364 research outputs found

    University of Maryland walking robot: A design project for undergraduate students

    Get PDF
    The design and construction required that the walking robot machine be capable of completing a number of tasks including walking in a straight line, turning to change direction, and maneuvering over an obstable such as a set of stairs. The machine consists of two sets of four telescoping legs that alternately support the entire structure. A gear-box and crank-arm assembly is connected to the leg sets to provide the power required for the translational motion of the machine. By retracting all eight legs, the robot comes to rest on a central Bigfoot support. Turning is accomplished by rotating the machine about this support. The machine can be controlled by using either a user operated remote tether or the on-board computer for the execution of control commands. Absolute encoders are attached to all motors (leg, main drive, and Bigfoot) to provide the control computer with information regarding the status of the motors (up-down motion, forward or reverse rotation). Long and short range infrared sensors provide the computer with feedback information regarding the machine's relative position to a series of stripes and reflectors. These infrared sensors simulate how the robot might sense and gain information about the environment of Mars

    Development and Design of ROV Manipulator

    Get PDF
    The thesis is carried out in collaboration with the student organization UiS Subsea. The primary objective of this thesis is to design and develop a manipulator for the ROV, named YME, using the product development process (PDP). The end goal is to showcase the final product at the MATE ROV Competition 2023. The importance of sustainability has been highlighted in recent years, and this year, MATE ROV Competition focuses on the United Nations Decade of Ocean Science for Sustainable development (2021-2030), and challenge students to contribute to UNs Sustainability goals by seeking sustainable solutions for their projects. The product development process consisted of four phases: planning, concept development, concept generation, and product concept selection. The planning process focused on resource allocation, declaring a mission statement, and establishing a good foundation for the process ahead. Gathering benchmarking information and establishing target specifications was a crucial part of the concept development phase, prior to the concept generation process, as the information and specifications served as a guidance and outline for the concepts to be generated. By a circular economy approach, the reuse of old components within UiS Subsea was evaluated, and potential components were located. The circular economy approach influenced design decisions, and resulted in cost and timeefficiency, and contribution towards sustainability in engineering practices. Concepts were generated for both the manipulator arm and end-effector, and the most promising ones were selected for further development. Eventually one concept for the arm, and one for the end-effector, was selected and further developed through detailed design. Through detailed design, a complete CAD model of the manipulator was made, also material was selected and necessary calculations were performed. The outcome was a three degree of freedom manipulator arm with a rotating end-effector, pitch function, and a telescope function. Through prototyping and extensive testing, the design was evaluated and deemed sufficient according to customer needs and target specifications. The outcome of the project was a fully functional ROV Manipulator able to perform all the required MATE tasks, and contributed greatly towards the successful qualification to the 2023 MATE ROV Competition. However, there was room for further improvement and optimization of both the manipulator and the process, and hopefully the manipulator can serve as a foundation for future UiS Subsea manipulator projects

    Development and Design of ROV Manipulator

    Get PDF
    The thesis is carried out in collaboration with the student organization UiS Subsea. The primary objective of this thesis is to design and develop a manipulator for the ROV, named YME, using the product development process (PDP). The end goal is to showcase the final product at the MATE ROV Competition 2023. The importance of sustainability has been highlighted in recent years, and this year, MATE ROV Competition focuses on the United Nations Decade of Ocean Science for Sustainable development (2021-2030), and challenge students to contribute to UNs Sustainability goals by seeking sustainable solutions for their projects. The product development process consisted of four phases: planning, concept development, concept generation, and product concept selection. The planning process focused on resource allocation, declaring a mission statement, and establishing a good foundation for the process ahead. Gathering benchmarking information and establishing target specifications was a crucial part of the concept development phase, prior to the concept generation process, as the information and specifications served as a guidance and outline for the concepts to be generated. By a circular economy approach, the reuse of old components within UiS Subsea was evaluated, and potential components were located. The circular economy approach influenced design decisions, and resulted in cost and timeefficiency, and contribution towards sustainability in engineering practices. Concepts were generated for both the manipulator arm and end-effector, and the most promising ones were selected for further development. Eventually one concept for the arm, and one for the end-effector, was selected and further developed through detailed design. Through detailed design, a complete CAD model of the manipulator was made, also material was selected and necessary calculations were performed. The outcome was a three degree of freedom manipulator arm with a rotating end-effector, pitch function, xv and a telescope function. Through prototyping and extensive testing, the design was evaluated and deemed sufficient according to customer needs and target specifications. The outcome of the project was a fully functional ROV Manipulator able to perform all the required MATE tasks, and contributed greatly towards the successful qualification to the 2023 MATE ROV Competition. However, there was room for further improvement and optimization of both the manipulator and the process, and hopefully the manipulator can serve as a foundation for future UiS Subsea manipulator projects.The thesis is carried out in collaboration with the student organization UiS Subsea. The primary objective of this thesis is to design and develop a manipulator for the ROV, named YME, using the product development process (PDP). The end goal is to showcase the final product at the MATE ROV Competition 2023. The importance of sustainability has been highlighted in recent years, and this year, MATE ROV Competition focuses on the United Nations Decade of Ocean Science for Sustainable development (2021-2030), and challenge students to contribute to UNs Sustainability goals by seeking sustainable solutions for their projects. The product development process consisted of four phases: planning, concept development, concept generation, and product concept selection. The planning process focused on resource allocation, declaring a mission statement, and establishing a good foundation for the process ahead. Gathering benchmarking information and establishing target specifications was a crucial part of the concept development phase, prior to the concept generation process, as the information and specifications served as a guidance and outline for the concepts to be generated. By a circular economy approach, the reuse of old components within UiS Subsea was evaluated, and potential components were located. The circular economy approach influenced design decisions, and resulted in cost and timeefficiency, and contribution towards sustainability in engineering practices. Concepts were generated for both the manipulator arm and end-effector, and the most promising ones were selected for further development. Eventually one concept for the arm, and one for the end-effector, was selected and further developed through detailed design. Through detailed design, a complete CAD model of the manipulator was made, also material was selected and necessary calculations were performed. The outcome was a three degree of freedom manipulator arm with a rotating end-effector, pitch function, xv and a telescope function. Through prototyping and extensive testing, the design was evaluated and deemed sufficient according to customer needs and target specifications. The outcome of the project was a fully functional ROV Manipulator able to perform all the required MATE tasks, and contributed greatly towards the successful qualification to the 2023 MATE ROV Competition. However, there was room for further improvement and optimization of both the manipulator and the process, and hopefully the manipulator can serve as a foundation for future UiS Subsea manipulator projects

    Haptic Feedback for Transesophageal Echocardiogram Transducer

    Get PDF
    This project focused on developing a haptic feedback control system for a transesophageal echocardiogram probe. The project group researched current haptic technologies available today to create feasible design ideas while focusing on combining simplicity, efficiency, and reliability. A customized haptic feedback sensor system was then designed for our application and a 3D model was developed. The project group built a functional prototype using a combination of self-manufactured parts and parts from several suppliers. Test procedures were then designed and implemented to prove the prototype’s functionality

    Climbing and Walking Robots

    Get PDF
    With the advancement of technology, new exciting approaches enable us to render mobile robotic systems more versatile, robust and cost-efficient. Some researchers combine climbing and walking techniques with a modular approach, a reconfigurable approach, or a swarm approach to realize novel prototypes as flexible mobile robotic platforms featuring all necessary locomotion capabilities. The purpose of this book is to provide an overview of the latest wide-range achievements in climbing and walking robotic technology to researchers, scientists, and engineers throughout the world. Different aspects including control simulation, locomotion realization, methodology, and system integration are presented from the scientific and from the technical point of view. This book consists of two main parts, one dealing with walking robots, the second with climbing robots. The content is also grouped by theoretical research and applicative realization. Every chapter offers a considerable amount of interesting and useful information

    Design, modelling and control of a brachiating power line inspection robot

    Get PDF
    The inspection of power lines and associated hardware is vital to ensuring the reliability of the transmission and distribution network. The repetitive nature of the inspection tasks present a unique opportunity for the introduction of robotic platforms, which offer the ability to perform more systematic and detailed inspection than traditional methods. This lends itself to improved asset management automation, cost-effectiveness and safety for the operating crew. This dissertation presents the development of a prototype industrial brachiating robot. The robot is mechanically simple and capable of dynamically negotiating obstacles by brachiating. This is an improvement over current robotic platforms, which employ slow, high power static schemes for obstacle negotiation. Mathematical models of the robot were derived to understand the underlying dynamics of the system. These models were then used in the generation of optimal trajectories, using nonlinear optimisation techniques, for brachiating past line hardware. A physical robot was designed and manufactured to validate the brachiation manoeuvre. The robot was designed following classic mechanical design principles, with emphasis on functional design and robustness. System identification was used to capture the plant uncertainty and a feedback controller was designed to track the reference trajectory allowing for energy optimal brachiation swings. Finally, the robot was tested, starting with sub-system testing and ending with testing of a brachiation manoeuvre proving the prospective viability of the robot in an industrial environment

    Exploration of a hybrid locomotion robot

    Get PDF
    In this work, a hybrid locomotion robotic platform is evaluated. This system combines the benefits of both rolling and walking, with the intent on having the ability to traverse variable terrain. A quadruped leg-wheeled robot was designed, built, and tested. Experimental trials were conducted to demonstrate the overall feasibility of the design. Finally, important conclusions about the effectiveness and value of hybrid locomotion were reached. Posturecontrol is specifically identified as an effective area with great potential

    Advances in Intelligent Robotics and Collaborative Automation

    Get PDF
    This book provides an overview of a series of advanced research lines in robotics as well as of design and development methodologies for intelligent robots and their intelligent components. It represents a selection of extended versions of the best papers presented at the Seventh IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications IDAACS 2013 that were related to these topics. Its contents integrate state of the art computational intelligence based techniques for automatic robot control to novel distributed sensing and data integration methodologies that can be applied to intelligent robotics and automation systems. The objective of the text was to provide an overview of some of the problems in the field of robotic systems and intelligent automation and the approaches and techniques that relevant research groups within this area are employing to try to solve them.The contributions of the different authors have been grouped into four main sections:• Robots• Control and Intelligence• Sensing• Collaborative automationThe chapters have been structured to provide an easy to follow introduction to the topics that are addressed, including the most relevant references, so that anyone interested in this field can get started in the area

    Engineering Dynamics and Life Sciences

    Get PDF
    From Preface: This is the fourteenth time when the conference “Dynamical Systems: Theory and Applications” gathers a numerous group of outstanding scientists and engineers, who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without a great effort of the staff of the Department of Automation, Biomechanics and Mechatronics. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and Ministry of Science and Higher Education of Poland. It is a great pleasure that our invitation has been accepted by recording in the history of our conference number of people, including good colleagues and friends as well as a large group of researchers and scientists, who decided to participate in the conference for the first time. With proud and satisfaction we welcomed over 180 persons from 31 countries all over the world. They decided to share the results of their research and many years experiences in a discipline of dynamical systems by submitting many very interesting papers. This year, the DSTA Conference Proceedings were split into three volumes entitled “Dynamical Systems” with respective subtitles: Vibration, Control and Stability of Dynamical Systems; Mathematical and Numerical Aspects of Dynamical System Analysis and Engineering Dynamics and Life Sciences. Additionally, there will be also published two volumes of Springer Proceedings in Mathematics and Statistics entitled “Dynamical Systems in Theoretical Perspective” and “Dynamical Systems in Applications”

    Towards tactile sensing active capsule endoscopy

    Get PDF
    Examination of the gastrointestinal(GI) tract has traditionally been performed using tethered endoscopy tools with limited reach and more recently with passive untethered capsule endoscopy with limited capability. Inspection of small intestines is only possible using the latter capsule endoscopy with on board camera system. Limited to visual means it cannot detect features beneath the lumen wall if they have not affected the lumen structure or colour. This work presents an improved capsule endoscopy system with locomotion for active exploration of the small intestines and tactile sensing to detect deformation of the capsule outer surface when it follows the intestinal wall. In laboratory conditions this system is capable of identifying sub-lumen features such as submucosal tumours.Through an extensive literary review the current state of GI tract inspection in particular using remote operated miniature robotics, was investigated, concluding no solution currently exists that utilises tactile sensing with a capsule endoscopy. In order to achieve such a platform, further investigation was made in to tactile sensing technologies, methods of locomotion through the gut, and methods to support an increased power requirement for additional electronics and actuation. A set of detailed criteria were compiled for a soft formed sensor and flexible bodied locomotion system. The sensing system is built on the biomimetic tactile sensing device, Tactip, \cite{Chorley2008, Chorley2010, Winstone2012, Winstone2013} which has been redesigned to fit the form of a capsule endoscopy. These modifications have required a 360o360^{o} cylindrical sensing surface with 360o360^{o} panoramic optical system. Multi-material 3D printing has been used to build an almost complete sensor assembly with a combination of hard and soft materials, presenting a soft compliant tactile sensing system that mimics the tactile sensing methods of the human finger. The cylindrical Tactip has been validated using artificial submucosal tumours in laboratory conditions. The first experiment has explored the new form factor and measured the device's ability to detect surface deformation when travelling through a pipe like structure with varying lump obstructions. Sensor data was analysed and used to reconstruct the test environment as a 3D rendered structure. A second tactile sensing experiment has explored the use of classifier algorithms to successfully discriminate between three tumour characteristics; shape, size and material hardness. Locomotion of the capsule endoscopy has explored further bio-inspiration from earthworm's peristaltic locomotion, which share operating environment similarities. A soft bodied peristaltic worm robot has been developed that uses a tuned planetary gearbox mechanism to displace tendons that contract each worm segment. Methods have been identified to optimise the gearbox parameter to a pipe like structure of a given diameter. The locomotion system has been tested within a laboratory constructed pipe environment, showing that using only one actuator, three independent worm segments can be controlled. This configuration achieves comparable locomotion capabilities to that of an identical robot with an actuator dedicated to each individual worm segment. This system can be miniaturised more easily due to reduced parts and number of actuators, and so is more suitable for capsule endoscopy. Finally, these two developments have been integrated to demonstrate successful simultaneous locomotion and sensing to detect an artificial submucosal tumour embedded within the test environment. The addition of both tactile sensing and locomotion have created a need for additional power beyond what is available from current battery technology. Early stage work has reviewed wireless power transfer (WPT) as a potential solution to this problem. Methods for optimisation and miniaturisation to implement WPT on a capsule endoscopy have been identified with a laboratory built system that validates the methods found. Future work would see this combined with a miniaturised development of the robot presented. This thesis has developed a novel method for sub-lumen examination. With further efforts to miniaturise the robot it could provide a comfortable and non-invasive procedure to GI tract inspection reducing the need for surgical procedures and accessibility for earlier stage of examination. Furthermore, these developments have applicability in other domains such as veterinary medicine, industrial pipe inspection and exploration of hazardous environments
    corecore