23,274 research outputs found

    Interpretation of the characteristics of ocean-dumped sewage sludge related to remote sensing

    Get PDF
    Wastewater sludge characteristics in general, and characteristics of wastewater sludges generated by the City of Philadelphia in particular, were addressed. The types and sources of wastewater sludges, a description of sludge treatment and disposal processes, examination of sludge generation and management for the City of Philadelphia, and definition of characteristics for typical east coast sludges undergoing ocean disposal were discussed. Specific differences exist between the characteristics of primary and secondary wastewater sludges, especially with the nature and size distribution of the solids particles. The sludges from the City of Philadelphia monitored during remote sensing experiments were mixtures of various sludge types and lacked distinguishing characteristics. In particular, the anaerobic digestion process exerted the most significant influence on sludge characteristics for the City of Philadelphia. The sludges generated by the City of Philadelphia were found to be typical and harbor no unique features

    The significance of sample mass in the analysis of steroid estrogens in sewage sludges and the derivation of partition coefficients in wastewaters

    Get PDF
    Optimization of an analytical method for determination of steroid estrogens, through minimizing sample size, resulted in recoveries >84%, with relative standard deviations <3% and demonstrated the significance of sample size on method performance. Limits of detection were 2.1–5.3 ng/g. Primary sludges had estrogen concentrations of up to one order of magnitude less than those found in biological sludges (up to 994 ng/g). However, partition coefficients were higher in primary sludges (except estriol), with the most hydrophobic compound (ethinylestradiol) exhibiting the highest Kp value, information which may be of value to those involved in modeling removal during wastewater treatment

    Evaluation of biodegradation kinetic constants for aromatic compounds by means of aerobic batch experiments

    Get PDF
    Kinetics of aerobic biodegradation have been investigated for twenty aromatic species using sludges collected from the aeration basin of municipal sewage treatment plants. The reproducibility of the results is tested with respect to the sludges period of collection and the wastewater treatment plant where they are taken. The comparison of kinetic constants, estimated for the investigated chemicals, allows to evaluate the reactivity effect of single groups (i.e., -OH, -CH3, -Cl, -NO2) into the aromatic structures. The search for easy structure-reactivity relationships is also attempted by means of contributing group methods

    Towards a breakthrough in nutrient recycling : State-of-the-art and recommendations for developing policy instruments in Finland

    Get PDF
    The report has been complemented on 11.9.2018This report describes the state-of-the-art in phosphorus and nitrogen recycling in Finland and looks at basic data on the volumes and geographical distribution of biomasses and their nutrients. Based on this data, the report makes proposals for measures aiming to promote nutrient recycling. This report was prepared collaboratively by experts at the institutions making up the Finnish Partnership for Research on Natural Resources and the Environment (LYNET) to underpin a national action plan on nutrient recycling. Of all sectors in Finland, agriculture is the largest user and recycler of phosphorus and nitrogen. Different biomasses contain an annual total of approximately 26,000 t of recyclable phosphorus, which exceeds the fertilisation needs of grasslands and cereal crops in the entire area of Finland. The volume of nitrogen contained in biomasses is approximately 95,000 t. Still, approx. 11,000 t of phosphorus and 152,000 t of nitrogen are annually used in Finland as conventional inorganic fertilisers. There is a regional imbalance between manure production and crop nutrient requirements. The breakthrough in nutrient recycling means increased implementation of manure processing, thus making manure nutrients easier to transport and reducing the use of conventional inorganic fertilisers. At minimum 20% of the entire volume of manure generated in Finland will require advanced processing to enable long-distance transport of the manure phosphorus to areas in need of it. This requires separation of water. The highest demand for advanced processing is experienced in the regions of Ostrobothnia (approx. 60% at minimum), South Ostrobothnia and Satakunta (approx. 30 %) and Southwest Finland (13%). In the agricultural sector, fertilisation is currently guided by a wide array of different policy instruments, which make up an incoherent and unstructured whole. The instruments cause considerable amounts of regulatory burden, but appear to do little to promote sustainable nutrient recycling. This report proposes a total reform of the policy instruments to boost the recycling of nutrients. All legal standards related to fertilisation should be merged into a single statute, for example by developing the Nitrate Decree. At the same time, the current policy that controls nutrient use via the EU agri-environmental scheme should be abandoned, and the role of the environmental permit for livestock installations and its relationship with general regulatory instruments be clarified. A field plot specific nutrient database should be created to support guidance. The knowledge base of nutrient recycling should be developed by creating and maintaining a comprehensive data system on the quantities, properties and locations of nutrient-rich biomasses and ashes and their current processing methods. The report also proposes setting regional processing targets for livestock manure. Key objectives should include reducing excessive fertilisation in crop production. The goal of normative guidance should be nutrient use according to the crop needs.201

    Characterisation of oil sludges from different sources before treatment: high-field nuclear magnetic resonance (NMR) in the determination of oil and water content

    Get PDF
    Oil sludges are wastes from the oil industry containing complex mixtures of oil hydrocarbons, water, sediments, and heavy metals. These wastes are of main importance for the petroleum industry since it is estimated that more than a billion tons have been stored worldwide. There are several types of oil sludges, but the oil tank bottom sludges are the most studied. Therefore, it is necessary to analyse a variety of oil sludges to establish a detail characterisation, with fast and reliable methods before selecting a suitable treatment. Five sludges were analysed in this study: an oil drilling, oil refinery, oil-water separator, and two waste engine oil sludges. This is a rare report detailing the use of high-field (500 MHz) nuclear magnetic resonance (NMR) to determine oil and water contents in oil sludges, which are more commonly analysed by low-field NMR (below 100 MHz). The proposed NMR procedure was validated by the analysis of oil-water calibration standards (experimental errors < 15%). There was a good agreement among the data obtained from the 1D proton spectra and the Carr-Purcell- Meiboom-Gill (CPMG) T2 decays (percentage differences < 5%). The T2 decays data showed that all sludges had only two components attributed to oil and water, and their relative ratios were determined. The sediment content was determined by the oven-drying method, and the oil hydrocarbon fractions and trace elements were assessed. The oil sludges presented different ranges in the oil, water, sediment and heavy metals contents. The higher presence of C10-C18 aliphatic fractions in the oil from the sludges was an indicator of the potential to be reused as diesel fuel. The sludges had potentially toxic elements (PTEs) values under the limit of the landfilling standards established by the European Union, except for the WSS sludge. Ca and Fe had the highest concentrations in all sludges, which are characteristic of these wastes. The techniques used in this study can be an alternative for a rapid characterisation of the oil sludges, so their most appropriate treatment can be established

    Standardization of activated sludge for biodegradation tests

    Get PDF
    Activated sludges are an inoculum source commonly used in biodegradation studies, as wastewater treatment facilities constitute an entry point to the environment for many chemicals. In this paper, the main issues relating to the use of activated sludge in biodegradability tests are presented. Special attention is also devoted to discussing the factors affecting both the activity of the microbial communities and the test results. After a short survey of the state of the art of microbiology of activated sludge, the paper focuses on the methods used to reduce the variations in the diversity, quality and quantity of these communities. Finally, use of surrogates as reference materials in biodegradability tests is discussed

    Volatile fatty acids production from fermentation of secondary sewage sludge : a thesis presented in partial fulfillment of the requirements for the degree of Master of Engineering in Environmental Engineering

    Get PDF
    Sludge fermentation is used worldwide as an economical means to produce volatile fatty acids (VFA), which can be used as readily available carbon in biological nutrient removal (BNR) systems. In this research, secondary sludge was tested for its potential to generate VFA. Fermentation of secondary sludge was carried out in a lab-scale sequencing batch reactor (SBR). The SBR was fed with secondary sludge of 1% total solids and run with hydraulic retention time (HRT) of 48 hours and 28 hours in phase 1 (40 days) and phase 2 (12 days) respectively. The SBR produced net VFA (expressed as acetic acid) of 365 ±62.5 mg VFA HAC /I which was equivalent to a VFA yield of 0.28 ±0.05 mg VFA HAC /mg VSS feed during phase 1. A change in operating HRT from 48 hours to 28 hours led to a reduction in solids retention time (SRT) from 2.65 days to 2 days in phase 2. The reduction in SRT during phase 2 led to poor hydrolysis and hence could not support the fermentation. Net VFA generation decreased during phase 2 and reached 0 mg/I. Acetic acid was the main acid produced comprising 45% of total VFA content during the run with 48 hours HRT. The effect of total solids (TS) concentration on secondary sludge fermentation was tested using batch experiments. The batch with 2.8% TS secondary sludge showed a maximum net VFA production of 60 mg VFA HAC /I, which appeared to be superior to the 1% TS secondary sludge batch fermentation where no net VFA production observed throughout the test period. Primary sludge (3% TS) exhibited 1200 mg VFA HAC /I in a batch fermentation, which was superior to the net VFA produced during secondary sludge (2.8% TS) batch fermentation. The effects of sonication on fermentability of primary and secondary sludges were tested. A sonic power application of 0.0017 Watt/ml/min density increased soluble content of primary and secondary sludges. In batch fermentations, sonicated secondary sludge improved fermentation over unsonicated secondary sludge. A maximum net VFA production of 130 mg VFA HAC /I was observed in the secondary sludge batch fermentation. In this research work, an investigation into inhibiting VFA degradation in secondary sludge batch fermentations was also carried out. The effects of a methanogenic bacteria inhibitor (bromoethane sulfonic acid) and low pH (range of 4.02-6.07) were considered. The addition of 1 mM bromoethane sulfonic acid (BES) in secondary sludge (1% TS) batch fermentation successfully inhibited VFA degradation. pH values as low as 4.02 showed an inhibitory effect on secondary sludge (1% TS) batch fermentation which led to poor hydrolysis and hence no net VFA generated during the test period. However, low pH values reduced the VFA degradation rate in the batch fermentations. Secondary sludge used in the present research showed the potential to generate VFA. The amount of VFA produced in the present work showed the potential to improve the performance of a BNR system. Moreover, in batch fermentations, VFA generation was improved using various pre-treatments like sonication and BES addition

    Fate of phthalic acid esters during composting of both lagooning and activated sludges

    Get PDF
    Among the phthalic acid esters (PAEs) targeted by the United States Environmental Protection Agency (USEPA) as priority pollutants, di-ethyl-hexyl phthalate (DEHP) is the major pollutant identified at high concentration level in lagooning sludge (LS), at about 28.67 mg/kg, andin activated sludge (AS), at about 6.26 mg/kg. Other phthalic acid esters, such as di-butyl phthalate (DBP) and di-methyl phthalate (DMP) show very low concentrations. During sludge composting, after the stabilization phase, the subsequent appearance of DEP and then DMPoccurred indicating that microbial metabolism begins by alkyl side-chain degradation before aromatic ring-cleavage. The appearance andaccumulation of PAEs with a short alkyl side-chain in the last stages of AS and LS composting is suggested originating from the degradationof phthalates with a much long side-chain. The DEHP showed a rate of biodegradation that follows a first-order kinetic model during composting of both AS and LS. The calculated DEHP half-lives are 45.4 days for LS and 28.9 days for AS. The better DEHP biodegradationrate (2.4 Â 10À2 dayÀ1) have been observed in the case of AS composting compared to LS compost (1.53 Â 10À2 dayÀ1). The mono-ethyl-hexyl phthalates MEHP has been shown to follow the same order of biodegradation as DEHP indicating that the same mechanism is followed(hydrolysis or dealkylation of each DEHP side-chain). Composting could be suggested as a detoxification process for the removal of PAEs(mainly DEHP) from sludges after a sufficient time of treatment to provide a safe end product

    The effect of radioactive substances on sludge digestion

    Get PDF
    Bibliography: p. 40
    • …
    corecore