12,013 research outputs found

    The DSI small satellite launcher

    Get PDF
    A new launcher has been developed by DSI, that is compatible with the GAS canisters. It has the proven capability to deploy a satellite from an orbiting Shuttle that is 18 inches in diameter, 31 inches long, and weighing 190 pounds. These DSI Launchers were used aboard the Discovery (STS-39) in May 1991 as part of the Infrared Background Signature Survey (IBSS) to deploy three small satellites known as Chemical Release Observation (CRO) satellites A, B, and C. Because the satellites contained hazardous liquids (MMH, UDMH, and MON-10) and were launched from GAS Cylinders without motorized doors, the launchers were required to pass NASA Shuttle Payload safety and verification requirements. Some of the more interesting components of the design were the V-band retention and separation mechanism, the separation springs, and the launcher electronics which provided a properly inhibited release sequence operated through the Small Payload Accommodations Switch Panel (SPASP) on board the Orbiter. The original plan for this launcher was to use a motorized door. The launcher electronics, therefore has the capability to be modified to accommodate the door, if desired

    Survey of Inter-satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View

    Get PDF
    Small satellite systems enable whole new class of missions for navigation, communications, remote sensing and scientific research for both civilian and military purposes. As individual spacecraft are limited by the size, mass and power constraints, mass-produced small satellites in large constellations or clusters could be useful in many science missions such as gravity mapping, tracking of forest fires, finding water resources, etc. Constellation of satellites provide improved spatial and temporal resolution of the target. Small satellite constellations contribute innovative applications by replacing a single asset with several very capable spacecraft which opens the door to new applications. With increasing levels of autonomy, there will be a need for remote communication networks to enable communication between spacecraft. These space based networks will need to configure and maintain dynamic routes, manage intermediate nodes, and reconfigure themselves to achieve mission objectives. Hence, inter-satellite communication is a key aspect when satellites fly in formation. In this paper, we present the various researches being conducted in the small satellite community for implementing inter-satellite communications based on the Open System Interconnection (OSI) model. This paper also reviews the various design parameters applicable to the first three layers of the OSI model, i.e., physical, data link and network layer. Based on the survey, we also present a comprehensive list of design parameters useful for achieving inter-satellite communications for multiple small satellite missions. Specific topics include proposed solutions for some of the challenges faced by small satellite systems, enabling operations using a network of small satellites, and some examples of small satellite missions involving formation flying aspects.Comment: 51 pages, 21 Figures, 11 Tables, accepted in IEEE Communications Surveys and Tutorial

    Small satellite debris catalog maintenance issues

    Get PDF
    The United States Space Command (USSPACECOM) is a unified command of the Department of Defense, and one of its tasks is to detect, track, identify, and maintain a catalog of all man-made objects in Earth orbit. This task is called space surveillance, and the most important tool for space surveillance is the satellite catalog. The command's reasons for performing satellite catalog maintenance is presented. A satellite catalog is described, and small satellite-debris catalog-maintenance issues are identified. The underlying rationale is to describe the catalog maintenance services so that the members of the community can use them with assurance

    Small Satellite Industrial Base Study: Foundational Findings

    Get PDF
    This report documents findings from a Small Satellite (SmallSat) Industrial Base Study conducted by The Aerospace Corporation between November 2018 and September 2019. The primary objectives of this study were a) to gain a better understanding of the SmallSat communitys technical practices, engineering approaches, requirements flow-downs, and common processes and b) identify insights and recommendations for how the government can further capitalize on the strengths and capabilities of SmallSat offerings. In the context of this study, SmallSats are understood to weigh no more than 500 kg, as described in State of the Art Small Spacecraft Technology, NASA/TP-2018- 220027, December 2018. CubeSats were excluded from this study to avoid overlap and duplication of recently completed work or other studies already under way. The team also touched on differences between traditional space-grade and the emerging mid-grade and other non-space, alternate-grade EEEE (electrical, electronic, electromechanical, electro-optical) piece part categories. Finally, the participants sought to understand the potential effects of increased use of alternate-grade parts on the traditional space-grade industrial base. The study team was keenly aware that there are missions for which non-space grade parts currently are infeasible for the foreseeable future. National security, long-duration and high-reliability missions intolerant of risk are a few examples. The team sought to identify benefits of alternative parts and approaches that can be harnessed by the government to achieve greater efficiencies and capabilities without impacting mission success

    Small Satellite Payload Calibration

    Get PDF
    This project focused on developing an efficient and cost-effective method for calibrating optical payloads that streamlines setup, measurement, and analysis time while staying within a SmallSat budget. To develop and test the concept, the team identified key calibration parameters and performed a demonstration on a surrogate payload using spatial, spectral, and radiometric calibration methods. Calibration results were derived from the demonstration and are detailed below

    Small Satellite Market Observations

    Get PDF
    Since 2008, SpaceWorks has actively monitored global small satellite activities, and annually publishes a summary update to the satellite development and launch communities. SpaceWorks’ 2014 Projection estimated between 140 and 143 nano/microsatellites across all sectors would launch globally in 2014; 158 nano/microsatellites actually launched, representing an increase of nearly 72% compared to 2013 and a growth of over 40% per year since 2009. The data source for this assessment is a subset of the SpaceWorks Satellite Launch Demand Database (LDDB), an extensive collection of all known historical missions, announced future satellite projects, and estimated future commercial missions. This paper presents the latest observations and trends for the nano/microsatellite market based on over 1,100 identifiable satellites currently under development with masses between 1 kilogram and 50 kilograms

    Small Satellite Radiometric Measurements

    Get PDF
    A critical need for the Mission to Planet Earth is to provide continuous, well-calibrated radiometric data for the radiation budget. This paper describes a new, compact, flexible radiometer which will provide both spectrally integrated data and data in selected spectral bands. The radiometer design is suitable for use on small satellites, aircraft, or remotely piloted vehicles (RPVs)

    A small satellite mission devoted to mid-low latitude earth observation

    Get PDF
    This paper aims at assessing the feasibility of a small mission devoted to observe the mid-low latitude regions. The satellite will be equipped with three optical sensors: a medium-high spatial resolution VIS-NIR multi-spectral sensor, allowing the surface monitoring and land-use and land-cover studies; a medium spatial-resolution 3-bands thermal (MIR-TIR) sensor allowing the surface temperature (LST, SST) estimate and hot-spots (fires, volcanic eruption, etc.) detection; a panchromatic VIS-NIR camera for night-time observation able to reveal artificial and natural lights. The selected orbit, called multi-sun-synchronous (MSS), represents an innovation with respect to the classical sun-synchronous orbit much suitable for observing tropical regions, allowing an enhanced revisit frequency. Further, such an orbit allows the observation of the same region of the Earth at different local-time. In this way, the diurnal cycle of surface temperatures can be reconstructed with a 2-hours local-time step. An analysis of the capability of the selected ground stations to acquire the data gathered by the remote sensing sensors has been carried out. Orbital perturbations have been taken into account and an estimate of the propellant required for ground track control has been performed in order to verify its compatibility with a small mission requirements

    Avionics for a Small Satellite

    Get PDF
    This paper discusses a small. seven and a half (7.5) inch diameter. satellite that NASA-JSC is developing as a technology demonstrator for an astronaut assistant free flyer. The Free Flyer is designed to off load flight crew work load by performing inspections of the exterior of Space Shuttle or International Space Station. The Free Flyer is designed to be operated by the flight crew thereby reducing the number of Extra Vehicle Activities (EVA) or by an astronaut on the ground further reducing crew work load. The paper focuses on the design constraint of a small satellite and the technology approach used to achieve the set of high performance requirements specified for the Free Flyer. Particular attention is paid to the processor card as it is the heart and system integration point of the Free Flyer

    A new small satellite sunspot triggering recurrent standard- and blowout-coronal jets

    Full text link
    In this paper,we report a detailed analysis of recurrent jets originated from a location with emerging, canceling and converging negative magnetic field at the east edge of NOAA active region AR11166 from 2011 March 09 to 10. The event presented several interesting features. First, a satellite sunspot appeared and collided with a pre-existing opposite polarity magnetic field and caused a recurrent solar jet event. Second, the evolution of the jets showed blowout-like nature and standard characteristics. Third, the satellite sunspot exhibited a motion toward southeast of AR11166 and merged with the emerging flux near the opposite polarity sunspot penumbra, which afterward, due to flux convergence and cancellation episodes, caused recurrent jets. Fourth, three of the blowout jets associated with coronal mass ejections (CMEs), were observed from field of view of the Solar Terrestrial Relations Observatory. Fifth, almost all the blowout jet eruptions were accompanied with flares or with more intense brightening in the jet base region, while almost standard jets did not manifest such obvious feature during eruptions. The most important, the blowout jets were inclined to faster and larger scale than the standard jets. The standard jets instead were inclined to relative longer-lasting. The obvious shearing and twisting motions of the magnetic field may be interpreted as due to the shearing and twisting motions for a blowout jet eruption. From the statistical results, about 30% blowout jets directly developed into CMEs. It suggests that the blowout jets and CMEs should have a tight relationship.Comment: ApJ 18 pages, 7 figure
    corecore