smark 

Jacket

Technical experi-

ment

Motion artifacts 

reduction

Leier et 

al[113].

2013 1 Accelerometer Foot Shoe N/A Baby safety

Farooq et 

al.[114]

2015 1 Jew Motion 

Sensor/ Flexible 

sensor 

Jaw N/A Clinical 

validation(n=10)

Feeding Behavior

Huyen et al. 

[115]

2016 1 Accelerometer Abdomen Belt Technical experi-

ment

Baby safety 

Rihar et 

al.[116]

2016 2IMU Trunk and 

wrist

Bracelets 

and chest 

strap

Technical experi-

ment

Infant motor 

development 

assessment/ early 

intervention 

treatment
Koch et al. 

[117]

2016 Flexible 6 × 6 

sensor

Abdomen N/A Technical experi-

ment

Respiratory  

monitoring

Galland et al. 

[118] 

2012 1 Accelerometer Shin N/A Clinical 

validation(n=33)

Sleepstate 

monitoring

Rogers et al. 

[119] 

2015 4 Joint angle 

sensors/ Flexible 

sensor

Knees and 

hips

Sensing 

suit

Preclinical 

test, Usability 

Evaluation(n=1)

Early intervention 

treatment

Karch et al. 

[120] 

2012 Electromagnetic 

tracking system   

upper and 

lower limb

N/A Preclinical test 

(n=75)

Predict CP

Among the 30 selected articles, a total of five types of sensors, including the accelerometer, 
Inertial Measurement Unit (IMU), Magneto-inertial, pressure sensor and flexible sensor 
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are discussed. However, only 19 of them describe the form of wearable systems, such as 
gadgets, bands and jackets. Ten of the researches use the form of banding, including cloth 
bands, belts, bracelets and so on. Two of the researches applied gadgets and another two 
mats. The form of shoes and shocks was also used by two researchers. But only three use 
the form of jacket and suit. Most of the researches place the sensors on the hands or feet. 
Some also combine the sensors with other parts of the body, such as the forehead. Besides, 
three of the researches put the sensors on the abdomen or the chest. Six passages illustrate 
the weight of the sensor and show the lighter sensors exert less influence upon the research 
results.
Regarding the purpose of sensor systems, 12 articles are about infant motor pattern 
assessment, 3 articles are used to predict CP and 13 are applied for baby safety. None of the 
30 articles had mentioned seizures.
13 articles demonstrated the technical tests on system feasibility. 14 research works carried 
out clinical tests or pre-clinical tests. Most of the tests were not large trials because the 
movement sample capacity was below 25. Only two tests had a sample size larger than 25, 
one was 33, the other was 75.
Wearable sensor technologies for infant movement monitoring
Various sensors were used to monitor movements in infants, including accelerometers, 
gyroscopes and Magneto sensors, etc. Different types of sensors have their own advantages 
and disadvantages. Therefore, it is crucial to choose an appropriate one that meets the 
specific requirements for monitoring the movements of infants. 
Microelectromechanical Systems (MEMS) is a process technology used to create tiny 
integrated devices or systems, which refers to the integration of mechanical elements, 
actuators, and electronics on a common silicon substrate through the utilization of 
microfabrication technology. One of the applications of MEMS technology is the MEMS-
based inertial sensor.
Inertial sensors mentioned above, also known as inertial measurement units (IMUs), 
consisting of accelerometers and gyroscopes and/or magnetometers, are one of the most 
important types of silicon-based sensors. They gather movement information by measuring 
acceleration, angular rate and the magnetic field vector (some of them) in the three axes of 
their own three-dimensional local coordinate system respectively [121], [122]. 
MEMS-based inertial sensors have achieved significant progress recently in the aspects 
of satisfactory sizes, low costs and low power consumption, making the inertial sensors 
prevalent in physical activity monitoring [123]. 
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Recently, inexpensive on-chip inertial sensors including gyroscopes and accelerometers 
have gradually found practical applications in baby motion analysis.
Fabrizio Taffoni et al [94] propose a magneto-inertial platform, composed of three sensors: 
two wired magneto inertial sensors that can be worn by infants on their wrists to evaluate 
upper limb movements. Hirotaka Gima et al. [94] proposed a low-cost system based on 
accelerometers to evaluate the newborn’s movement.
In some studies [114], [117], [118], flexible sensors are also used to monitor infant 
movement, such as bend sensors, which are usually used to acquire joint angle data, the Jew 
motion sensor used to capture the action information of mouth mastication. Flexible sensors 
can acquire knowledge about the posture of static objects, which is beyond the ability of 
IMUs. Moreover, flexible sensors are thin and light, easy to be adopted in wearables. So, the 
flexible sensor is also suitable for the monitoring of infant movement, especially in quasi-
static scenarios or for interests in the object’s posture. On the other hand, pressure sensors 
are also used. They are often embedded in a non-wearable system to collect activity-related 
data, without affecting the baby's normal activities, such as mats [93], [100], [111].
For infant movement monitoring, various types of sensors have been used as is shown in 
Table 1-5. The data in table 1-5 are from literature search results from 2010 to 2016. For 
some flexible sensors working in the form of pressure sensing, we take them as a flexible 
sensor to emphasize their flexibility which is related to system design, while the sensing 
principal is not what we are interested in. As illustrated in the table, a majority of studies use 
accelerometers as their primary sensors. 50% of all the research papers have mentioned the 
use of accelerometers for this purpose. Motor characterization of infant general movement 
with inertial sensors has already given rise to several scientific contributions. For instance, 
Andraž Rihar et al. provided a study about the motor characterization of infant trunk posture 
and arm movement assessment performed in a multi-sensor measure system [93].

Table 1-5. Statistical representation of sensors selection for infant movement monitoring
Category Discussed by papers

IMU [93], [95], [116]

Accelerometer  [12], [92], [96]–[99], [101]–[110], [112], [113], [115], [117]

Magneto-inertial  [94], [120]

Pressure sensor [93], [100], [111]

Flexible sensor [114], [117], [119]
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In conclusion, with the development of background technique, inertial sensors (IMU, 
Accelerometer, Magneto-inertial) are about to take the spotlight in the motion sensing 
areas. Due to its low cost, portable size and high-performance, increasing researchers are 
considering these sensors a good choice for movement monitoring in infants.

Tendency of utilization of wearable sensors
Among the data demonstrated above, researchers have chosen various forms of sensors to 
monitor infant movements. For instance, 20 of all the 30 articles use accelerometer sensors 
to monitor babies while 3 of them use pressure sensors.
Figure 2-7 illustrates the baby-related movement monitoring research from 2010 to 2016; 
The usage rate of the acceleration sensor is decreasing gradually while that of the IMU is 
obviously increasing. That’s because IMU measurements provide data with more degrees of 
freedom for movement monitoring.
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Fig. 2-7. Trends of sensor technology usage in baby-related movement monitoring research
Conclusions

So far, the wearable sensor system of infants’ movement monitoring has achieved much 
progress, with good prospects for future applications. And new systems need to be 
developed and verified by more clinical trials before being promoted to a wider population. 
For instance, the accuracy of the results obtained from the wearable motion sensors, 
the preferable choice to place the sensor for data collection in various applications, 
the reliability and comfort index of the system and the aspects affecting the results of 
the wearable sensors are expected to make improvements. Moreover, the application 
of wearable sensor-based movement monitoring in infants has not yet reached its full 
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potential. The available literature does not show successful examples to detect infant seizure 
conditions based on the use of wearable motion sensors. Thus, there is a great development 
space of infant motion monitoring with wearable sensors for infant seizure detection. 
Another important research trend is to create a “baby care system” to achieve feedback 
between clinicians and infants with wearable sensors. Through the “baby care system”, 
monitoring infants’ daily physical activities and understanding the real-time development 
status are within reach. Once these issues achieve any substantial progress, it will be a great 
attraction for both parents and clinicians to significantly improve the care of infants.

2.2.4. Acquisition System for Neonatal

With the development of wireless communication technologies and the advancement 
of sensor technology and smart devices in wearable electronic devices, neonatal signal 
acquisition systems have also become diverse. The signal acquisition system can be divided 
into a multi-parameter acquisition system which provides comprehensive, safe, reliable and 
accurate health care for preterm infants in the NICU and a single signal acquisition system 
which monitors infants’ health through a key parameter, simplifying the health monitoring 
system with improved comfort.
Multi-parameter acquisition systems can be added with different types of sensors or 
wearable electronics, making the monitoring system smaller, more comfortable, and easier 
to maintain. For example, the BBA bootee [25] developed by Rimet and their team is based 
on an oximetry module and a three-axis accelerometer for multi-parameter monitoring of 
infants. The data connection and transmission of the sensor are managed by a single-chip 
transceiver via a short-wave RF link. An adjustable strap made of elastic textile ensures 
contact between the SpO2 sensor and the skin and allows the boot to be mounted to the 
foot when the baby is from one size to another. By integrating the sensor into the bootee, 
it measures pulse oximetry and detects the baby's movement and prone position. The baby 
swaddle designed by Baker et al. [62] comfortably wraps and holds the baby with two 
sensor-equipped dishes. Sensors are placed on both plates to monitor temperature, moisture 
and pulse rate. The sensor mote contains a thermistor temperature sensor, as well as 
electrodes that monitor the baby's pulse rate and hydration, and the circuit unit is integrated 
into the glove. The sensor board is placed on the front and back sides of the child's upper 
body, and the upper body is the largest heat mass in the body. The wireless base station 
allows information exchange between the sensor dust particles and various computing 
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systems (such as PDAs, cell phones, and laptops), and parents or nurses can be alerted when 
the child's vital signs exceed a predetermined health condition. Besides, the sensor baby vest 
proposed by Linti et al. [22] is fully integrated, and can also monitor multiple parameters in 
the NICU or home environment. Parameters can include breathing, heart rate, temperature 
and humidity, etc., such as sweating. Using different sensors integrated, vital signs such 
as PPG, electrocardiogram, systolic and diastolic blood pressure, heart rate and body 
temperature can be monitored and collected simultaneously with the data-integrated sensor 
system, resulting in a whole frame of infant health, which greatly improves the efficiency 
of the doctor. In addition, the smart jacket proposed by Chen et al. [24] is a comprehensive 
platform for multi-parameter monitoring of newborns. Equipped with flexible, lightweight 
textile sensors and electronics for easy monitoring of ECG and breathing parameters of the 
jacket. A silver-plated textile electrode integrated into a smart jacket prototype. The jacket 
is open-chested and has an open structural fabric on the back for clinical observation. The 
jacket also includes a hat that protects the eyes. Six textile electrodes distributed at different 
positions of the jacket can effectively reduce the bad signals caused by motion artifacts. 
Prototype design also allows for free movement, protects the eyes, and provides an aesthetic 
effect that has won the appreciation of parents and clinicians. In future designs, some other 
sensors, such as temperature sensors, sweat pH sensors and body odor sensors, can also be 
integrated into the jacket.
Although multi-parameter acquisition systems have great potential for development 
in infant wearable sensor systems, there are still exist some limitations that need to be 
addressed. For example, continuous and reliable power supplies are still a big problem due 
to the high-power consumption of various sensors and complex data processing circuits. 
These obstructed wires make the baby feel uncomfortable in daily activities. In addition, the 
integrated platform is difficult to maintain non-invasive and small in size while providing 
various monitoring units. In the future, the integration platform needs to be improved with 
rugged and low-key, providing consistent and reliable data flow and higher-level medical 
algorithms to classify measurement results (such as normal, abnormal, risk, high risk and 
error) and transmit data through a wireless sensor network [124].
Most medical measuring instruments such as thermometers and sphygmomanometers use 
the principle of the single parameter method. In order to reduce the risk of SIDS in neonates 
(especially premature babies), the neonatal intensive care unit (NICU) requires continuous 
ECG monitoring of preterm infants. Coosemans and the team reported some prototypes 
for continuous monitoring of infant ECG using a garment embedded system [125]. All 
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electronic equipment, including textile electrodes and induction coils, are mounted on a 
flexible circuit that facilitates the integration of baby pajamas. For comfort, the baby's 
clothes are embroidered with electrical circuits and conductive wires. The system has only 
three textile electrodes for single-point ECG measurement, making the data processing 
circuit simple and small. This single-parameter monitoring device is characterized by 
usually only one sensor for measuring specific parameters, simple circuits and low power 
consumption. A single physiological parameter monitoring method has great potential to 
reduce the risk of small island developing States usually caused by cardiac arrest, and can 
be effectively monitored by ECG monitoring.

2.3 Research Status of Signal Processing Methods for Detection 
and Prediction of Neonatal Seizure

When researchers from the clinical side talk about ‘complexity’ in seizure, much more 
attention is likely to be paid to highly varied clinical manifestations, etiology, patterns 
of propagation and the evolution of epilepsy with aging, etc., while researchers from the 
engineering side use ‘complexity’ to refer to untapped information contained in medical 
images and electrophysiological recordings. Although clinicians interpret these data in 
their own way, usually with the aid of experience and medical knowledge, experts on the 
engineering side do not always place a priority on the interpretability of their methods. 
Instead, inspired by complexity theory, they take the human body as an extremely complex 
system getting input from the environment and adapting itself, while the medical images 
and physiological signals are just observable and measurable ‘states’ or ‘output’ of this 
system. Direct treatment implications and anticipation of prognosis are not necessary for 
them. However, exploring the complexity of these signals in a different perspective may 
shed new light on the analysis of these data. Different methods are utilized to tackle the 
complexity of physiological signals, mainly for epileptic seizure detection. Among them, 
three subjects as fountainheads, e.g., non-stationary signal processing, nonlinear dynamics 
and network science, can be roughly identified. Non-stationary signal processing is the 
most straightforward methodological source. And nonlinear dynamics and network science 
influence this field in a more heuristic and subtle manner. Methods originate from more than 
one of these three subjects could be adopted in the research. 
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2.3.1. Nonlinear Signal Processing

Since the physiological processes are confirmed to be nonlinear and non-stationary, non-
stationary signal processing techniques are the most intuitive choice for such problems. 
Compared with traditional time-domain statistical methods and frequency-domain methods 
which provide averaged information, non-stationary signal processing methods such as 
short-time Fourier transform, time frequency analysis, wavelet transform [126] and model-
based analysis has the advantages of representing and capturing transient anomalies.
Gotman was the pioneer in the exploration of an EEG-based automatic seizure detection 
method. To capture the transient behavior during long-term EEG monitoring, in [127], EEG 
signals are decomposed in time-domain into half waves, based on morphological characteri-
stics. The half waves are then characterized in terms of its duration and amplitude compared 
to background activity. Typical spikes in EEG recordings, which are usually accompanied 
by the onset of epileptic seizures, are thus possible to be recognized using a real-time com-
puterized algorithm. Artifacts reduction and inter-channel relations are also discussed in 
this work, being unsolved problems in EEG-based automatic seizure detection. The false 
alarm rate is high [128] because the waveforms of many different types of artifacts and non-
epileptogenic EEG bursts are quite similar to the waveforms during epileptiform discharge. 
Short time Fourier transform (STFT) is one of the most popular techniques used for non-
stationary signals. The original signal is truncated into smaller slices and windowed, 
and then a discrete Fourier transform is performed on it so the transient behavior could 
be revealed. STFT is widely used as a feature extraction technique applied to raw EEG 
recording [129]. Usually, the statistical metrics of the coefficients are taken as features and 
feed into the classifier [130]. Islam, Rastegarnia, and Yang [131]used a stationary wavelet 
transform (SWT), which is translationally invariant, to de-noise single-channel EEG 
signals. No additional assumptions about the data are needed for this method, neither over-
correction would happen across channels. 
In addition to noise rejection, wavelet transforms are widely used to extract features from 
physiological signals. A discrete wavelet transform was used to decompose EEG signals 
into approximate coefficients and detailed coefficients [132]. Reduced complexity was 
observed during the ictal period and the decomposition helped improve the overall detection 
accuracy. Subasi and Erçelebi [133] used a lifting scheme to speed up the computation of 
wavelet transforms, and logistic regression and neural networks served as a classifier with 
compared performances. Wavelet-based methods depict the signal under different time 
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scales and help discover discriminate features which could be veiled in the original signal 
[134]. 
Joint time-frequency distribution is a powerful tool to adapt to the nature of non-stationary 
signals. Figure 2-8 shows that the time-varying frequency components cannot be reflected 
by spectral analysis but are clear in a time-frequency distribution. One dimensional signals 
are transformed into a 2-dimensional distribution where for every time point on the x-axis, 
a distribution of instantaneous frequencies is estimated and plotted on the y-axis. Visual in-
spection or automatic detection algorithm can be performed on time-frequency distribution 
(TFD). Tzallas et al. [135] used different time-frequency analysis to calculate the power 
spectrum density of EEG signals. Energy fraction measures in the specific time-frequency 
window in TFD are extracted as features and feed into neural networks. High accuracy of 
detection is achieved. Boashash and Ouelha [136] used modified TFDs and a more compre-
hensive feature set consists of signal features, statistical features and image features extrac-
ted from TFD to handle multichannel EEG data recorded from neonates. A new criterion 
taking sensitivity into consideration was proposed for feature selection. Reduced computa-
tional cost and improved detection performance were obtained together.
Advanced techniques for time series analysis are also used for seizure detection. Celka and 
Colditz [137] used a computer-aided seizure detection system based on a nonparametric 
time series modeling method, singular spectrum analysis (SSA). By evaluating the proposed 
method on both real and synthesized data, a 93% detection rate was obtained and a false 
detection rate was less than 4%. Alam and Bhuiyan [138] transformed the raw EEG into the 
empirical mode decomposition (EMD) domain. Every raw time series was decomposed into 
nine intrinsic mode functions (IMFs) and the variance, skewness and kurtosis of each IMF 
are expected to be different when a seizure happens.
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Fig. 2-8. Time-frequency Distribution of Non-stationary Signals: (a, b) Two signals with 
frequency components that vary with time; (c, e) Welch power spectrum density estimation 

and time frequency distribution of the signal in (a); (d, f) Welch power spectrum density 
estimation and time frequency distribution of the signal in (b).
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Although EEG reflects the electrical activity on the scalp or in the brain directly, other phy-
siological signals can serve as useful complements. Greene et al.[139] used 41 HRV-based 
features and linear discrimination model, and achieved considerable detection accuracy in 
comparison with EEG-based methods. Patient-specific models provide higher accuracy. 
Qaraqe et al.[140] proposed a method using fused multichannel EEG signals and single-
lead ECG signals. A matching pursuit Wigner-Ville distribution (MPWVD) is used to ex-
tract features from HRV. Multichannel EEG signals are first enhanced by a common spatial 
pattern (CSP)-based algorithm and then decomposed by multiresolution wavelet transforms 
into four sub-bands. The energies of four sub-band signals are computed as features. A data 
fusion technique reduced the false alarm rate significantly at the expense of a slightly in-
creased detection delay [56]. 
Deep learning is a revolutionary paradigm which has overwhelmed the whole machine 
learning community, especially in the field of computer vision and natural language 
processing where great success has been achieved. And the influence of deep learning has 
spread to epileptic seizure monitoring. Thodoroff et al. [141]developed a recurrent neural 
network framework taking image representation of multichannel EEG data as input for 
automatic seizure detection. Significant higher sensitivity and lower false alarm rates in 
comparison with state-of-art algorithms across all patients were obtained. It is worthy of 
notice that the proposed deep learning framework works more robustly under missing 
channel conditions than the compound of handcraft features plus SVM. Acharya et al. 
[142] used a 13-layers deep convolutional neural network (DCNN) to perform computer-
aided seizure detection. However, the data used in this research was limited and the amount 
of parameters in this DCNN is much larger than the number of data, so an extreme over-
parametrization was conducted. Seizure prediction leveraged by deep learning has also been 
reported [143]. Representation learning methods for feature learning are also investigated 
[144]. 

2.3.2. Nonlinear Dynamics

Various measures of the complexity of a function stem from the research about nonlinear 
dynamics are used to discriminate physiological processes under different pathological 
conditions [145]. These methods propose a different paradigm and independent information 
compared to that acquired by classical spectral analysis and non-stationary signal processing 
techniques. In classical spectral analysis, a signal is treated as a function and is correlated 
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with harmonics of different frequencies. Coefficients are thus employed to measure 
the ‘intensity’ of different frequency components in this signal. While for most of non-
stationary signal processing methods, similar operations were performed on different time 
scales and different resolution levels. And the signal is not necessarily to be correlated with 
trigonometric functions. Instead, more functions with desired characteristics can be used 
(wavelets). Furthermore, in-situ process without the need of another function was developed 
[146]. For all these methods, only homogenous descriptions (a set of weighted and mutually 
independent feature vectors, describing homogenous properties of interest) can be expected 

because the trigonometric functions and ‘wavelets’ are served as the basis of  
space. The internalcorrelations and similarities of a signal are ignored. Different from the 
‘decomposition-and-superposition’ paradigm where data segments are treated, in some way, 
individually first, and then accumulated, correlations and similarities in a function (signal) 
can be reflected by such measures derived from nonlinear dynamics, so these measures of 
complexity can provide information sometimes unattainable by other methods.
‘Entropy’ and ‘dimension’ are widely used in this area to measure the ‘complexity’ of phy-
siological signals, in signal level or feature level. However, different entropy measures have 
different meanings in terms of their theoretical roots [64,65]. Among them, sample entropy 
[145], approximate entropy [149], multi-scale entropy [150] and distribution entropy [151] 
were developed. 
According to [134], EEG signals can be decomposed up to four levels and reconstructed 
signals approximately correspond to five EEG sub-bands. Correlation dimension and largest 
Lyapunov exponent (LLE) are calculated on each sub-band signal. These parameters only 
show differences with statistical significance in sub-band signals rather than the original si-
gnals. 
Approximate entropy [149] is one of the most frequently used measures in epilepsy re-
search. It can discern the changing complexity of a dynamic system with relatively few 
observations (data points). Heuristically, approximate entropy estimates the probability 
or tendency that patterns close to each other will remain close to each other. In [39,75], 
approximate entropy is calculated at the signal level and feature level as a discrimi-
native parameter. Liang, Wang, and Chang [153] reported that the combination of ap-
proximate entropy and spectral features provides robust seizure detection. It was also 
found the better ability of approximate entropy to discriminate between ictal and inter-
ictal EEG recordings. Guo et al. [152] used multiwavelet transform to decompose EEG 
signals into sub-bands and also approximate entropy are estimated on sub band signals 
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respectively.
Labate et al. [154] proposed multiscale permutation entropy (MPE) and justified its ability 
to separate patients with epilepsy from healthy controls. Kannathal et al.[155] compared 
four kinds of entropies measures with respect to their ability to seizure detection, including 
spectral entropy, Renyi entropy, Kolmogrov-Sinal entropy and approximate entropy. All the 
entropy measures showed significant lower values on epileptic group compared to control 
group.
Polychronaki et al.[156] evaluated the accuracy and three kinds of algorithms estimating 
the fractal dimension (FD), Katz’s algorithm, Higuchi’s algorithm and k-nearest neighbor 
(k-NN) algorithm. Only the k-NN algorithm showed consistent changes approaching a 
seizure’s onset. 

2.3.3. Network Science 

The research on epilepsy is also inspired by network science [157]. Complex networks are 
graphs with huge numbers of nodes and edges connected. The connection can be direct 
or indirect, weighted or unweighted, and could even evolve with time. The ‘nodes’ and 
‘edges’ are abstractions of ‘entities’ and ‘relations’ in the real world. With a graph, the 
relations between entities of interest could be modeled. However, network science not only 
pays attention to the topology of a graph, which is the focus of classical graph theory, but 
also cares about the dynamics and the equilibrium of a network and the control strategy 
for different purposes. The influence of network science proceeds along two theoretical 
approaches. Due to the anatomical basis of human’s brain, a complex network is an analogy 
of the human brain on many important aspects. The use of mature methods developed in 
network science to depict the topology of an anatomical brain network may help explain the 
structural and functional abnormity of the brain of patients with epilepsy. Another approach 
is relatively suggestive. Graph and time series are two distinct kinds of mathematical 
objects. Heuristic transformation rules are proposed to set up a bridge between them. When 
physiological signals are transformed into graphs, matured methods in network science 
can be applied directly. For such a graph, periodicity is ill-defined. Instead, topological 
properties describe the physiological signal in a very different way.
Ortega, Sola, and Pastor [158] generated a minimal spanning tree (MST) from the correlati-
on matrix whose entries are Pearson correlation coefficients between pairwise multichannel 
electrocorticogram (ECoG) recordings and identified the so-called local crucial node (LCN) 
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which has largest average correlations with its first neighbors as an indication for epilep-
togenic zone localization. Ponten, Bartolomei, and Stam [159] used synchronization like-
lihoods instead of Pearson correlation coefficients to calculate a similar square matrix and 
then transform it into a binary graph with adaptive thresholds. Larger clustering coefficients 
and higher characteristic lengths were observed on data collected from patients with tem-
poral lobe seizures. The brain network seems to exhibit small-world properties during ictal 
period of seizure.
Zhang and Small [160] were the first to bridge time series to complex networks. They 
found pseudo periodic time series with different dynamics, when being transformed to a 
complex network, exhibit distinct topological structures. Lacasa et al. [161] introduced 
visibility algorithm constructing a graph remains invariant under affine transformations of 
the original time series. Zhu, Li, and Wen [162] proposed a modified algorithm, called fast 
weighted horizontal visibility algorithm (FWHVA). Mean length of the transformed graph 
as feature is efficient to distinguish seizure from healthy. Wang and Meng [163] constructed 
a functional brain network with MEG data. The individual nodes correspond to specific 
brain areas while the connections between nodes are determined by the degree of phase 
synchronization. Significant differences between the clustering coefficients and shortest 
path length of the functional brain network of patients with epilepsy and healthy control 
are confirmed. Diykh, Li, and Wen [164] constructed weighted undirected networks from 
feature vectors instead of raw data. The modularity of transferred network outperformed 
other network characteristics. Wang et al. [165] studied the EEG seizure patterns’ influence 
on detection performance. A visibility graph algorithm and two derivatives are applied on 
EEGs recorded from epileptic patients with intellectual disability. Features based on degree 
distribution were found efficient in distinguishing seizure EEG from background EEG and 
improved the detection accuracy on intellectually disabled patients whose seizure patterns 
are highly varied. 
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In Chapter 2, we reviewed the methods of existing seizure detection methods and the 
wearable technologies and devices. Traditional neonatal seizure diagnosis is mainly 
judged with VEEG signals. Clinically used seizure detection methods are based on Video 
and/or EEG diagnosis and AEEG-based diagnosis. In clinical practice, diagnosis draws 
a conclusion according to the results of observations on EEG and/or video recordings 
experienced clinicians have made. Not only featured with considerable time consumption, 
but it also is confined to the inter-observer variability influenced by its subjective nature [10], 
[13], [166]. As a simplified method, tracing was first generated from timely compressed 
EEG information, used to provide information in real-time. It is a kind of detection and 
evaluation of seizures. Amplitude-integrated electroencephalogram (AEEG), comparatively, 
is to utilize a fewer number of electrodes to collect EEG information [47]. Moreover, EEG 
monitoring in neonates can be only conducted in a dedicated hospital environment. EEG 
cup surface electrodes and gel electrodes may also lead to skin lesions. In addition, the 
deployed electrodes with wires connected to monitoring facilities are likely to interfere with 
infant movement and result in missing detection.
Many researchers have begun to diagnose neonatal seizures through non-EEG signals. 
For example, Osorio et al. [52], [53] explored and verified the value of heart rate in the 
detection of clinical seizures. C. P. Panayiotopoulos et al. developed a wearable wireless 
surface electromyography module to determine the occurrence of the generalized tonic-
clonic seizure (GTCS) [57]. In recent years, many researchers have used motion signals to 
detect seizures, which is not yet used in newborns currently. At the same time, researches 
on wearable technology for newborns are also growing rapidly. Chen et al. incorporated the 
textile electrodes in a smart jacket to monitor infants’ ECG signal and improved the quality 
of the ECG signal by optimization of the electrode structure and location [57]. 
Researchers in the University of Southampton [167], [168] have recently worked out a 
silver paste. They printed the silver pastes onto non-woven textiles with which a new 
model of ECG monitoring device was then born in wearability. In addition, Zhang et al. 
have also proposed a wearable RIP based on respiratory monitoring devices. Such a type 
of instrument was devised deliberately for respiratory biofeedback training [77], [169]. 
Furthermore, it can be seen that the newborn wearable motion monitoring system has been 
also drawing more and more attention. Between 2010 and 2016, 20 articles on wearable 
newborn motion monitoring mentioned that motor signals of newborns could be obtained 
with the help of acceleration sensors [12], [92], [96]–[99], [101]–[110], [112], [113], [115], 
[117].
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Fig. 3-1.  Iterative process of system design

In this context, we propose to solve the problems occurring in neonatal seizure monitoring 
through a combination of a ‘flexible sensor network’ and ‘multimodal signal fusion 
technology’. We diagnose neonatal seizures by combing multimodal physiological 
parameters (electrocardiogram, respiration) and motor signals to achieve comfortable, 
continuous and effective neonatal seizure detection and prediction, hoping to provide new 
research directions and perspectives for neonatal seizure monitoring.
The whole process of this system design involves interdisciplinary efforts in the field of 
medical science, industrial design, user research, sensing technology, electrical engineering, 
clothing design and software design. In order to better realize the effectiveness and usability 
of the system, we designed the whole system based on “The Process of Innovating Medical 
Technologies”, adopting a rapid iterative method [29]. In contrast to “The Process of 
Innovating Medical Technologies”, we have determined the neonatal seizure diagnosis as 
the design scope at the beginning of the project. The iterative process of system design is 
shown in Figure 3-1, divided into three parts, namely requirement discovery, solutions and 
program verification.
The “requirement discovery” is arranged to select promising design opportunities according 
to clinics and related technology and collect medical needs through observation. Then in 
the section of "solutions", we propose the framework concept of solutions based on the 
design requirements and realize the prototype implementation. Finally, the usability test and 
validity test are conducted in the “program verification”. The next iteration cycle will be 
carried out based on these test results and feedback. 
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3.1 Requirement Discovery through Design Methods that 
Combine Technical and Medical Background

There are three main steps in the requirement discovery part, namely, information retrieval, 
clinical observation and user interviews. The "Requirement Discovery" process starts 
from information retrieval, and we summarize clinical problems and the existing feasible 
technologies. Through the combination of various aspects of information to find out the 
possible design opportunity. We define the target users according to design opportunities 
which finds out by information retrieval. Then clinical observation and user interviews 
were carried out to find out the problems in the actual environment and clarify design 
requirements. The whole process of user interviews and clinical observation was conducted 
in China, so the results obtained were limited.

3.1.1. Information Retrieval

In chapter 2, we have conducted relevant information retrieval aiming at the Clinical 
symptoms of neonatal seizures, detection methods, the latest wearable technology and 
clinical issues. The summarizing of the information retrieval is shown in table 3-1.

Table 3-1. Summary of neonatal seizure-related symptoms, existing detecting 
techniques and related techniques.
Technology 
(wearable 
technology for 
neonate) 

Clinical symptoms 
(seizure-related 
symptoms) 

Detection 
of seizures 
(techniques 
already used 
clinically) 

Issues conclusion

Wearable 
monitoring of 
electrocardiogram

Electroencephalography 
abnormality

Video- EEG- based 
judgement

Uncomfortable EEG 
diagnostics, possible 
miss detection

Wearable motion 
monitoring 

Convulsive seizure EEG-based 
judgement

EEG testing cannot 
be carried out for long 
periods of time
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Wearable 
respiratory 
monitoring

Fast eye movement 
sleep phase

AEEG-based 
judgement

A large number of 
wires affect newborn’s 
sleep

Wearable 
monitoring of 
myoelectric

Abnormal movement 
of the limbs

Video observation 
is too limited and 
inefficient

Wearable 
monitoring of 
temperature 

Chewing movement

Wearable 
monitoring of SPO2

Abnormal heart rate

According to the results, the existing detection technology is mainly dominated by 
electroencephalography, which is expensive, specific environmental support needed, 
and is not suitable for long-term detection. Amplitude Integrated EEG (AEEG) is a 
simplified method that has been used by neonatal units in many parts of the world. 
Although the detection rate of epilepsy has increased, the detection rate of neonatal 
seizures is higher because of excessive pseudo-interference and the lack of video 
recording equipment. Compared with electroencephalogram testing, video observation 
is based on the experience of doctors and has great limitations. In addition, we found 
that newborn seizures displayed not only abnormal electroencephalogram, but also 
abnormal movements, heart rate and respiratory. In recent years, the study of convulsive 
detection methods based on non-brain electrical signals has been increasing and the 
feasibility of such methods has also been proven. On the other hand, it can be seen 
from the table that the wearable detection technology of non-brain electrical signals has 
become a feasible technical solution.
So, we found a design opportunity and proposed a hypothesis that a combination of 
"wearable monitoring technology" and "multimodal signal fusion technology" could be used 
to solve problems in neonatal seizures monitoring. Thus, enabling comfortable, continuous 
and efficient neonatal seizure detection. However, clinical problems in information retrieval 
are often incomprehensive. We need clinical observation and interviews to further clarify 
and refine our design requirements.
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3.1.2. Clinical Observation

Clinical observation is arranged to understand users’ real application scenarios and 
treatment methods, observe problems encountered in the actual scene, and analyze the 
causes of the problems. We summarize the special events in the observation process and 
analyze the causes of the events.
Location of observation: In the NICU Ward 2 of Children's Hospital affiliated with Fudan 
University.
Scene of observation: The recorded scene of a seizure in a neonate who was admitted 
to the hospital with a seizure. Two scenarios involved: (1) Nurses record EEG signals by 
wearing an EEG cap on babies; (2) Nurses observe the seizures of neonates with the eye.
Time: Five-day observation in the NICU ward and day-to-day participation in the entire 
work of nurses and doctors.
Results：

Table 3-2 summarizes the problems we found in the clinical observation. The problems we 
found were briefly summarized and analyzed.
Through clinical observation, it is found that the method to record and judge neonatal 
seizures mainly depends on the EEG and video. However, because of the fragile skin of 
infants, the detection time of EEG should not exceed 4.5 hours. As a result, many sudden 
seizures occur were not recorded. In addition, there are more patients and fewer nurses 
in China, which makes it difficult for nurses to care about the situation of all patients, 
especially at night. In this case, many neonatal seizures are also ignored.
Besides, it was complicated to use EEG detection equipment, which cost nurses 15-
30 minutes to wear EEG caps for infants. What’s more, EEG detection equipment was 
connected with an EEG cap and instrument through a data cable, so infants cannot move in 
the process of EEG detection. As a result, some tests cannot be carried out simultaneously 
with EEG.
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Table 3-2. Summary of Clinical observation
Events in observation Explain Conclusion
Record and judge the seizure and 
brain damage by Video and EEG 

Video-EEG is the golden 
standard for judging seizures. 
Expert usually diagnose 
seizures by means of 
electroencephalography (EEG). 
When the diagnosis is not 
certain, secondary confirmation 
via video is required.

Clinically, no other 
device can detect 
seizures except EEG 
device.

It takes nurses a lot of time (15-30 
minutes) to wear EEG caps.

Since wearing the EEG caps 
requires the adjustment of the 
contact impedance of each 
electrode, it results in a long 
wearing time.

Operating difficulties

Long-term electroencephalogram 
monitoring sometimes damages 
the skin of the baby's head.

Because the infant’s sleeping 
position is not fixed, and the 
electrodes of the EEG cap are 
hard, so long-term measurements 
can easily cause skin damage. 

Uncomfortable 
wearing

An electroencephalogram can 
only be recorded for about 4 
hours, resulting in four hours 
of electroencephalography 
data often not accompanied by 
seizures.

Due to long-term measurements 
can easily lead to skin damage, 
an electroencephalogram can 
only be collected for about four 
hours at a time.
Neonatal seizures are sudden, 
and it is difficult to tell in 
advance whether seizures occur 
within four hours.

Lack of long-
term neonatal 
seizure monitoring 
equipment.

Cleaning and disinfection of EEG 
caps

EEG caps are reusable and 
require contact with different 
newborns, so they need to be 
cleaned and disinfected after 
each use.
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When the neonatal seizures 
happened, the nurse did not 
discovered them.

With many patients and fewer 
nurses in China, it was difficult 
for nurses to care about the 
situation of all patients, 
especially at night. 

Lack of long-term 
neonatal seizure 
monitoring and alarm 
equipment.

In the process of EEG detection, 
the infant cannot move, resulting 
in some tests cannot be carried 
out at the same time.

Because EEGs require wired 
connections to large devices, 
they are not easy to move and 
can only be operated in a fixed 
location.

The device is not 
portable.

3.1.3. User/Expert Interviews

Interviews, an important part of “requirement discovery” " is designed to identify the 
user’s essential goals, the task flow, the current use condition and opinions of the existing 
products. We interviewed six volunteers face-to-face, including five nurses in the NICU 
ward and a pediatrician, all from the Children's Hospital of Fudan University.
 They need to clinically pay attention to the occurrence of neonatal seizures and to operate 
brain function instruments to collect the brain electrical signals of a newborn baby with 
seizure. In this study, the subjects mainly included doctors and nurses who had direct 
contact with neonatal seizures occur.  The content of this interview mainly focuses on the 
characteristics and the current detection methods of neonatal seizure, and the corresponding 
problems in the detection process.
We summarize in the following table with key statements through user interviews:

Table 3-3. Summary of User/expert interviews
Key words/short sentences are obtained in interviews. 

Sentence: It is difficult to detect neonatal seizures through real-time observation. 
Explain: There are no 24-hour continuous monitoring and seizure alarm devices in 
hospitals (In China), which makes neonatal seizures easily overlooked by doctors, 
especially at night.
Conclusion: Lack of long-term neonatal seizure monitoring and alarm equipment. 
Source: Nurses and Doctors
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Sentence: Whether seizures happen or not are recorded and judged by video and EEG.
Explain: The current gold standard for judging neonatal seizures is to combine EEG and 
video observations to determine whether neonatal seizures occur or not.
Conclusion: The method of seizure detection is single.
Source: Doctors
Sentence: The data is stored in the database
Explain: The data need to be stored for secondary diagnosis, further consultation or 
analysis.
Conclusion: Data needs to be stored
Source: Doctors
Sentence: EEG collection equipment is troublesome to wear.
Explain: The existing EEG equipment needs to be configured with an EEG cap to 
configure the position of the 8-lead, each of which needs to smear conductive paste to 
reduce the impedance for normal and smooth work. It is very time consuming usually 
taking 15-30 minutes to wear a single electric cap.
Conclusion: Operating difficulties
Source: Nurses 
Sentence: The time of EEG detection cannot exceed 4 hours one time.
Explain: Because the baby’s sleeping position is not fixed and the electrode of the EEG 
cap is often convex or hard, prolonged compression may easily lead to skin damage.
Conclusion: Lack of long-term neonatal seizure monitoring equipment.
Source: Nurses and Doctors
Sentence: Abnormal behaviors occur during neonatal seizures.
Explain: The occurrence of neonatal seizures was often accompanied by abnormal 
movements, which are medically explained and consistent with our previous findings.
Conclusion: Seizures occur can be identified by movement monitoring
Source: Nurses and Doctors
Sentence: Sudden seizures were difficult to be captured and recorded.
Explain: Neonatal seizures were irregular sometimes and sudden usually, increasing the 
difficulty for the doctor to capture and record.
Conclusion: Lack of long-term neonatal seizure monitoring and alarm equipment.
Source: Nurses and Doctors
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3.1.4. Requirements Summary 

Figure 3-2 shows the design criteria acquisition process. Based on information of 
information retrieval, clinical observation and user interview, we extracted a requirement 
for a neonatal seizure detection system: There was a requirement for a method to long-time 
and comfortable detect the neonatal seizures occur. Based on the requirements description 
and survey results, we have developed the design criteria. 

Fig. 3-2.  Design criteria acquisition process

The design criteria were discussed by experts, nurses and designers, and divided into “criteria 
of necessary to have” and “criteria of better to have”, as shown in table 3-4. The " criteria 
of necessary to have " must be met by the solution. This is the key to the adoption of the 
method. " criteria of better to have " may enhance the attractiveness of the method [29].
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Table.  3-4. Requirements summary
Necessary to have Better to have 

Can detect the occurrence of neonatal seizures Easy to wear 

Can be used for long-term monitoring Portable - wireless transmission 

Does not damage newborns skin The skin contact part can be cleaned or 
disinfected or disposably used 

Can store data Real-time display of signals

Can provide alarm of neonatal seizure

According to the required standard, we put forward the conceptual framework from method, 
form and function, three aspects to meet the design requirement, as shown in Figure 3-3. 

Fig. 3-3.  Conceptual framework from

In order to realize the requirement, the combination of flexible sensing network and 
multimodal signal (electrocardiogram, respiratory and motion signals) fusion technology 
was provided to solve the existing problems in neonatal seizure monitoring to achieve 
comfortable, continuous and efficient neonatal seizure detection purposes. We have 
proposed the following technical routes.  As shown in Figure 3-4, mainly includes multi-
modal physiological and behavioral parameters acquisition, data transmission and multi-
modal signal fusion analysis for neonatal seizure detection. The specific research methods 
and technical routes are introduced in the following 3.2 -3.4.
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Fig.  3-4.  System architecture

In Section 3.2, we introduce the design of the multi-modal wearable sensor system, 
including system architecture design, hardware design, smart vest design and software 
design. The system design realizes the function of signal acquisition and data transmission. 
In Section 3.3, we verify the signals collected by the system. Finally, the clinical data 
collection of neonatal seizures and the multimodal signal fusion method for detecting 
seizures are introduced in section 3.4. 

3.2 System Design of Multi-Sensor Platform

Fig.  3-5.  System architecture
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The proposed solution is described in Figure 3-5. In the proposed system architecture, a 
smart vest is introduced with flexible-material based sensors to acquire ECG, motion and 
respiration signals for signal acquisition. Choice of flexible materials for sensors and cloth 
for the vest together with the structure of the smart vest have been taken into consideration 
to achieve high signal quality and a better user experience for newborns.  The data 
generated by the hardware system in the smart vest are transmitted to the local terminal for 
real-time monitoring with application and uploaded to the cloud platform simultaneously 
by local terminals. Another control terminal connected with the cloud platform will help 
doctors to analyze neonatal health status.

Fig.  3-6.  Block diagram of the wireless neonatal monitoring system.

Figure 3-6 shows how the system framework is designed, which was divided into three 
parts: data collection, data transmission, data display and analysis.
In the data collection section, we designed a smart baby suit embedded with motion sensors, 
flexible textile electrodes, PDMS-Graphene (PDMS-G) compound and conductive wires 
to provide a comfortable clinical monitoring environment for infants. The microcontroller 
system collects the sampling signal of multiple chips, and uses the low-pass filter drop 
sampling process to transmit the data through the Bluetooth module in the form of packets. 
The ECG acquisition front end, controller, Bluetooth transmission module, and battery 
will all be embedded in an external plush toy. Too many components placed on the baby’s 
body affect the baby’s movements and reduce the baby’s comfort, so we only embedded the 
inertial measurement unit (IMU), PDMS-G compound and flexible electrodes into the baby 
suit, while other components were connected by an external connector.
Motion signals, breathing signals, and ECG signals were transmitted via Bluetooth module 
to software, and the data were visualized on a computer or mobile device. At the same time, 
the software achieved the operation of the convulsive detection algorithm. When a seizure 
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was determined, the system automatically alerted. All data were automatically stored on the 
terminal. The method of neonatal seizure detection based on multi-signal fusion is described 
in detail in Section 3.4

3.2.1. Hardware Design

Figure 3-7 shows the technical framework of the hardware, including data acquisition, data 
processing and transmission. The signal acquisition consists of an ECG signal acquisition 
module, a motion signal acquisition module and a respiration signal acquisition module. 
The signal processing and transmission module was mainly composed of the ECG front 
end (ADS1292), the MSP430 microcontroller and the CC2564 Bluetooth and power supply 
module.
The system works as follows:
(1) The data was carried out by each signal acquisition modules, including motion sensors, 
respiratory sensors and ECG sensors.
(2) Microcontroller MSP430 communicates with each signal acquisition module through 
the Serial Peripheral Interface (SPI) bus and collects data.
(3) Low pass filter was used to sample down.
(4) The collected data will be sent to the computer via Bluetooth module.

Fig.  3-7.  Hardware architecture

a. Data acquisition module
The signal acquisition module consists of a respiration sensor, ECG electrodes 
and motion sensor, which was used to collect the physiological and motion signals 
of infants. To accommodate high-quality signals with a comfortable monitoring 
environment, we have designed PDMS-G compound sensors for capturing respiration 
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signals, textile electrodes for collecting ECG signals, and small motion sensors for 
collecting motion signals.

Respiration sensor
There exist a variety of methods to detect respiration, mainly covering Acoustic Based 
Methods, Airflow Based Methods, Chest and Abdominal Movement Detection, Transcuta-
neous CO2 Monitoring, Electrocardiogram (ECG) Derived Respiration Rate and so on [170]. 
Among them, mercury strain gauges or impedance methods can be deployed to measure 
chest and abdominal wall movements [171]. Respiration inductance plethysmography is a 
non-invasive technique that measures respiration rate through two bands, a thoracic strap 
placed around the thoracic cage and an abdominal belt placed on the abdomen at the level 
of the umbilicus. Both are made of an extensible/deformable conductive material, an ex-
tremely fine wire or thin foil able to maintain its conductivity during the stretching process. 
The principle of the strain gauge sensor roots in the direct proportion of the resistance and 
area of the conductor in respiration [172]. In this work, we developed an advanced PDMS-
Graphene compound material-based sensor and embed the new sensor into clothing to de-
tect newborns’ respiration signals. 

Fig.3-8. Schematic illustrations of fabrication procedures based on solution mixing-casting 
molding method for PDMS-graphene compound

We manufacture PDMS-G compound to monitor respiratory signals unobtrusively. 
The steps of the fabrication procedures are presented schematically in Figure3-8.  
PDMS, Graphene sheets and xylene are the main raw materials of the PDMS-Graphene 
compound. 8 g PDMS prepolymer, 0.8 g curing agent, 1.2 g graphene sheets are added 
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into a beaker with 60 mL Xylene. Then the mixture is bath sonicated for 40 minutes 
and then stirred for another 3 hours to extensively disperse the graphene sheets. After 
that, we poured the mixture into a glass plate to evaporate the xylene under ambient 
conditions. In the end, it was cured at 65 ºC in an oven for 3 hours to obtain the final 
product. 
Figure 3-9 shows the tensile state and the original state of the new tensile sensor 
(PDMS-G compound) respectively and demonstrates the feasibility of changing the 
conductivity of the sensor with the use of the new tool. To better get access to the 
changes of the abdomen during newborns’ respiration, the sensor is designed to be put 
on the elastic band on the abdomen. Therefore, the length of the elastic band changes 
with the chest in the process of newborns’ respiration, which helps to extract respiration 
signals through these changes.

Fig. 3-9. Resistance change while PDMS-Graphene compound is stretching. The original 
state of material (right); The stretched state of material (left).

The respiratory signal acquisition was connected to the analog-to-digital converter (ADC) 
of the single chip computer by the PDMS-G compound through the voltage dividing circuit. 
As shown in Figure 3-10, one side of the signal acquisition module was connected to the 
voltage source VCC while the other side is connected to the 12-bit AD converter on the 
signal processing module, and the offset resistance R0 was grounded. The change of breath 
over time was obtained by using the analog-to-digital conversion unit of the single chip 
computer.
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Fig. 3-10. Circuit diagram for respiratory signal acquisition.

ECG sensor
Conductive E-textile material is chosen to obtain ECG signal based on the above men-
tioned requirements [173]. After several iterations, comparing the properties of different 
materials, we used a conductive material to make the electrodes. The model of textile 
electrodes is from Berlin RS of Shieldex Company named as textile-based electrodes. 
They are flexible, non-irritating, lightweight (0.055 kg/m²), thin (0.11mm), low resis-
tance (< 0.5 ohms/sq) and convenient to be integrated into the side of the clothing.
The textile electrode is designed to be disposable, because it will be affected by stains 
and sweats after use. We put forward a new flexible electrode structure in the proposed 
system. To ensure the stability of the electrode connection, the connection structure of 
the flexible electrode is proposed so that the electrode can be replaced, as shown in Fig-
ure. 3-b.

                         （a）                                                                           (b)
Fig. 3-11. (a) Textile electrode prototype; (b) Construction of textile electrodes

The electrode consists of three parts, a metal lead button, E-textile, and Regular 
Cotton.  E-texti le is  connected to the metal  lead button.  Regular Cotton is 
sandwiched between the E-textile (up) and the E-textile (down), the periphery 
of E-textiles up and down is stitched by sewing. Motion artifact is one major 
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challenge that textile electrodes face. The proposed sandwich little cushion style of 
design improves the contact during a relative movement between the skin and the electrode 
perpendicular to the skin, which helps to improve the signal quality during motion.
The textile electrode was connected to the ADS1292 module by wire. ADS1292 was 
adopted as a low-power, 2-channel, 24-bit analog front-end, for ECG measurement. 
It has the characteristics of low noise, high precision, high resolution, high common 
mode rejection ratio and high transmission rate. With its high integration and excellent 
performance, ADS1292 can realize the establishment of a scalable medical instrument 
system on the premise of greatly reducing size, power consumption and overall cost. It 
is suitable for the application of this chip in wearable equipment. The chip uses the serial 
peripheral interface (SPI) protocol to communicate with the microprocessor.
When the register reads the data, the first communication number, CS, was set to 0, and the 
data input two bytes, with the first representing the first address of the register read and the 
second representing the number of registers to be read n minus one, followed by the output 
n byte corresponding to the corresponding number of register-stores stored data. When 
the register writes the data, the first communication number was set to 0, and the data was 
entered two bytes, with the first representing the first address of the register written and the 
second representing the number of registers to be written to the data n minus one, followed 
by the input n byte corresponding to the corresponding number of registers that will be 
written data.
Motion sensors 
Recently, inertial sensors has been widely used in ambulatory motion analysis [174]. 
To obtain accurate motion measurements, IMUs, integrating the accelerometers, gy-
roscopes, and magnetometers are often used.
In the second chapter, we searched for studies related to wearable motion moni-
toring in newborns in recent years. From the search, it can be found that 20 of the 
30 articles used acceleration sensors. With the development of technology, inertial 
sensors (IMU, accelerometer, magnetic inertia) have become the research hotspot in 
the field of motion sensing. Due to its low cost, portable size and high performance, 
more and more researchers believe these sensors are a good choice for infant mo-
tion monitoring.
Therefore, the inertial sensor (IMU) MPU9250 is used in this project. It is a 
nine-axis motion tracking device developed by Invense, which combines three-axis 
acceleration, three-axis gyroscope and 3-axis magnetometer, compatible with SPI 
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and I2C transmission protocols, and is capable of simultaneously outputting all 
nine-axis data.
In order to make the sensor smaller and lighter, we integrate MPU9250 into a PCB 
with a diameter of 0.8cm, and connect it with a signal processing module through 
SPI. The motion sensor we designed is shown in figure 3-12, which is only 0.9g. 

Fig. 3-12. Motion sensor

The motion signals are transferred to MCU via SPI using Flexible Printed Circuit (FPC) 
cables. Data is stored in byte format and address is also stored in byte format. The highest 
bit is 1 for reading while the highest bit is 0 for writing.
b. Data processing module 
The system uses MSP430F5529 as the control chip. Compared with other microcontrollers, 
the series of micro-controllers are very suitable for the processing of ECG signals with the 
advantages of ultra-low power consumption and rich on-chip peripherals. In the MSP430 
series of chips, the MSP430F5529 not only meets functional requirements, but also has the 
advantages of low overall power consumption and cost.
(1) Microprocessor workflow
The workflow of MSP430F5529 is shown in Figure 3-13. The peripheral and SPI 
configurations are initially initialized, then the configuration sensor is read through the 
registers and the four flag bits in the diagram are initialized, and the filter is preprocessed 
for the data to turn on the global interrupt when it is ready. After processing, if the direct 
memory access (DMA) transmission flag bit DMA-Done is 1, the data bus is connected 
directly to the Bluetooth side by DMA to send the data. 
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Fig .3-13. Main program

(2) Program architecture
The program is composed of the main program occupying the kernel and two 

hardware interrupt service programs to realize the scheduling of multiple tasks such as 
timing sampling, timing sending, data sampling filtering, etc. As shown in Figure 3-14, 
through four global flags, the system works in a limited finite state machine(FSM)and 
can start by itself when the hardware works normally. Under this framework, the tasks 
of sampling, filtering and sending are executed separately. Each task does not affect each 
other, which ensures the real-time performance of the system, enhances the readability of 
the program, and improves the efficiency of modification and transplantation.

Fig. 3-14. The diagram of system state transition 
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c. Signal transmission module 
(1) Bluetooth module (CC2564)
CC2564 Bluetooth module was used as a wireless transmission module. The CC2564 
Bluetooth module is a dual-mode Bluetooth chip, supporting Bluetooth 3.0 and Bluetooth 
4.0 transmission. In addition, the CC2564 has good equipment compatibility and is easy 
to connect with computers, mobile phones, tablets and other devices. The serial port of the 
Bluetooth module was connected to the serial port of the MSP430F5529.
 (2) Data transmission process
All the signal acquisition modules were controlled and managed by the MCU (MSP430, 
Texas Instruments) at the sample rate of 500Hz. In order to achieve 500Hz sampling, 
the ‘timer interruption’ was called every 2 microseconds to acquire the signals through 
SPI sequentially. The 'timed interrupt 'is a task executed at a fixed interval to process the 
data. A finite impulse response (FIR) filter was used to control the bandwidth of the data 
transmission. The optimized signals were sent to the universal asynchronous receiver/
transmitter (UART) ports of the wireless transmission module (CC2564, Texas Instruments) 
through direct memory access (DMA) of MSP430. The block diagram of the system is 
shown in Figure 3-15. Also, a timestamp was added to the data package every 1 second to 
synchronize the time interval with the machine in the hospital. The processing procedures 
were controlled by a restricted finite state machine (FSM).

Fig. 3-15. The block diagram of MSP.
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(3) Design of data transmission protocol
The data package format is shown in Table 3-5. One data package in the system is 24 
bytes. The Frame Header field specifies the beginning of a package and contains 2 bytes. 
Moreover, the Length field shows the length of one package. The Check field is the odd-
even check result for the data in one package. In this project, HEAD_H=0x88, HEAD_
L=0x71, LENGTH=22, and the CHECK is odd even CHECK, with the value of the first 21 
bits of exclusive OR (xor). The format of the Data field is shown in Table 3-6. ACCEL0_
X, ACCEL0_Y and ACCEL0_Z stand for the tri-axis acceleration of the left wrist acquired 
by the IMU. ACCEL1_X, ACCEL1_Y and ACCEL1_Z stand for the tri-axis acceleration 
of the right wrist. ECG is the 24-bit digital signal gathered from ADS1292. RESP is the 
respiration signal gathered from the novel stretching sensor.

Table3-5 Data package format
Frame Header Length Data(17 bytes) Check

Head_H Head_L Length Data0 Data1 ... Data16 CHECK

Table 3-6 data field format
Data byte 0-1 2-3 4-5 6-7 8-9 10-11 12-13 14-16

Data ACCEL0_X ACCEL0_Y ACCEL0_Z RES_P ACCEL1_X ACCEL1_Y ACCEL1_Z ECG

3.2.2 Smart vest Design 

In the iterative design process of clothing, we mainly focused on the comfort of clothing, 
signal stability, and operation convenience. Nurses, clinicians, and costume designers 
participated in the discussion and evaluation during the design process. Figure 3-16 shows 
the final version of the prototype of the smart garment.
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Fig. 3-16.  Prototype of the smart vest

According to previous research experience [37], we choose knitted cotton fabrics to ensure 
comfort. The choice of knitting structure is critical because it is usually more ductile, 
flexible and breathable than others. In addition, proper elasticity is also very important 
for sensor immobilization, especially for ECG electrodes. Elastic fabrics can increase the 
stability of contact between skin and electrodes, which is an important condition for ECG 
signal detection. The whole structure of smart clothing adopts an open front-end design, in 
order to expose more skin in the process of continuous monitoring and reduce the impact 
of clothing on newborns. The bandage design with a magic sticker can make clinical nurses 
more convenient to operate, which is conducive to the fixing of sensors. In order to ensure 
comfort for newborns, we only integrate sensors into clothing to reduce the interference of 
components on newborns. The garment side is connected with a doll for placing the signal 
processing module, signal transmission module and battery.
The position of electrodes will affect the quality of ECG signals, so several studies have 
focused on the placement of electrodes on the body to determine the optimal location for 
ECG signal detection. Cho and Lee studied the signal quality of electrodes placed at 56 
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locations on an adult and found the best location was near the chest line, which was the 
smallest dynamic area of the human trunk [175]. Lanjun Yin et al. tested four different 
electrode positions on adults to verify the optimal electrode position [176]. ECG data were 
collected and analyzed by Vernier LabQuest device. The best clear signal was obtained by 
using chest and right waist positions, as shown in Figure 3-17. Later, Lanjun Yin et al. held 
a test on an infant. The results showed the infant’s body was so small and compacted that 
the three electrodes could cover a large area. So as long as they were located on the trunk 
and had good contact with skin, there was no significant difference in ECG signals reflected 
by different electrodes. In this project, the electrodes were placed on the left and right sides 
of the chest of the newborn, and the reference electrodes were placed on the abdomen, fixed 
by simple banding. By adjusting the magic tape, it can be suitable for newborns of more 
sizes. The experimental results show that this method can obtain high quality ECG signals. 
A detailed description of the experiment is given in Section 3.2

Fig. 3-17. The best placement of electrodes for ECG signal obtained.

The position of the motion sensor is also critical. In Chapter 2, we summarized the 
placement of motion sensors on newborns in recent studies. Most studies on infant 
movements have chosen to place sensors on the wrist or ankle. The results are not only 
related to the purpose of the study, but also because newborns tend to exercise more at 
the wrists and ankles than other areas, making it easier to obtain useful information. In 
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addition, in the clinical characteristics of neonatal convulsive attacks, four types of neonatal 
convulsive seizures may involve abnormal hand movements, such as cycling, boxing, 
jerking et.al. Therefore, in this project, we attach motion sensors to the newborn’s wrists in 
the form of straps to obtain motion signals from hands.
Unlike adults, newborns mainly depend on abdominal breathing, so we place the respiration 
sensor sits on their abdomen. The newborns’ breathing is reflected by detecting changes in 
the abdomen. The breathing sensor is placed on the inside of the abdominal strap and can be 
adjusted by magic paste.

3.2.3 Software Design

In software design, we need to meet three basic requirements of signal visualization, 
data storage, and seizure alert reminders. The neonatal activity scope is restricted, 
while the range of doctor/nurse activity is unlimited. Therefore, mobile devices 
were adopted and placed in the range of neonatal activity. The data of the smart vest 
was received by mobile software to ensure its integrity and sustainability. Mobile 
software transfers data to the cloud and stores it while receiving data. Mobile 
devices and PC (personal computers) can read real-time data from the cloud server 
for viewing.
Mobile software was designed based on an android development environment. 
Software programming adopts the method of modularization, with the main function 
modules like wireless data transceiver module, signal data acquisition module, 
historical data module and seizure alarm module all edited into independent 
functions, and called by the main program. The framework of the software system 
is shown in Figure 3-5. The function of the software system is divided into four 
modules, including user list, signal display, seizure alarm and history record, as 
shown in Figure 3-18.



Design of a wearable sensor system for neonatal seizure monitoring

·70·

(a)                                                                        (b)

(c)                                                                        (d)
Fig. 3-18.  Four modules of software, (a) User list, (b) Data real-time display, (c) Alarm 

signal for seizure, (d) History data.

User list
The purpose of the user list was to facilitate the monitoring of different neonates by nurses/
doctors. When nurses/doctors need to monitor a new neonate, they can add users in the 
user list module, ensuring that each infant has independent data storage space. When a new 
user ID is added, basic information of the user can be recorded, including the head picture, 
name, date of birth, weight and hospital code which is usually set according to different 
hospital standards.
For the data storage of new users, the ‘Leancloud’ cloud server is selected as the technical 
support. User information can be stored in the form of a table, as shown in Figure 3-19. 
Each record corresponds to a user’s information. 
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Fig. 3-19.   The form of user information in the ‘Leancloud’

Signal display
The Android terminal connects the hardware sensor device via Bluetooth and receives 
the raw data from the hardware device. The raw data is stored in a global data source for 
use by the waveform graph control. The waveform controls “Canvas” and “Paint” extract 
the corresponding ECG, respiration and movement data in real time and display on the 
interface. The HR, RR and motion characteristic values extracted by the algorithm are also 
displayed in the interface. Figure 3-18-b shows an overview of the elements in the signal 
display interface. The core code of the control is as follows:

// If the data in the set

        if(data.size()>1){

            if(FearActivity.reset){

                data.clear();

                return;

            }

            for (int i = 1; i < data.size(); i++) {  // Remove the data in turn for drawing

                canvas.drawLine(xPoint+(i-1)*xScale,(float)( yPoint-(data.get(i-1))*yScale-2*yScale), 

xPoint+i*xScale, (float)(yPoint-data.get(i)*yScale-2*yScale), paint);

                if (data. get(i-1)>2||data. get(i-1)<-2){

                    canvas.drawLine(xPoint+(i-1)*xScale,yPoint,xPoint+(i-1)*xScale,yPoint-

4*yScale,paint1);

                }

                if (i==599)

                    break;

                if (i>=20&&i<data. size()) {

                    double resultL = 0;
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                    double resultR = 0;

                    for (int j = 0; j < 20; j++) {

                        resultL = resultL + FearActivity.data3.get(i-j)*FearActivity.data3.get(i-j)+FearActivity.

data4.get(i-j)*FearActivity.data4.get(i-j)+FearActivity.data5.get(i-j)*FearActivity.data5.get(i-j);

                        resultR = resultR + FearActivity.data6.get(i-j)*FearActivity.data6.get(i-j)+FearActivity.

data7.get(i-j)*FearActivity.data7.get(i-j)+FearActivity.data8.get(i-j)*FearActivity.data8.get(i-j);

                    }

                    resultL = resultL/20;

                    resultR = resultR/20;

                    if (resultL> HomeBaseActivity.yuzhi || resultR>HomeBaseActivity.yuzhi){

                        canvas.drawRect(xPoint+(i-20)*xScale,0,xPoint+i*xScale,yPoint,paint1);

                    }

                }

            }

        }

Seizure alarm
The seizure alarm module was embedded in the software. The related algorithms will be 
introduced in detail in chapter 3.4. The storage of seizure data depends on the cloud service 
“leancloud”. The software will trigger an automatic storage function to store the current 
data in the “Leancloud” service cloud when a seizure is detected. Each record stores the 
user information and the time of the seizure. Meanwhile, the software can give visual and 
auditory alarm feedback.

Fig. 3-20.   The form of seizure alarm event in the ‘Leancloud’

Historical data
The historical data module provides a way for doctors to view historical data and diagnose. 
After receiving the data, the mobile terminal transmits them to “leancloud” through the 
wireless network. The data interacted between the mobile terminal and the clound server is 
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abstracted into [AVOobjects]. After each instance of AVObject is saved to the ‘leancloud’ 
cloud, the cloud will give the instance a globally unique ID. At the same time, the cloud 
will automatically add two attributes to the instance: ‘createdat’ and ‘updatedat’, which 
respectively represent the creation time and the last update time of the instance. For the data 
on ‘leancloud’, the main operations are data storage and data retrieval. 

The operation of save data is as follows:
  // Build the object

AVObject todo = new AVObject(“Todo”);

// Assign a value to the property

todo.put(“title”, “name”);

todo.put(“priority”, 2);

// Save the object to the cloud

todo.saveInBackground().subscribe(new Observer<AVObject>() {

    public void onSubscribe(Disposable disposable) {}

    public void onNext(AVObject todo) {

        // After successful saving, other logic is executed

        System.out.println(“Save successfully. objectId: “ + todo.getObjectId());

    }

    public void onError(Throwable throwable) {

        // Exception handling

    }

    public void onComplete() {}});

The operation of data acquisition is as follows:
AVQuery<AVObject> query = new AVQuery<>(“Todo”);

query.getInBackground(“582570f38ac247004f39c24b”).subscribe(new Observer<AVObject>() {

    public void onSubscribe(Disposable disposable) {}

    public void onNext(AVObject todo) {

        // todo is an instance with objectId 582570f38ac247004f39c24b 

        String title    = todo.getString(“title”);

        int priority    = todo.getInt(“priority”);

        // Get built-in properties
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        String objectId = todo.getObjectId();

        Date updatedAt  = todo.getUpdatedAt();

        Date createdAt  = todo.getCreatedAt();

    }

    public void onError(Throwable throwable) {}

    public void onComplete() {}});

3.3 Signal Verification of Multi-Sensor Platform

3.3.1	 System	Signal	Verification	Framework

A systematic verification method was proposed for wearable hardware systems with new 
materials involved. Figure 3-21 shows the framework of evaluation to verify the feasibility 
of the system by evaluating three kinds of acquisition methods respectively. The targets and 
methods are designed to objectively verify signal quality from a fundamental aspect to an 
actual use scenario. For the ECG signal acquired by textile electrodes, we first evaluate the 
electrical properties of designed electrodes by investigating the skin-to-electrode impedance 
to promise the signal quality at the very beginning. Then some statistical indexes are chosen 
to assess the signal quality in a standard equipment environment. After the evaluation 
process of the textile electrodes designed, they are applied to the new hardware system 
while ECG signals are collected accordingly. Three classical ECG signal quality assessment 
methods are applied to evaluate ECG signal acquired by the proposed system and finally 
we compare the ECG waveform with the clinical gold standard. Similarly, for the novel 
stretching sensor based on the PDMS-G compound, a feasibility experiment is designed 
at first. After that, the sensor is embedded in the system for comparison with clinical 
equipment. Moreover, since we use a commercial chip for the motion signal acquisition, the 
sensor verification method is omitted at this stage and we just compare the signal acquired 
by the system with the commercial Shimmer device.  
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Fig. 3-21.  Framework for the evaluation

3.3.2	 ECG	Signal	Verification

3.3.2.1 Flexible Textile Properties
1) Method 
To assess the electrode properties, we set up two experiments. One is to test the skin-to-
electrode impedance, and the other is about the signal quality of the test electrode in the 
standard equipment environment.
(a)Skin-to-electrode impedance
The impedance introduced by the skin-to-electrode interface of standard Ag/AgCl electrode 
and textile electrode is measured on a person’s forearm by an electrochemical workstation 
(ZAHNER - Zennium).
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Fig. 3-22. Experimental settings for evaluation of electrodes

The two-electrode system is used as depicted in Figure 3-22. Ag/AgCl electrode is deployed 
as a reference electrode. The work electrodes are chosen from the textile electrode and Ag/
AgCl electrode (Covidien, H124SG). The distance between the working electrode and the 
reference electrode is approximately 9 cm. We fixed the textile electrode with a strap. The 
frequency of the input signal sweeps from 0.1 Hz to 100 kHz. An impedance-frequency 
curve is drawn for each kind of electrode.
(b)Textile electrodes signal quality assessment
We compared the ECG signals acquired by the proposed electrodes and Ag/AgCl electrode 
(Covidien H135SG) using a standard acquisition system.
We collected data from the textile electrode and Ag/AgCl electrode simultaneously in a 
static state by shimmer 3 [177]. The study involved a 24-year-old male volunteer. Different 
electrodes were attached to the adjacent positions on the left and right sides of the subject‘s 
chest. We used shimmer-3 as a standard acquisition device. The acquisition time for data 
was one and a half hours. 
The following three statistical analysis methods were conducted to evaluate the signal 
quality acquired by the novel electrode. Heart rate per minute is extracted by the R wave 
detection algorithm implemented on MATLAB R2018a based on the classic QRS detection 
algorithm proposed by Willis. et al [178]. A bandpass filter with a passband of 5-15Hz is 
used to preprocess the data and the hamming window is applied for the function “fir1” in 
MATLAB. Then a dynamic threshold is determined every five seconds with 2500 values 
gathered from the system for the “findpeaks” function with the ‚MinPeakDistance‘ index of 
150 points which is 0.3 seconds in the time domain.
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 Correlation analysis
We extracted the average heart rate value per minute and compared the heart rate signals 
from two different electrodes in each group. Correlation analysis is calculated between heart 
rate information in each group. 
Bland-Altman analysis
Similarly, a „Bland-Altman analysis“ was performed on the average heart rate.
The standard Ag/AgCl electrode is used as the comparison detection system M1, and 
the textile electrode is the system M2 to be evaluated. The Bland-Altman analysis was 
performed to show the difference between heart rates detected by the two systems.
Paired sample T-test
Table 3-7. Selected time domain and frequency domain measures of HRV
Variable Units Description

           Analysis of short-term recordings (5 min)

SDNN ms Standard deviation of all NN intervals

RMSSD ms The square root of the mean of the sum of the squares of 
differences between adjacent NN intervals

SDSD ms The standard deviation of differences between adjacent NN 
intervals

NN50 Number of pairs of adjacent NN intervals differing by more 
than 50 ms in the entire recording. Three variants are possible 
counting all such NN intervals pairs or only pairs in which the 
first or the second interval is longer.

PNN50 % NN50 count divided by the total number of all NN intervals.

5 min total power ms² The variance of normal-to-normal (NN) intervals over the 
temporal segment.

VLF ms² Power in very low-frequency range

LF ms² Power in the low-frequency range

LF norm ms² LF power in normalized units
LF/(Total Power–VLF) ×100

HF ms² Power in the high-frequency range

HF norm nu HF power in the normalized unit
HF/(Total Power–VLF) ×100
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In order to compare the differences between the signals acquired by textile electrodes and 
standard electrodes, we compared a list of physiologically sound parameters (Table 3-7). 
These parameters are widely used to characterize the heart rate variability which reflects 
more fine-grained information about the dynamics of heart activity [179]. Five minutes of 
continuous ECG are taken as a segment of data, and the data collected for each type of elec-
trode can be divided into 18 segments. Paired T-test is adopted to support our claim that no 
differences in substance exist between those parameters retrieved from signals acquired by 
these three kinds of electrodes.
2) Results
(a) Skin-to-electrode impedance
Figure 3-23 shows the Z-f curves. Those curves respectively characterize the skin-to-
electrode interface of the proposed textile-based electrode and Ag/AgCl electrode (Covidien, 
H124SG). The frequency ranges from 0.1 Hz to 100 kHz. Test results suggest a decrease 
in the impedance introduced by the skin-to-electrode interface as the frequency of stimulus 
signal increases. Within the frequency range of most bio-potential signals, the smallest 
impedance (~500 Ohm in near dc range) is relevant to textile C-based electrodes. However, 
a slightly larger impedance also appears in correspondence to Ag/AgCl electrode, compared 
with that of textile C-based electrode about 575 k Ohm in near dc range. The differences of 
those outcomes are statistically significant with all data points larger than 0.95.

Fig. 3-23. Skin-electrode impedance of different electrodes
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(b) Textile electrodes signal quality assessment
Correlation analysis results
We extracted heart rates and did a correlation analysis and Bland-Altman analysis. Figure 
3-24 shows the results of the correlation analysis of the data from the utilized 90 epochs 
for Ag/Cl electrode versus textile-based electrode. The Pearson Correlation (r) of 0.92 
demonstrates a strong relationship between textile-based electrodes and Ag/Cl electrode in 
monitoring HR.
Bland-Altman analysis results

Fig. 3-24. Results of Correlation analysis

Fig.3-25. Results of Bland-Altman analysis

Figure 3-25 shows the results of the Bland-Altman analysis. It can be seen in Figure 3-25 
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that the 95% consistency limit is (1.6, -1.3); the 2% point is 95% beyond the consensus 
limit; the mean difference for average HR between M1 and M2 is less than 1 bpm, mean = 
-0. 17. The results show that the textile electrodes have a good agreement with the standard 
Ag/AgCl electrodes, and the average value of the results is closest to zero.
Paired sample T-test results
The results are shown in Table 3-8 present that the significance values of each indicator of 
textile electrodes are all greater than 0.05.
Therefore, there are no differences between the indicators of the ECG signals collected by 
the textile electrodes and the standard electrodes.
Table 3-8. T-test results 

Variable Statistical significance

NN50(M1)- NN50(M2) 0.072

PNN50(M1)- PNN50(M2) 0.071

SDNN 0.460

RMSDD 0.306

SDSD 0.311

5 min total power 0.700

VLF(M1)- VLF(M2) 0.922

LF(M1)- LF(M2) 0.990

LF norm(M1)- LF norm(M2) 0.015

HF(M1)- HF(M2) 0.484

HF norm(M1)- HF norm(M2) 0.072

3.3.2.2. ECG Signal Collected by MSP
1) Method
(a) Comparison method of textile electrodes and AgCl electrodes based on MSP
After the experiment of electrode’s electrical properties, the electrodes are evaluated to 
acquire ECG signals. An evaluation was operated on the performance of textile electrodes 
by the proposed system. The evaluation was a test on a 24-year-old male volunteer and 
a measurement of the ECG signals in different human body motion states. During the 
experiment, two electrodes were separately fixed on both sides of the ribcage of each test 
subject. These electrodes were placed in the same position in each measurement to ensure 
similar test conditions for later comparisons. After the preparation, we firstly measured 
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ECG signals in a state of sitting. Then the motion artifacts that result from walking and 
upper body turning of the subject’s arms were investigated. The test time of each group is 2 
minutes.
We use the three following indicators as the evaluation of signal quality factors which are 
the critical facts in further research. These indicators are shown below:
R-wave identification match degree
The R-wave belongs to the maximum point in the ECG, and the main characteristic of the 
QRS complex is the higher amplitude and scope value. In this paper, the R wave detection 
algorithm is implemented on MATLAB R2018a (MathWorks, U.S.A.) based on the classic 
QRS detection algorithm proposed by WJ Tompkins et al [180], [181]. A bandpass filter 
with a passband of 5-15Hz is used to preprocess the data and hamming window is applied 
for the function “fir1” in MATLAB. Then a dynamic threshold is determined every 5 
seconds with 2500 values gathered from the system for the “findpeaks” function with the 
'MinPeakDistance' index of 150 points which is 0.3 seconds in the time domain. After 
finding the peaks of a set of data, we define the R-wave matching degree M(ω) as

( )( )
( )A

NM
N

ωω
ω

=              (1)

whereby N (ω) is the number of R waves matched by the algorithm, and NA (ω) is the 
number of R waves manually counted by experts.
We chose this specific preprocessing and R wave detection method to minimize the effect 
of the algorithm thus verifying the amplitude of ECG signals acquired by different types of 
electrodes under the same movement.
ECG signal power spectrum ratio
According to Donald et al. and others [30, 31], the QRS complex mainly concentrates in 
the 2~20Hz, with powerline in 50 or 60Hz and the baseline drift in 0.15~0.3Hz [184]. The 
main energy of the QRS wave concentrates at 12Hz [185], and the ECG signal is subject to 
motion artifacts and EMG interference between 3~30Hz [27]. So in this paper, the ratio of 
ECG signal power density between 5~15Hz and 3~30Hz is calculated to estimate the state 
of motion ECG signal quality.
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P(f) denotes the power spectrum of ECG signal.
Signal kurtosis value
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ECG signals are collected as discrete signals. According to the central limit theorem, the 
kurtosis of the discrete signal reflects the Gaussian of the signal.
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μx denotes the mean of the signal xi, σ denotes the standard deviation of the signal, and M 
is the number of sampling points of the measured data segment. The corresponding level of 
the ECG signal quality evaluation is presented in table3-9.

Table 3-9. Signal quality factors
Signal quality factors Good Normal Bad
R-wave matching degree (M) M≥0.8 0.8M≥0.6 0.6 ＞ M
Power Spectrum ratio (S) S≥0.5 0.5 ＞ S≥0.4 0.4 ＞ S
Signal Kurtosis (K) K ＞ 5 5 ＞ K≥4.3 4.3 ＞ K

(b) Comparison method of the MSP with standard medical equipment
After obtaining experiment results about the textile electrodes proposed, we used PSG 
(Polysomnography) as the gold standard to compare the waveform in this experiment.  We 
compared the ECG signals acquired by MSP with textile electrodes and PSG with AgCl 
electrodes. Altogether six electrodes were fixed on the volunteer simultaneously with an 
experiment time of five minutes.
(2)Results
(a) Comparison result of three types of electrodes based on proposed system
To analyze the electrode performance under motion artifacts, the measurements were 
performed in sitting state, upper body turning state and walking state.
Sitting state results
QRS wave group and T wave can be detected obviously under sitting state. The results 
of R-waves detection results are shown as Figure 3-26 and Table 3-10. The R-wave 
recognition rate is generally high, with a small difference between textile electrode and 
Ag/Cl electrodes. Power spectrum ratio and signal kurtosis values of 1000 points selected 
during the test time of two minutes are listed in Table 3-11 and 3-12. The S and K values 
of the textile-based electrodes and the Ag/AgCl electrodes were all in good level, but the S 
and K values of the former one were better than those of the latter.
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Fig. 3-26. ECG waveform under sitting state

Table 3-10. R-wave Recognition under sitting state
Type of electrode AgCl Textile 
Missed 0 0
N (ω) Identified by algorithm 161 171
NA (ω)Detected by experts 161 171
R-wave matching degree (M) 1 1

Table 3-11. Power spectrum of ECG under walking state
Type of electrode AgCl Textile 
Power Spectrum ratio (S) 0.7407 0.7709

Table 3-12. Signal quality under walking state
Type of electrode AgCl Textile 
Signal Kurtosis(K) 10.3668 11.2188

Upper body turning state results
Detection data of QRS wave and T wave is displayed in Table 3-13 and Figure 3-27. Power 
spectrum ratio and signal kurtosis values during the sitting state are listed in Table 3-14 and 
3-15.
Compared with sitting state, ECG signal is more prone to drift in upper body turning state. 
According to the signal quality factors in Table 3-9, the results showed that the values of K, 
S and M of the AgCl electrode and the textile-based electrode were all at a good level.
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Fig. 3-27. ECG waveform under turning state

Table 3-13. R-wave Recognition under turning state
Type of electrode AgCl Textile 
Missed 0 0
N (ω) Identified by algorithm 0 0
NA (ω)Detected by experts 201 181
Detected 201 181
R-wave matching degree (M) 1 1

Table 3-14. Power spectrum of ECG under turning state
Type of electrode AgCl Textile 
Power Spectrum ratio (S) 0.8481 0.7039

Table 3-15. Signal quality under turning state
Type of electrode AgCl Textile 
Signal Kurtosis (K) 8.2667 7.4293

Walking state results
Table 3-16 and Figure 3-28 show the ECG waveforms collected from different electrodes 
under the walking state. Power spectrum ratio and signal kurtosis values are listed in Table 
3-17 and 3-18. Like the upper body turning state, the ECG signal is prone to drift in the 
walking state. In the state of walking, the M value of textile-based electrode is the 
largest. The K and S values of the textile-based electrodes were not as good as those of 
the AgCl electrodes. However, the K and M value of textile-based electrode reached a 
good level.
Three indexes of R-wave recognition, power spectrum ratio, and signal kurtosis value are 
used to make a comprehensive evaluation of electrodes under each state. According to these 
indexes, the performance of textile-based electrodes is similar to that of the AgCl electrode.
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Fig. 3-28. ECG waveform under walking state

Table 3-16. R-wave Recognition under walking state
Type of electrode AgCl Textile 
Missed 3 1
False alarm 0 0
N (ω) Identified by algorithm 205 202
NA (ω)Detected by experts 208 203
R-wave matching degree (M) 0.986 0.995

Table 3-17. Power spectrum of ECG under walking state
Type of electrode AgCl Textile 
Power Spectrum ratio (S) 0.6386 0.4119

Table 3-18. Signal quality under walking state
Type of electrode AgCl Textile 
Signal Kurtosis (K) 9.1456 7.1517

(b)Comparison results of the MSP with standard medical equipment
ECG waveforms acquired by the MSP and PSG under static state are given in Figure 3-29. 
We can see that the smart vest can acquire ECG signals of comparable signal quality with 
respect to PSG.

Fig. 3-29. ECG signal collected by proposed system and PSG
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3.3.3.	 Movement	Signal	Verification

1) Method for motion signal collected by proposed system
Experiments on adults were carried out to validate the motion analysis part of our system. 
The prototype and Shimmer 3 were attached to the left wrist as is shown in Figure 3-30 a. A 
standard protocol was followed, where different types of movements, including boxing, arm 
swing, arm tremble etc.
2) Results

         (a)                                    (b)                                                           (c)
Fig.3-30. (a) Motion signal experimental setup; (b)Motion signal waveforms; (c)Results of 

Correlation analysis

Figure 3-30 b shows the comparison of the mean square values of 3-axis accelerations, 
demonstrating that the IMU data measured by the prototype has the comparable data quality 
of the commercial shimmer device. Figure 3-30 c shows the correlation analysis for the 
readings obtained from the MSP. The vertical axis represents the reference reading given 
by Shimmer 3, and the horizontal axis represents the values provided by the MSP for the 
corresponding time segments. The MSP was found to have a pearson correlation(r) of 0.951 
with the reference values.

3.3.4.	 Respiration	Signal	Verification

3.3.4.1. PDMS-G Compound Properties
The method of obtaining the abdominal respiration signal by stretching the sensor mainly 
involves resistance change caused by the stretching of this material. Therefore, we tested 
the sensitivity and cycle stability of PDMS-G compound. The resistance of this sample 
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sensor at first was approximately 85kΩ with the original length of about 35cm and rose to 
320kΩ correspondingly after it was stretched to 42cm length. In order to test the properties 
of materials, we set up the following two experiments.
(a)Sensitivity test of tension sensor
In this experiment, the Inductance Capacitance Resistance (LCR) meter (E4980AL, 
Keysight) was used to measure the change of sensor resistance at different lengths 
accurately. One end of the sensor was fixed and the sensor was stretched to change the 
length. The lengths of the sensor with its resistance were recorded correspondingly. The 
deformation range was 0-50% (8cm-12cm) with a step length of 5% (4mm) for each 
recorded point. The resistance value and the sensitivity of the sensor were studied in this 
experiment. The sensitivity of the tensile sensor was defined as

where, R was the resistance of the material at the time of strain, R0 was the initial resistance 
of the material without strain, L was the length of the material at the time of strain and L0 
was the initial length of the material. The resistance showed the electrical property of the 
sensor under different lengths and sensitivity was investigated to demonstrate the stretching 
capability.
Figure 3-31 showed the relative change in resistance for various elongation values. No 
linear behavior of the sensor was found, but three different areas of the sensitivity were 
identified. In the first area, the length of the sensor was from 8cm to 10.4cm, as a result, the 
sensitivity (S) was 4.67cm−1. In the second area, elongation of the sensor was from 10.4cm 
to 11.6 range, as a result, the S value was 61.15cm−1, and the third area showed a further 
increase of the S value to 152.68cm−1 when the sensor was fully stretched to 12cm. In 
the strain range of 30% to 50%, the material has better sensitivity. In fact, this is the strain 
range when the elastic band is connected to the body. 
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 Fig. 3-31. Relative change in resistance of PDMS-G compound tensile sensor versus strain 
within strain range of 0-50%. 

(b)The loop stability performance of the tension sensor
This section demonstrates the process and results to verify the resistance change of the new 
sensor after repeated stretching. The stepper motor (FLS 40, Chengdu Fuyu Technology 
Co., Ltd) was used to conduct the cyclic stability experiment. The length of the sensor was 
set from 10cm to 11.5cm with a frequency of 20 cycles per minute, which was similar to the 
normal respiratory situation. The duration of the cyclic stability test was 3 hours. The 10-
bit ADC on Arduino (Arduino Uno) was used to acquire the resistance change during the 
3-hour’s experiment at a sampling rate of 100Hz. Since the respiratory rate of the neonate 
was between 20 and 40 breaths per minute, the 100Hz sampling rate ensured the signal not 
be distorted.

Fig. 3-32. Results of the three hours’ stability test (A) overall resistance variation in 3 hours, 
(B) detailed waveform in the first 1 minute of the whole test, (C) detailed waveform in the 

last 1 minute of the whole test
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Figure 3-32 A showed the 3-hour stability test results. Figure 3-32 B and Figure 3-32 C 
showed the portions of the results during the first and last 1 minute correspondingly. From 
these diagrams, the sensor proved to have the advantage of stability. After 3,600 cycles of 
3 consecutive hours, the response signal barely changed. At the beginning of the test, the 
decline of the baseline didn’t affect respiration monitoring. According to the experimental 
results, the sensor based on the PDMS-G compound tensile sensor had a stable signal output 
under the condition of continuous stretching for three hours.
(c)Response/relaxation time of the sensor
In this experiment, Arduino was also used to test the response/relaxation time of the sensor. 
The real-time change of the voltage when the resistance of the sensor changes was recorded. 
The strain range of the sensor was fixed at 0-40%. In the process of strain, the time spent by 
the voltage jumping from the first stable state to the second stable state was considered to 
be the response/relaxation time of the sensor.
The result of response time experiment was given in Figure 3-33. The response time of the 
sensor was 308 ms in tension and 372 ms in relaxation. The above response satisfies the 
scenario of the respiration rate measurement.

Fig. 3-33. Response/relaxation time test of the sensor

(d)Stress test of the sensor
In order to prevent the excessive pressure of the respiratory bandage on the subject from 
affecting the respiration, a sensor stress test was conducted. The RIP module in the medical 
level multi-parameter device-polysomnography (PSG) was compared with the new sensor. 
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The purpose of the test was to ensure that within the same strain pressure generated by 
the PDMS-G was less than that generated by the RIP module in PSG. The test used the 
electronic universal testing machine (RGWT6000, SHENZHEN REGER INSTRUMENT). 
The stress curves of new sensor and RIP module in PSG were compared, as shown in 
Figure 3-34. The stress of PDMS-G was much smaller than that of the RIP module in PSG 
at the same tensile ratio. Therefore, PDMS-G in MSP for respiration monitoring was more 
comfortable than RIP module in PSG, especially for neonates.

Fig. 3-34. Stress curves of RIP module in PSG and PDMS-G in MSP

3.3.4.2. Respiration Signal Collected by MSP
1) Method
Firstly, to assess the basic monitoring performance of MSP, the system performance of re-
spiration monitoring function under different frequencies was verified. we compared our 
system with the RIP module as part of the PSG apparatus. Unlike the proposed MSP, the 
respiratory band used in PSG was based on inductance change formed by the coil inside the 
band. The data from PSG were gathered through the PSG software (Greal-PAG Oline 3). 
The stepper monitor used in this test was the same as the cyclic stability performance ex-
periment. The frequency range was set from 60 cycles per minute to 20 cycles per minute, 
which covered the range of neonatal respiratory rate [15], [16]. There were 21 groups in this 
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frequency range. In each group, the waveform of the proposed sensor with the RIP module 
in PSG was compared. A digital bandpass filter with a passband of 0.01Hz to 5Hz was im-
plemented for the sensor data on MATLAB 2018b (MathWorks).

Fig. 3-35.  Respiratory signal experimental setup; 

Secondly, we collected adult respiratory signals based on MSP and PSG for comparison. 
Both systems were installed on the subject for simultaneous recording of respira-tion. As 
shown in Figure 3-35, PSG respiratory detection band is attached to the abdomen, and 
PDMS-G tensile sensor is attached lower than PSG band. PSG has a respiration sampling 
frequency of 32Hz. The following three aspects are used for analysis and comparison.
1. We compare the respiration signals of adult acquired by the MSP and PSG to perform 

a visual comparison. We compare the similarity of the original waveform output of the 
MSP and the PSG.

2. Mean difference in average RR between propose system and PSG was studied in the 
second outcome measure. Each RR point was output for a 30 second interval. The 
correlation analysis between the respiratory rates measured for MSP and PSG was 
also conducted. Values from mean, standard deviation, median and range helped 
us generalize the differences in average RR between monitoring techniques over 
the 30 second interval. The 95 % confidence intervals enabled us to determine the 
effectiveness of the MSP monitor versus PSG-derived RR for the mean difference in 
average RR between techniques. The difference of three breaths per minute (bpm) 
denotes the minimum clinical relevance chosen from the early warning system (EWS). 
The system identifies meaningful 3 bmp in score difference through a definition where 
the respiration scores in steps are no greater than 3 bpm.
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3. We performed an individual’s Bland-Altman analysis in the third analysis to assess the 
direct relationship or correlation between the respiratory rates measured by the MSP 
device and each measuring technique involved. Given a correlation coefficient (r) up 
to greater than 0.8, we could view MSP as effectiveness in detecting changes in RR 
comparable to PSG. Moreover, as a higher correlation is possible to present due to 
the continuous nature of both MSP and PSG-derived monitoring, we set the expected 
correlation with PSG-derived RR of 0.8. Bland-Altman analysis was used to present 
the results graphically.

2) Results
Firstly, Figure 3-36-A showed the overall waveform. Figure 3-36-B, Figure 3-36-C and 
Figure 3-36-D showed the portions of the results with 60, 40 and 20 cycles per minute 
correspondingly. From this experiment, the proposed system had a stable performance 
under different frequencies.
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(A) Overall

(B)60cycles per minute

(C)40cycles per minute

(D)20cycles per minute

Fig. 3-36. Performance of the proposed system under different frequency compared with 
PSG (A) overall waveform, (B) detailed waveform with 60 cycles per minute, (C) detailed 

waveform with 40 cycles per minute, (D) detailed waveform with 20 cycles per minute
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4. Secondly, the respiration signal of adult was carried out on a 30-year-old male 
volunteer for 4 hours. The subjects sat in a chair without strenuous exercise, during the 
trial. Firstly, we compare the signal quality in time domain, as show in Figure 3-37. 
From Figure 3-37, we see that the signals obtained using the MSP show the similar beat 
structure of the same frequency with those of the PSG. Though the attaching positions 
of the MSP and the PSG are a little different from each other in the abdomen region, 
the overall similarity of the data obtained during the inspiratory intervals can be noted 
implying the accuracy of the MSP in measuring the breathing rate.

Fig. 3-37. Respiration signals measured by MSP and PSG.

5. From the total 160 records, an interval of one minute was adopted between RR points 
to ensure the independence of variables in Bland–Altman analysis. Of them, 154 time 
points were available engaged in the analysis. The PSG wire fell off when the subject left 
the chair to rest. Six time points were thus lost. Table 3-19 presents comparisons between 
the MSP and PSG-derived RR. Figure 3-38-a summarizes the data from the utilized 
154 epochs for PSG versus MSP in the form of a Bland–Altman plot. The direction of 
difference is: (MSP–PSG). The red dashed line is a marker indicating the bias of the 
differences. The solid lines represent the 95% confidence limits for the differences. The 
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average RR between MSP and PSG is showed with a mean difference less than one bpm, 
where the mean (SD) = -0. 15 (0.86). The 95 % confidence interval (CI) for the difference 
in average RR is calculated to be [-1.84, 1.55], which does not exclude the clinically 
relevant difference of 3 bpm.  However, there was an exception. When only two intervals 
(1.3% of intervals) were presented, the difference was greater than three bpm. Figure 
3-38-b reports the results of correlation analysis on the data harvested from the 154 
epochs used for PSG versus MSP. The Pearson Correlation (r) of 0.977 demonstrates a 
very strong relationship between MSP and PSG in monitoring RR.

Table 3-19. Comparison of average respiratory rate in breaths per minute between MSP and PSG
MSP-PSG
Number of data points 154
Mean -0.15
Standard deviation 0.86
Minimum–maximum -4.26,3.10
95 % confidence interval -1.84,1.55

(a)                                                                      (b)

Fig. 3-38. (a) Bland-Altman plot showing MSP versus PSG. Direction of difference is 
(MSP-PSG); (b)Results of Correlation analysis

3.3.5. Clinical Test in Neonates 

1) Method
After the performance tests on adults, permission was obtained from the Children’s Hospital 
affiliated to Fudan University Research Ethics Committee (approval No. (2017) 89) to 
recruit infant patients for multi signal monitoring. Inclusion criteria were as follows: (1) age 
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under 60 days;(2) in stable health conditions;(3) about to discharge from neonatal intensive 
care unit (NICU). Exclusion criteria were as follows: (1) with diagnosed respiratory 
disorders history;(2) allergy to medical grade skin adhesive or latex.
15 patients, seven males and eight females, who did not violate our exclusion criteria were 
enrolled in the experiments. The mean age of the subjects was 36 days (median 33, standard 
deviation 12.5, range 18-59).  The average data collection time per subject was 10 min. No 
adverse respiratory events and skin allergy occurred during the test. The subjects lie in an 
incubator, keeping awake during the trial. 
 We compared our system with the PSG, when both systems were attached on the subject 
for simultaneous recording of ECG and respiration, as show in Figure 3-39. Data analysis 
methods including visual comparison, and accuracy analysis.

Fig.3-39. Clinical experimental setup

2) Result
First, we compared the ECG and respiration signal quality in time domain. ECG waveforms 
acquired by PSG and MSP were given in Figure 3-40. The figure shows that the proposed 
electrode can acquire ECG signals of comparable signal quality and amplitude (thus, also 
average power) with respect to PSG. The respiration signal quality in time domain was 
compared also, as shown in Figure 3-41. As shown in Figure 3-41, the signal with the same 
beat frequency structure can be obtained by using MSP and PSG. Although MSP and PSG 
have slightly different attachment locations in the abdominal region, the overall similarity 
of the data obtained during the inspiratory interval can be noted.
The second outcome measurement for the study was correlation in average heart rate (HR) 
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and average respiratory rate (RR) between the proposed system and PSG. A total of 150 
HR data point and 150 RR data point, Each HR and RR point was output for a 60 second 
interval. Figure 3-42-a shows the correlation analysis for the HR obtained from the clinical 
study. Vertical axis represents the reference reading given by the PSG and the horizontal axis 
represents the results given by the MSP for the corresponding time segments. The value of 
Pearson correlation(r) between PSG and PPG in HR monitoring was 0.967. Figure 3-42-
b shows the correlation analysis for the RR obtained from the clinical study. Vertical axis 
represents the reference reading given by the PSG and the horizontal axis represents the results 
given by the MSP for the corresponding time segments. The value of Pearson correlation(r) 
between PSG and PPG in RR monitoring was 0.969. The r value of HR and RR demonstrate a 
very strong relationship between MSP and PSG in monitoring HR and RR.

          

Fig. 3-40. Clinical ECG data measured by MSP and PSG

Fig. 3-41. Clinical respiration data measured by MSP and PSG
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(a)                                                                                (b)
Fig. 3-42. (a) Correlation regression analysis for the results obtained from the heart rate 

clinical data collection exercise; (b) Correlation regression analysis for the results obtained 
from the respiration rate clinical data collection exercise

3.4. Neonatal Seizure Detection

In order to verify the clinical feasibility of multi-sensor platform for neonatal seizure 
detection, permission was obtained from the Research Ethics Committee of Children’s 
Hospital of Fudan University (approval No. (2017) 89) to recruit infant patients for neonatal 
seizure detection. The whole research of neonatal seizure detection includes three parts, 
namely data collection, data analysis strategy, data analysis results. 

3.4.1. Clinical Data Collection

The VEEG acquisition system (niocolet) in the hospital and the multi-sensor platform 
(MSP) were used for data acquisition at the same time. EEG signal and video information 
of neonate were collected by the VEEG acquisition system, while ECG signal, respiration 
signal, and motion signal were collected by the proposed multi-modal wearable sensor 
system (MSP). The EEG signal and video were used as the gold standard of neonatal 
seizure detection. 
The recruitment criteria for patients covering inclusion criteria, exclusion criteria and stop 
criteria and details are as follows. 
Inclusion criteria include: (1) Age less than 60 days; (2) Patients who have had a seizure in 
the clinic; (3) No anticonvulsant treatment before admission; 
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Exclusion criteria include: (1) Patients with diagnosed respiratory disorder history; (2) A 
history allergy to medical-grade skin adhesive or latex. (3) Patients with life-threatening 
diseases such as shock, cerebral infarction, and severe congenital malformations. 
Stop criteria include: (1) The subjects’ continuous worsen condition and even dangerous 
events during the study; (2) The subjects’ some inappropriate changes in comorbidities, 
complications or special psychology; (3) Subjects with adverse events. 

Fig. 3-43. The environment of neonatal seizure data collection

Neonatal seizures appear suddenly, thus requiring long-term monitoring. Wearing the 
EEG cap of the EEG collection system for long-term monitoring will damage the neonatal 
skin, so the time of collecting data is only about 4 hours one time. A 24-hour interval was 
required between the first and the second acquisition experiment of the same subject. The 
experimental setup for data acquisition is shown in Figure 3-43.  The EEG cap is worn on 
the neonatal head to collect EEG signals. The camera is placed on the top of the incubator 
to collect the video information. The smart vest is worn on the neonate, with the flexible 
electrode placed on the chest to collect ECG signals, the IMU at the wrist to collect body 
motion signals, and the respiration sensor on the abdomen to collect respiration signals. The 
sampling rate of EEG acquisition system is 500 Hz, and that of multi-sensor platform is 250 
Hz. During the experiment, the data received by the multi-sensor platform are stored in the 
laptop and processed on the desktop with MATLAB R2019a (MathWorks Inc., Natick, MA, 
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USA). EEG signals and video information are sent to the data storage center of the hospital 
and analyzed by medical experts to judge the neonatal seizure occurrence. During each trial, 
the following measurements were obtained by the principal investigator: 
1. Subject age, gender.
2. The start time and end time of the neonatal seizure. The timing of the seizures was 
determined by hospital experts through video and EEG analysis.
3 Attending NICU nurse rating of ease of device use, using 11point VRS (0 = least 
difficulty imaginable to use, 10 = most difficulty imaginable to use)
The following measurements were recorded electronically:
• ECG signal, respiration signal, motion signal, collected by the MSP prototype, recorded 
on Dell Laptop.
• EEG signal, collected by EEG acquisition system, record on local data platform of the 
hospital.
38 patients, 23 male and 15 females, who had already experienced seizure at the hospital 
and who did not violate exclusion criteria were enrolled in the trial. The average age of 
subjects was 36.8 days (median 37, standard deviation 8.3, range 20–57). Since the interval 
between multiple records of a subject was more than 24 hours, the mean age of subjects 
was calculated based on the time of each record. The mean time spent by the subjects for one 
experiment was 228.8 min (median 240, standard deviation 36.8, range 78–292). No patients 
suffered an adverse respiratory event or skin irritation during the trial. In terms of comfort, 
12 nursing staff (100 %) rated the multi-sensor platform as 10 on a VRS for the ease of use 
(application of device only).
During the test, seizures were finally detected on four patients, with 30 seizures 
occurring in total. Most of the patients did not detect seizure for several reasons. For 
example, the early diagnosis is wrong, and the patient does not have the problem 
of brain nerve damage, so the EEG detected is normal. It may also be because the 
detection time is limited, within 4 hours did not appear seizure symptoms. Seizures 
were labeled by an experienced neurologist reviewing video-EEG recordings and 
annotating the onset and offset of the manifestation of the seizures. Table 3-20 gives a 
broad overview of the patients with seizures.
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Table 3-20. Overview of the patients with seizures
No. Sex Average age Records Record duration per time Seizures 
1 male 36 1 236min 1
2 male 41 1 132 min 1

3 female 30 6
249 min, 230 min , 232 min , 
78 min , 191 min , 244min 

24

4 male 34 2 98 min ,231 min 4

3.4.2. Data Processing

These data from Table 3-20 were used to develop the classification algorithms. Full 
recordings were included in the analysis regardless of the record length, record quality and 
the child’s awake or asleep state. A non-overlapping sliding window of 5-minute length 
was applied to ECG, acceleration and respiratory recordings to divide the data into epochs. 
The data were then preprocessed to remove the artifacts and reduce the data for further 
processing.
For ECG recordings, ECG is processed for R wave detection and HRV spectrum analyses. 
Many interfering signals can affect the ECG signal, such as the 50 Hz power line 
interference, the interferences from EMG signals, and the baseline wandering. Therefore, in 
the preprocessing stage, these interfering noises are eliminated first by means of a 5–15 Hz 
band pass filter. Next, in order to detect R waves of the ECG, the Hamilton and Tompkins 
algorithm (Pan and Tompkins 1985, Hamilton and Tompkins 1986) is employed [180], [181] 
The RR-interval signal is then constructed by measuring the time intervals between the 
successive R peaks. A heart rate variability spectrum is calculated with a serial FFT (Fast 
Fourier Transform) using a Hanning window.
For respiratory recordings, acceleration data is processed for extracting breathing rate. First, 
to remove noise and signal drift, the signal from y axis of the segment is left-right padded 
and mean-smoothed by a 25-ms window. Global linear drift is removed by subtracting 
the slope of the linear regression model of the data. Local signal drifts are corrected to 
continuous, minute-long sliding mean baseline windows, and padding is removed. Next, in 
order to extract breathing rate, we estimated the onset of inhales and exhales by performing 
zero-crossing point detection algorithm. According to respiratory flow, the upward and 
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downward zero-cross points are recognized as the onset of inhales and exhales, respectively.
For movement recordings, acceleration data from each axis were low-pass filtered with 47 
Hz as cutoff frequency in order to remove the powerline and high-frequency interference. 
After down sampling acceleration signals by a factor 2, a high-pass filter of 0.2-Hz cutoff 
frequency was applied to remove the baseline drifts [188].
Seizures typically last for 1-2 minutes whereas the patients were monitored continuously 
throughout their stay (days) in the hospital. As such, there is a vast amount of non-seizure 
data (forming the majority class), which causes the data set to be highly imbalanced. To 
decrease the computational workload as well as reduce the degree of data imbalance during 
supervised learning, we labeled the 5-minute signal after the onset of seizure as a seizure 
epoch, which contains seizure activity. The 25-minute signal before the onset of seizure and the 
20-minute signal after the offset of seizure were labeled as non-seizure epochs. In cases where 
more than one seizure close to each other in 5 minutes, these seizures are regarded as one seizure 
to evaluate. Thus, we trim our dataset to balance the number of seizure and non-seizure epochs, 
where the ratio of seizure and non- seizure epochs for each patient is around 1:9.

3.4.3.	 Feature	Extraction

A range of parameters have been used for neonatal seizure classification, describing ECG, 
respiration and movement modalities. Features extracted from ECG signals were found in 
the literature [189]–[191] . Features used in acceleration -based seizure detection [58] and 
respiration activity recognition [192] were also added to the list.
ECG feature:
10 features were computed to characterize each epoch, describing time and frequency 
characteristics of the ECG signals. There are mean RR, SDNN, SDSD, PNN50, SD1, SD2, 
CCM (Complex Correlation Measure), LF power, HF power and range of RR-interval 
signal.
Respiratory feature:
Breathing rate is calculated as the reciprocal of average time between inhale onsets.
Movement feature:
The major energy band for daily activities falls between 0.3 and 3.5 Hz whereas during 
seizures the power is typically concentrated at frequencies above 2 Hz [58], [193]. To 
capture the spectral information of the net acceleration, we computed the power spectral 
density with Welch's method. The integrated power within the spectral band of 0-2 Hz and 
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2-5 Hz are included as features. The total power within each epoch also was computed as a 
feature. Moreover, zero-crossing rate of the net acceleration was included for classification.
To summarize, a total of 15 features were computed from each epoch constituting feature vectors, 
including 10 ECG features, 4 acceleration features and 1 respiratory feature. Each feature vector 
will be assigned to a seizure or non-seizure class by using a Support Vector Machine (SVM).

3.4.4.	 Classifier

Support Vector Machines (SVMs) are state-of-the-art binary classification methods that 
usually exhibit good resistance to overfitting and have shown excellent performance in 
complicated pattern recognition problems [194]–[196]. An SVM can learn a decision 
boundary in the form of a hyperplane that separates two classes. This hyperplane is selected 
such that the classification margin, which is the geometric distance between the hyperplane 
and the boundary cases of each class (i.e. the support vectors), is maximized [197], [198]. 
Moreover, SVMs can map the original finite dimensional feature space into a much higher 
dimensional space through the use of a kernel function to improve the separability of the 
data. We chose the Gaussian Radial Basis kernel functsion (RBF) as it provides non-linear 
mapping of the original feature vectors into a higher dimensional space. An SVM is a good 
choice for the task of seizure detection because its unique learning mechanism allows it to 
perform well with moderately imbalanced data without any modifications [199]. Since an 
SVM only takes into account those instances that are close to the boundary for building 
its model, it is unaffected by negative instances far away from the boundary even if they 
are large in number, which is important given that the number of non-seizure instances far 
outnumber the seizure instances.

3.4.5. Performance Evaluation

We implemented a patient-independent seizure detection algorithm that excluded all data 
from a test patient in the training phase (leave-one-patient-out cross-validation). To allow 
the SVM to learn from previous examples of seizures from the test patient if that patient 
had more than a single seizure recording available, we also implemented double leave-one-
seizure-out cross-validation. 
The performances of the developed seizure detectors were characterized in terms of 
sensitivity, specificity, accuracy, false alarm rate per hour, F-measure and AUC (Area Under 
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Curve). Sensitivity and specificity show the percentage of test seizures and test non-seizures 
respectively identified by the algorithm. Accuracy gives the overall classification accuracy. 
False alarm rate refers to the number of times, over the course of one hour, that the system 
declared the onset of seizure activity in the absence of an actual seizure. However, in 
learning imbalanced data, the overall classification accuracy is not an appropriate measure 
of performance since a trivial classifier that predicts every instance as the majority class 
(non-seizure) would achieve very high accuracy but be of little use. As such, we used the 
F-measure to evaluate the performance of the SVM.
To evaluate the utility of combining ECG, respiration and movement, we compared the 
performance of three seizure detectors. The first detector included features from both the 
ECG, respiration and acceleration recordings, the second incorporated respiratory-motion 
based features from respiration and acceleration recordings, and the third used ECG-based 
features from the ECG recordings solely.

3.4.6. Result

We respectively reported the evaluation results of neonatal seizure detection algorithm in 
the ECG based mode, respiratory based mode, and aggregated (full) mode (Table 3-21). 
Assessment indicators include sensitivity, specificity, accuracy, false alarm rate per hour, 
F-measure and AUC.
To visualize the performance of three neonatal seizure detection modes tested on data from 
the four patients with seizures, we performed receiver operating characteristic (ROC) curve 
analysis (Figure 3-44). The ROC curves depict the trade-off between sensitivity (percentage 
of recorded seizures that were identified by the detector) and false alarm rate as the decision 
threshold is varied.
The results show that the false alarm rate of the algorithm in the ECG based mode, is 
higher than that in respiratory based and multi-modal based modes, reaching 1.29 times/
hour while its accuracy, specificity and AUC value are lower than those under respiratory 
based and aggregated (full) mode, 85.16%, 90% and 0.69 respectively. On the other hand, 
the specificity, accuracy and F-measure value of seizure detection algorithm are higher than 
those of aggregated (full) based and also aggregated (full) based modes, reaching 96.43%, 
90.97% and 0.461. And the false alarm rate of the algorithm under this mode is the lowest, 
only 0.46 times per hour. Overall, the seizure detection algorithm based on aggregated (full) 
mode improved the performance.
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Table 3-21. Results of neonatal seizure detection algorithm in the ECG based mode, 
respiratory based mode, and aggregated (full) mode
Detector 
based on

Sensitivity Specificity Accuracy False alarm rate F-measure AUC

ECG+ 
acceleration 
+Respiration

40% 96.43% 90.97% 0.46 per hour 0.461538 0.77

ECG 40% 90% 85.16% 1.29 per hour 0.342857 0.69
acceleration 
+Respiration

30% 92.86% 86.77% 0.92per hour 0.305085 0.77

ALL                                      ECG-induced                                 Res/Motion-induced
Fig. 3-44.   Receiver operating characteristic (ROC) curve analysis from three seizure 

detectors.

3.5. Discussion

We propose a smart vest as a multi-sensing platform embedded with flexible material based 
non-invasive sensors for neonatal seizure monitoring. We carried out systematic verification 
about the platform which includes electrical properties of the new sensing materials, 
signal quality evaluation and comparison with gold standard to verify the feasibility of the 
system. Verification experiments prove that quality ECG signals can be obtained through 
the proposed flexible electrode materials with comparable performance to the commercial 
AgCl adhesive electrodes, accurate respiration data can be obtained through a new PDMS-
Graphene compound based stretching sensor and movement signal of wrist can be obtained 
based on IMU sensor.
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In addition, we developed an algorithm for automatic detection of neonatal seizures 
based on ECG, respiration and acceleration. The algorithmic evaluation of the records 
of 4 patients with seizures were performed. To evaluate the utility of combining ECG, 
respiration and movement, we compared the performance of three seizure detectors. The 
first detector included features from both the ECG, respiration and acceleration recordings, 
the second incorporated respiratory-motion based features from respiration and acceleration 
recordings, and the third used ECG-based features from only the ECG recordings.
Our study illustrates the overall performance was better when multi-modal features were 
included, reducing false alarm rate and achieving higher F-measure compared to the 
detector utilizing individual modal features. However, the results show that the sensitivity 
of non-EEC based method is low. The reason for low sensitivity may be small sample 
size under representation. In addition, poor data quality, unknown seizure types (some are 
asymptomatic without abnormalities in respiration, electrocardiography, motor activity, 
etc.), and rebalancing approaches may result in deviation in results and limitation in 
interpretation. 
For future work, we will further improve the structure and electronic properties of the 
innovative materials to enhance the stability of the measured signal, especially during 
motion. Furthermore, we will conduct more clinical trials to verify the performance of the 
wearable platform for neonatal seizure detection. Data fusion techniques and optimization 
algorithms will be explored with the help of clinical data.
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In chapter 3, we propose a smart vest as a multi-sensing platform and developed an algorithm 
for automatic detection of neonatal seizures based on ECG, respiration and accelerometry. 
In addition, the study illustrates how a seizure detector that combines information from both 
ECG, respiration and accelerometry recordings can perform better than a detector that relies 
one signal. In order to improve the comfort of the system and the stability of the signal, 
we further study the sensors with different signals. Firstly, we compare the influence of 
electrodes made of different intelligent textile on the quality of ECG signal. Secondly, a novel 
dry disposable electrode made of carbonized foam was presented. We tested the electrical 
properties and feasibility as an electrocardiogram electrode. Finally, we explored the mesh 
graphene-based sensor for respiration monitoring. The basic properties of mesh PDMS-G 
(M-PDMS-G) and PDMS-G were compared. In addition, we used the RIP band based on 
polysomnography (PSG) device as the gold standard to carry out a systematic validation 
experiment compared with mesh PDMS-G sensor based on MSP.

4.1. Smart Textile Electrodes for ECG Monitoring

4.1.1. Introduction 

The miniaturization of electronic devices made it possible to produce wearable electronic 
devices. More and more research has integrated electronics reliably directly into clothing, 
such as into a shirt. Traditionally, clothing was used to cover and protect the body from 
injury or for aesthetic purposes. If intelligence can be part of everyday clothing, then the 
people can monitor his/her own physiology during exercise. Smart textile technology 
provides higher value opportunities for clothing design to protect, monitor and determine 
physical condition to avoid potential dangerous. In the future, smart clothing can become 
part of daily clothing, enabling the monitoring of physiological and movement signals 
of the wearer during daily activities. In medical applications, clothing can be used as a 
measurement platform, and textile electrodes can be used for bio-signal measurement. ECG 
data collection is widely used in infant health examination [200]. Experienced clinicians can 
diagnose various heart conditions by visual analysis of abnormal ECG patterns [201]. ECG 
consists of three parts: QRS complex, P wave and T wave. These signals are produced in 
different parts of the heart, and their shape and duration depend on many different factors, 
such as the pressure of the heart during measurement. The amplitude of the wave depends 
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on the location of the measurement and the distance between the electrodes. The role of the 
electrode is to convert the ionic flow into electric current. Electrodes are very sensitive to 
interference. The interference sources in ECG measurement include patients, electrodes, 
environment and instruments. The biggest interference is caused by contact between the 
skin and the electrodes [202]. Nowadays, Ag/AgCl electrode is commonly used for ECG 
measurement.
One of the weaknesses of these electrodes is their short lifespan, which can only be used for 
a few days and cannot be reused [65], [203]. In addition, due to the fragile infants’ skin, it is 
easy to damage the skin if such electrodes are used for a long time.
However, the appearance of smart textile electrode makes it possible for long-term smart 
wearable ECG monitoring. The term “Smart Textiles” refers to a broad field of studies and 
products that extend the functionality and usefulness of common fabrics. Smart Textiles 
are defined as textile products such as fibers and filaments, yarns together with woven, 
knitted or non-woven structures, which can interact with the environment/user. The 
convergence of textiles and electronics (e-textiles) can be relevant to the development of 
smart materials that are capable of accomplishing a wide spectrum of functions, found in 
rigid and non-flexible electronic products nowadays. Conductive textile, a kind of smart 
textile, can be used to collect ECG signals. Smart textile electrode is a typical flexible ECG 
electrode, combing the traditional textile materials with conductive material, which meets 
the requirement of comfort and long-time measurement to a certain extent. In recent years, 
the common textile ECG electrode materials are polypyrrole-cotton fabric electrode [167], 
[204], silver-plated electrode, etc. However, different materials and structures will affect 
the quality of ECG signal. In this chapter, we compare the influence of electrodes made of 
different intelligent textile on the quality of ECG signal.

4.1.2. Material Selected and Electrode Design 

In this study, the raw materials used in electrode production were smart fabrics made by 
Shieldex. Shieldex produces different types of intelligent fabrics, including Woven Fabrics, 
Non-Woven Fabrics, Medical Fabrics, Technical Fabrics, RTF Fabrics, Mesh Fabrics and 
Wearable Fabrics.
In the chapter 3, we use the electrode based on the RTF (Ready to Fabricate) Fabrics (Berlin 
RS). In order to compare the influence of different materials on the signal acquisition, we 
choose another two Fabrics for comparison. The basic information of the three materials is 
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as follows:
Medical Fabrics (Balingen)
Medical fabrics are offered in various weights and textures including both knits, and elastic 
knits with single (SD) or double direction DS) stretch as well as some woven forms. These 
fabrics are usually silver plated only, with 99% silver (Ag). Medical fabrics are available 
with an anti-tarnish coating (+B). Silver is a natural antimicrobial treatment that limits the 
infections from bacteria. 
We use a medical fabric of the type "Balingen". The specific parameters are as follows:
•Description: Silver (Ag) plated Nylon fabric 
• Plating: 99% pure silver 
• Surface Resistivity: < 0.6 Ohmm
• Radio Frequency (RF)RF Shielding Effectiveness: Average > 55 dB from 30Mhz to 
10Ghz 
• Temperature Range: -40°C to 100°C / -40°F to 212°F 
• Total Thickness: 0.010” (0.260mm) ± 10% 
• Abrasion Resistance: 10,000 cycles 
• Weight: 62 g/m2 ± 10%
Technical	Fabrics	(Techniktex	P130+B)
Technical fabrics are conductive silver knitted fabrics with elastic that come in a single 
direction (SD) or double direction (DS) stretch. While these fabrics can be used in the same 
applications as medical fabrics, technical fabrics are generally used for applications that 
require a higher conductivity like smart wear. Applications include; sensors (vital signs, 
stimulation of nerves and muscles, etc.), EMI shielding, and reflection to name a few. We 
use a technical fabric of the type "Techniktex P130+B". The specific parameters are as 
follows:
•Description: Silver (Ag) plated knitted fabric 
• Raw Material: 78% Nylon + 22% Elastomer 
• Plating: 99% pure silver 
• Coating: Polyurethane as additional protective coating 
• Stretch: DS (double stretch direction –warp—weft) 
• Surface Resistivity: < 2 Ohmm (front / visible side) 
• Temperature Range: -30°C to 90°C / -22°F to 194°F 
• Total Thickness: 0.021” (0.55mm) ± 10% 
• Abrasion Resistance: 10,000 cycles 
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• Weight: 141 g/m2 ± 10%
RTF Fabrics (Berlin RS)
RTF Fabrics include some of woven or non-woven metalized fabrics containing additional 
coatings including; carbon (C2), hot melt adhesives (HMA), pressure sensitive adhesives 
(PSA) or low-density thermoplastics (LDPE). These fabrics are typically used in similar 
applications such as woven fabrics, as well as wallpaper, tapes, medical electrodes and fin-
gertips for touch screen gloves.
We use an RTF Fabric of the type “Berlin RS”. The specific parameters are as follows:
• Description: Conductive PUR-coated silver-plated fabric RS
• Raw material: parachute silk (polyamide 6.6 rip stop fabric)
• Plating: 99% pure silver 
• Coating: one sided conductive PUR-coating(functional)
• Surface Resistivity: Average 0.3 Ohmm (max< 0.5 Ohmm)
• Shielding Effectiveness: Average ＞ 60 db from 300Mhz to 5Ghz 
• Abrasion Resistance: 200,000 Cycles 
• Temperature Range: -30°C to 90°C / -40°F to 212°F 
• Weight: 55g/m2 ±10% 
• Total Thickness: 0.110mm ± 10% 
• Number of Splices: 1/200 Lm nominal
The above three materials we selected are named as textile A (Medical Fabrics), textile B 
(Technical Fabrics) and textile C (RTF Fabrics) respectively. Based on these three materials, 
three types of textile electrodes were developed. Figure 4-1 shows the Ag/Cl electrode and 
three textile electrodes based on different materials. 

Fig. 4-1. AgCl-adhesive ECG electrode (left 1), Textile A (left 2), Textile B (right 2), Textile 
C (right 1).
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4.1.3. Textile Electrodes Properties

1) Method
To assess the electrode properties, we set up two experiments. One is to test the skin-to-
electrode impedance. The other is the signal quality of the test electrode in the standard 
equipment environment.
(a) Skin-to-electrode impedance
The impedance introduced by the skin-to-electrode interface of standard Ag/AgCl electrode 
and textile electrode are measured on a person’s forearm by an electrochemical workstation 
(ZAHNER - Zennium). 
The two-electrode system is used. Ag/AgCl electrode is deployed as a reference electrode. 
The work electrodes are chosen from each textile electrode and Ag/AgCl electrode 
(Covidien, H124SG). The distance between the working electrode and the reference 
electrode is approximately 9 cm. We fixed the textile electrode with a strap. The frequency 
of input signal sweeps from 0.1 Hz to 100 kHz. An impedance-frequency curve is drawn for 
each kind of electrode. 
(b)	Textile electrodes signal quality assessment 
We compared the ECG signals acquired by the proposed electrodes and Ag/AgCl electrode 
using standard acquisition system.
We collected three sets of data. Each set of data was collected from two different kinds 
of electrode simultaneously in a static state by shimmer 3 [27], respectively. The study 
involved a 24-year-old male volunteer. Different electrodes were attached to the adjacent 
positions on the left and right sides of the subject's chest. The combination of different 
electrodes was group 1: textile A electrode and Ag/AgCl electrode; group 2: textile B 
electrode and Ag/AgCl electrode; group 3: textile C electrode and Ag/AgCl electrode. We 
used shimmer-3 as a standard acquisition device. The acquisition time for each set of data 
was one and a half hours.
Three statistical analysis methods were conducted to evaluate the signal quality acquired 
by the novel electrode. Heart rate per minute is extracted by R wave detection algorithm 
implemented on MATLAB R2018a based on classic QRS detection algorithm proposed by 
Willis. et al [28]. A bandpass filter with passband of 5-15Hz is used to preprocess the data 
and the hamming window is applied for the function “fir1” in MATLAB. Then a dynamic 
threshold is determined every five seconds with 2500 values gathered from the system 
for the “findpeaks” function with the 'MinPeakDistance' index of 150 points which is 0.3 
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second in the time domain.
Correlation analysis
We extracted the average heart rate value per minute and compared the heart rate signals 
from two different electrodes in each group. Correlation analysis is calculated between heart 
rate information in each group.
Bland-Altman analysis
A "Bland-Altman analysis" was performed on the average heart rate of each group.The 
standard Ag/AgCl electrode is used as the comparison detection system M1, and the textile 
electrode is the system M2 to be evaluated. The Bland-Altman analysis was performed to 
show the difference between heart rate detected by the two systems. 
Paired sample T-test
In order to compare the differences between the signals acquired by textile electrode and 
standard electrode, we compared a list of physiologically sound parameters (Table 3-5). 
Five minutes of continuous ECG are taken as a segment of data, and the data collected for 
each type of electrode can be divided into 18 segments. Paired T-test is adopted to support 
our claim that no differences in substance exist between those parameters retrieved from 
signals acquired by these three kinds of electrode.

2) Results
(a) Skin-to-electrode impedance
Figure 4-2 gives the Z-f curves which characterize the skin-to-electrode interface of the 
proposed textile-based electrode and Ag/AgCl electrode (Covidien, H124SG) respectively. 
The frequency ranges from 0.1 Hz to 100 kHz. Test results demonstrate that the impedance 
introduced by skin-to-electrode interface also decreases as the frequency of stimulus 
signal increases. In the frequency range of most bio-potential signals, the impedance 
corresponding to textile C-based electrode is the smallest (~500 kOhm in near dc range) 
while the impedance corresponding to textile A-based is the largest (~725 kOhm in near dc 
range). The impedance corresponding to Ag/AgCl electrode is slightly larger than that of 
textile C-based electrode, about 575 kOhm in near dc range. The significances of all data 
points are all larger than 0.95.
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Fig. 4-2. Skin-electrode impedance of different electrodes.

(b) Textile electrodes signal quality assessment
① Correlation analysis results
We extracted heart rates and conducted a correlation analysis and Bland-Altman analysis. 
Figure 4-3 shows the analysis results of the three sets of data. Correlation analysis results 
showed that the R2 values of the three A, B, C groups were all within the range of 0-1, and 
the R-value of the C electrode was the largest, 0.92. Therefore, the signals collected by the 
three textile electrodes were positively correlated with the signals acquired by the standard 
electrodes. 

                            A                                                  B                                        C
Fig. 4-3. Results of Correlation analysis.
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② Bland-Altman analysis results

                  A                                                         B                                          C
Fig. 4-4. Results of Bland-Altman analysis.

Figure 4-4 shows the results of Bland-Altman analysis. It can be seen in Figure 4-4- A that 
the 95% consistency limit is (2.3, -2.1); the 3% point is beyond the 95% consensus limit; 
The mean difference for average RR between M1 and M2 is less than 1 bpm, mean (SD) = 
0.08 (1.13).  As can be seen in Figure 4-4-B, the 95% consistency limit is (3.1, -2.3); the 2% 
point is 95% beyond the consensus limit; The mean difference for average RR between M1 
and M2 is less than 1 bpm, mean (SD) = 0.40 (1.38).. It can be seen in Figure 4-4-C that 
the 95% consistency limit is (1.6, -1.3); the 2% point is 95% beyond the consensus limit; 
The mean difference for average RR between M1 and M2 is less than 1 bpm, mean (SD) 
= 0.17 (0.73). The results also show that the three groups of textile electrodes have a good 
agreement with the standard Ag/AgCl electrodes.
③ Paired sample T-test results

Table 4-1. T-test results of Group A, B, C
Variable Statistical significance

(Group A)

Statistical significance

(Group B)

Statistical significance

(Group C)

NN50 (M1) - NN50 (M2) 0.660 0.106 0.072
PNN50 (M1) - PNN50 

(M2)

0.598 0.105 0.071

SDNN 0.529 0.501 0.460
RMSDD 0.596 0.370 0.306
SDSD 0.606 0.349 0.311
5 min total power 0.525 0.500 0.700
VLF (M1）- VLF (M2) 0.782 0.185 0.922
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LF(M1)- LF(M2） 0.606 0.186 0.990
LF norm (M1)- LF norm 

(M2）

0.510 0.852 0.015

HF (M1)- HF (M2) 0.938 0.396 0.484
HF norm (M1)- HF norm 

(M2)

0.067 0.577 0.072

VLF (M1）- VLF (M2) 0.782 0.185 0.922
LF (M1)- LF (M2） 0.606 0.186 0.990
LF norm (M1)- LF norm 

(M2）

0.510 0.852 0.015

HF (M1)- HF(M2) 0.938 0.396 0.484
HF norm(M1)- HF 

norm(M2)

0.067 0.577 0.072

The results are shown in the Table 4-1. The results show that the significance values of each 
indicator of three kinds of electrodes are all greater than 0.05. 
Therefore, there are no differences between the indicators of the ECG signals collected by 
the three textile electrodes and the standard electrodes.

4.1.4. ECG signal Collected by Proposed System

1) Method
In order to compare the performance of different electrodes under the MSP, the MSP was 
used for data acquisition and the ECG signal quality collected by different electrodes was 
compared. ECG signals were measured in different human body motion states in a 24-year-
old male volunteer. Two electrodes were fixed on the left and right sides of the ribcage of 
each test subject. To ensure similar test conditions for comparison, these electrodes were 
positioned in the same locations for every measurement. The sitting-state ECG signals were 
measured first, and then the motion artifacts that resulting from walking and upper body 
turning of the subject’s arms were investigated Test time of each group was 2 minutes.
We use following three indicators as the evaluation of signal quality factors which are the 
critical facts in the further research. These indicators are shown below:
R-wave identification match degree
Using the same heart rate detection method aforementioned, we define the R-wave matching 
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degree M(ω) as

                               (1)

whereby N (ω) is the number of R waves matched by the algorithm, and NA (ω) is the 
number of R waves manually counted by experts. 
ECG signal power spectrum ratio
In this section, the ratio of ECG signal power density between 5~15Hz and 3~30Hz is 
calculated to estimate the state of motion ECG signal quality.

                          (2)

P(f) denotes the power spectrum of ECG signal.
Signal kurtosis value
ECG signals are collected as discrete signals. According to the central limit theorem, the 
kurtosis of the discrete signal reflects the Gaussian of the signal. 

                    (3)

μx denotes the mean of the signal xi, σ denotes the standard deviation of the signal, and M is 
the number of sampling points of the measured data segment.

2) Results
To analyze the electrode performance under motion artifacts, the measurements were 
performed in sitting state, upper body turning state and walking state. 
Sitting state results
Firstly, ECG signals were measured in sitting state. The subjects put their hands on both 
sides and sat in a chair. The electrodes were attached to the left and right sides of the chest. 
Each electrode was tested for 2 minutes.
Figure 4-5 shows the waveform of ECG signals collected by three textile electrodes and 
Ag/Cl electrode through the MSP in 15 seconds. As can be seen in the figure, QRS complex 
and T wave can be detected obviously in sitting state.
The results of R-waves detection by computer and expert are presented in Table 4-2. 
R-wave recognition rate was generally high, reaching 100%. There was a small difference 
among three kinds of textile electrodes. Power spectrum ratio and signal kurtosis values of 
1000 points selected during the test time of two minutes were listed in Table 4-3 and 4-4. 
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The S and K values of the three textile electrodes and the Ag/AgCl electrodes were all at 
a good level. The S and K values of textile C electrode were better than those of Ag/AgCl 
electrode.

Fig. 4-5. R-wave Recognition under sitting state.

Table 4-2. R-wave Recognition under sitting state
Type of electrode AgCl Textile A Textile B Textile C
Missed 0 0 0 0
N (ω) Identified by algorithm 161 167 173 171
NA (ω)Detected by experts 161 167 173 171
R-wave matching degree (M) 1 1 1 1

Table 4-3. Power spectrum of ECG under sitting state
Type of electrode AgCl Textile A Textile B Textile C
Power Spectrum ratio (S) 0.7407 0.7291 0.7283 0.7709

Table 4-4. Signal quality under sitting state
Type of electrode AgCl Textile A Textile B Textile C
Signal Kurtosis(K) 10.3668 9.8756 7.4843 11.2188

Upper body turning state results
In this part, the ECG signal with the upper body turning was measured. The subject sat 
on the chair with their hands raised flat and rotated their upper body left and right. The 
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electrodes were attached to the left and right sides of the chest. The test time of each 
electrode was 2 minutes. 
Figure 4-6 shows the ECG waveforms of three kinds of textile electrodes and Ag / CL 
electrodes in 15 seconds under the Upper body turning state. QRS wave group and T wave 
also can be detected obviously under the upper body turning state. Compared with the 
sitting state, the ECG signal was more prone to drift in the upper body turning state. Textile 
electrode A was the most stable among the three kind of textile electrodes.
Table 4-5 shows the R-wave recognition rates of the three textile electrodes and Ag/
CL electrodes under the upper body turning state. The R-wave recognition rate of textile 
electrode A and textile electrode B decreased to 0.994 and 0.97 respectively. Power 
spectrum ratio and signal kurtosis values during the upper body turning state were listed in 
Table 4-6 and 4-7. The results showed that the values of K, S and M of the AgCl electrode 
and the textile electrode C were all at a good level. The K values of the textile electrodes A 
and B are at the normal level.

Fig. 4-6. R-wave Recognition under turning state.

Table 4-5. R-wave Recognition under turning state
Type of electrode AgCl Textile A Textile B Textile C
Missed 0 1 6 0
False alarm 0 0 0 0
N (ω) Identified by algorithm 201 186 191 181
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NA (ω)Detected by experts 201 187 197 181
R-wave matching degree (M) 1 0.994 0.97 1

Table 4-6. Power spectrum of ECG under turning state
Type of electrode AgCl Textile A Textile B Textile C
Power Spectrum ratio (S) 0.8481 0.7051 0.6477 0.7039

Table4-7. Signal quality under turning state
Type of electrode AgCl Textile A Textile B Textile C
Signal Kurtosis (K) 8.2667 4.7987 4.9923 7.4293

Walking state results
Finally, ECG waveforms acquired by the MSP and PSG under walking state were 
compared. The subject put his hands on both sides and raised his left and right legs 
alternately and keep his original position. The electrodes were attached to the left and 
right sides of the chest. The test time of each electrode was 2 minutes.
Figure 4-7 shows the ECG waveforms of three kinds of textile electrodes and Ag / 
CL electrodes in 15 seconds under walking state. Like the upper body turning state, 
the ECG signal was prone to drift in the walking state. As can be seen in the figure, 
compared with the upper body turning state, the ECG signal is more vulnerable to be 
affected in the walking state.
 Table 4-8 shows the R-wave recognition rates of the three electrodes and Ag / CL 
electrodes in the walking state. The R-wave recognition rate of four electrodes in the 
walking state is lower than that in other states. The R wave recognition rate of textile 
electrode A was only 90.1%, while that of textile electrode C was 99.5%. The power 
spectrum ratio and signal kurtosis values are listed in tables 4-9 and 4-10. The results 
show that the K and S values of the three textile electrodes were not as good as those 
of the AgCl electrodes. However, the K and M values of textile electrodes B and C 
reached a good level.
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Fig. 4-7. R-wave Recognition under walking state.

Table 4-8. R-wave Recognition under walking state
Type of electrode AgCl Textile A Textile B Textile C
Missed 3 21 7 1
False alarm 0 0 2 0
N (ω) Identified by algorithm 205 193 204 202
NA (ω)Detected by experts 208 214 209 203
R-wave matching degree (M) 0.986 0.901 0.976 0.995
N (ω) Identified by algorithm 205 193 204 202
NA (ω)Detected by experts 208 214 209 203
R-wave matching degree (M) 0.986 0.901 0.976 0.995

Table 4-9. Power spectrum of ECG under walking state
Type of electrode AgCl Textile A Textile B Textile C
Power Spectrum ratio (S) 0.6386 0.3603 0.4223 0.4119

Table 4-10. Signal quality under walking state
·Type of electrode AgCl Textile A Textile B Textile C
Signal Kurtosis (K) 9.1456 6.7123 5.0471 7.1517

Three indexes of R-wave recognition, power spectrum ratio, and signal kurtosis value are 
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used to make a comprehensive evaluation of electrodes under each state. According to these 
indexes, the performance of AgCl-adhesive is the best, and textile electrode C is better than 
A and B.

4.1.5. Conclusion

In this experiment, we mainly compared the material properties of the four electrodes and 
the quality of the signals collected by the MSP with the four electrodes in different states. 
The results show that the textile electrode has great potential in ECG signal acquisition. The 
signals collected by the three kinds of textile electrodes and Ag/Cl electrodes under sitting 
states showed good quality. However, Ag/Cl electrodes and textile electrodes based on RTF 
textile materials showed advantages under the upper body turning state and walking state. 
Due to the effects of motion and the material, the quality of the signals collected by the 
electrodes based on Medical Fabrics and Technical Fabrics will obviously decrease under 
the motion state. The textile electrode made of RTF textile material has more advantages 
than that made of the other two kinds of textiles. During the motion state, the signal 
obtained by the electrode based on the RTF material is more stable and not easily affected 
by the movement. The R-wave recognition rate of electrodes based on RTF material in 
walking state is higher than that of Ag/CL electrode. However, the power spectrum ratio 
value and signal kurtosis (K) value of electrodes based on RTF materials are lower than 
those of Ag/Cl electrodes under motion state, which means that the electrode based on RTF 
materials is easily affected by the external environment.
So far, Ag/Cl electrodes are still widely used. With the innovation and development of smart 
fabrics, textile electrodes have gradually demonstrated its advantages. It is also expected to 
be a substitute for traditional electrodes in the future.

4.2. Carbonized Foam Electrode for ECG Monitoring

4.2.1. Introduction 

The development of wearable sensor systems and body sensor network (BSN) enables 
healthcare providers to narrow the gap between the existing medical infrastructures and the 
growing need for mobile healthcare.
An exclusive advantage of a wearable sensor systems over traditional monitors is the 
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possibility of continuously and unobtrusively monitoring the user’s long-term physiological 
and behavioral signals in parallel by embedding multiple sensors in the system [205]. For 
acquiring the electrophysiological signals like ECG, EEG and EMG, it is necessary to 
record the surface bio-potentials by electrodes.
The term ‘electrode’ originated from Faraday’s research about electricity and 
electrochemistry [206]. In 1903, Einthoven used a string galvanometer and cumbersome 
electrodes to obtain the first ECG and opened up clinical electrocardiography [207]. 
Nowadays, the most commonly used electrode in clinical practice is Ag/AgCl electrode with 
electrographic gel, which provides good conductivity and small and stable offset potential, 
guaranteeing the very finite distortion on signals introduced by the electrode’s deviation 
from the ideal condition. However, this kind of electrode may lead to skin irritations and 
even tears.  
For wearable sensor systems, the wet electrodes are dissatisfactory because the use of 
conductive gel is, to some extent contradicted with portability and long-term unobtrusive 
monitoring. Various electrodes based on polymer materials and e-textiles without the needs 
for conductive gel are developed as alternatives for the electrode used in wearable sensing 
platforms [208][209]. Although these electrodes are comfortable with stable signals in the 
non-moving state, the signal quality is easily affected in the moving state.
In this section, we present a novel dry disposable electrode prototype. The conductive part is 
made of carbonized foam (CF). A test protocol focusing on characterizing several important 
electrical properties of the electrode is designed to investigate its performance when it is 
applied to record the surface potential. Experimental results show that the presented CF 
electrode is capable of acquiring surface potential like ECG with competitive signal quality. 
Lower powerline interference is observed from the signal acquired by CF electrodes. The 
issue about biocompatibility and future work about improving the intension of the material 
and the durability of the electrode are also discussed.

4.2.2. Material and Manufacturing

1) Production of Material 
Figure 4-8 is the outlook of the whole electrode. It is light and manifests good mechanical 
strength, thus enabling them to be easily integrated in electrodes and e-cloth. In Figure 4-8 
(a) and (b), the CF exhibits high flexibility, and can be bent to an arbitrary degree without 
fracture. Besides, it is also compressible. A 1.0cm thick CF in Figure 4-8 (c) is compressed 
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to around 0.3 cm under the applied forces in Figure 4-8 (d). When the external forces were 
released, it returned to the original shape without deformation.

Fig. 4-8. Carbonized foam 

2) Production of the Electrode
Figure 4-9-a shows the structure of the novel dry disposable electrode. The electrode 
consists of four parts, carbonized foam ① , electret gel layer ② , non-woven fabric ③ and 
metal lead button ④ . CF is connected to the metal lead button. The nonwoven fabric is 
sandwiched between the electret gel layer and the metal lead button as a protective layer. 
An electret gel layer serves as a paste layer surrounding the carbonized foam. A prototype is 
given in Figure 4-9-b.

a                                                                           b
Fig. 4-9. Conceptual structure and prototype of CF electrodes

The thickness of the CF is higher than that of the surrounding electret gel layer. When the 
electrode is pasted on the skin, the carbonized foam tends to dilate. This characteristic 
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increases the stability of the contact between the electrode and the skin automatically and 
thus enhances the quality of the acquired signal during movements.

4.2.3. Method of Evaluation

To characterize the performance and applicability of the proposed carbonized foam 
electrode, we designed a test protocol to evaluate and compare its electrical properties with 
that of the state-of-art Ag/AgCl electrode.

Fig. 4-10. Experimental settings for evaluation of electrodes

First of all, we measured and compared the impedances when the proposed electrodes 
and Ag/AgCl electrodes (Covidien H135SG) were placed by the convention of Lead-I. 
The measurement was done by a LCR meter (Tonghui Electronics, TH2816, Figure 4-10-
a). The in-vitro impedance is comprised of the impedance of the human body in series, 
the impedance of the electrodes in series and the impedance introduced by the skin-to-
electrode interface [210]. These impedances as a whole serve as equivalent internal signal 
source resistance of the hypothetical signal source where the bio-potential field of interest is 
stimulated. Large signal source impedance results in obvious attenuation of the input signal 
amplitude of the post-stage amplifier. Tolerable in-vitro impedance is necessary for post-
stage conditioning. To eliminate the change of conditions of the human body as much as 
possible, we removed the sweat on the subject’s skin before. The subject keeps static during 
the test. And the whole test (including preparation) about in-vitro impedance was performed 
within one hour with an assumption that the physiological state of the subject would not 
shift significantly in such a short period.
Secondly, an electrochemical workstation (ZAHNER - Zennium) was used to measure 
and compare the impedances introduced by the skin-to-electrode interface of the proposed 
electrodes and Ag/AgCl electrodes. A two-electrode system was used as depicted in Figure 
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4-10-b [7]. Ag/AgCl electrodes were deployed as reference electrodes. The work 
electrodes were chosen from the CF electrode and Ag/AgCl electrode (Covidien, 
H124SG) as illustrated in Figure 4-11. The working electrode and reference electrode 
are arranged as Lead-I. The frequency of the input signal swept from 0.1 Hz to 100 
kHz. An impedance-frequency curve is got for every work electrode.

Fig. 4-11. Ag/AgCl electrodes

hirdly, we compared the ECG signals acquired by the proposed electrode and Ag/AgCl 
electrode (Covidien H135SG) to perform a visual comparison. The measurements were 
performed in static and motion conditions (the subject marches on the spot in with arms 
swing, Lead-I, Figure 4-10-c, (d)). Signal acquisition was done by a Shimmer-3 unit where 
an inertial measurement unit (IMU) was integrated so motion data can be provided. ECG 
signals and 3-axis acceleration data were recorded simultaneously at a sampling rate of 512 
Hz. Waveforms, acceleration data and power spectrum densities (PSD) of signals acquired 
by both electrodes under both situations respectively were compared to investigate the 
performance comprehensively.

4.2.4. Result

In this section, detailed information about the electrical properties of the presented carbon 
foam was given. We measured the in-vitro impedance when using proposed CF electrodes 
and Ag/AgCl electrodes. The skin-to-electrode impedance of CF electrode, textile-based 
electrode and Ag/AgCl electrode were measured and compared. Furthermore, we evaluated 
the signal quality of ECG signals acquired by our electrodes and standard electrodes with or 
without motion.
(a) Impedance in vitro
As mentioned before, we want to estimate the equivalent signal source internal impedances 
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with respect to the post-stage conditioning circuit when using different kinds of electrodes. 
A comparable or even smaller quantity is welcomed since a considerable difference in 
magnitude leads to attenuation. 
Figure 4-12 shows that impedance decreases as the frequency of stimulus signal from the 
LCR meter increase from 50 Hz to 100 kHz. Generally, the in-vitro impedances caused by 
CF electrodes and Ag/AgCl electrodes do not differ in the order of magnitudes, implying 
no obvious attenuation on the magnitude of the input signal to a post-stage amplifier will 
happen when proposed electrodes are applied.
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Fig. 4-12. In-vitro impedance test

Furthermore, most of the energy of the ECG signal falls in the frequency range 
from dc to 100 Hz. For electromyography (EMG), the range is about dc to 500 Hz. 
In these frequency ranges, the in-vitro impedances when CF electrodes are used 
are 75% averagely lower than that when Ag/AgCl electrodes (Covidien H135SG) 
used. Part C will show no obvious difference in the total power of acquired signals 
observed.
(b) Skin-to-electrode Impedance
When recording bio-potential with electrodes, there is a potential drop between skin 
and electrode. This potential drop can be equivalent to a circuit consist of resistors and 
capacitors [212]. Thus the equivalent impedance is frequency dependent.
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Fig. 4-13. Skin-electrode impedance of different electrodes

Figure 4-13 gives the Z-f curves which characterize the skin-to-electrode interface of CF 
electrode and Ag/AgCl electrode (Covidien, H124SG) respectively. The frequency ranges 
from 0.1 Hz to 100 kHz. Test results demonstrate that the impedance introduced by skin-to-
electrodes interface also decreases as the frequency of stimulus signal increases.
In the frequency range of most bio-potential signals, the impedance corresponding to 
Ag/AgCl electrode is the smallest (~566 kOhm in the near dc range). The impedance 
corresponding to the proposed CF electrode is slightly larger than that of the Ag/AgCl 
electrode, about 675 kOhm in near dc range. The significances of all data points are larger 
than 0.95.
(c) Signal Quality
An undistorted signal waveform is the “final purpose” when surface bio-potential is 
recorded, so we compare the signal quality in the time domain. ECG waveforms (100 points 
median filtering applied for the convenience of the display) acquired by Ag/AgCl electrodes 
and CF electrodes and simultaneous accelerations (denoted as Acc, whose value is the 
modulus of all 3 axis accelerations) are given in Figure 4-14. 
During both the static and motion (stepping on the spot) conditions, the proposed electrode 
can acquire ECG signals of comparable signal quality and amplitude (thus, also average 
power) with respect to the Ag/AgCl electrode.
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Fig. 4-14. ECG waveforms and accelerations

During the motion condition, the proposed CF electrode represents even better tolerance on 
motion artefacts, probably due to the mechanical properties of the material and less power 
line interference. 
PSDs estimated by Welch Periodogram (Figure 4-15) reveal that less power line interference 
is contained in the signal acquired by proposed electrodes. Note that no filtering or driven-
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leg circuits or any other noise rejection technique were implemented before the PSD 
estimation. This difference seems to be caused by the new conductive material itself. And 
we will identify the true reason in future work.
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Fig. 4-15. PSD of signals acquired by CF and Ag/AgCl electrode

4.2.5. Discussion and Conclusion

Electrodes that better suit wearable sensor systems and mobile healthcare scenarios can help 
pave the way for further popularization of wireless and wearable sensing and monitoring 
devices. 
For the reasons mentioned above, we proposed a novel carbonized foam electrode. Test 
of in-vitro impedance when novel electrode used excludes the worry about attenuations. 
And the skin-to-electrode impedance introduced by the proposed electrodes is comparable 
with state-of-art Ag/AgCl electrode. The signal quality acquired by the CF electrode is 
competitive during static and motion conditions, especially during motion conditions. 
Furthermore, the proposed CF electrode has no need for conductive gel. The conductive 
part is flexible which may explain why the CF electrode has a higher tolerance on motion 
artefacts than Ag/AgCl electrode.
 State-of-art textile-based electrode usually has a worse contact with the subject, which 
degrades the performance under motion condition. So the proposed CF electrode or 
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other electrodes with similar mechanical properties are potential to be an alternative or 
complements for improving the performance of wearable bio-potential monitoring systems 
for daily use.
It should be noticed that the structure of the prototype is designed to justify the usability 
and performance of CF as the conductive material. To integrate CF into real-world 
wearable sensor systems, a new structure is needed and the mechanical intensity of CF 
should be improved, which remains to be our future work with the assessment of material’s 
biocompatibility. 
It should also be noted that we use a different subtype of Ag/AgCl electrode when 
performing the evaluation described in section 4.2.3. The two-electrode system as the 
experimental setting is different from that used for measurement in [213]. These reasons 
may account for the different relative relationships between the impedance values 
corresponding to the CF electrode and Ag/AgCl electrode as depicted in Figure 4-11 and 
Figure 4-12. And the operating principals of the electrochemical workstation and LCR 
meter are different in many respects, so the values corresponding to the same frequency 
should be interpreted respectively. Great care must be taken before any direct contrast. But 
it’s already confirmed that measured values do not differ in the order of magnitudes under 
the same condition. Together with the comparison of signal waveforms, the usability of the 
CF electrode can be justified. And we will eliminate the irrelevant variable in further work 
and improve the data consistency.
We encountered that the CF electrode seems to be able to reduce powerline interference. 
This characteristic is serendipity given the fact that shielding measure and driven-leg 
circuits, which can be realized under well-structured environments with powerful but 
unwieldy medical instruments, are impractical on wearable sensor systems. Less need for 
high order digital filters circumvents continuous and intensive computation, which helps to 
maintain low power consumption of the whole system. 
This discovery is tested repeatedly and is validated under our experimental settings. The 
influence of electrode structure, especially the electret gel, has been excluded. 
We have made two unverified hypotheses about this characteristic. First, when Cf is used, 
its polarization could be very low so that the CF electrode may have smaller and more 
stable offset potentials. The imbalance between input terminals is reduced and the common-
mode rejection ratio (CMRR) of the whole front-end circuit is thus improved. Second, the 
reticular microstructure of CF may serve as a shielding case, which makes the effective 
contact area between the CF and the skin a region free from direct electrostatic coupling 
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and magnetic field interference from the environment. So only interference conducted from 
the uncovered region and interference coupling through other approaches will take effect. 
We try to identify its root cause and exclude the influence from possible irrelevant variables 
in our further work.

4.3. Mesh PDMS-G Compound Sensor for Respiration Monitoring

4.3.1. Introduction

Respiratory rate, also called breathing rate, defined as the number of breathing and exhaling 
movements per unit time, is crucial in neonatal surveillance [24], [214]. In fact, the 
respiratory rate is ordinarily determined by calculating the number of times the diaphragm 
expands and contracts per minute. Respiratory problems are the most common causes 
of admission for newborns, whether in both term infants and premature [215]–[217]. 
Common respiratory diseases that cause abnormal respiratory rates in newborns include 
pneumonia, pulmonary hemorrhage and Respiratory Distress Syndrome (RDS). Among 
them, RDS is very common in premature infants. It can escalate to respiratory failure and 
cardiopulmonary arrest, if not identified and treated quickly. Therefore, the pediatricians 
must be able to easily identify the symptoms and signs of respiratory distress, distinguish 
various causes, and adopt treatment strategies to prevent complications [215]. 
Current techniques for monitoring respiratory rate include thoracic electrical impedance, 
respiratory induction plethysmography (RIP), three-dimensional acceleration-derived 
breathing rate (ADR) and piezoelectric sensor plethysmography, which can record volume 
changes in the chest and abdomen [218], [219]. Thoracic electrical impedance is the most 
common method of respiratory monitoring in the clinic. This method adopts adhesive 
electrodes attached to the skin to obtain signals. However, long-term attachment of these 
patches to the skin may cause irritation [13]. Researchers studied the feasibility of several 
sensors for wearable respiratory monitoring systems: piezoelectric sensors or three-
dimensional accelerometer signals [75], [76], [220], [221]. However, the breathing signals 
collected by piezoelectric sensors or three-dimensional acceleration sensors contain a 
large number of motion artifacts, which affect the accuracy of breathing rate measurement. 
Therefore, respiratory induction plethysmography (RIP) came into being, proposed by T. 
Chadha et al. [75]. The RIP method includes an induction band that can be connected to 
the abdomen or chest. The resistance of the band varies with stretching. Because the chest/
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abdomen circumference changes during breathing, RIP-based breathing monitoring is a 
valid breathing monitoring method. A wearable respiratory monitoring device based on RIP 
for respiratory biofeedback training was proposed by Zhang et al. [77], [169]. However, the 
method to manufacture the band of this device is complex and difficult to be embedded in 
wearable devices. 
Hence, there is an unmet demand for a practical, comfortable, affordable and easy-to-use 
technology to continuously measure the respiratory frequency of newborns in a minimally 
invasive manner, which can easily be incorporated into the current monitoring program. 
Such a device could overcome problems resulting in respiratory infection by aiding in early 
detection and diagnosis.
Nowadays, the research of new materials is an important direction of sensor research and 
development [222]–[224]. In our previous work, the carbonized foam we proposed can 
be used as an ECG electrode, which can not only obtain a stable ECG signal, but also 
reduce the power line interference [225]. The innovation of new materials provides a good 
opportunity to provide comfortable, economical and practical wearable technology.  
In Chapter 3, we proposed the PDMS-G sensor, which has a good performance in obtaining 
respiratory signals with 0 -100% strain range around. In order to improve the sensor 
performance, we designed a tensile sensor of graphene composite with mesh structure 
(M-PDMS-G). A larger strain range and smaller stress can be obtained by using graphene 
with a mesh structure. Smaller stresses have less effect on neonatal respiration.
In this section, the fabrication process of the M-PDMS-G sensor is introduced. The basic 
properties, including strain range, stability and sensitivity, between M-PDMS-G and 
PDMS-G are compared. We used the polysomnography (PSG) device-based respiration 
belt module as the gold standard to carry out a systematic validation experiment compared 
with the MSP-based respiration module. Finally, we conducted a clinical test for neonatal 
respiration detection in Children’s Hospital affiliated with Fudan University in Shanghai.

4.3.2. Material and Manufacturing of Mesh PDMS-G Compound

PDMS-graphene ink is the first step to prepare mesh PDMS-G composite, and then a mesh 
structure is built through the 3D printer. The PDMS-graphene ink was prepared as follows. 
1g Graphene sheets were dispersed in 100 mL ethyl acetate; the mixture was ultrasonicated 
for 2 h, and then 10g PDMS prepolymer was added to the suspension with magnetic 
stirring for another 2 h. After that, the mixture was transferred onto a heating stage with a 
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temperature of 80 °C for 6 h to evaporate the ethyl acetate solvent. Finally, 1 g of PDMS 
curing agent was added into the composite and stirred for 10 min to acquire the PDMS−
graphene ink.
The 3D-printing process was performed by a Biological 3D printer (Regenovo 3D Bio-
Architect WS); in this experiment, the PDMS−graphene ink was transferred to a 30 mL 
syringe and the ink was extruded through a 400 μm nozzle to obtain the designed physical 
structure, as the nozzle’s moving speed was 5 mm/s. The as-printed structure was then 
cured at 80 °C for 3 h to obtain the M-PDMS-G strain sensor. Through 3D printing, we can 
tune the physical structure and elongation capability of M-PDMS-G composites. Figure 4-16 
shows the di erent structures of printed M-PDMS-G composites.

Fig. 4-16.  Di erent structures of printed M-PDMS-G composites.

Next, for the preparation of the M-PDMS-G sensor, the printed M-PDMS-G composite 
was treated with oxygen plasma (200 W, 0.2 mbar, 120 s) followed by immersion in PEI 
solution (3 mg/mL) for 10 min. Then, the composite was washed with deionized (DI) 
water and gentle blow drying with N2 air; after that, the composite was immersed in GO 
suspension (2 mg/mL) for 10 min before washing with DI water and dried with N2 air 
again. For the layer-by-layer self-assembly of PEI and GO on the surface of the PDMS−
graphene macrostructure, the pH values of both GO and PEI solutions were adjusted to 9.0 
by ammonia and hydrochloric acid. Finally, the GO-coated M-PDMS-G composite was 
reduced through HI acid solution treatment in a sealed container at ambient conditions for 
30 min to obtain the M-G-PDMS sensor.
Through 3D printing, we can tune the physical structure and elongation capability of 
M-PDMS-G composites. In order to choose a structure with better elongation capability, 
we compared the strain ranges of different structures as shown in Figure 4-17.  The mesh of 
the parallelogram revealing a deformation capability of over 400%. Large elongation is the 
prerequisite for strain sensors to achieve large workable ranges, like elastic waistband.
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Fig. 4-17.  Digital images of PDMS-G composites with different structures, planar(a), 
square mesh (b), hexagonal mesh (c), parallelogram mesh (d) at different strain states.

Figure 4-18-a and Figure 4-18-b present a structure model and scanning electron 
microscope (SEM) image of a two-order structural cross section of M-G-PDMS sensor, in 
which region A represents the inner M-G-PDMS part and B represents the outer reduced 
graphene oxide (RGO) coating. Figure 4-18-c shows the image of the fracture surface of 
the sensor, indicating the uniform dispersion state of graphene sheets in the inner M-G-
PDMS part. The SEM image of the RGO coating is presented in Figure 4-18-d, and the 
characteristic wrinkled morphology signifies that RGO sheets were successfully coated onto 
the M-G-PDMS surface.
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(a)                                              (b)                                                (c)                                          (d)   
Fig. 4-18. (a, b) the structure model and SEM image of the cross section of M-PDM-G with 
RGO sensor (top view) (letters A and B represent the inner M-PDM-G part and outer RGO 
coating, respectively); (c, d) SEM images of the fracture surface of the sensor (c) and RGO 

coating layer (d), respectively;

Figure 4-19-a shows the version of M-PDMS-G with RGO and without RGO. Due to the 
presence of RGO coating, M- PDMS-G with RGO reveals significantly improved electrical 
conductivity, compared with M-PDMS-G without RGO (Figure 4-19-b). The reasons 
mainly include two aspects. First, the sliding and disconnection of reduced graphene 
oxide (RGO) sheet coated on the surface (a crack mechanism) of the strain sensor result 
in high sensitivity at a small strain range. Second, the graphene layer coated on the open 
mesh provides additional conductive paths that can compensate spontaneously for the 
conductivity loss of the percolation network at large strains through a combination with the 
inner network (self-compensation mechanism), so that a large workable strain range can be 
achieved along with high sensitivities.

(a)                                                                                  (b)       
Fig. 4-19.  (a) Photograph of M-PDMS-G with RGO and M-PDMS-G without RGO; (b) 

current−voltage curves of M-PDMS-G with RGO and M-PDMS-G without RGO.
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4.3.3. Material Properties

The feasibility of the respiration sensor depends on the basic performance of the material. 
We compare the sensitivity, stability, stress change curve and response/relaxation time of the 
M-PDMS-G and PDMS-G materials, but also compare the stress change curve of the two 
sensors. In the same strain range, the lower the stress, the smaller the effect on respiration, 
especially for neonates.
1) Stress test of the sensor
Firstly, we compared the mechanical strength of PMDS-G and M-PDMS-G materials. The 
mechanical properties of the sensors were evaluated by stress-strain curves, as shown in 
Figure 4-20. Compared with planar structures, the meshed structures reduced the value of 
stress under the same strain. It can be seen from Figure 4-17-a and 4-17-d that the length 
of M-PDMS-G at break exceeded 400%, while that of PDMS-G at break was only 108%. 
Therefore, The M-PDMS-G sensor for respiration monitoring was more comfortable than 
the PMDS-G sensor, especially for neonates.

Fig. 4-20. Stress curves of planar PMDS-G and meshed PDMS-G

2) Sensitivity test
Figure 4-21-a shows the curves of relative resistance as a function of strain for G−PDMS 
and M-PDMS-G in0-50%. The M-PMDS-G sensor and the PMDS-G sensor have similar 
sensitivity in the 0-40% strain range. The sensitivity of the M-PMDS-G sensor shows 
stability in the range of 0-50%, while the sensitivity of the PMDS-G sensor changes 
significantly from 30%. Figure 4-21-b and 4-21-c show the resistance vs strain of PDMS-G 
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in 50−100% and resistance vs strain of M-PDMS-G in 50−350%, respectively. The 
resistance value of the M-PDMS-G sensor has reached the maximum value measured by 
the test equipment before the break. Here, we set the value of 106 kΩ as the upper limit 
according to the maximum value of resistance that can be detected by the test equipment. It 
can be seen from Figure 4-21-b and Figure 4-21-c that the sensitivity of the PMDS-G sensor 
has changed greatly from 60%, while the sensitivity of the M-PDMS-G sensor changes 
significantly from 300%.

(a)

 (b)                                                                                             (c)
Fig. 4-21. (a) Resistance vs strain of PDMS-G and M-PDMS-G in 0−50%; (b) Resistance 
vs strain of PDMS-G in 50−100%; (c) Resistance vs strain of M-PDMS-G in 50−350%;
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3) Cyclic stability performance
This section was designed to compare the resistance change of the two sensors after 
repeated stretching. Figure 4-22-a and Figure 4-22-c showed the 3-hour stability test results. 
Figure 4-22-b and Figure 4-22-d showed the portions of the results of two sensors for 30 
seconds separately. From these diagrams, two kinds of sensors proved the advantage of 
stability. After 3,600 cycles of 3 consecutive hours, the response signal of two sensors 
barely changed. At the beginning of the test, the baseline of both sensors dropped. However, 
the baseline of the M-PDMS-G sensor drops more gently than that of the PDMS-G sensor. 

Fig. 4-22. Results of the three hours’ stability test (a) overall resistance variation of 
M-PDMS-G sensor, (b) detailed waveform in 30 seconds of the whole test, (c)overall 

resistance variation of PDMS-G sensor; and (d) enlarged signals during 2370−2378 cycles.

4) Response/relaxation time of the M-PDMS-G sensor
In this experiment, Arduino was also used to test the response/relaxation time of the sensor. 
The real-time change of the voltage when the resistance of the sensor changes was recorded. 
The strain range of the sensor was fixed at 0-40%. In the process of strain, the time spent by 
the voltage jumping from the first stable state to the second stable state was considered to 
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be the response/relaxation time of the sensor.
Figure 4-23 shows the comparison of the test results of the M-PDMS-G sensor and 
PMDS-G sensor. The results show that the response times in tension of M-PDMS-G and 
PDMS-G at 0% -40% are 145ms and 308ms, and the response times in relaxation are 245m 
and 372ms, respectively. The relaxation/tension response time of M-PDMS-G is shorter 
than that of PDMS-G, which is fast enough for respiration monitoring [226], [227]. 

(a)                                                                                             (b)
Fig. 4-23. Response/relaxation time test of the M-PDMS-G (a) and PDMS-G (b).

4.3.4. Respiration Signal Evaluation

In order to compare the performance of M-PDMS-G sensors under the multi-sensor 
platform (MSP), the MSP based on the M-PDMS-G sensor was compared with the 
respiration band of the PSG.  
The experiment on the adult was carried out on a 31-year-old male volunteer for one 
hour. The PSG respiratory detection band was attached to the abdomen, and the PDMS-G 
compound tensile sensor was attached slightly lower than the PSG band. The subject sat in 
a chair without strenuous exercise during the experiment. PSG had a respiration sampling 
frequency of 32Hz. There were three aspects to be focused on, including visual comparison, 
mean difference in average RR and correlation between the measured RR for MSP and 
PSG.
The first aspect was the visual comparison. The respiratory signals acquired by MSP and 
PSG were compared. The similarity of the original waveform output of MSP and PSG was 
studied, as shown in Figure 4-24.
From Figure 4-24, the signals obtained using M-PDMS-G showed a similar beat structure 
of the same frequency with those of the PSG. Though the attaching positions of MSP and 
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PSG were a little different from each other in the abdomen region, the overall similarity 
and cycles of the data obtained during the inspiratory intervals were noted implying the 
accuracy of MSP in measuring respiration rate. 

Fig. 4-24. One hour signals measured by MSP (a) and PSG (c). Detailed waveform with 
one minute for MSP (b)and PSG (d)

The second outcome measurement for the study was to assess the direct relationship 
between the average measured respiratory rate (RR) for the M-PDMS-G sensor in MSP and 
respiration band in PSG. Each RR point was output for a 30-second interval. The difference 
in average RR between monitoring techniques over this 30-second interval was summarized 
in the aspects of the mean, standard deviation, median and range. The effectiveness of 
M-PMDS-G-monitored RR versus respiration band-monitored RR was determined by 95% 
confidence intervals for the mean difference in average RR. A difference of three breaths 
per minute (bpm) was considered of minimum clinical relevance. This was chosen from the 
early warning system (EWS) which identifies a score difference of 3 bpm to be meaningful 
by defining the respiration scores in steps of 3 bpm [228]. The Pearson’s Bland-Altman 
analysis between the RR measured for M-PDMS-G and respiration band was conducted.
A total of 60 recorded RR data points were extracted from the experiment. Each RR point 
was spaced 30 seconds apart to ensure variable independence in Bland-Altman analysis. 
Comparisons of the RR (column 1) monitored by M-PMDS-G and RR (column 2) 
monitored by PMDS-G with RR monitored by respiration band are presented in Table 4-11.  
Figure 4-25-a summarized the data from the utilized 60 epochs for M-PMDS-G versus 
respiration band in the form of a Bland-Altman plot. The direction of difference was: 



Design of a wearable sensor system for neonatal seizure monitoring

·142·

(M-PMDS-G- respiration band). The red dashed line represented the bias of the differences. 
Red solid lines represented the 95 % confidence limits for the differences. 
The mean difference for average RR between M-PMDS-G and respiration band was less 
than 1 bpm, mean (SD) = 0.019 (0.59). The 95% confidence interval (CI) for the difference 
in average RR was calculated to be [-1.137, 1.176]. 100% of data points were within the 
clinically accepted error intervals of ±3bpm.

Table 4-11. Comparison of Average Respiratory Rate Per Minute between MSP based 
on M-PDMS-G with and PSG based on RIP bandage
MSP-PSG
Number of data points 60
Mean 0.019
Standard deviation 0.59
Minimum–maximum -1.86,1.23
95 % confidence interval -1.137,1.176

Finally, Figure 4-25-b showed the results of the correlation analysis of the data from the 
utilized 60 epochs for M-PMDS-G versus respiration band. The correlation coefficient (r) 
of 0.988 demonstrated a very strong relationship between M-PMDS-G of MSP and the 
respiration band of PSG in monitoring RR. Similarly, the r of 0.988 demonstrated a strong 
relationship between PMDS-G and the respiration band in monitoring RR.

(a)                                                                  (b)

Fig. 4-25. (a) Bland-Altman plot showing MSP versus PSG. Direction of difference is 
(MSP-PSG); (b)Results of Correlation analysis
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4.3.5. Discussion

In this section, we have shown that the M-PMDS-G sensor in MSP can measure RR on 
adults, with values that showing a clinically relevant agreement with those derived from 
respiration band in PSG. Compared with the PMDS-G sensor, the M-PMDS-G sensor has a 
better deformation capability and wider application scenarios.
  We chose to compare the M-PMDS-G sensor in MSP to the respiration band in PSG. 
Although the accuracy of respiratory assessment based on the respiratory band in PSG is 
not as high as that based on capnography, this method is still used in hospitals.
Respiratory rate measurement derived from capnography is likely the nearest to a gold 
standard but is currently used only in intubated patients and is thus even more restricted 
in use. Future analysis of the M-PMDS-G sensor in MSP will compare it to capnography. 
Neonatal RR based on abdominal changes are different from adults. As a result, it is unclear 
whether the M-PMDS-G in MSP would detect RR of a neonate as well as respiration band 
in PSG. Further trials are required to demonstrate the practical aspects of device use in 
different populations.



5
Conclusion



5.1. Summary of Thesis

The thesis explored the feasibility of the application of a wearable sensor system in the 
field of newborn seizure monitoring, and developed a multi-mode wearable system for 
newborn convulsion monitoring. In addition, we also explored the performance of different 
ECG electrodes and graphene sensors in the detection of neonatal physiological signals. In 
chapter 2, we review the research status of neonatal seizure detection from following three 
aspects: 1. the physiological and pathological basis and present situation of monitoring 
physiological and behavioral signals and predicting neonatal seizure; 2. research status 
of wearable sensor systems for infant monitoring; 3. research status of signal processing 
methods for detection and prediction of neonatal seizure. There are many types of neonatal 
seizures. The most widely-used method is to divide neonatal seizures into four categories: 
subtle seizures, clonic seizures, tonic seizures and myoclonic seizures. The existing neonatal 
seizure detection methods mainly include EEG based detection, ECG based detection, EMG 
based detection and respiratory signal-based detection. For wearable technology, different 
wearable sensors have been used to detect different physiological signals and movement 
signals of neonates. Textile electrodes, various conductive electrodes and conductive ink are 
used to detect ECG signals. Patch electrode, three-dimensional accelerometer, piezoelectric 
sensor, electrochemical sensor and infrared sensor are used to detect respiratory signal. 
A transmission SpO2 sensor is used to detect the SpO2 signal. The sensors for neonatal 
motion detection are mainly divided into 5 types, including IMU, accelerometer, magneto-
inertial, pressure sensor and flexible sensor. In addition, some researchers have developed 
different multi-parameter wearable monitoring systems, such as the smart jacket proposed 
by Chen et al. to detect ECG signals and the baby swaddle proposed by Baker et al. to 
detect temperature, humidity, and pulse. In data processing, different methods are utilized to 
tackle the complexity of physiological signals, mainly for seizure detection. Among them, 
three subjects as fountainheads, e.g., non-stationary signal processing, nonlinear dynamics 
and network science, can be roughly identified. We explore these three approaches in this 
chapter.
In chapter 3, we proposed to solve the problems occurring in neonatal seizure monitoring 
through a combination of "flexible sensor network" and "multimodal signal fusion 
technology". We introduced the development process of the system from three aspects: 
requirement discovery, technical realization and system verification. We summarized 
the development requirements of a wearable neonatal seizure detection system through 
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information retrieval, clinical observation and user interview. Based on the development 
requirements, we developed a wearable multi-sensor system for neonatal seizure detection. 
The smart vest we proposed is a unified sensing platform embedded with flexible material 
based non-invasive sensors. We used IMU sensors to collect infants’ movement signals. 
At the same time, we developed flexible textile electrodes and a PDMS-G sensor to collect 
neonatal ECG and respiratory signals. The overall design focuses on comfort and accuracy. 
We carried out systematic verification about the platform which includes electrical 
properties of the new sensing materials, signal quality evaluation and comparison with 
gold standards to verify the feasibility of the system. Verification experiments proved that 
quality ECG signals can be obtained through the proposed flexible electrode materials 
with comparable performance to the commercial AgCl adhesive electrodes and accurate 
respiration data can be obtained through the new PDMS-Graphene compound based 
stretching sensor. In order to verify the clinical feasibility of the multi-sensor platform for 
neonatal seizure detection, permission was obtained from the Research Ethics Committee in 
Children’s Hospital of Fudan University (approval No. (2017) 89) to recruit infant patients 
for neonatal seizure detection. The whole research of neonatal seizure detection includes 
three parts, data collection, data analysis strategy, data analysis results. 48 patients who 
had already experienced a seizure at our hospital and did not violate exclusion criteria were 
enrolled in the trial. Four patients were finally diagnosed with neonatal seizure during the 
test.
Based on ECG, respiration and movement signal, we implemented a patient-independent 
seizure detection algorithm that excluded all data from a test patient in the training phase 
(double leave-one-patient-out cross-validation). To allow the SVM to learn from previous 
examples of seizures from the test patient if that patient had more than a single seizure 
recording available, we also implemented double leave-one-seizure-out cross-validation. 
Because there exists variability between patients, we also implemented a patient-dependent 
seizure detection algorithm that used the data from one patient to train and test the SVM 
classifier. 
The results show that the algorithm can automatically detect neonatal seizures. Among 
the four patients, 2 cases showed high sensitivity, reaching 100%, and the other two cases 
showed 50% and 25% sensitivity respectively. In addition, we also explored the effect of 
multi-signal fusion on the detection performance of neonatal seizures. The results show 
that multi-parameter fusion can improve the performance of neonatal seizure detection, 
which provides a feasible direction for the follow-up research. We tested the algorithm 
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through the data from four subjects with neonatal seizures occur. The results show that 
the algorithm can automatically detect neonatal seizures. The sensitivity of the two 
subjects was 100% while the sensitivity of the other two subjects was 50% and 25%, 
respectively. In addition, we also explored the effect of multi-signal fusion on the 
performance of neonatal seizure detection. The results show that multi-parameter fusion 
can improve the performance of neonatal seizure detection, which provides a feasible 
direction for the follow-up research. 
In Chapter 4, we explored different new flexible sensors of ECG signal and respiration 
signal. For ECG monitoring, we compare the influence of electrodes made of 
different intelligent textiles on the quality of ECG signal, and discussed the structure 
of the sensor. The results present that the ECG electrodes based on RTF Fabrics 
show better performance than the ECG electrodes based on Medical Fabrics and 
Technical Fabrics. However, the performance of AG/cl electrodes is still better than 
that of textile electrodes. The main reason is that textile electrodes are susceptible 
to external interference. In addition, we presented a novel dry disposable electrode 
prototype. The conductive part is made of carbonized foam (CF). A test protocol 
focusing on characterizing several important electrical properties of the electrode 
is designed to investigate its performance when being used to record the surface 
potential. Experimental results show that the presented CF electrode is capable of 
acquiring surface potential like ECG with competitive signal quality. Lower powerline 
interference is observed from the signal acquired by CF electrodes. The issue about 
biocompatibility and future work about improving the intension of the material and 
thus the durability of the electrode are also discussed. For respiration, we designed a 
tensile sensor of graphene composite with the mesh structure. The larger strain range 
and smaller stress can be obtained by using graphene with the mesh structure. Smaller 
stresses have less effect on neonatal respiration. we have shown that in a clinical setting 
the M-PMDS-G sensor in MSP can measure RR, with values showing a clinically 
relevant agreement with those derived from respiration band in PSG. Compared with 
the PMDS sensor, the M-PMDS-G sensor has a better deformation capability and wider 
application scenarios. The subjects in this experiment are adults, and the neonatal RR 
based on abdominal changes are different from adults’. As a result, it is unclear whether 
the M-PMDS-G in MSP would detect RR of neonates as well as respiration band in 
PSG. Further trials are required to demonstrate the practical aspects of device use in 
different populations.
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5.2. Contributions

This Ph.D. research resulted in the following contributions
1. The MSP was designed and developed. This thesis presented the design and 

development of a set of smart vest embedded with flexible material based non-
invasive sensors for neonatal vital signal acquisition and potentially supporting 
neonatal seizure detection. Different from other neonatal wearable monitoring devices, 
MSP lays emphasis on the integration and design of multiple sensors, paying attention 
to the overall comfort and accuracy. Systematic verification about the platform was 
carried out, involving electrical properties of the new sensing materials, signal quality 
assessment and comparison with gold standard to validate the feasibility of the system. 
It is proved by verification experiments that high-quality ECG signals, equivalent 
to performance to the commercial AgCl adhesive electrodes, can be obtained based 
on the aforementioned flexible electrode materials and accurate respiration data can 
be obtained by the new PDMS-Graphene compound based stretching sensor. The 
proposed platform is expected to ensure comfort during neonatal monitoring.

2. The combination of flexible sensing network and multimodal signal (electrocardiogram, 
respiratory and motion signals) fusion technology was provided to solve the existing 
problems in neonatal seizure monitoring and make it comfortable, continuous and 
efficient. Based on ECG, respiration and acceleration, an algorithm for automatic 
neonatal seizure detection was explored to evaluate the records of 4 patients with 
seizures. To estimate the utility of combining ECG, respiration and movement, the 
performance of three seizure detectors was further compared. The first detector 
included features from the ECG, respiration and acceleration recordings, the second 
incorporated respiratory-motion based features from respiration and acceleration 
recordings, and the third involved ECG-based features only from the ECG recordings. 
Our research shows the overall performance based on multi-modal features was 
enhanced with a lower false alarm rate and higher F-measure compared to the detector 
utilizing single modal features. The proposed algorithm based on multimodal for 
seizure detection provides a feasible direction in this field.

3. The effects of different textile electrodes on ECG were explored. In the process 
of comparing the ECG electrodes based on three different textile materials from 
Shieldex, Ag /CL electrode was used as the gold standard while data were collected 
under different states. The result presents the textile electrode is promising in ECG 
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signal acquisition. However, Ag/Cl electrodes and textile electrodes based on RTF 
(Berlin RS) textile materials showed advantages under the upper body turning state 
and walking state. The quality of the signals collected by the electrodes based on 
Medical Fabrics and Technical Fabrics apparently decline under the motion state. The 
textile electrode made of RTF (Berlin RS) textile material performs better than that 
made of the other two kinds of textiles. During the motion state, the signal obtained by 
the RTF material-based electrode is more stable and not easily interfered with by the 
movement. The electrode based on RTF (Berlin RS) material under motion state has a 
higher R-wave recognition rate than Ag/CL electrode, but the lower power spectrum 
ratio value and signal kurtosis (K) value, which signifies the electrode based on RTF 
(Berlin RS) materials are easily affected by the external environment. 

4. A novel dry disposable electrode prototype was developed. The conductive part 
is made of carbonized foam (CF). The test of its in-vitro impedance rules out the 
worry about attenuations. And the skin-to-electrode impedance introduced by the 
proposed electrode is comparable with state-of-art Ag/AgCl electrode. The signal 
quality obtained through the CF electrode has advantages, especially during motion 
conditions. Furthermore, the proposed CF electrode works without conductive gel. The 
conductive part is flexible, which is the possible reason for the CF electrode’s higher 
tolerance on motion artefacts than Ag/AgCl electrode.

5. A novel tensile sensor was presented. To enhance the respiration sensor performance, 
we designed a tensile sensor of graphene composite with mesh structure (M-PDMS-G) 
and further compared the properties between M-PDMS-G and PDMS-G. It is found 
that a larger strain range and smaller stress can be acquired through graphene with 
the mesh structure. Smaller stresses produce less effect on neonatal respiration. The 
M-PMDS-G sensor in MSP can measure RR on adults, which presents a clinically 
accordant value with those derived from respiration band in PSG. All in all, the 
M-PMDS-G sensor has a better deformation capability and wider application scenarios 
than the PMDS-G sensor.

5.3. Limitations

This research includes hardware design, software design, algorithm design, clinical 
validation and so on. It is critical to carry out iterated and constant verification during each 
step to ensure the feasibility of the system. Due to the lack of neonatal seizure data, the 



Design of a wearable sensor system for neonatal seizure monitoring

·150·

proposed multimodal fusion seizure detection algorithm has low sensitivity, making the 
system difficult to be applied in practice. Moreover, the seizure detection algorithm needs 
to be further optimized. There exist differences between each patient, possibly leading to 
low sensitivity. In addition, it is necessary to improve data quality, either. During the data 
collection, infants’ crying or motion may cause low data quality and even biased results, so 
further validation is indispensable.

5.4. Future Work

This thesis has been dedicated to designing a multi-sensor platform for neonatal seizure 
detection in the past years, but there still exists extensive space to explore in the future. We 
now address three directions from the future perspective.

5.4.1.	 Clinical	Data	Collection	and	Verifications	for	MSP

This research only involved small-scale patient data with limited exposure to the system, 
unable to support the effectiveness of the system for neonatal seizure detection, which 
means the demand for larger sample sizes and detection outcome measurements. Therefore, 
data fusion techniques and optimization algorithms will be explored based on larger clinical 
data in future work. We will compare more seizure detectors to prove that the seizure 
detection algorithm based on aggregation (full) mode improves the performance of seizure 
detection. In addition, we can carry out a trial on the clinical effectiveness after ensured 
the clinical feasibility and safety of the system. The results of clinical real-time seizure 
detection based on MSP can be compared with traditional EEG-based seizure detection 
results.

5.4.2. Exploration of Sensors

Researches on MSP have mostly focused on the exploration and integration of new wearable 
sensor technology, which should be further developed or upgraded for the pursuit of the 
comfort and stability of MSP. In terms of the proposed CF electrode, the structure of the 
prototype has been designed to verify the usability and performance of CF as the conductive 
material, but a new structure for the integration of CF into real-world wearable sensor 
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systems is still needed and the mechanical intensity of CF should be further enhanced. 
We, therefore, leave these matters and the assessment of material’s biocompatibility as our 
future work. It is noticeable that the CF electrode is likely to reduce powerline interference, 
which is serendipity indeed. Shielding measure and driven-leg circuits can be realized 
under well-structured circumstances but impractical in wearable sensor systems because of 
its unwieldy medical instruments. There is less demand for high-order digital filters which 
avoids continuous and intensive computation, conducive to keep low power consumption 
of the whole system. We, therefore, try to find out its root cause and eliminate the influence 
of possible irrelevant variables in our further work. Furthermore, the proposed M-PDMS-G 
sensor still needs further verification due to the difference between adults’ and neonatal RR 
based on abdominal changes. As a result, it is still a mystery whether the M-PMDS-G in 
MSP would detect neonatal RR as well as respiration band in PSG. Further trials are needed 
to prove the practical application of the device in different populations. In addition, the 
development of wearable sensors with different signals for seizure detection, such as the 
sensors for monitoring mouth movements or eye movements, remains the next important 
step. These signals, related to seizures, can be integrated into the algorithm to increase the 
precision of seizure detection in the future.  
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