3,343 research outputs found

    Slice Matching for Accurate Spatio-Temporal Alignment

    Get PDF
    International audienceVideo synchronization and alignment is a rather recent topic in computer vision. It usually deals with the problem of aligning sequences recorded simultaneously by static, jointly- or independently-moving cameras. In this paper, we investigate the more difficult problem of matching videos captured at different times from independently-moving cameras, whose trajectories are approximately co-incident or parallel. To this end, we propose a novel method that pixel-wise aligns videos and allows thus to automatically highlight their differences. This primarily aims at visual surveillance but the method can be adopted as is by other related video applications, like object transfer (augmented reality) or high dynamic range video. We build upon a slice matching scheme to first synchronize the sequences, while we develop a spatio-temporal alignment scheme to spatially register corresponding frames and re- fine the temporal mapping. We investigate the performance of the proposed method on videos recorded from vehicles driven along different types of roads and compare with related previous works

    Temporal Interpolation via Motion Field Prediction

    Full text link
    Navigated 2D multi-slice dynamic Magnetic Resonance (MR) imaging enables high contrast 4D MR imaging during free breathing and provides in-vivo observations for treatment planning and guidance. Navigator slices are vital for retrospective stacking of 2D data slices in this method. However, they also prolong the acquisition sessions. Temporal interpolation of navigator slices an be used to reduce the number of navigator acquisitions without degrading specificity in stacking. In this work, we propose a convolutional neural network (CNN) based method for temporal interpolation via motion field prediction. The proposed formulation incorporates the prior knowledge that a motion field underlies changes in the image intensities over time. Previous approaches that interpolate directly in the intensity space are prone to produce blurry images or even remove structures in the images. Our method avoids such problems and faithfully preserves the information in the image. Further, an important advantage of our formulation is that it provides an unsupervised estimation of bi-directional motion fields. We show that these motion fields can be used to halve the number of registrations required during 4D reconstruction, thus substantially reducing the reconstruction time.Comment: Submitted to 1st Conference on Medical Imaging with Deep Learning (MIDL 2018), Amsterdam, The Netherland

    Spatio-temporal characterisation of a 100 kHz 24 W sub-3-cycle NOPCPA laser system

    Get PDF
    In recent years, OPCPA and NOPCPA laser systems have shown the potential to supersede Ti:sapphire plus post-compression based laser systems to drive next generation attosecond light sources via direct amplification of few-cycle pulses to high pulse energies at high repetition rates. In this paper, we present a sub 3-cycle, 100 kHz, 24 W NOPA laser system and characterise its spatio-temporal properties using the SEA-F-SPIDER technique. Our results underline the importance of spatio-temporal diagnostics for these emerging laser systems

    STV-based Video Feature Processing for Action Recognition

    Get PDF
    In comparison to still image-based processes, video features can provide rich and intuitive information about dynamic events occurred over a period of time, such as human actions, crowd behaviours, and other subject pattern changes. Although substantial progresses have been made in the last decade on image processing and seen its successful applications in face matching and object recognition, video-based event detection still remains one of the most difficult challenges in computer vision research due to its complex continuous or discrete input signals, arbitrary dynamic feature definitions, and the often ambiguous analytical methods. In this paper, a Spatio-Temporal Volume (STV) and region intersection (RI) based 3D shape-matching method has been proposed to facilitate the definition and recognition of human actions recorded in videos. The distinctive characteristics and the performance gain of the devised approach stemmed from a coefficient factor-boosted 3D region intersection and matching mechanism developed in this research. This paper also reported the investigation into techniques for efficient STV data filtering to reduce the amount of voxels (volumetric-pixels) that need to be processed in each operational cycle in the implemented system. The encouraging features and improvements on the operational performance registered in the experiments have been discussed at the end

    Quantification of cortical folding using MR image data

    Get PDF
    The cerebral cortex is a thin layer of tissue lining the brain where neural circuits perform important high level functions including sensory perception, motor control and language processing. In the third trimester the fetal cortex folds rapidly from a smooth sheet into a highly convoluted arrangement of gyri and sulci. Premature birth is a high risk factor for poor neurodevelopmental outcome and has been associated with abnormal cortical development, however the nature of the disruption to developmental processes is not fully understood. Recent developments in magnetic resonance imaging have allowed the acquisition of high quality brain images of preterms and also fetuses in-utero. The aim of this thesis is to develop techniques which quantify folding from these images in order to better understand cortical development in these two populations. A framework is presented that quantifies global and regional folding using curvature-based measures. This methodology was applied to fetuses over a wide gestational age range (21.7 to 38.9 weeks) for a large number of subjects (N = 80) extending our understanding of how the cortex folds through this critical developmental period. The changing relationship between the folding measures and gestational age was modelled with a Gompertz function which allowed an accurate prediction of physiological age. A spectral-based method is outlined for constructing a spatio-temporal surface atlas (a sequence of mean cortical surface meshes for weekly intervals). A key advantage of this method is the ability to do group-wise atlasing without bias to the anatomy of an initial reference subject. Mean surface templates were constructed for both fetuses and preterms allowing a preliminary comparison of mean cortical shape over the postmenstrual age range 28-36 weeks. Displacement patterns were revealed which intensified with increasing prematurity, however more work is needed to evaluate the reliability of these findings.Open Acces

    Space-time coupling of shaped ultrafast ultraviolet pulses from an acousto-optic programmable dispersive filter

    Full text link
    A comprehensive experimental analysis of spatio-temporal coupling effects inherent to the acousto-optic programmable dispersive filter (AOPDF) is presented. Phase and amplitude measurements of the AOPDF transfer function are performed using spatially and spectrally resolved interferometry. Spatio-temporal and spatio-spectral coupling effects are presented for a range of shaped pulses that are commonly used in quantum control experiments. These effects are shown to be attributable to a single mechanism: a group-delay--dependent displacement of the shaped pulse. The physical mechanism is explained and excellent quantitative agreement between the measured and calculated coupling speed is obtained. The implications for quantum control experiments are discussed.Comment: 8 pages, 6 figures; accepted for publication within JOSA
    • …
    corecore