130 research outputs found

    Hardware dedicado para sistemas empotrados de visión

    Get PDF
    La constante evolución de las Tecnologías de la Información y las Comunicaciones no solo ha permitido que más de la mitad de la población mundial esté actualmente interconectada a través de Internet, sino que ha sido el caldo de cultivo en el que han surgido nuevos paradigmas, como el ‘Internet de las cosas’ (IoT) o la ‘Inteligencia ambiental’ (AmI), que plantean la necesidad de interconectar objetos con distintas funcionalidades para lograr un entorno digital, sensible y adaptativo, que proporcione servicios de muy distinta índole a sus usuarios. La consecución de este entorno requiere el desarrollo de dispositivos electrónicos de bajo coste que, con tamaño y peso reducido, sean capaces de interactuar con el medio que los rodea, operar con máxima autonomía y proporcionar un elevado nivel de inteligencia. La funcionalidad de muchos de estos dispositivos incluirá la capacidad para adquirir, procesar y transmitir imágenes, extrayendo, interpretando o modificando la información visual que resulte de interés para una determinada aplicación. En el marco de este desafío surge la presente Tesis Doctoral, cuyo eje central es el desarrollo de hardware dedicado para la implementación de algoritmos de procesamiento de imágenes y secuencias de vídeo usados en sistemas empotrados de visión. El trabajo persigue una doble finalidad. Por una parte, la búsqueda de soluciones que, por sus prestaciones y rendimiento, puedan ser incorporadas en sistemas que satisfagan las estrictas exigencias de funcionalidad, tamaño, consumo de energía y velocidad de operación demandadas por las nuevas aplicaciones. Por otra, el diseño de una serie de bloques funcionales implementados como módulos de propiedad intelectual, que permitan aliviar la carga computacional de las unidades de procesado de los sistemas en los que se integren. En la Tesis se proponen soluciones específicas para la implementación de dos tipos de operaciones habitualmente presentes en muchos sistemas de visión artificial: la sustracción de fondo y el etiquetado de componentes conexos. Las distintas alternativas surgen como consecuencia de aplicar una adecuada relación de compromiso entre funcionalidad y coste, entendiendo este último criterio en términos de recursos de cómputo, velocidad de operación y potencia consumida, lo que permite cubrir un amplio espectro de aplicaciones. En algunas de las soluciones propuestas se han utilizado además, técnicas de inferencia basadas en Lógica Difusa con idea de mejorar la calidad de los sistemas de visión resultantes. Para la realización de los diferentes bloques funcionales se ha seguido una metodología de diseño basada en modelos, que ha permitido la realización de todo el ciclo de desarrollo en un único entorno de trabajo. Dicho entorno combina herramientas informáticas que facilitan las etapas de codificación algorítmica, diseño de circuitos, implementación física y verificación funcional y temporal de las distintas alternativas, acelerando con ello todas las fases del flujo de diseño y posibilitando una exploración más eficiente del espacio de posibles soluciones. Asimismo, con el objetivo de demostrar la funcionalidad de las distintas aportaciones de esta Tesis Doctoral, algunas de las soluciones propuestas han sido integradas en sistemas de vídeo reales, que emplean buses estándares de uso común. Los dispositivos seleccionados para llevar a cabo estos demostradores han sido FPGAs y SoPCs de Xilinx, ya que sus excelentes propiedades para el prototipado y la construcción de sistemas que combinan componentes software y hardware, los convierten en candidatos ideales para dar soporte a la implementación de este tipo de sistemas.The continuous evolution of the Information and Communication Technologies (ICT), not only has allowed more than half of the global population to be currently interconnected through Internet, but it has also been the breeding ground for new paradigms such as Internet of Things (ioT) or Ambient Intelligence (AmI). These paradigms expose the need of interconnecting elements with different functionalities in order to achieve a digital, sensitive, adaptive and responsive environment that provides services of distinct nature to the users. The development of low cost devices, with small size, light weight and a high level of autonomy, processing power and ability for interaction is required to obtain this environment. Attending to this last feature, many of these devices will include the capacity to acquire, process and transmit images, extracting, interpreting and modifying the visual information that could be of interest for a certain application. This PhD Thesis, focused on the development of dedicated hardware for the implementation of image and video processing algorithms used in embedded systems, attempts to response to this challenge. The work has a two-fold purpose: on one hand, the search of solutions that, for its performance and properties, could be integrated on systems with strict requirements of functionality, size, power consumption and speed of operation; on the other hand, the design of a set of blocks that, packaged and implemented as IP-modules, allow to alleviate the computational load of the processing units of the systems where they could be integrated. In this Thesis, specific solutions for the implementation of two kinds of usual operations in many computer vision systems are provided. These operations are background subtraction and connected component labelling. Different solutions are created as the result of applying a good performance/cost trade-off (approaching this last criteria in terms of area, speed and consumed power), able to cover a wide range of applications. Inference techniques based on Fuzzy Logic have been applied to some of the proposed solutions in order to improve the quality of the resulting systems. To obtain the mentioned solutions, a model based-design methodology has been applied. This fact has allowed us to carry out all the design flow from a single work environment. That environment combines CAD tools that facilitate the stages of code programming, circuit design, physical implementation and functional and temporal verification of the different algorithms, thus accelerating the overall processes and making it possible to explore the space of solutions. Moreover, aiming to demonstrate the functionality of this PhD Thesis’s contributions, some of the proposed solutions have been integrated on real video systems that employ common and standard buses. The devices selected to perform these demonstrators have been FPGA and SoPCs (manufactured by Xilinx) since, due to their excellent properties for prototyping and creating systems that combine software and hardware components, they are ideal to develop these applications

    Task-based Adaptation of Graphical Content in Smart Visual Interfaces

    Get PDF
    To be effective visual representations must be adapted to their respective context of use, especially in so-called Smart Visual Interfaces striving to present specifically those information required for the task at hand. This thesis proposes a generic approach that facilitate the automatic generation of task-specific visual representations from suitable task descriptions. It is discussed how the approach is applied to four principal content types raster images, 2D vector and 3D graphics as well as data visualizations, and how existing display techniques can be integrated into the approach.Effektive visuelle Repräsentationen müssen an den jeweiligen Nutzungskontext angepasst sein, insbesondere in sog. Smart Visual Interfaces, welche anstreben, möglichst genau für die aktuelle Aufgabe benötigte Informationen anzubieten. Diese Arbeit entwirft einen generischen Ansatz zur automatischen Erzeugung aufgabenspezifischer Darstellungen anhand geeigneter Aufgabenbeschreibungen. Es wird gezeigt, wie dieser Ansatz auf vier grundlegende Inhaltstypen Rasterbilder, 2D-Vektor- und 3D-Grafik sowie Datenvisualisierungen anwendbar ist, und wie existierende Darstellungstechniken integrierbar sind

    Revisiting Counting Solutions for the Global Cardinality Constraint

    Get PDF
    International audienceCounting solutions for a combinatorial problem has been identified as an important concern within the Artificial Intelligence field. It is indeed very helpful when exploring the structure of the solution space. In this context, this paper revisits the computation process to count solutions for the global cardinality constraint in the context of counting-based search. It first highlights an error and then presents a way to correct the upper bound on the number of solutions for this constraint

    Exploratory Browsing

    Get PDF
    In recent years the digital media has influenced many areas of our life. The transition from analogue to digital has substantially changed our ways of dealing with media collections. Today‟s interfaces for managing digital media mainly offer fixed linear models corresponding to the underlying technical concepts (folders, events, albums, etc.), or the metaphors borrowed from the analogue counterparts (e.g., stacks, film rolls). However, people‟s mental interpretations of their media collections often go beyond the scope of linear scan. Besides explicit search with specific goals, current interfaces can not sufficiently support the explorative and often non-linear behavior. This dissertation presents an exploration of interface design to enhance the browsing experience with media collections. The main outcome of this thesis is a new model of Exploratory Browsing to guide the design of interfaces to support the full range of browsing activities, especially the Exploratory Browsing. We define Exploratory Browsing as the behavior when the user is uncertain about her or his targets and needs to discover areas of interest (exploratory), in which she or he can explore in detail and possibly find some acceptable items (browsing). According to the browsing objectives, we group browsing activities into three categories: Search Browsing, General Purpose Browsing and Serendipitous Browsing. In the context of this thesis, Exploratory Browsing refers to the latter two browsing activities, which goes beyond explicit search with specific objectives. We systematically explore the design space of interfaces to support the Exploratory Browsing experience. Applying the methodology of User-Centered Design, we develop eight prototypes, covering two main usage contexts of browsing with personal collections and in online communities. The main studied media types are photographs and music. The main contribution of this thesis lies in deepening the understanding of how people‟s exploratory behavior has an impact on the interface design. This thesis contributes to the field of interface design for media collections in several aspects. With the goal to inform the interface design to support the Exploratory Browsing experience with media collections, we present a model of Exploratory Browsing, covering the full range of exploratory activities around media collections. We investigate this model in different usage contexts and develop eight prototypes. The substantial implications gathered during the development and evaluation of these prototypes inform the further refinement of our model: We uncover the underlying transitional relations between browsing activities and discover several stimulators to encourage a fluid and effective activity transition. Based on this model, we propose a catalogue of general interface characteristics, and employ this catalogue as criteria to analyze the effectiveness of our prototypes. We also present several general suggestions for designing interfaces for media collections

    Cyber Security of Critical Infrastructures

    Get PDF
    Critical infrastructures are vital assets for public safety, economic welfare, and the national security of countries. The vulnerabilities of critical infrastructures have increased with the widespread use of information technologies. As Critical National Infrastructures are becoming more vulnerable to cyber-attacks, their protection becomes a significant issue for organizations as well as nations. The risks to continued operations, from failing to upgrade aging infrastructure or not meeting mandated regulatory regimes, are considered highly significant, given the demonstrable impact of such circumstances. Due to the rapid increase of sophisticated cyber threats targeting critical infrastructures with significant destructive effects, the cybersecurity of critical infrastructures has become an agenda item for academics, practitioners, and policy makers. A holistic view which covers technical, policy, human, and behavioural aspects is essential to handle cyber security of critical infrastructures effectively. Moreover, the ability to attribute crimes to criminals is a vital element of avoiding impunity in cyberspace. In this book, both research and practical aspects of cyber security considerations in critical infrastructures are presented. Aligned with the interdisciplinary nature of cyber security, authors from academia, government, and industry have contributed 13 chapters. The issues that are discussed and analysed include cybersecurity training, maturity assessment frameworks, malware analysis techniques, ransomware attacks, security solutions for industrial control systems, and privacy preservation methods

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility

    Automatic generation of software interfaces for supporting decisionmaking processes. An application of domain engineering & machine learning

    Get PDF
    [EN] Data analysis is a key process to foster knowledge generation in particular domains or fields of study. With a strong informative foundation derived from the analysis of collected data, decision-makers can make strategic choices with the aim of obtaining valuable benefits in their specific areas of action. However, given the steady growth of data volumes, data analysis needs to rely on powerful tools to enable knowledge extraction. Information dashboards offer a software solution to analyze large volumes of data visually to identify patterns and relations and make decisions according to the presented information. But decision-makers may have different goals and, consequently, different necessities regarding their dashboards. Moreover, the variety of data sources, structures, and domains can hamper the design and implementation of these tools. This Ph.D. Thesis tackles the challenge of improving the development process of information dashboards and data visualizations while enhancing their quality and features in terms of personalization, usability, and flexibility, among others. Several research activities have been carried out to support this thesis. First, a systematic literature mapping and review was performed to analyze different methodologies and solutions related to the automatic generation of tailored information dashboards. The outcomes of the review led to the selection of a modeldriven approach in combination with the software product line paradigm to deal with the automatic generation of information dashboards. In this context, a meta-model was developed following a domain engineering approach. This meta-model represents the skeleton of information dashboards and data visualizations through the abstraction of their components and features and has been the backbone of the subsequent generative pipeline of these tools. The meta-model and generative pipeline have been tested through their integration in different scenarios, both theoretical and practical. Regarding the theoretical dimension of the research, the meta-model has been successfully integrated with other meta-model to support knowledge generation in learning ecosystems, and as a framework to conceptualize and instantiate information dashboards in different domains. In terms of the practical applications, the focus has been put on how to transform the meta-model into an instance adapted to a specific context, and how to finally transform this later model into code, i.e., the final, functional product. These practical scenarios involved the automatic generation of dashboards in the context of a Ph.D. Programme, the application of Artificial Intelligence algorithms in the process, and the development of a graphical instantiation platform that combines the meta-model and the generative pipeline into a visual generation system. Finally, different case studies have been conducted in the employment and employability, health, and education domains. The number of applications of the meta-model in theoretical and practical dimensions and domains is also a result itself. Every outcome associated to this thesis is driven by the dashboard meta-model, which also proves its versatility and flexibility when it comes to conceptualize, generate, and capture knowledge related to dashboards and data visualizations

    The Archaeology of Europe’s Drowned Landscapes

    Get PDF

    Advanced interaction techniques for medical models

    Get PDF
    Advances in Medical Visualization allows the analysis of anatomical structures with the use of 3D models reconstructed from a stack of intensity-based images acquired through different techniques, being Computerized Tomographic (CT) modality one of the most common. A general medical volume graphics application usually includes an exploration task which is sometimes preceded by an analysis process where the anatomical structures of interest are first identified. The main objective of this thesis is the improvement of the user experience in the analysis and exploration of medical datasets. This improvement involves the development of efficient algorithms designed both under a user-centered perspective and taking the new computing capabilities into account in order to obtain high quality results in real-time. On the analysis stage, we have focused on the identification of the bones at joints, which is particularly challenging because the bones are very close to each other and their boundaries become ambiguous in CT images. We have concentrated our efforts on reaching maximum automation of the overall process. The proposed algorithm uses an example mesh of the same bone that has to be segmented, usually from a different person, to drive the segmentation process. The algorithm is based on an energy minimization scheme to deform the initial example mesh while following the well-defined features of the volume data to be segmented in a local and adaptive way. We also present contributions on three different aspects of the exploration task: a best-view determination system and centering in virtual reality environments, a focus-and-context technique and a point selection method. In medical practice it would often be very useful to have access to a quick pre-visualization of the involved medical dataset. We have proposed a new system which allows users to obtain a set of representative views in a short time and permits the generation of inspection paths at almost no extra cost. The technique relies on the use of a multiscale entropy measure for the generation of good viewpoints and uses a complexity-based metric, the normalized compression distance, for the calculation of the representative views set. In the exploration of medical datasets, it is difficult to simultaneously visualize interior and exterior structures because the structures are commonly quite complex and it is easy to lose the context. We have developed a new interaction tool, the Virtual Magic Lantern, tailored to facilitate volumetric data inspection in a Virtual Reality environment. It behaves like a lantern whose illumination cone determines the region of interest. It addresses the occlusion management problem and facilitates the inspection of inner structures without the total elimination of the exterior structures, offering in this way, a focus+context-based visualization of the overall structures. Finally, the analysis of medical datasets may require the selection of 3D points for measurements involving anatomical structures. Although there are well-established 3D object selection techniques for polygonal models, there is a lack of techniques specifically developed for volume datasets. We present a new selection technique for Virtual Reality setups which allows users to easily select anchor points in non-necessarily segmented volume datasets rendered using Direct Volume Rendering. This new metaphor is based on the use of a ray emanating from the user, whose trajectory is enriched with its points of intersection with the on-the-fly determination of the isosurfaces along the ray path. Additionally, a visual feedback of the ray selection is offered through the use of two helper mirror views, in order to show occluded candidate points that would otherwise be invisible to the user without posterior and ad-hoc manipulation.Els avenços en la investigació en el camp de Medical Visualization permeten l’anàlisi de models volumètrics tridimensionals d’estructures anatòmiques obtinguts a partir d’imatgesmèdiques capturades mitjançant diferents tècniques, essent la Tomografia Computeritzada (TC) una de lesmés habituals. Generalment, les aplicacions informàtiques d’ajuda al diagnòstic, la simulació, etc., permeten l’exploració interactiva d’aquest tipus de models, una tasca que pot anar precedida d’un procés d’identificació (segmentació) de les estructures anatòmiques per tal de possibilitar la seva exploració. L’objectiu d’aquesta tesi és millorar l’eficiència i l’experiència de l’usuari, tant de la tasca de segmentació com de l’exploració. Per tal d’assolir-ho s’han desenvolupat diversos algorismes; dissenyats sota una perspectiva centrada en l’usuari i fent servir els darrers avenços tecnològics de las targes gràfiques, el que ens permet obtenir resultats visuals de màxima qualitat en temps real. Respecte de la tasca de segmentació, ens hem centrat en el problema de la identificació d’ossos ubicats en articulacions, en models capturats mitjançant TC. La identificació d’aquests ossos pot arribar a ser molt feixuga i costosa fent servir les tècniques clàssiques de segmentació. La recerca realitzada en elmarc de la tesi s’ha enfocat en assolir la màxima automatització possible del procés sencer. La tècnica proposada empra una malla triangular d’exemple de l’os que es vol segmentar, que es fará servir per guiar tot el procés de segmentació. L’algorisme deforma de forma local i adaptativa aquesta malla, adaptant-la a la informació present en el model volumètric en les parts en que la seva frontera està definida de forma no ambigua, i respectant la forma original en les zones en les que el model presenta algun tipus d’incertesa en la definició de la frontera, ja sigui be perque l’estructura òssia apareix totalment unida a altres estructures òssies de l’articulació o be degut a que la informació capturada no presenta una frontera ben contrastada. Per altra banda, en la pràctica clínica pot ser de molta utilitat oferir a l’usuari una previsualització ràpida del model volumètric que ha d’inspeccionar. En aquesta tesi elaborem una nova tècnica que permet obtenir en un temps acceptable un conjunt de vistes representatives d’un model volumètric, així comla generació automàtica d’una animació a l’entorn del model que facilita a l’usuari una ràpida comprensió del mateix. La tècnica desenvolupada utilitza una formulació de l’entropia multiescala per la obtenció de bones vistes i la distància de compressió normalitzada, una mètrica del camp de la teoria de la complexitat, per establir el conjunt de vistes representatives. En l’exploració de models mèdics pot ser difícil la visualització simultània d’estructures internes i externes. Per abordar aquest problema s’ha desenvolupat una nova tècnica d’interacció anomenada Virtual Magic Lantern, pensada per a facilitar la inspecció d’aquests models en entorns de realitat virtual. Aquesta metàfora d’interacció es comporta com una llanterna. El seu feix de llum determina una regió d’interès del model, que serà visualitzada emprant una funció de transferència específica permetent la visualització de les estructures internes sense eliminar el context de tot el model. En l’anàlisi de modelsmédics pot ser necessària la selecció de punts concrets per a poder realitzar algun tipus de medició entre estructures anatòmiques. Depenent del algorisme de visualització del model, determinar quin punt exactament vol seleccionar l’usuari pot no tenir un resultat únic. Per solventar aquest problema, s’ha desenvolupat una nova metàfora d’interacció per entorns de realitat virtual, que permet la selecció de punts en un model volumètric no necessàriament segmentat. Aquesta tècnica es basa en l’ús d’un raig originat en la mà de l’usuari, sobre el que es visualitzen els punts d’intersecció amb les estructures anatòmiques que travessa. Donat que la superfície d’aquestes estructures no està explícitament definida, s’ha requerit desenvolupar especialment un càlcul ràpid i precís de les seves interseccions amb el raig. Per tal de facilitar la visió dels punts interiors a superfícies opaques i enriquir la visualització global, s’afegeix sobre dos plans auxiliars la visió del volum tallat garantint la visibilitat total del conjunt de punts.Los avances en la investigación en el área de Medical Visualization permiten el análisis de modelos volumétricos tridimensionales de estructuras anatómicas, los cuales se obtienen a partir de imágenes médicas capturadas mediante diferentes técnicas de captación, siendo la Tomografía Computerizada (TC) una de las más frecuentes. Habitualmente, las aplicaciones informáticas orientadas al análisis de este tipo de modelos, bien sean para el soporte al diagnóstico, simuladores médicos o la planificación de procesos quirúrgicos, permiten la exploración interactiva de los modelos volumétricos. Dependiendo de las estructuras anatómicas que se precise analizar, puede ser necesario realizar un proceso de identificación (segmentación) de las estructuras anatómicas para posibilitar su posterior inspección. El objetivo principal de esta tesis ha consistido en el desarrollo de nuevas técnicas informáticas que mejoren la experiencia del usuario en los procesos tanto de segmentación como de exploración de un modelo volumétrico. Para alcanzar dicho objetivo, ha sido necesario el desarrollo de algoritmos eficientes diseñados teniendo particularmente en cuenta al usuario final y explotando los últimos avances en la tecnología de las tarjetas gráficas para poder obtener resultados visuales de la máxima calidad en tiempo real. En lo relativo al proceso de segmentación, nos hemos centrado en la identificación de las estructuras óseas ubicadas en articulaciones, en modelos capturadosmediante TC. La identificación de este tipo de estructuras usando los métodos tradicionales de segmentación puede llegar a ser muy tediosa, debido a que puede necesitarse mucha intervención por parte del usuario. La investigación llevada a cabo ha tenido como objetivo principal el maximizar el grado de automatización en el proceso de segmentación de este tipo de estructuras. La técnica propuesta parte de un ejemplo de la estructura ósea (malla triangular) que se quiere segmentar, generada a partir de los datos o bien de otra persona o bien de la misma persona en otras circunstancias. A partir de este ejemplo el algoritmo deforma la malla de manera local y adaptativa, adaptandola a la información presente en elmodelo volumétrico en aquellas zonas donde la frontera de la estructura está definida de forma no ambígua, y respetando la forma de la malla original en aquellas otras zonas en las cuales el modelo volumétrico presenta algún tipo de incertidumbre en la definición de la frontera, ya sea porque la estructura ósea aparece totalmente unida a otras estructuras óseas de la articulación o debido a que la información capturada no presenta una frontera bien contrastada. En lo relativo al proceso de exploración, esta tesis presenta resultados en dos vertientes distintas. Por un lado, la generación automática de una previsualización del modelo volumétrico y por el otro lado, el desarrollo de nuevas técnicas de interacción que faciliten la exploración de modelos volumétricos en entornos de realidad virtual. Ofrecer al usuario una previsualización rápida del modelo volumétrico que ha de inspeccionar, puede ser de mucha utilidad en la práctica clínica. En esta tesis elaboramos un nuevo sistema que permite obtener en un tiempo razonable un conjunto de vistas representativas del modelo volumétrico, así como la generación de una animación alrededor del modelo que facilita al usuario una rápida comprensión del mismo. Las técnicas desarrolladas se basan en el uso de la entropía multiescala para el cálculo de vistas informativas del modelo volumétrico. A partir del conjunto de vistas calculadas y mediante el uso de la distancia de compresión normalizada, una métrica de Teoría de la Complejidad, se puede calcular un subconjunto de vistas representativas del modelo volumétrico. Por otro lado, en la exploración de modelos volumétricos puede ser difícil visualizar simultáneamente estructuras anatómicas internas y externas. Esto es debido a que las estructuras son bastantes complejas, y es fácil perder la referencia respecto a otras estructuras anatómicas. En esta tesis se ha desarrollado una nueva técnica de interacción, bautizada como VirtualMagic Lantern, orientada a facilitar la inspección de modelos volumétricos en entornos de realidad virtual. Esta nueva metáfora de interacción se comporta como una linterna de mano guiada por el usuario, cuyo haz de luz define sobre el modelo volumétrico una región de interés. Esta región de interés será visualizada utilizando una función de transferencia diferente a la usada para el resto del modelo, posibilitando de esta manera la inspección de estructuras internas sin eliminar totalmente el resto delmodelo. En el análisis de modelos médicos puede ser necesaria la selección de puntos concretos para poder realizar algún tipo de medición entre estructuras anatómicas. Dependiendo del tipo de visualización del modelo, determinar qué punto exactamente quiere seleccionar el usuario puede no tener un resultado único. Para solucionar este problema, se presenta una nuevametáfora de interacción en entornos de realidad virtual para la selección de puntos anatómicos de un modelo volumétrico no necesariamente segmentado. Esta técnica se basa en el uso de un rayo originado en la mano del usuario, sobre el que son visualizados los puntos de intersección de las estructuras anatómicas que atraviesa. Dado que la superficie de estas estructuras anatómicas no está explícitamente representada en el modelo volumétrico, se ha requerido desarrollar un cálculo preciso y rápido de la intersección del rayo con estas estructuras. Para ofrecer una visualización de los puntos calculados sin ningún tipo de oclusión por parte de las estructuras anatómicas existentes en el modelo, se ha añadido a la visualización global la visualización de dos paneles auxiliares en los cuales se muestra el mismo modelo volumétrico recortado de tal manera que sean completamente visibles el conjunto de los puntos. De esta forma, se facilita al usuario la selección de los puntos calculados sin tener que realizar ningún tipo de manipulación del modelo para poder obtener una visualización en la que los puntos calculados sean visibles
    • …
    corecore