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A B S T R A C T

The cerebral cortex is a thin layer of tissue lining the brain where neural circuits

perform important high level functions including sensory perception, motor con-

trol and language processing. In the third trimester the fetal cortex folds rapidly

from a smooth sheet into a highly convoluted arrangement of gyri and sulci. Pre-

mature birth is a high risk factor for poor neurodevelopmental outcome and has

been associated with abnormal cortical development, however the nature of the

disruption to developmental processes is not fully understood. Recent develop-

ments in magnetic resonance imaging have allowed the acquisition of high quality

brain images of preterms and also fetuses in-utero. The aim of this thesis is to

develop techniques which quantify folding from these images in order to better

understand cortical development in these two populations.

A framework is presented that quantifies global and regional folding using

curvature-based measures. This methodology was applied to fetuses over a wide

gestational age range (21.7 to 38.9 weeks) for a large number of subjects (N = 80)

extending our understanding of how the cortex folds through this critical devel-

opmental period. The changing relationship between the folding measures and

gestational age was modelled with a Gompertz function which allowed an accu-

rate prediction of physiological age.

A spectral-based method is outlined for constructing a spatio-temporal surface

atlas (a sequence of mean cortical surface meshes for weekly intervals). A key ad-

vantage of this method is the ability to do group-wise atlasing without bias to the
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anatomy of an initial reference subject. Mean surface templates were constructed

for both fetuses and preterms allowing a preliminary comparison of mean corti-

cal shape over the postmenstrual age range 28-36 weeks. Displacement patterns

were revealed which intensified with increasing prematurity, however more work

is needed to evaluate the reliability of these findings.
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L I S T O F F I G U R E S

Figure 1 Coronal slice of a primate brain: Cells have been dyed

using the Nissl staining technique revealing their organ-

isation within the brain. Image modified from Brain-

Maps.org. 40

Figure 2 Brodmann regions. This diagram shows various cytoarchi-

tectural regions of the cerebral cortex, discovered through

histological methods. Each region has a different cellular or-

ganisation and relates to a high level function of the brain.

Image from OpenStax College. 41

Figure 3 Cortical folding visualized through magnetic resonance

imaging. These in utero magnetic resonance images show

the rapid convolution of the the fetal brain in the third

trimester. The cortical grey matter is seen as a dark ribbon

on the surface of the brain. 42

Figure 4 2D ultrasound. Image showing measurement of head cir-

cumference (HC) and biparietal diameter (BPD) for a fetus

which are useful biometric markers for brain development.

Image modified from Dilmen (2001). 46
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Figure 5 Reconstruction of 3D volume from 2D slices. 2D slices are

acquired in the transverse plane using a fast scanning se-

quence to freeze motion (a). The coronal (b) and sagittal (c)

views are corrupted by motion between slice acquisitions.

The motion between slices is estimated and a 3D volume

is reconstructed from the original slice data providing a co-

herent 3D image (d,e,f). 48

Figure 6 Comparison of reconstruction techniques. Two reconstruc-

tions of the same MR acquisition are shown using the

non-super-resolution method of Jiang et al. (top row) and

the super-resolution method of Kuklisova-Murgasova et al.

(bottom row). 49

Figure 7 Fetal dataset. Bar chart with accompanying density trace,

estimated using a Gaussian kernel (σ = 1). The mean age

of the cohort is shown in red. 51

Figure 8 Neonatal dataset. Preterms may be characterised by their

postmenstrual age at scan and their gestational age at birth.

Postmenstrual age is the time passed since the first day of

the last menstrual period, which is equal to chronological

age (time outside the womb) plus gestational age (time in-

side the womb). Note babies with a lower gestational age

at birth are more preterm. 196 subjects were selected (filled

black circles) from the dataset, whose ages overlapped with

that of the fetal dataset, for a comparison of folding between

the two populations. 52
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Figure 9 Fetal MRI dataset examples. Axial slices of the fetal brain

are shown for random subjects from the fetal dataset

used for this thesis (gestational age range: 21.7 − 38.9

weeks). 53

Figure 10 Preterm MRI dataset examples. Axial slices of the preterm

brain are shown for a random subset of the 196 subjects se-

lected for comparison with the fetal dataset (postmenstrual

age range: 26.57− 37.14 ). 54

Figure 11 MR and PET combined visualization. Images are regis-

tered and aligned allowing joint visualisation Wikimedia

Commons. 60

Figure 12 Registration of two brain images. Four registrations of a

source and target image are shown from coarse to fine, top

to bottom. The top row shows an affine alignment which

transforms points globally and preserves collinearity, i.e.

all points that lie on a line before a transformation still

lie on a line afterwards. The subsequent rows show a non-

rigid alignment where the source image is deformed locally

using the free-form deformation (FFD) model of Rueckert

et al. (1999). Registration models are discussed in detail in

Section 2.1.2. The difference of the two images is shown in

the second column, which shows the similarity of the target

and the transformed source image. The third column shows

the deformation fields generated by the free-form deforma-

tion method. Note a finer control point mesh allows a finer

alignment of the anatomies. 62
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Figure 13 Neonatal brain atlas. The atlas shown is one of twenty from

the dataset created by Gousias et al. (2012). The brain image

was manually segmented into 50 regions: 32 cortical regions

and 18 sub-cortical regions. 74

Figure 14 Target-free atlas template construction. For N images, each

image k is registered to every other image j. The average

of all transformations Tk,j gives a transformation into an

“average space” for image k. In this space, the intensities

of the images can be averaged to create an unbiased atlas

template. 77

Figure 15 Fetal spatio-temporal atlas. This atlas was developed

by Serag et al. (2012b) and is available at brain-

development.org. The first row show image templates for

T2 weighted images for several gestational ages. The re-

maining rows show greyscale probability maps for the cere-

brum, GM, CSF and the lateral ventricles (top to bottom).

78

Figure 16 Neonatal spatio-temporal atlas. This atlas was devel-

oped by Serag et al. (2012a) and is available at brain-

development.org. The first two rows show image templates

for T1 and T2 weighted images for several gestational ages.

The remaining rows show greyscale probability maps for

WM, GM, CSF and subcortical GM (top to bottom). 79
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Figure 17 Partial volume effect. When a tissue boundary intersects

a voxel, the signal intensities of the adjacent tissues are

combined and an intermediate intensity is observed. This

is a major confounding factor for segmentation of fetal MR

images, such as the one shown. For voxels at the cerebral

boundary, the signal from GM and CSF combines, result-

ing in a moderate intensity similar to that of WM. Accu-

rate segmentation is particularly challenging deep within

sulci, where small amounts of CSF are present (blue ar-

rows). 84

Figure 18 Improved cortical segmentation using a second order

MRF. Two subjects are shown, each segmented using a stan-

dard EM-MRF algorithm (a) and an EM algorithm incorpo-

rating a second order MRF (b). Voxels correctly labelled as

WM are shown in green while PV voxels mislabelled as WM

are shown in red. Note the reduction in mislabelled voxels

in (b). 87

Figure 19 Topological errors. This figure shows the inner cortical sur-

face of a neonatal brain, extracted from a WM segmentation

using the Marching Cubes algorithm. Two errors are shown

which alter the topology of the mesh from that of a sphere.

The green circle shows an implausible bridge across the syl-

vian fissure, caused by a segmentation error, whereas the

green circle shows a hole within the central sulcus, where a

relatively thin layer of WM was present. Mean curvature is

colour mapped onto the surface to aid visual perception of

the cortical geometry (red: convex, blue: concave). 89
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Figure 20 Inner and outer cortical surfaces extracted using the

Marching Cubes algorithm. Note the merging of the pre-

and post-central gyri and also the occipital and frontal

lobes. 90

Figure 21 Processing pipeline overview. Multiple acquisition loops

consisting of 2D snapshots are reconstructed into a com-

plete 3D volume using a slice-to-volume reconstruction al-

gorithm. Then a number of preprocessing steps are carried

out including bias correction and brain extraction. Auto-

matic segmentation is performed using an EM-based algo-

rithm, delineating seven anatomical regions. A probabil-

ity map defining matter inside the inner cortical bound-

ary is then constructed by summing the posterior proba-

bility maps of subcortical structures. Principal curvatures

are evaluated at each boundary voxel location and folding

measures are computed to quantify folding. A mesh repre-

sentation of the surface is also extracted using the march-

ing cubes algorithm in order to visualize the computed

curvature-based descriptors. 96

Figure 22 Patch search and weighting. The input image and atlas im-

ages are co-aligned so that similar patches (yellow) can be

found within a local neighbourhood (green) around an in-

put voxel. The patch similarity can then give a weighting

when fusing the atlas labels. 98
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Figure 23 Calculating the principal curvatures. The surface voxels,

where the principal curvatures are evaluated, are defined as

any foreground voxel that shares a face with a background

voxel within the binary WM volume. The binary volume

was smoothed to produce a scalar field on which to esti-

mate the image derivatives. The calculation of the principal

curvature magnitudes and signs is then split into two pro-

cesses. The structure tensor is computed from the image

derivatives and allows the principal curvature directions

and magnitudes to be computed. The signs of the princi-

pal curvatures are then recovered using the Hessian ma-

trix. 104

Figure 24 Regional parcellation. Example of a brain parcellated into

nine different regions by registering an anatomical atlas.

108

Figure 25 Comparison of cortical surface meshes for manual and

automatic segmentations. Mesh representations of the sur-

faces were construction using the marching cubes algorithm

for visualization purposes. Colour mapping depicts nor-

malized mean curvature (H) at each point on the cortical

surface. 109
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Figure 26 Global folding measures with gestational age. Folding

measures computed from automated segmentations are

shown as either green or blue circles, whereas curvatures

computed from manual segmentations are shown as red tri-

angles. For each subject that was segmented both manually

and automatically, the corresponding points are shown in

red and green respectively and joined together by a line.

The remaining subjects that were only segmented automat-

ically are represented by a blue circle. A Gompertz function

(black line) was fitted to each plot except global mean cur-

vature, which did not exhibit a Gompertz-like relationship.

Upper and lower confidence intervals are shown as dashed

grey lines. 113

Figure 27 Folding measures computed from atlas priors. The mean

curvature L2 norm (HN) is shown for each subject com-

puted from automated segmentations (either green or blue

circles), manual segmentations (red triangles) and atlas pri-

ors (black triangles). For subjects segmented both manually

and automatically, the corresponding points are shown in

red and green respectively and joined together by a line.

Note the values of HN computed from atlas priors are much

lower than for subjects of a similar age. 116
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Figure 28 Regional differences in folding measures. (a) The change

in mean curvature L2 norm (HN) over individual regions

with gestational age is shown. All lobar regions expect the

insula and anterior temporal lobe exhibit a Gompertz like

growth pattern. (b) The rate of growth across gestational

ages was computed from the derivative of the fitted Gom-

pertz functions for HN in lobar regions. The rate of growth

peaked around 30 weeks gestational age for all regions,

however there are differences in growth rates. 118

Figure 29 GA prediction error. Gestational age was predicted from

the observed value of HN by taking the inverse of the Gom-

pertz function fitted to the data for HN . 120

Figure 30 Cortical Surface Extraction. Cortical surface models for a

selection of gestational ages are overlaid on their corre-

sponding MR image volumes. The isosurface of the sub-

cortical tissue probabilities is shown as a yellow contour

while the cross-section of the cortical surface model is over-

laid as a red contour. 131

Figure 31 Framework. An average cortical surface template is con-

structed for each week of gestation, with all subjects within

a week of the target age contributing to the output. A

spectral analysis yields spatial correspondences between a

group of cortical surfaces, allowing the average surface po-

sition to be computed and a template surface constructed.

Note the red/blue surface colour mapping depicts the mean

curvature of the surfaces. 133
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Figure 32 Surface Eigenmodes. The 1st three vibration modes of two

surfaces are shown. Each mode depicts a pattern of dis-

placement for a resonant frequency of the surface between

poles, colour mapped to blue and red respectively. Figure

adapted from Lombaert et al. (2013b). 134

Figure 33 Spectral Matching. Vertex-wise correspondences between

two surfaces (a) are given by the shortest Euclidean distance

in the spectral domain (b). Colour mapping is given by the

first three spectral coordinates which are mapped to RGB

channels respectively. Figure adapted from Lombaert et al.

(2013b). 135

Figure 34 3D Spectral Embedding of a Group of Surfaces. Embed-

ded vertices of 18 cortical surfaces are shown (29 − 31

weeks GA). Colour mapping depicts the mean curvature

at each point on the original surfaces (red, convex; blue,

concave). 138

Figure 35 Average cortical surface template for a 30 week fetus. Ker-

nel regression in the spectral domain is used to find the

average surface position. This gives a point sampling of the

average cortical surface (a). Poisson surface reconstruction,

is then used to extract a closed surface (b), from (a). 141
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Figure 36 Stepwise Embedding Coordinate Propagation. This dia-

gram illustrates the propagation of a set of embedding co-

ordinates (t′ = 37) to the cortical surfaces of younger sub-

jects. Surface colour mapping shows the first 3 embedding

coordinates encoded as RGB values. These coordinates can

be viewed as a surface labelling, which may be propagated

to neighbouring surfaces via surfaces that are shared across

neighbouring embeddings. At each iteration, labelled sub-

jects are treated as atlases, whose labels are propagated to

any unlabelled surfaces within the same embedding using

kernel regression. This process can be repeated iteratively

until all surfaces are labelled, yielding a shared parameteri-

sation for all surfaces. The dashed lines enclose the surfaces

used to create each of the embeddings. 143

Figure 37 Multi-atlas Label Propagation. Three examples of surfaces

automatically labelled using kernel regression. (a) A 19

region parcellation. (b) The first embedding coordinates

(for t′ = 37) mapped to RGB channels respectively (See

Fig. 36). 144

Figure 38 Aligned Central Sulci. An example of a manual delineation

of the central sulcus (depicted in red), along with 38 central

sulci delineations mapped from other subjects, using the es-

tablished spectral correspondence (shown in white). 146
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Figure 39 Intra-embedding sulcal mapping error. For each embed-

ding, the sulcal delineations were mapped pairwise for all

surfaces. The average alignment error is shown for four

methods, quantified by the Fréchet distance, Fd (top), and

the average Fréchet distance, Fa (bottom). Error bars show

the standard deviation of the alignment error. 148

Figure 40 Inter-embedding sulcal mapping error. Central sulcus de-

lineations were mapped between surfaces that contributed

to different embeddings by first establishing temporal cor-

respondences (Section 4.2.7). The average alignment error,

quantified by the average Fréchet distance, Fa, is shown for

four methods (a) when mapping delineations for younger

source subjects (≈ 27 weeks) to progressively older tar-

get subjects and (b) when mapping delineations for older

source subjects (≈ 37 weeks) to progressively younger tar-

get subjects. Error bars show the standard deviation of the

alignment error. 149

Figure 41 Surface Parcellation. An example of a cortical surface

model parcellated into 6 regions. 150
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Figure 42 Embedding regularity visualisation. Each line signifies a

vertex where the local structure of the surface was not pre-

served in the embedding. The length of the line is propor-

tional to the distance that the embedded vertex is from

the centroid of its neighbouring vertices, when both are

mapped back to the spatial domain (the exact distance

in mm is given by the colour mapping). Note the irreg-

ularities seen when the initial surface links are not regu-

larised. 153

Figure 43 Average cortical surface templates. Cortical surface tem-

plates were constructed for each week of gestation, for both

spectral embeddings and spherical demons. Both methods

produced visually similar templates, capturing an estimate

of the average growth for the cohort. 155

Figure 44 Effect of sample size on the variability of generated at-

las templates. The average distance between distinct tem-

plates generated from disjoint subsets of the cortices was

computed to give an estimate of the variability of gener-

ated surface templates. The points plotted show an average

of 10 iterations for a particular sample size and age, with

the error bars showing the standard deviation of the 10 it-

erations. The lines show a power law fit of the data for each

target age. 157
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Figure 45 Preterm atlas construction using temporal windows. Each

circle depicts a window for atlas construction, where the

surfaces for subjects contained within are averaged to gen-

erate a mean template. Colours correspond to developmen-

tal trajectories for babies born at different gestational ages.

For example, purple correspondences to babies born at 26

weeks GA ± 1.5. 164

Figure 46 Influence of imaging quality on extracted cortical surface

models. Typical cortical surface models automatically ex-

tracted for two subjects aged 32 weeks GA, from a 1.5T

non-super resolution image (a) and a 3T super-resolution

image (b). Note the reduced sulcal depth in (a) and also the

implausible geometry around the calcarine fissure due to

segmentation error. 175

Figure 47 Atlas templates (GA at birth: 25-29 weeks). For the

preterm templates, each row shows a developmental tra-

jectory for subjects born around the same age. Note the

background colour for each birth age corresponds with

Fig. 45 & 49. The colour mapping shows mean curvature

(red, convex; blue, concave), which enhances visual percep-

tion of the template geometries. 177
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Figure 48 Atlas templates (GA at birth: 30-36 weeks) For the preterm

templates, each row shows a developmental trajectory for

subjects born around the same age. Note the background

colour for each birth age corresponds with Fig. 45 & 49. The

colour mapping shows mean curvature (red, convex; blue,

concave), which enhances visual perception of the template

geometries. 178

Figure 49 Template volumes. Each colour depicts a developmental

trajectories for subjects born at a particular age. These

colours correspond to those in Fig. 45, 47 & 48. 179

Figure 50 Typical template displacement for extremely preterm ba-

bies (lateral view). The template shown was constructed for

babies born at 27 ± 1.5 weeks GA and scanned at 29 ± 1.5

weeks PMA. Arrows depict displacements from matched

locations on the corresponding fetal template constructed

for subjects with a GA of 29 ± 1.5 weeks. The length of

the arrows show the magnitude of the displacement with a

one-to-one scaling. Colour mapping depicts the scalar pro-

jection of the displacement along the surface normal (red:

+3 mm, blue: −3 mm). Warmer colours show positive (out-

ward) displacements and cooler colours show negative (in-

ward) displacements. 180
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for babies born at 27 ± 1.5 weeks GA and scanned at

29 ± 1.5 weeks PMA. Arrows depict displacements from

matched locations on the corresponding fetal template con-

structed for subjects with a GA of 29 ± 1.5 weeks. The

length of the arrows show the magnitude of the displace-

ment with a one-to-one scaling. Colour mapping depicts

the scalar projection of the displacement along the surface

normal (red: +3 mm, blue: −3 mm). Warmer colours show

positive (outward) displacements and cooler colours show

negative (inward) displacements. 181

Figure 52 Typical template displacement for moderately preterm ba-

bies (lateral view). The template shown was constructed for

babies born at 33± 1.5 weeks GA and scanned at 35± 1.5

weeks PMA. Arrows depict displacements from matched

locations on the corresponding fetal template constructed

for subjects with a GA of 35± 1.5 weeks. The length of the

arrows show the magnitude of the displacement with a one-

to-one scaling. Colour mapping depicts the scalar projection

of the displacement along the surface normal (red: +3 mm,

blue:−3 mm). Warmer colours show positive (outward) dis-

placements and cooler colours show negative (inward) dis-

placements. 182



32 List of Figures

Figure 53 Typical template displacement for moderately preterm ba-

bies (medial view). The template shown was constructed

for babies born at 33± 1.5 weeks GA and scanned at 35± 1.5

weeks PMA. Arrows depict displacements from matched

locations on the corresponding fetal template constructed

for subjects with a GA of 35± 1.5 weeks. The length of the

arrows show the magnitude of the displacement with a one-

to-one scaling. Colour mapping depicts the scalar projection

of the displacement along the surface normal (red: +3 mm,

blue:−3 mm). Warmer colours show positive (outward) dis-

placements and cooler colours show negative (inward) dis-

placements. 183
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Figure 55 Lateral view, templates for very and moderately preterm

babies (30-35 weeks GA at birth). 217

Figure 56 Medial view, templates for extremely preterm babies (25-

29 weeks GA at birth). 218
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29 weeks GA at birth). 219

Figure 58 Superior/lateral view, templates for all preterm ba-

bies. 220
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bies. 221

Figure 60 Lateral view, templates for extremely preterm babies (25-

29 weeks GA at birth). 223
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bies. 227
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bies. 228
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mulated by summarising a shape descriptor over all surface

voxels, xi. A weighting, w, was applied to each voxel which

depended on its surface voxel configuration. Each of these

measures was formulated to ensure its independence of the

scale and surface area. Note, K+, denotes the set of voxels

with positive Gaussian curvature. 108

33



34 List of Tables
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placement and the median absolute deviation (MAD) from
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Table 5 Relative peak growth rate in lobar regions. The peak in-

crease of HN is shown for all regions relative to the poste-
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Table 8 Atlas template variability prediction. By extrapolating the

power law fit of the variability measured to sample sizes

greater than 11 (see Fig. 44), it is possible to estimate the

variability of surface templates generated using the full

dataset size. 158

Table 9 Sample sizes for atlas construction. The number of sub-

jects that contributed to the construction of each template

is shown. Note that symmetric templates were constructed

from both the left and right hemisphere of each brain, thus

the number of surfaces averaged to form a template was

double the sample size above. 165

A C R O N Y M S

BET Brain Extraction Tool

CC Cross Correlation

CHD Congenital Heart Disease

CR Correlation Ratio

CSF Cerebrospinal Fluid

CT Computed Tomography
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EM Expectation-Maximisation

FFD Free-Form Deformation

GA Gestational Age

GM Grey Matter

ICP Iterative Closest Point

LCC Largest Connected Component

MI Mutual Information

MR Magnetic Resonance

MRF Markov Random Field

MRI Magnetic Resonance Imaging

NMI Normalised Mutual Information

NMR Nuclear Magnetic Resonance

NICU Neonatal Intensive Care Unit

PET Positron Emission Tomography

PMA Postmenstrual Age

PSF Point Spread Function

PV partial volume

RF Radio Frequency
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SSD Sum of Square Differences

SSFSE Single Shot Fast Spin Echo

SVR Slice to Volume

US Ultrasound

VBM Voxel-Based Morphometry

WM White Matter





1
I N T R O D U C T I O N

1.1 the cerebral cortex and cortical folding

The cerebral cortex is a thin layer of tissue typically 2-3 mm thick that lines the

cerebrum, the largest division of the vertebrate brain. It largely consists of a dense

entanglement of neuron cell bodies, unmyelinated axons and glia, and is often

referred to as Grey Matter (GM) due to its grey appearance. In contrast, the White

Matter (WM) situated below, has relatively few neuron cell bodies and long myeli-

nated axons. Myelination is a process where Myelin, a fatty white substance, forms

an electrically insulating sheath around an axon, increasing the speed of electrical

transmissions. This is what gives WM a lighter appearance compared to GM.

The cortex is the largest processing centre of the brain where neural circuits per-

form many high level functions including sensory perception, motor control, mem-

ory retention and language processing (Kandel, 2013). Histological techniques

such as Nissl staining (Fig. 1) have revealed the cellular organisation of the brain

thus allowing researchers to map out its architecture. Brodmann (1909) produced

one of the first mappings of cortical cytoarchitecture, dividing the cortex into 52

distinct regions, which were later found to perform distinct functions (Fig. 2).

Cortical folding is an important neurodevelopmental process that occurs largely

in the third trimester of pregnancy (Garel et al., 2001), where the cerebral cortex

39
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Figure 1: Coronal slice of a primate brain: Cells have been dyed using the Nissl staining
technique revealing their organisation within the brain. Image modified from
BrainMaps.org.

transforms rapidly from a smooth sheet into a highly convoluted arrangement of

gyri and sulci (Fig. 3). The increase in surface area allows a greater number of

neuronal circuits to be packed into the skull’s limited volume and is fundamental

to increases in cognitive ability seen in humans and other intelligent species (Lui

et al., 2011; Zilles et al., 2013). The level of gyrification is controlled by genes which

determine neuronal cell birth and division in the subventricular zone, and their

migration along radial glial scaffolding out towards to the cortex (Rakic, 2009). The

exact mechanism that causes the cortex to fold is still unknown (Xu et al., 2010),

however, several plausible theories have been put forward, including differential

growth of the cortex (Richman et al., 1975) and WM axonal tension (Van Essen and

Drury, 1997).
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Figure 2: Brodmann regions. This diagram shows various cytoarchitectural regions of the
cerebral cortex, discovered through histological methods. Each region has a dif-
ferent cellular organisation and relates to a high level function of the brain. Image
from OpenStax College.

1.2 abnormal folding and neuropsychiatric disease

Abnormal folding of the cortex has been associated with neuropsychiatric disor-

ders. For example, Dubois et al. (2008) found that fetuses with intra-uterine growth

restriction, which is a risk factor for developing attention deficit hyperactivity dis-

order and schizophrenia (Geva et al., 2006), had measurable structural abnormal-

ities at birth which were associated with a lower neurobehavioural development

score at term equivalent age. There a number of risk factors for abnormal folding

including inherited genes, premature birth and disturbances in the uterine envi-

ronment. How these factors influence cortical development and neurobehavioural

traits is poorly understood. By characterising cortical folding patterns in normal

fetuses and neonates, and also in other groups of subjects that have specific neu-
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Figure 3: Cortical folding visualized through magnetic resonance imaging. These in utero
magnetic resonance images show the rapid convolution of the the fetal brain in
the third trimester. The cortical grey matter is seen as a dark ribbon on the
surface of the brain.

rocognitive deficiencies, we can begin to understand the effects of abnormal devel-

opment.

One cohort of particular interest is preterm infants. In the United States, a signifi-

cant proportion of the new-born population is preterm, at over 11% (Joyce A. Mar-

tin et al., 2015), although this figure has been decreasing slightly in recent years.

Preterm birth is strongly associated with poor neurodevelopmental outcome (John-

son et al., 2009), however the nature of the disruption to developmental processes

is not fully understood.

Medical imaging technologies such as Magnetic Resonance Imaging (MRI) have

given researchers the opportunity to investigate the effect of premature birth and

studies have shown that diffuse WM injury is common and predictive of poor

outcome (Boardman et al., 2010). Researchers have also reported GM abnormalities

such as reduced cortical tissue volume (Kapellou et al., 2006; Ball et al., 2012),

reduced cortical gyrification (Ajayi-Obe et al., 2000) and also reduced thalamic

volume (Ball et al., 2012). GM and WM abnormalities do not occur in isolation (Inder

et al., 1999; Ball et al., 2012; Melbourne et al., 2012; 2014), suggesting that preterm

birth disrupts brain development as a whole. Due to the prevalence of neurological
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abnormalities in preterm babies, fetuses may ultimately provide the best control

group for studying the effects of premature birth on brain development. However,

acquiring high quality brain images of the fetus is a challenging task, which will

be discussed in the Section 1.4.

1.3 magnetic resonance imaging

A number of different imaging techniques have been developed that exploit physi-

cal phenomena in order to visualise structures inside of the human body, including

Ultrasound (US), Computed Tomography (CT), Single-Photon Emission Computed

Tomography (SPECT) and Positron Emission Tomography (PET). This thesis utilises

MRI for acquiring fetal and neonatal brain images, which relies on the physical

phenomena known as Nuclear Magnetic Resonance (NMR), to manipulate the spin

of hydrogen protons inside the body, using magnets and Radio Frequency (RF)

pulses, inducing a current in a receiver coil that may be interpreted as an image.

This technique is well suited to imaging of the human body due to the abundance

of water in the human body (which contains hydrogen). A major advantage is

that is does not involve high frequency ionising radiation unlike other modalities

such as CT (x-rays) and PET/SPECT (gamma rays), and is therefore relatively safe.

This makes it an excellent choice for imaging fetuses and neonates, who are more

sensitive to radiation than adults.

An MRI machine consists of a superconducting solenoid, cooled close to absolute

zero using liquid helium, allowing electrons to flow without resistance. This gen-

erates a strong magnetic field (typically 1.5T or 3T), known as B0. Due to their

intrinsic spin, protons within the body act like tiny magnets and become aligned

with or against the external B0 magnetic field. At any instant, a tiny excess of
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protons are aligned with the field (a lower energy state) resulting in a net magneti-

sation of the body.

In order to image a subject, an RF pulse is emitted at a specific resonant frequency

(the Larmor precession frequency), which is absorbed by the protons causing them

to precess. As the spins return to equilibrium (spin-lattice relaxation) and become

aligned with the external magnetic field (B0) they emit radio-waves which induce

a signal in the receiver coil.

Critically, the frequency of the emission is proportional to the strength of the exter-

nal magnetic field (B0). This allows spatial encoding using three sets of electromag-

netic gradient coils which, combined, modify the magnetic field strength linearly

along an arbitrary axis. A Fourier analysis of the signal yields the intensities for

different frequencies / spatial locations.

In practice, a slice may be selected by turning on the gradient coils and emitting an

RF pulse at a frequency which corresponds to the desired position along the slice

selection vector (“z-axis”). This restricts the protons that are excited to the chosen

slice. By turning on the gradient coils again during the readout, the precession

frequency of the protons may be modified linearly along another axis within the

chosen slice (“x-axis”). This is known as frequency encoding and gives spatial

localisation along one axis within a slice.

Spatial localisation along the second slice axis (“y-axis”), is achieved by manip-

ulating the phase of the precessing protons, by switching on the gradient coils

for only a short duration, speeding up precession temporarily. When the gradient

coil is switched off the protons precess at the same frequency again (determined

by B0) but they are now out of phase along the y-axis. Unfortunately, the Fourier

transform cannot measure more than one phase at a particular frequency, however,

multiple different phase encoding steps and readouts may be used to determine
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the phases. Each readout becomes a row in the frequency domain or “k-space”,

which yields an image when a 2D Fourier transform is applied.

The rate of signal decay (spin-lattice relaxation) after excitation is dependent on

tissue type and is characterised by its T1 value. The contrast of an image may be

optimised by considering the T1 curves for tissues of interest for a particular scan

and choosing an appropriate delay after excitation before sampling the receiver

coil.

Deterioration of an NMR signal is not limited to spin-lattice relaxation. After an

initial excitation, local inhomogeneities in magnetic field strength cause some pro-

tons to precess faster and others more slowly, resulting in a loss of phase over time

(spin-spin relaxation). This results in a loss of intensity at a particular sampling

frequency as the signal broadens. Dephasing occurs at different rates for different

tissues, which is characterised by its T2 value. This gives another mechanism for

obtaining contrast in images.

Typically the loss of signal due to dephasing (T2) proceeds at a quicker rate than

spin-lattice relaxation (T1). In order to refocus the signal, an “inversion” RF pulse

may be applied at time t, which flips the precessing protons causing them rephase

at time 2t, which is known as an echo. This is the most commonly used pulse

sequence for acquiring T1 images.

1.4 fetal imaging

2D US is the most widely used imaging modality for assessing fetal health as it

is relatively safe, inexpensive and portable.Its prevalence has allowed researchers

to establish normal ranges for basic brain parameters, such as biparietal diameter,
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Figure 4: 2D ultrasound. Image showing measurement of head circumference (HC) and
biparietal diameter (BPD) for a fetus which are useful biometric markers for
brain development. Image modified from Dilmen (2001).

occipitofrontal diameter and ventricle diameter, with a high confidence from large

datasets (Snijders and Nicolaides, 1994) (N = 1040), thereby facilitating biometric

screening for abnormalities (Fig. 4). The introduction of 3D US imaging has en-

abled volumetry of vital organs, such as the heart (Chang et al., 1997; Peralta et al.,

2006), lungs (Pöhls and Rempen, 1998; Peralta et al., 2006) and brain (Chang et al.,

2003), thus allowing additional biometric assessment of fetal health. Chang et al.

(2003) found that brain volume was highly correlated with Gestational Age (GA)

and that measurements were reproducible with high accuracy, suggesting that this

is an excellent marker for neural development. Unfortunately, measuring the vol-

ume of a brain is relatively time consuming (≈ 15 minutes) compared to alterna-

tive but simpler 2D measurements such as biparietal diameter and occipitofrontal

diameter, which may be used to approximate volume. Automatic methods would

be useful for this purpose, however precise delineation of anatomical structures

from US data is a challenging task given the low signal-to-noise ratio and the diffi-

culty in obtaining ’canonical’ views of structures.
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The development of ultra-fast scanning techniques such as Single Shot Fast Spin

Echo (SSFSE) (Glastonbury and Kennedy, 2002) has allowed 2D MRI of the fetal

brain. Unlike adults, who are requested to remain still during scanning, fetuses

move freely, therefore a fast acquisition sequence is necessary to avoid motion

blurring artifacts in images. MRI has since become an important tool for clinical

investigation of abnormalities (Hosny and Elghawabi, 2010). With significantly

greater tissue contrast and spatial resolution, MRI affords an opportunity for more

detailed investigation, thus enabling more accurate diagnoses for subjects referred

after an initial US screening (Rutherford et al., 2008). Additionally, MRI may be

preferable when US image acquisition is affected by external factors such as mater-

nal obesity or awkward fetal positioning.

A stack of 2D slices may be acquired in a sequence to create a 3D Magnetic Res-

onance (MR) image volume, however due to fetal motion between the acquisition

of slices, the spatial correspondence is corrupted (Fig. 5). Slice-to-volume registra-

tion techniques (Rousseau et al., 2006; Jiang et al., 2007) have allowed coherent

3D images to be reconstructed by estimating the optimum slice alignment. Super-

resolution techniques (Rousseau et al., 2010; Kim et al., 2010; Gholipour et al.,

2010; Kuklisova-Murgasova et al., 2012) have subsequently boosted spatial resolu-

tion by exploiting repeated overlapping slice samples from multiple acquisition

loops (see Fig. 6). These reconstruction techniques are relatively computationally

intensive. However, GPU acceleration provides a significant and scalable reduc-

tion in computation time (Kainz et al., 2015), allowing the use of 3D MR images for

clinical purposes. The increased resolution and signal-to-noise ratio of MR images

allows excellent visualisation of complex brain structures such as the cortex and

this has stimulated new research into the structural development of the fetal brain

in the neuroimage analysis community (Gholipour et al., 2012; Habas et al., 2012;



48 introduction

Jacob et al., 2011; Rajagopalan et al., 2011; Scott et al., 2011; Serag et al., 2012b;

Caldairou et al., 2011; Habas et al., 2010; Scott et al., 2013).

Figure 5: Reconstruction of 3D volume from 2D slices. 2D slices are acquired in the
transverse plane using a fast scanning sequence to freeze motion (a). The coronal
(b) and sagittal (c) views are corrupted by motion between slice acquisitions. The
motion between slices is estimated and a 3D volume is reconstructed from the
original slice data providing a coherent 3D image (d,e,f).
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Non-super-resolution reconstruction

Super-resolution reconstruction

Figure 6: Comparison of reconstruction techniques. Two reconstructions of the same MR
acquisition are shown using the non-super-resolution method of Jiang et al. (top
row) and the super-resolution method of Kuklisova-Murgasova et al. (bottom
row).

1.5 preterm imaging

MR imaging of preterms presents its own unique set of practical challenges (Ruther-

ford, 2002, ch. 1 & 2). Inside the womb, the mother provides nutrition for the fetus

through the placenta and amniotic fluid, its temperature is well-regulated and it

is also protected against infection. Outside this protective environment, preterm

babies are more fragile and need to be cared for inside a Neonatal Intensive Care

Unit (NICU), where vital functions such as temperature, blood oxygenation, and

cardiac function may require monitoring. Babies are often placed in an incubator

to help regulate their temperature and some babies may need a ventilator to help

them breath. Typically, a dedicated MR scanner is used to scan preterms, which

is placed as close as possible to the NICU to avoid disrupting care. Additionally,
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transportation procedures are optimised to minimise handling of the baby. Inside

the scanning room, the temperature must be regulated to keep the babies warm,

and for extremely preterm babies extra blankets may be required. Additionally,

any monitoring equipment or ventilators used must be compatible with scanner

technology, in particular, the strong magnetic fields.

As with fetal imaging, motion presents an obstacle for preterm image acquisition.

High quality images can be acquired, however, with immobilisation of the baby

and also by using a smaller radio frequency coil, such as an adult knee coil, to

get as close to the head as possible, thus increasing the signal-to-noise ratio. For

immobilisation, sedatives are not necessary if babies are imaged after a feed as

this helps to induce sleep. Before scanning, a vacuum-pack bag of polystyrene

balls is placed around the baby’s head and the air evacuated, providing snug but

comfortable immobilisation while reducing the exposure to noise generated from

the scanner. Noise is a primary concern when preforming imaging as it can agitate

the baby. This not only impedes acquisition of images free of motion artefacts but

has physiological effects on the baby, such as increased heart rate, respiratory rate

and intracranial pressure (Long et al., 1980). Scanners are designed, therefore, to

reduce acoustic noise as much as possible. Additionally, mini ear muffs are used

to further reduce noise exposure.

1.6 datasets

Two image datasets were used for this thesis: a fetal dataset consisting of 80 nor-

mal fetal subjects (GA range: 21.7− 38.9 weeks) (Fig. 7) and a neonatal dataset con-

sisting of 468 subjects of which 196 were selected (Postmenstrual Age (PMA) range:

26.57− 37.14 ), whose ages overlapped with that of the fetal dataset, for a compari-
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son of cortical shape between the two populations (Fig. 8). For the fetal dataset, T2-

weighted MRI was performed on a 1.5T Philips Achieva system with a 32 channel

coil. A SSFSE sequence was used to acquire 2D slices (TR = 15000 ms, TE = 160 ms,

flip angle = 90◦ and voxel resolution = 1.25× 1.25× 2.5 mm). An additional Slice

to Volume (SVR) reconstruction step was then applied (Jiang et al., 2007) to produce

coherent 3D volumes from these 2D slices (See Section 1.4 and Fig. 5) because the

slices are disoriented due to fetal motion during acquisition. Correcting for this re-

quires registration of the slices to find the best alignment. After reconstruction, the

final 3D volumes had an isotropic resolution of 1.18× 1.18× 1.18 mm. (Jiang et al.,

2007) For the neonatal dataset, T2-weighted MRI was performed on 3T Philips In-

tera system (TR = 8670 ms, TE = 160 ms, flip angle = 90◦, field of view = 220 mm

and voxel resolution= 0.86× 0.86× 1 mm). Both datasets were processed using

N4 (Tustison et al., 2010) to correct for intensity non-uniformity.

Gestational Age at Scan [Weeks]

N
u
m

b
e
r 

o
f 
s
u
b
je

c
ts

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

0
1

2
3

Figure 7: Fetal dataset. Bar chart with accompanying density trace, estimated using a
Gaussian kernel (σ = 1). The mean age of the cohort is shown in red.
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Figure 8: Neonatal dataset. Preterms may be characterised by their postmenstrual age at
scan and their gestational age at birth. Postmenstrual age is the time passed
since the first day of the last menstrual period, which is equal to chronological
age (time outside the womb) plus gestational age (time inside the womb). Note
babies with a lower gestational age at birth are more preterm. 196 subjects were
selected (filled black circles) from the dataset, whose ages overlapped with that
of the fetal dataset, for a comparison of folding between the two populations.



1.6 datasets 53

Figure 9: Fetal MRI dataset examples. Axial slices of the fetal brain are shown for random
subjects from the fetal dataset used for this thesis (gestational age range: 21.7−
38.9 weeks).
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Figure 10: Preterm MRI dataset examples. Axial slices of the preterm brain are shown
for a random subset of the 196 subjects selected for comparison with the fetal
dataset (postmenstrual age range: 26.57− 37.14 ).
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1.7 objective and contributions

The objective of this thesis is to develop techniques that will allow cortical folding

to be quantified automatically for both fetuses and neonates from MR images in

order to gain a greater understanding of the folding process in utero and how this

deviates in preterm babies.

The contributions in this thesis comprise of two methods and one application as

follows:

• A framework for quantifying global and regional folding using curvature-

based folding measures (Chapter 3), which was applied to fetal data. Brain

structures, including the cortex, were delineated automatically using an

Expectation-Maximisation (EM)-based algorithm (Ledig et al., 2012) and a

spatio-temporal atlas of brain structure location (Serag et al., 2012b). The ac-

curacy of this procedure was evaluated in sixteen of the subjects for which

structures were also delineated manually. For each subject, surface curva-

tures were evaluated in the image volume domain over the delineated corti-

cal boundary using techniques proposed in (Rieger et al., 2004; Rodriguez-

Carranza et al., 2008). Eight curvature-based folding measures from the liter-

ature (Van Essen and Drury, 1997; Magnotta et al., 1999; Batchelor et al., 2002;

Awate et al., 2008; Rodriguez-Carranza et al., 2008) were adapted to quantify

the degree of gyrification of the subjects within the cohort. Local gyrification

was also quantified in nine different regions by parcellating each of the im-

age volumes using an anatomical atlas (Gousias et al., 2012). Folding was

quantified over a wide gestational age range (21.7 to 38.9 weeks) for a large

number of subjects (N = 80) extending our understanding of how the cortex

folds through this critical developmental period. The changing relationship
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between the folding measures and gestational age was modelled with a Gom-

pertz function which allowed an accurate prediction of physiological age.

• A framework for constructing a spatio-temporal surface atlas of cortical fold-

ing, using spectral methods to find accurate correspondences between sur-

faces and kernels to generate temporally and spatially weighted average sur-

face templates (Chapter 4), which was applied to fetal data. In this work,

brain structures were again delineated automatically using an EM-based

algorithm (Makropoulos et al., 2014) and a spatio-temporal atlas of brain

structure location (Serag et al., 2012b). Topologically corrected surface mod-

els were extracted by deforming a mesh with the correct topology towards

the delineated cortical boundary using a technique similar to previous au-

thors (Dale and Sereno, 1993; Davatzikos and Bryan, 1996; MacDonald et al.,

2000; Kim et al., 2005). A group-wise extension to the spectral-based method

of Lombaert et al. (2013b) was used to determine correspondences between

meshes and embed them in the same domain. Kernels (Nadaraya, 1964),

were then used to compute a spatially and temporally weighted estimate of

the average surface boundary in this domain, which was readily converted

to a mesh representation (Kazhdan and Hoppe, 2013). Sulcal alignment, re-

gional overlaps, and embedding regularity were found to be comparable

with that of state of the art methods. Templates generated from disjoint sub-

sets of the data were also found to be highly consistent.

• An application of surface atlasing to compare mean cortical shape for fe-

tuses and neonates (Chapter 5). In this work, surface atlas templates were

constructed for groups of preterms with both a similar GA birth and PMA

at scan, allowing the effects of premature birth to be investigated along dif-

ferent developmental trajectories. The mean cortical shape was compared

between each preterm template and its corresponding fetal template (con-
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structed for the same PMA). For this, correspondences were established via

a joint spectral analysis and displacements were computed for matched sur-

face locations. Patterns of displacement were then analysed for extremely

preterm babies and also very and moderately preterm babies.

1.8 outline of thesis

Analysis of cortical folding is a challenging task that requires a combination of im-

age analysis techniques, including image registration (aligning anatomies), image

segmentation (delineating brain structures), surface modelling (extracting an ex-

plicit mesh representation from an image), surface registration (finding correspon-

dences between surface geometries), and surface-based morphometry (detecting

localised statistical differences in anatomy between cohorts).

In the next chapter an overview of neuroimage analysis tasks and concepts that

this thesis builds upon will be given, including image registration, segmentation

and surface modelling. Specific challenges that relate to fetal and neonatal datasets,

and methods from the literature that tackle these, will also be discussed. The two

subsequent chapters (3 & 4) will detail methods developed for this thesis that

help to characterise cortical folding in fetuses and neonates. In Chapter 3 a frame-

work for quantifying gyrification using curvature-based shape descriptors will

be described while Chapter 4 will outline a framework for constructing a spatio-

temporal cortical surface atlas. In Chapter 5, cortical shape is compared for fetuses

and preterms by application of surface atlasing. The conclusions of this thesis will

then be presented in the final chapter (Chapter 6).





2
B A C K G R O U N D

This chapter gives an overview of neuroimage analysis concepts and tasks that

this thesis builds on, along with a description of important methods in these areas.

Difficulties relating to fetal and neonatal MR data will also be highlighted along

with methodology developed specifically to tackle these challenging data. The

content is split into three sections: image registration, image segmentation and

cortical surface modelling. Image registration is concerned with aligning images,

whereas image segmentation is the process of labelling anatomical structures on an

image voxel grid. Registration facilitates numerous medical image analysis tasks,

which will be discussed in the next section. Most importantly, in the context of this

thesis, it gives a mechanism for propagating a prior estimate of tissue location from

a digital brain atlas, facilitating automatic tissue segmentation. A mesh model of a

tissue boundary may then be readily extracted from a tissue segmentation. Several

techniques have been developed to extract cortical surface meshes which, use prior

knowledge of cortical topology to improve accuracy. These will be discussed in the

last section of this chapter.

59
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2.1 image registration

2.1.1 Background

Image registration is the process of automatically aligning two images (a “source”

and a “target”) and involves estimating the optimal transformation between them

(Fig. 12). Aligning images is extremely useful as it allows inspection and analysis

in a common coordinate system. For example, in a clinical setting, a radiologist

may wish to track disease progression in a single patient from a recent scan and

several older scans. When these images are well aligned, changes may be tracked

much more easily. Additionally, images acquired from different imaging modal-

ities that provide complementary information may be registered (multi-modal

registration), thus allowing simultaneous visualization (Fig. 11). For example, a

neurosurgeon may co-align a PET image, which allows visualization of metabolic

processes, with a structural MR image, improving tissue localisation before neuro-

surgery (Maciunas et al., 1992).

Figure 11: MR and PET combined visualization. Images are registered and aligned allow-
ing joint visualisation Wikimedia Commons.

The registration applications discussed so far involve registering the imaged

anatomy of a single subject (intra-subject registration), however, registration may
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also be used to register the anatomies of different subjects (inter-subject registra-

tion). Inter-subject registration is frequently used in cross-sectional image analy-

sis studies, allowing morphometric analysis of the brain between different pop-

ulations. For example, aligning the imaged anatomy of two populations in a

common coordinate system allows a statistical analysis of their differences on a

voxel-wise basis. This experimental design is known as Voxel-Based Morphome-

try (VBM) (Ashburner and Friston, 2000). Often a population with a specific disease

is compared with a normal control population to discover abnormalities. This

methodology has been successfully applied to a number of diseases including

Alzheimer’s disease (Karas et al., 2004), Parkinson’s Disease (Price et al., 2004) and

epilepsy (Keller et al., 2004). The deformations that map subjects into a reference

space may also be used for morphometric analysis. For example, the determinant

of the Jacobian operator of a deformation field can be used to quantify voxel-wise

volume change for all images with respect to a reference image. Population differ-

ences in localised tissue volume may then be inferred (Boardman et al., 2006). This

type of analysis is referred to as deformation-based morphometry, but the term

tensor-based morphometry may also be used when other features of the Jacobian

tensor are employed.

A typical image registration algorithm consists of three components: a transforma-

tion model, an image similarity metric and an optimization procedure. A transfor-

mation is applied to one of the images, which is usually referred to as the “source”,

bringing it into alignment with the other image, referred to as the “target” . The

goal of a registration algorithm is to estimate the best transformation for aligning

a source image with a target image, by optimizing the parameters of a transforma-

tion model in order to maximise an image similarity metric. In the remainder of

this section these three components will be discussed in further detail.
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Figure 12: Registration of two brain images. Four registrations of a source and target
image are shown from coarse to fine, top to bottom. The top row shows an
affine alignment which transforms points globally and preserves collinearity, i.e.
all points that lie on a line before a transformation still lie on a line afterwards.
The subsequent rows show a non-rigid alignment where the source image is
deformed locally using the free-form deformation (FFD) model of Rueckert
et al. (1999). Registration models are discussed in detail in Section 2.1.2. The
difference of the two images is shown in the second column, which shows the
similarity of the target and the transformed source image. The third column
shows the deformation fields generated by the free-form deformation method.
Note a finer control point mesh allows a finer alignment of the anatomies.
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2.1.2 Transformation models

Transformation models can be grouped in two major categories: linear and non-

linear. A linear or affine transformation preserves collinearity, i.e. all points that

lie on a line before a transformation still lie on a line afterwards. Consequently, a

linear transformation operates on points globally, i.e. it does not allow localised

deformation. An affine transformation can be any combination of translation, ro-

tation, reflection, scaling and shearing. This type of transformation can be used to

align brain images of different subjects with different sizes.

A rigid transformation is also a linear transformation but it only permits any com-

bination of rotation and translation. This preserves distances and angles between

points (isometry). This is particularly useful when registering two images of the

same brain that have been captured using different modalities. As there is little

change in brain shape over short periods of time, a global transformation is suffi-

cient to align the imaged anatomy.

An affine transformation can be represented using homogeneous coordinates. In

this coordinate system, a 3D position vector [x y z]t becomes a 4-vector [x y z 1]t.

Any 3D affine transformation may then be encoded by a 4 × 4 transformation

matrix with 12 parameters (Tglobal).

Tglobal =


m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

0 0 0 1

 .

The location of a transformed point in homogeneous coordinates [x
′

y
′

z
′

1]t is

computed by multiplying a transformation matrix Tglobal with an initial position

vector [x y z 1]t:
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
x
′

y
′

z
′

1

 = Tglobal


x
y
z
1

 .

Five examples of affine transformation matrices are shown below for differ-

ent transformation operations, including scaling (s), translation (t) and rotation

around the z-axis (rz), y-axis (ry) and z-axis (rx):

s(sx, sy, sz) =


sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

 t(tx, ty, tz)=


1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1



rz(γ) =


cos γ − sin γ 0 0
sin γ cos γ 0 0

0 0 1 0
0 0 0 1



ry(β) =


cos β 0 sin β 0

0 1 0 0
− sin β 0 cos β 0

0 0 0 1

 rx(α) =


1 0 0 0
0 cos α sin α 0
0 − sin α cos α 0
0 0 0 1

 .

Any number of such transformation matrices may be composed, resulting in an-

other 4× 4 transformation matrix encoding the whole sequence of transformation

operations.

The shape of the human brain and its constituent substructures are highly variable.

A global transformation model is sufficient to bring two brains into coarse align-

ment, however, more complex transformation models that allow localised defor-

mation are required to accurately align brain regions. Models that allow location
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deformation are referred to as non-linear or non-rigid transformation. Image vol-

umes have been modelled as physical entities, such as an elastic body (Yanovsky

et al., 2008) which resists deformation under the influence of an external force that

attempts to match the images. Viscous fluid models (Christensen et al., 1996) have

also been used, which can flow allowing large-scale deformations. Other prevalent

methods are derived from interpolation theory (Bookstein, 1989; Rueckert et al.,

1999; Hellier et al., 2001), where displacements at discrete locations are interpo-

lated over an entire image volume, constructing a smoothly varying displacement

field. These models have the advantage of being parametrised by relatively few

parameters. For a thorough and recent review of non-rigid registration models the

interested reader is referred to (Sotiras et al., 2013).

In this thesis, the Free-Form Deformation (FFD) model of (Rueckert et al., 1999)

is employed for non-rigid registration, which is an interpolation-based method.

This model comprises of a regular grid of control points each with an associated

displacement vector. A smoothly varying displacement field can be constructed by

blending these vectors using cubic B-spline basis functions.

Let φ denote a nx × ny × nz mesh of control points with uniform spacing, then the

displacement for the image coordinate (x, y, z) is calculated below:

Tlocal(x, y, z) =
3

∑
l=0

3

∑
m=0

3

∑
n=0

Bl(u)Bm(v)Bn(w)φi+l,j+m,k+n

where i = bx/nxc − 1, j =
⌊
y/ny

⌋
− 1, k = bz/nzc − 1,

u = x/nx − bx/nxc , v = y/ny −
⌊
y/ny

⌋
, w = z/nz − bz/nzc

and Bl is the l-th B-spline basis function of which are given below:

B0(u) =
(1− u)3

6
, B1(u) =

3u3 − 6u2 + 4
6

,
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B2(u) =
−3u3 + 3u2 + 3u + 1

6
, B3(u) =

u3

6
.

2.1.3 Image similarity

The alignment of a target image and a transformed source image may be estimated

by an image similarity metric. A source image must first be “resliced” onto the

target image’s voxel grid using an interpolation scheme. Common interpolation

schemes for this purpose include nearest neighbour, linear and sinc. Intensities can

then be compared at matched locations across the target’s voxel grid. The choice

of metric is dependent on the imaging data and some experimentation is usu-

ally necessary to determine the most suitable one. Many factors may be relevant

when evaluating the performance of an image similarity metric for a particular

application, including robustness in the presence of noise, precision of alignment

and ease of optimisation, especially if images are initially poorly aligned. When

registering images of the same modality, a metric may compare voxel intensities

directly. This approach is unsuitable for multi-modal registration, however, and

information theoretic techniques are commonly used in this instance.

2.1.3.1 Mono-modal metrics

One of the simplest and most commonly used measures for mono-modal registra-

tion is the Sum of Square Differences (SSD) of the image intensities. Note that SSD

is strictly a dissimilarity metric but may be converted into a similarity metric by

negating its value.

Let the intensities of a target image with n voxels be denoted as a 1D vec-

tor [ t1, t2, . . . , tn ] and the intensities of a resliced source image be denoted
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[ s1, s2, . . . , sn ], where tk and sk are the intensities of corresponding voxels. Then

the SSD is given:

SSD =
1
n

n

∑
i=1

(ti − si)
2.

The use of SSD as an image similarity metric is coupled with the assumption

that equivalent tissues between images have the same intensity. Unfortunately

MR image intensities do not correspond directly to tissue composition, even for

a standardized protocol. Therefore, images must first be normalized, which can

be accomplished by transforming an image histogram to match a standardized

model (Nyúl and Udupa, 1999).

The accuracy of alignment using SSD can be effected by intensity outliers, for

example, from image noise or reconstruction artefacts. Sum of Absolute Differ-

ences (SAD) provides an alternative to SSD that provides a more robust estimate of

the optimum transformation in the presence of outliers:

SAD =
1
n

n

∑
i=1
|ti − si|.

Another popular similarity metric for mono-modal registration is Cross Correla-

tion (CC). This metric does not require normalization of images as long as their

intensities have a linear relationship:

CC =
∑n

i=1 (ti − t̄) (si − s̄)√
∑n

i (ti − t̄)2
√

∑n
i=1 (si − s̄)2

.
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2.1.3.2 Multi-modal metrics

The mono-modal metrics discussed in the previous section assume a linear rela-

tionship between image intensities. Therefore, they perform poorly when register-

ing images acquired using different modalities, where no such relationship exists.

Mutual Information (MI), which was independently proposed by Collignon et al.

(1995) and Viola and Wells (1995), looks for a predictable, non-linear, relationship

between intensities by constructing the joint image histogram.

Constructing a normalised histogram for an image, by first binning its intensities,

allows the probability of a particular image intensity to be estimated. Let the prob-

ability for target and source image intensities t and s be denoted p(t) and p(s)

respectively, then their Shannon entropies are given:

HT = −∑t p(t) log(p(t)), HS = −∑s p(s) log(p(s)).

The Shannon entropy quantifies the amount of information in an image. For ex-

ample, an image with mainly one value has a low amount of information whereas

an image with intensities that are more evenly distributed has more information.

A joint histogram may also be constructed allowing the probability of a target in-

tensity t and a source intensity s at the same location to be estimated, p(t, s). Thus,

the joint entropy is given:

HT,S = −∑
t

∑
s

p(t, s) log(p(t, s))

and MI is defined as the sum of the independent image entropies minus the joint

entropy of the images:

MI = HT + HS − HT,S.
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Consider the example of registering two structural images captured using different

modalities, where a target image has mean tissue intensities tgm, twm and tcs f and

a source image has mean tissue intensities sgm, swm and scs f . If the images are well

aligned then the joint probabilities p(tgm, sgm), p(twm, swm) and p(tcs f , scs f ) will be

high and the probability of other intensity pairs will be low, leading to a low joint

entropy and a high MI.

MI is not, however, independent of the overlap between two images. This is prob-

lematic as the image background may contribute disproportionately to the mutual

information for a given image alignment. For example, consider rigidly aligning

two images of a spherical phantom whose volume is significantly smaller than the

image volume. The best rotational alignment of the images is arbitrary, however,

the lowest joint entropy and highest MI is given when the background overlaps

the most. Studholme et al. (1999) later introduced Normalised Mutual Informa-

tion (NMI), which is independent of image overlap and is defined as the ratio of

the sum of marginal entropies, HT and HS, and the joint entropy, HT,S:

NMI =
HT + HS

HT,S
.

Roche et al. (1998) proposed the Correlation Ratio (CR) as an image similarity

which offers a robust alternative to MI. This measures the functional dependence

of two images, i.e. how well the intensities in one image predicts the intensities of

another. This is achieved by binning the image intensities for a target image and

looking at the variance of the image intensities for the corresponding voxels in a

source image.

Let the image data for a target image T be binned by intensity such that Ωk is the

set of voxels for bin k. Then the mean and variance may be computed for a source

image S within each bin and also globally:
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σ2 =
1
n

n

∑
i=0

s2
i − s̄2, s̄ =

1
n

n

∑
i=0

si.

σ2
k =

1
|Ωk| ∑

i∈Ωk

s2
i − s̄2

k , s̄k =
1

|Ωk| ∑
i∈Ωk

si.

The correlation ratio is then defined:

CR =
1

nσ2 ∑
k

|Ωk|σ2
k

where n is the number of voxels in an image.

2.1.4 Optimization

The parameters of a transformation model (e.g. the matrix elements of an affine

transformation matrix or a set of FFD deformation vectors) can be optimised itera-

tively to maximise a similarity metric and bring a pair of images into alignment. A

parameter may be perturbed by a small amount, and if this results in an increase

in the similarity metric, then it may be modified permanently. This process may

be iterated until convergence, where the image similarity is no longer increasing

and a locally optimal solution is found. This style of optimisation is referred to as

“hill climbing”, as the parametric space is traversed in order to find a peak image

similarity value. A number of variants of this procedure exist, such as “steepest

ascent hill climbing” where all parameters are perturbed in turn, and the param-

eter change that results in the greatest increase in similarity is modified perma-

nently. Hill climbing algorithms employ a local search strategy and may therefore

converge to a local maximum which may not be the global maximum. A good



2.1 image registration 71

initialisation of the parameters, i.e. close to the optimal solution, can mitigate this

problem.

Hill climbing methods can be slow to converge to a solution, particularly where

ridges exist in the parameter space, where a zigzagging path is taken. For this rea-

son, gradient descent methods, which compute the direction of maximum increase

for an image similarity metric (or maximum decrease for an image dissimilarity

metric), are more commonly used as they converge faster. Note the term gradient

ascent is most appropriate when maximising an image similarity metric. How-

ever, the term gradient descent is more commonly used in the literature, where

the problem is often formulated as a minimisation, so this convention is followed

here. Let the values for k parameters of a transformation model at the n-th itera-

tion be denoted as a vector Θn = [ θ1, θ2, . . . , θk ] and f (Θ) be a function on the

parameter space that returns the image dissimilarity. f (Θ) is minimised by itera-

tively stepping along the inverse of the gradient ∇ f . Thus, the parameter update

step is given:

Θn+1 = Θn − δ∇ f ,

∇ f =

(
∂ f (Θ)

∂ θ1
,

∂ f (Θ)

∂ θ2
, . . . ,

∂ f (Θ)

∂ θk

)
.

Here δ controls the step size through the parametric space. If this value is set

too high then we may oscillate, skipping past the minimum, however lower val-

ues result in slower convergence. The gradient may be computed analytically for

some metrics such as SSD, however where an analytical solution does not exist

or is costly to compute it may be estimated using a finite difference method. A

number of other gradient based methods exist that aim to improve the speed
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of convergence over gradient descent including conjugate gradient descent, the

Levenberg–Marquardt algorithm and the Broyden–Fletcher–Goldfarb–Shanno al-

gorithm.

2.2 image segmentation

2.2.1 Background

Image segmentation involves delineating the boundary of an anatomical structure

by assigning an appropriate label to each image voxel. Structures of interest may

be major subdivisions of the brain such as the cerebrum, cerebellum or brain-

stem, or tissues with different cellular compositions such as GM, and WM. Once a

structure has been segmented, a morphological analysis may be undertaken in the

region, for example estimating its volume or shape. This thesis is mainly focused

on obtaining accurate segmentations of the cerebral cortex in order to extract its

surface boundary and examine its shape.

Accurate segmentation may be performed manually by a trained expert, which

can be both laborious and time-consuming. This is especially true for term-born

infants and for fetuses at later gestational ages, where a single segmentation of the

cortex may take a whole day, due to its complexity. Therefore, a robust automatic

segmentation algorithm is highly desirable for large population based studies.

An MR imaging sequence may be optimized to maximise the contrast in signal

intensities between different tissues such as cortical GM and WM, facilitating au-

tomatic segmentation using intensity-driven algorithms. However automatic seg-

mentation is not a straightforward task with fetal and neonatal data as the inten-
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sity distributions for developing tissues change as a function of age and are also

more heterogeneous. Other confounding factors with these data include image re-

construction artefacts and the partial volume (PV) effect (where multiple tissues

occupy a single voxel mimicking the intensity of another tissue).

2.2.2 Atlas-based segmentation

In the context of image segmentation, the term “brain atlas” refers to two associ-

ated images: a template, which may be an MR brain image of an individual subject

or a digitally generated image of average anatomy, and a corresponding label im-

age defining the spatial location of anatomical regions within the template volume

(Fig. 13). By registering an atlas template with the imaged anatomy of a new sub-

ject, we can automatically segment the defined regions in the new anatomy (for

example by assigning the label of the nearest propagated atlas voxel). This ap-

proach is particularly useful when anatomical structures cannot be distinguished

by image intensities alone. For example, while cortical GM is easily distinguished

from neighbouring WM due to their inherently different cellular compositions, sub-

dividing the cortex into smaller functional units, such as those defined by Brod-

mann (1909), requires prior anatomical knowledge, which a brain atlas provides.

Confusingly, in the context of cross-sectional imaging studies, the terms atlas and

template are used interchangeably in the literature to describe a reference anatomy

with which a population of subjects may be aligned and image analysis performed

(e.g. VBM). For this purpose, a digitally created average anatomical image is com-

monly used as it provides an unbiased reference space for analysis.

Atlas-based segmentation relies on accurate registration of an atlas to an unla-

belled target subject. Unfortunately, image registration is an ill-posed problem in
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Figure 13: Neonatal brain atlas. The atlas shown is one of twenty from the dataset created
by Gousias et al. (2012). The brain image was manually segmented into 50

regions: 32 cortical regions and 18 sub-cortical regions.

the sense that many local maxima may exist for an image similarity metric in

the parametric search space. Errors in registration are, therefore, common and

to overcome this, multiple atlases may be registered to an unlabelled target im-

age and their segmentations transformed and fused to gain a consensus classifica-

tion (Rohlfing et al., 2003; Heckemann et al., 2006; Aljabar et al., 2009).

Once aligned with a target image, atlas labellings may be fused using a number of

voting schemes, which have proven to be effective. A majority vote, where the most

frequent label at each voxel location is chosen, produces a “hard” segmentation

where each voxel belongs to a single region only and boundaries are explicit be-

tween voxels. A probabilistic, or “soft”, segmentation may also be obtained where

a probability map is constructed for each tissue and boundaries are not explicitly

defined. The probability of a tissue may be inferred from the frequency its label

occurs among the atlases at each target voxel location.

Classification may be improved by selecting the most anatomically similar atlases

from an atlas set, estimated by an image similarity metric (Aljabar et al., 2009).

Image similarity may also give a weighting for label fusion on a global, local (Ar-

taechevarria et al., 2009) and also non-local basis (Coupé et al., 2011). A local
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weighting can improve classification accuracy by down-weighting an atlas vote

where a localised registration error has occurred or if local anatomy is highly dis-

similar. Local weightings may be derived from the image similarity between the

atlas templates and a target image, in a 3D patch around a voxel which is be-

ing classified. Coupé et al. (2011) proposed a non-local, many-to-one, patch-based

method for atlas fusion. In this work, numerous voxel labels from each atlas are

taken from a local neighbourhood around a target voxel and fused to give a classi-

fication. Chosen atlas labels within the neighbourhood are weighted according to

their patch similarity with the target patch around the voxel being classified.

Another notable method for fusing atlas labels is STAPLE (Warfield et al., 2004).

This method iterates between two steps: generating a consensus segmentation and

estimating the reliability of each classifier (i.e. atlas). The reliability of each classi-

fier is determined by its sensitivity and specificity and is used to weight its con-

tribution when constructing the consensus segmentation. The algorithm iterates

between these two steps until convergence.

2.2.3 Probabilistic atlas

A probabilistic atlas is an average model constructed from a population of sub-

jects and consists of an average image template and a set of tissue probability

maps. An average template ideally provides an unbiased target for aligning a

group of subjects and a coordinate system for conducting image analysis (e.g. for

a VBM-based study). Additionally, a probabilistic atlas is readily combined into

a Bayesian framework for automatic segmentation (Section 2.2.4). Aligning the

tissue probability maps with an unseen subject gives a prior estimate of tissue
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location that can be refined using the intensities of the new image or additional

knowledge of tissue morphology (e.g. shape, topology and connectedness).

An image template is constructed by averaging the image intensities for a group

of subjects. Images may be co-aligned using a target-free approach (Seghers et al.,

2004; Kuklisova-Murgasova et al., 2011; Serag et al., 2012a), where no single im-

age is used as a target for alignment (Fig. 14). In this approach, all images are

registered pairwise and a transformation into an “average space” is computed

for each image, by averaging its transformations to every other image. An image

template is then constructed by averaging the intensities of all the images once

transformation into the “average space”. Brain structures in the resulting template

are spatially normalized, i.e. average in both shape and size for the group, as they

are not biased towards any individual subject.

During gestation and early childhood, the brain undergoes rapid morphological

changes. The size and shape of structures can change significantly in a matter

of weeks and a single image template cannot represent the diverse anatomies ex-

amined in this thesis. Previous authors (Habas et al., 2010; Kuklisova-Murgasova

et al., 2011; Serag et al., 2012b;a) have addressed this issue by constructing spatio-

temporal atlases (Fig. 15,16) that consist of multiple age-specific image templates,

each with a set of associated tissue probability maps. Each image template is con-

structed from subjects within a time-window where anatomies are similar. Mod-

elling the rapid change in fetal and neonatal cohorts requires separate templates

for each week of gestation. Additionally, specific tissue probability maps may be

necessary for different periods of gestation to map out transient structures and

also newly formed structures. For example, between between 8 and 28 weeks, the

enormous rate of proliferation of neurons and glial cells in the subventricular zone

results in a hypointense signal in T2 in utero MR images (Habas et al., 2010). These

cells later migrate through the intermediate zone to the cortex and contribute to
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Figure 14: Target-free atlas template construction. For N images, each image k is reg-
istered to every other image j. The average of all transformations Tk,j gives a
transformation into an “average space” for image k. In this space, the intensities
of the images can be averaged to create an unbiased atlas template.

the massive increase in cortical surface area. Another example includes the deep

grey nuclei, which are barely visible at 25 weeks but become much more distinct

at around 30 weeks. In this thesis we make use of two spatio-temporal atlases

for image segmentation and analysis, one constructed from a population of 80 fe-

tuses (Fig. 15) and another constructed from a population of 204 preterm neonates

(Fig. 16)
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Figure 15: Fetal spatio-temporal atlas. This atlas was developed by Serag et al. (2012b)
and is available at brain-development.org. The first row show image templates
for T2 weighted images for several gestational ages. The remaining rows show
greyscale probability maps for the cerebrum, GM, CSF and the lateral ventricles
(top to bottom).

http://www.brain-development.org
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Figure 16: Neonatal spatio-temporal atlas. This atlas was developed by Serag et al. (2012a)
and is available at brain-development.org. The first two rows show image tem-
plates for T1 and T2 weighted images for several gestational ages. The remain-
ing rows show greyscale probability maps for WM, GM, CSF and subcortical
GM (top to bottom).

2.2.4 Expectation-Maximisation Segmentation

2.2.4.1 Background

In this thesis we employ variants of an expectation-maximisation algorithm (Ledig

et al., 2012; Makropoulos et al., 2014) for accurate tissue segmentation that was

first proposed by (Wells et al., 1996). This algorithm automatically segments a

http://www.brain-development.org


80 background

brain image into several tissue classes, using prior knowledge of tissue location,

by building specific intensity models for each tissue class. This technique was

originally developed for adult imaging data, however, a number of authors have

applied this approach to fetal and neonatal imaging data (Prastawa et al., 2005;

Weisenfeld et al., 2006; Bach Cuadra et al., 2009; Habas et al., 2010; Cardoso et al.,

2011; Ledig et al., 2012; Makropoulos et al., 2014), which will be discussed later on

in this section.

Each iteration of the algorithm is composed of two steps: classifying image voxels

and estimating the intensity distribution of each tissue class. To begin the process,

an initial classification is obtained from a set of tissue probability maps associated

with a probabilistic atlas.

2.2.4.2 Estimating tissue intensity models

Let the intensities of an MR image with N voxels be denoted as a 1D vector y =

[y1, y2, · · · , yn] and its segmentation be denoted z = [ z1, z2, · · · , zn ]. For K tissue

labels enumerated 1 . . . K, let zi = ek indicate that label k has been assigned to

voxel i, where ek is a K × 1 unit vector with the kth element equal to one. Let the

prior tissue probabilities for the i-th voxel be denoted πi, which is also a K × 1

vector, where the kth element gives the prior probability for tissue class k, i.e.

P(zi = ek) = πik. The intensity distribution of each tissue class is modelled by a

Gaussian distribution parametrised by a mean µk and a standard deviation σk. Let

the complete parameter set be denoted Φy = [ µ1, µ2, . . . , µK, σ1, σ2, . . . , σK ].

At each iteration m, a classification or expectation step is performed (Eq. 1). The

probability pm
ik of tissue k being present at the i-th voxel, is computed given its

intensity yi and the current model parameters Φ[m−1]
y . An application of Bayes’

rule allows this computation to be reformulated in terms of the prior probability of
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tissue k being present at the i-th voxel, P(zi = ek), and the conditional probability

of the observed voxel intensity, given a tissue classification k and the current model

parameters, P(yi|zi = ek, Φ[m−1]
y ). Note that the prior probabilities may be taken

as an initial classification, i.e. p0
ik = P(zi = ek) = πik. Thus, the exception step is

given:

pm
ik = P(zi = ek|yi, Φy) =

P(yi|zi = ek, Φ[m−1]
y )P(zi = ek)

∑K
j=1 P(yi|zi = ej, Φ[m−1]

y )P(zi = ej)
(1)

Here the probability of a voxel intensity yi, given a tissue classification k, is given

by a Gaussian probability density function G:

P(yi|zi = ek, Φ[m−1]
y ) = G(yi|µk, σk) =

1
σk
√

2π
exp

(
− (yi − µk)

2

2σ2
k

)
.

A maximisation step follows that updates the tissue model parameters to give Φ[m]
y .

Tissue means and variances are calculated by weighting the influence of each voxel

by their classification probabilities:

µ
[m]
k =

∑N
i=1 p[m]

ik yi

∑N
i=1 p[m]

ik

. (2)

(σ
[m]
k )2 =

∑N
i=1 p[m]

ik (yi − µ
[m]
k )2

∑N
i=1 p[m]

ik

. (3)

2.2.4.3 Markov random field regularisation

Although MRI acquisition is typically optimized so that tissue classes such as GM,

WM and Cerebrospinal Fluid (CSF) have as much contrast between them as pos-

sible, voxels may be mislabelled for a number of reasons including image noise,
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reconstruction artefacts and the PV effect. Additionally, the intensities of other tis-

sues close to the brain, such as the skull and meninges (and also maternal tissue

for the fetus), may have a similar intensity to brain tissue and may be erroneously

labelled as such.

Each voxel is classified independently in the core EM algorithm outlined above,

therefore tissue topology, connectedness and adjacency are ignored. By incorpo-

rating spatial dependence into the prior term of the classification model, a regu-

larisation effect can be achieved, thus improving the accuracy and plausibility of

tissue classifications. An Markov Random Field (MRF) can used be used to achieve

this goal (Van Leemput et al., 1999). The MRF formulation presented here (Eq.4) is

a multi-class extension of the Potts model from (Cardoso et al., 2013; Makropoulos

et al., 2014). The prior probability of voxel i having tissue class k is dependent on

the tissue classes of its 6 first-order neighbours Ni (i.e. face neighbours).

P(zi = ek) =
πik exp(−UMRF(ek|Ni))

K
∑

j=1
πij exp(−UMRF(ej|Ni))

. (4)

The MRF energy function UMRF is defined:

UMRF(ek|Ni) =
K

∑
j=1

Akjvj (5)

where

vj =

 ∑
l∈Nx

i

sx pl j + ∑
l∈Ny

i

sy pl j + ∑
l∈Nz

i

sz pl j

 . (6)
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Here, s = {sx, sy, sz} is the anisotropic voxel resolution; A is a K×K matrix, where

Akj defines the prior connectivity strength of tissues k and j; and v is a vector of

size K, where vj is the summed probability of class j within the neighbourhood.

This energy function can be used to independently penalise both small discon-

nected regions and implausible tissue adjacencies in the classification. Akj may

be set to a relatively high value for non-adjacent tissues, for example WM and

extra-cerebral CSF, decreasing the prior probability of neighbourhood configura-

tion involving these tissues. For adjacent structures, e.g. GM and WM, Akj may be

set to a relatively low value. Where k and j are the same tissue, Akj is usually set

to zero. In this instance, if the neighbours of a voxel i all have the same tissue k,

then the prior probability of voxel i also having the same label is given directly by

the atlas, i.e πik.

2.2.4.4 Partial volume effect

The PV effect occurs at voxels that sample the boundary between two or more

tissues, where the signal intensity of the tissues is combined, resulting in an inter-

mediate signal intensity. The early EM approaches of (Wells et al., 1996; Van Leem-

put et al., 1999) did not address this problem and assumed that a single tissue is

present at each voxel. This is a major confounding factor for the EM segmentation

algorithm and other methods that use intensity models for tissue classification,

when applied to both fetal and neonatal data (Fig. 17). For these data, T2-weighted

images are primarily used for image analysis as they have greater tissue contrast

compared with T1-weighted images. For T2-weighted images, GM has the lowest

intensity, WM has an intermediate intensity and CSF has the highest intensity. At

the cerebral boundary the intensities of GM and CSF are combined, resulting in a

moderate intensity similar to WM. This effect is particularly apparent in the deep
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Figure 17: Partial volume effect. When a tissue boundary intersects a voxel, the signal
intensities of the adjacent tissues are combined and an intermediate intensity
is observed. This is a major confounding factor for segmentation of fetal MR
images, such as the one shown. For voxels at the cerebral boundary, the signal
from GM and CSF combines, resulting in a moderate intensity similar to that
of WM. Accurate segmentation is particularly challenging deep within sulci,
where small amounts of CSF are present (blue arrows).

narrow sulci of older fetuses and neonates. This problem is exacerbated by the

lower image resolution of neonatal and fetal datasets.

After birth, the signal intensities of WM and GM change progressively until the

age of two years and appear to reverse in intensity (Hillenbrand and Huisman,

2012). This is mainly due to progressive myelination of the WM, a process where a

fatty white substance forms a sheath around neuronal axons, providing electrical

insulation, which increases the speed of signal transmission. After two years the

GM/WM intensity distributions remain similar into adulthood. In contrast to fetal

and neonatal imaging, T1-weighted images are typically acquired for adult brain

image analysis as they have better GM/WM tissue contrast. In these images, WM

has the largest intensity followed by GM and then CSF. In this case, a PV voxel at the
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cortical boundary will not replicate the signal of another tissue, thus the PV effect

is a lesser confound. When segmenting this data, GM/WM PV voxels are usually

be labelled as GM, in the absence of image noise due to the greater variance in

its intensity distribution (Van Leemput et al., 1999), resulting in an overly thick

cortical segmentation.

A number of authors have had some success tackling this problem by explicitly

modelling GM/WM PV voxels as a separate class in the EM framework (Ruan et al.,

2000; Van Leemput et al., 2003; Bach Cuadra et al., 2009; Cardoso et al., 2013). First

an initial segmentation is performed, then an additional PV class is introduced

that models the mixture of the two tissues before continuing. Its mean may be

estimated as the average of the individual class means weighted by their variance,

µGM/CSF = (σGMµGM + σCSFµCSF)/(σGM + σCSF), and its prior probability may

be given by the geometric mean of the individual posterior tissue distributions,

ωi(GM/CSF) =
√pi(GM)pi(CSF) (Cardoso et al., 2013). The WM prior probability may

also be reduced in regions where GM and CSF are both likely a priori, ωi(WM) =

ωi(WM)(1−
√

ωi(GM)ωi(CSF)). Note the priors must be normalised after these steps

so that they to sum one.

Xue et al. (2007) took a different approach to this problem using knowledge based

rules to adjust the prior tissue probabilities from Eq.4. If a voxel has been classified

as WM and it has neighbours that have been classified as CSF and also GM, this voxel

is likely to be a partial volume voxel. In this instance, the prior probability of WM

was penalised and redistributed to the GM and CSF priors. Additionally, small

clusters of voxels that have been classified as WM and are mainly surrounded by

CSF are likely to be partial volume deep within a sulci. In this instance, the prior

probability of WM was penalized and redistributed to CSF only. This approach was

found to be effective at reducing the number of misclassifications in a dataset of

25 neonatal images.
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2.2.4.5 Adopted methods

In this thesis, two EM segmentation algorithms are employed for brain tissue seg-

mentation (Ledig et al., 2012; Makropoulos et al., 2014). Both of these methods ex-

plicitly tackle the problem of mislabelled PV voxels in neonatal and fetal datasets.

Ledig et al. (2012) employed a similar strategy to Xue et al. (2007) of penalising WM

which is adjacent to both CSF and GM, but using a second order MRF field instead

of knowledge-based rules.

P(zi = ek|Ni) =
πik exp(−UMRF(ek|Ni)) exp(−U2nd(ek|Ni))

K
∑

j=1
πij exp(−UMRF(ej|Ni)) exp(−U2nd(ej|Ni))

, (7)

where U2nd is a new energy function:

U2nd(ej|Ni) = vTkv.

Here v is a vector of size K of neighbourhood probabilities (Eq. 6) and Tk is a

K × K penalty matrix. If Tkjl > 0, a penalty is applied to class k when there is a

high probability of class j and l within the neighbourhood of i.

By penalising WM when it is implausibly adjacent to both cortex and CSF, segmen-

tation accuracy is improved at the cortical boundary (Fig. 18).

Makropoulos et al. (2014) proposed a novel hierarchical modelling of tissue classes

and adopted the method of Xue et al. (2007) to correct for mislabelled PV voxels.

An extension to this algorithm described in (Makropoulos, 2014, ch. 6) is also em-

ployed, which makes use of Laplace’s equation to estimate cortical thickness (Jones

et al., 2000) and correct segmentation anomalies. For example, in deep sulci, the
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(a) (b)

Figure 18: Improved cortical segmentation using a second order MRF. Two subjects are
shown, each segmented using a standard EM-MRF algorithm (a) and an EM
algorithm incorporating a second order MRF (b). Voxels correctly labelled as
WM are shown in green while PV voxels mislabelled as WM are shown in red.
Note the reduction in mislabelled voxels in (b).
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small amount of CSF present here means that PV voxels have a similar intensity

to GM. In this instance PV voxels may be mislabelled as GM, resulting in an overly

thick cortical segmentation.

2.3 surface modelling

Obtaining accurate representations of the cortical geometry is highly desirable in

order to investigate folding patterns. A tissue boundary may be inferred from a

probabilistic segmentation as an isosurface where the probability equals 0.5. Ex-

tracting a mesh representation of an isosurface from volumetric data is a well-

studied problem and a number of general purpose algorithms exist for this pur-

pose (Lorensen and Cline, 1987; Nielson and Hamann, 1991; Gibson, 1998; Treece

et al., 1999; Ju et al., 2002). However, these algorithms have no prior knowledge

of cortical topology and may extract implausible surface representations that have

handles or holes (Fig. 19). Correct topology is important, for example, in order

to determine correspondences between surfaces. The cortical boundary is a thin

continuous sheet of neurons lining the cerebrum, with no holes or handles, and

is thus topologically equivalent to a sphere. This knowledge can be applied to

extract topologically correct surfaces.

Previous researchers (Habas et al., 2012; Clouchoux et al., 2012) have focused on

delineating the inner cortical boundary, which is extracted more easily. However,

the extraction of both outer and inner boundaries is necessary to estimate cortical

thickness, which has been shown to be an important parameter for the charac-

terisation of neurodevelopmental psychiatric disorders such as attention deficit

hyperactivity disorder Shaw et al. (2006). At later gestations, where the cortex is

more convoluted, neighbouring gyri may squeeze against each other, occupying
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Handle

Hole

Figure 19: Topological errors. This figure shows the inner cortical surface of a neonatal
brain, extracted from a WM segmentation using the Marching Cubes algorithm.
Two errors are shown which alter the topology of the mesh from that of a
sphere. The green circle shows an implausible bridge across the sylvian fissure,
caused by a segmentation error, whereas the green circle shows a hole within
the central sulcus, where a relatively thin layer of WM was present. Mean cur-
vature is colour mapped onto the surface to aid visual perception of the cortical
geometry (red: convex, blue: concave).

neighbouring voxels in the image data. In these instances, segmented gyri may be-

come connected within an isosurface boundary (Fig. 20). A similar, although less

common, problem exists when extracting the GM/WM cortical boundary. When

WM becomes relatively thin, for example inside a tight gyrus, the segmented cor-

tical GM becomes connected inside a gyrus, creating a hole in the WM isosurface

(Fig. 19).

A number of authors have developed techniques to correct topology errors (han-

dle/hole pairings) (Fischl et al., 2001; Ségonne et al., 2005; Ségonne et al., 2007;

Yotter et al., 2011). A hole may be detected by mapping a cortical surface mesh

onto a sphere, either using spherical harmonics (Yotter et al., 2011) or through a
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Figure 20: Inner and outer cortical surfaces extracted using the Marching Cubes algo-
rithm. Note the merging of the pre- and post-central gyri and also the occipital
and frontal lobes.

process of inflation (Fischl et al., 2001). Edge intersection in the spherical space

indicates a topological error. Fixing an error requires either filling a hole or remov-

ing a handle. A trained operator may easily determine the correct fix manually

but automating this process is more challenging.

In (Fischl et al., 2001), the decision is made implicitly using a greedy algorithm.

Intersecting edges and their vertices are first removed from the mesh. Potential

edges are ordered according to some metric that assess their suitability. Retessella-

tion then involves adding the potential edges sequentially if they do not intersect

the current tessellation. This method produces reasonable results, however, the

plausibility of a retessellation can only be assessed in its entirety and that the

“goodness of fit” of an edge does not exist in isolation (Ségonne et al., 2005).
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Ségonne et al. have proposed two methods to tackle this problem, both of which

select the best retessellation from a set of candidates in a Bayesian framework.

In (Ségonne et al., 2005), a genetic algorithm is used to generate candidate so-

lutions. The goodness of a solution is measured by two properties: the smooth-

ness of the retessellation and the MRI intensity inside and outside of the surface.

At each iteration the population of solutions increased, generating new solutions

through “mutation” (random modification of a solution) and “crossover” (com-

bining two solutions to create another). The best solutions are then kept for the

next iteration and consequently the “fitness” of the population increases over a

number of iterations until convergence. In (Ségonne et al., 2007), non-seperating

loops (Guskov and Wood, 2001) are used to generate candidate solutions instead.

Using this methodology results in a more diversified set of candidates, thus im-

proving tessellation.

An alternative strategy to fixing a topologically incorrect mesh, involves deform-

ing a mesh with the correct topology (such as a sphere) towards a cortical bound-

ary (Dale and Sereno, 1993; Davatzikos and Bryan, 1996; MacDonald et al., 2000;

Kim et al., 2005). Deformation may be guided by image intensities, tissue segmen-

tations or geometric smoothness, or a combination of these. This has the advantage

of guaranteeing the correct topology, however, the global topology constraint may

cause large geometric inaccuracies where segmentation or image reconstruction er-

rors occur. Some form of volume preprocessing, such as a connected components

analysis, may therefore be desirable.

In this thesis, the strategy of deforming a spherical mesh was adopted for extract-

ing an explicit representation of the cortical surface. This was made possible by

the high quality segmentations obtained using the algorithm of Makropoulos et al.

(2014), which was used to drive the extraction process. A full description of this
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process is given in Chapter 4 (Section 4.2.1), which makes use of surface meshes

to construct a spatio-temporal cortical surface atlas.

2.4 conclusion

This chapter has presented a review of some fundamental neuroimage analysis

tasks and described the chosen algorithms that this thesis depends on. We have

seen how image registration can be used to align imaged anatomies on a coarse

and fine scale, using linear and non-rigid techniques. This can be used, for exam-

ple, as a mechanism to propagate tissue labels for an individual subject to another

unlabelled subject. An unbiased atlasing method was described to construct an

average image template and tissue probability maps, by first aligning a group of

anatomies. This type of atlas is particularly useful as it provides prior knowledge

of anatomy in a Bayesian segmentation framework, such as an EM-based segmen-

tation algorithm. Confounding factors specific to fetal and neonatal datasets were

also examined, such as misclassification of PV voxels, along with methods from

the literature that deal with these. Finally, algorithms that reconstruct topologi-

cally correct cortical surface models were also reviewed.

The next two chapters (3 & 4) will discuss techniques for analysing cortical folding

that build upon the methods presented here. The literature discussed in these

chapters will be specific to the methodological contributions within. In the next

chapter, a framework developed for this thesis to quantify gyrification will be

outlined and applied to a fetal dataset (see Section 1.4 for dataset details) and in

Chapter 4, another framework, developed for this thesis, for constructing a spatio-

temporal surface atlas will be presented and applied to the same dataset.
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A U T O M AT I C Q U A N T I F I C AT I O N O F C O RT I C A L F O L D I N G

3.1 introduction

In this chapter, a complete image analysis framework for quantifying cortical fold-

ing is described and applied to a normal fetal dataset (N = 80, details of this

dataset are given in Section 1.4). Cortical folding is quantified over a large gesta-

tional age range of 21.7 to 38.9 weeks, extending our understanding of how the

cortex folds through this critical developmental period.

Zilles et al. (1988) proposed the Gyrification Index, one of the first popular mea-

sures for cortical folding quantification that is independent of scale. This slice-

based measure is defined as the ratio of the length of two contours: the outer

cortical boundary and a contour skirting the exposed cerebrum (i.e. not entering

deep folds). Unfortunately, this measure is sensitive to slice orientation, and addi-

tionally it cannot be applied to different subregions of the brain.

More recent folding measures have made use of curvature-based surface descrip-

tors. The curvature of a curve at a surface point p is defined as the reciprocal of

the radius of a circle passing through p and a pair of additional points on the

curve infinitesimally close to p. The curvature can be measured along any plane

intersecting the surface which contains the surface normal. The principal curva-

tures k1and k2 are the maximum and minimum curvatures for a surface point p

93
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(i.e. k1 ≤ k2). The principal curvatures give rise to two classical shape descriptors:

mean curvature (H) and Gaussian Curvature (K).

H = (k1 + k2)/2 K = k1k2

Each of these gives a description of local shape at a surface point. Convex and

concave regions have positive and negative mean curvature respectively, while

elliptical and hyperbolic points have positive and negative Gaussian curvature re-

spectively. Koenderink and van Doorn proposed two additional shape descriptors,

that are complimentary to each other: curvedness (C) and shape index (S).

C =
√
(k2

1 + k2
2)/2 S = 2

π arctan k2+k1
k2−k1

Curvedness is closely related to the bending energy of a surface when deformed

from a flat plate (van Vliet and Verbeeck, 1993), while values of shape index can be

used to distinguish 9 different surface features: spherical cup, trough, rut, saddle

rut, saddle, saddle ridge, ridge, dome and spherical cap.

Integrating shape descriptors over a cortical surface provides the basis for a num-

ber of folding measures in the literature, including folding index (FI) (Van Es-

sen and Drury, 1997), intrinsic curvature index (KI) (Van Essen and Drury, 1997),

global mean curvature (HG) (Magnotta et al., 1999), global Gaussian curvature

(KG) (Magnotta et al., 1999) L2 norm of mean curvature (HN) (Batchelor et al.,

2002), L2 norm of Gaussian curvature (KN) (Batchelor et al., 2002), global curved-

ness (CG) (Awate et al., 2008; Rodriguez-Carranza et al., 2008) and global shape

index Awate et al., 2008; Rodriguez-Carranza et al., 2008. Formulations of these

measures are shown in Table 1.

A useful folding measure must be invariant to position, orientation, scaling and

surface area (Batchelor et al., 2002). Invariance to brain size is particularly impor-

tant when measuring folding in the developing brain as brain volume increases
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L2 norm of mean curvature HN = 1
4π

√´
A H2 dA

L2 norm of Gaussian curvature KN = 1
4π

√
A
´

A K2 dA

Intrinsic curvature index KI =
1

4π

´
A K dA where K > 0

Folding index FI = 1
4π

´
A |k1| (|k1| − |k2|) dA

Global mean curvature HG = 1
A

´
A H dA

Global Gaussian curvature KG = 1
A

´
A K dA

Global curvedness CG = 1
A

´
A C dA

Global shape index SG = 1
A

´
A S dA

Note A is the surface area of the region of interest.

Table 1: Summary of folding measures.

substantially throughout gestation. Unfortunately, some of the measures discussed

so far are directly dependent on the surface area over which they are computed

and consequently a meaningful comparison of folding measures between subre-

gions with different sizes is prohibited. Rodriguez-Carranza et al., 2008 proposed

two normalization factors to address this issue, one derived from cerebral surface

area and volume, T = 3V/A, and the other the absolute global mean curvature

HG.

3.2 material and methods

3.2.1 Overview

A spatio-temporal atlas was used to automatically segment images into a number

of key tissue types using an EM based segmentation algorithm that specifically

corrects mislabelled PV voxels (Ledig et al., 2012). An implicit cortical surface rep-

resentation is formed on a super-sampled voxel grid and principal curvatures

are evaluated over the surface voxels using the structure tensor and Hessian ma-
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Figure 21: Processing pipeline overview. Multiple acquisition loops consisting of 2D
snapshots are reconstructed into a complete 3D volume using a slice-to-volume
reconstruction algorithm. Then a number of preprocessing steps are carried out
including bias correction and brain extraction. Automatic segmentation is per-
formed using an EM-based algorithm, delineating seven anatomical regions. A
probability map defining matter inside the inner cortical boundary is then con-
structed by summing the posterior probability maps of subcortical structures.
Principal curvatures are evaluated at each boundary voxel location and folding
measures are computed to quantify folding. A mesh representation of the sur-
face is also extracted using the marching cubes algorithm in order to visualize
the computed curvature-based descriptors.

trix (Rieger et al., 2004; Rodriguez-Carranza et al., 2008). Eight curvature-based

folding measures from the literature were adapted to quantify the degree of gyri-

fication of the subjects within the cohort. Local gyrification was also quantified in

nine different regions by parcellating each of the image volumes using an anatom-

ical atlas. A Gompertz function was used to model the relationship between the

folding measures and gestational age, which subsequently allowed an accurate

prediction of physiological age. See Fig. 21 for an overview of the pipeline.

3.2.2 Automatic Brain Extraction

Restricting a segmentation algorithm to a region of interest bounded by the skull

is useful to avoid misclassifying extra-cranial matter as brain tissue. With adult

and infant subjects, the strong signal contrast between the skull and intra-cranial

matter can facilitate automatic extraction of the intra-cranial region. For example,

the Brain Extraction Tool (BET) (Smith, 2002) deforms a sphere, which is initialised

inside the brain, one vertex at a time until the surface coincides with superficial
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cerebral boundary, driven only by the image intensities. With fetal images this ap-

proach often fails, as the boundary of the skull is less distinct due to the maternal

tissue immediately surrounding the head of the fetus.

The patch-based approach of (Eskildsen et al., 2012), which incorporates prior

knowledge of brain location in the form of atlases, was applied and found to ac-

curately extract fetal brains. This approach relies on the assumption that a similar

patch of voxels in an input image and atlas image are likely to be centred on the

same tissue. This gives a mechanism for non-local, many-to-one, label propaga-

tion. By aligning an input image with an atlas, the search for similar patches can

be restricted to a local neighbourhood, which is likely to be sufficient, given the

limited variability in both shape and location of the skull. Numerous similar atlas

patches form a labelling consensus for each voxel in an input image, with each

atlas label weighted by the similarity of its surrounding patch and input image

patch, ensuring the most similar patches are the most influential (Fig. 22).

Formally, an image voxel xi is labelled by taking a cubic patch Pi centred at xi

and computing the similarity to all patches Pa,j of a single atlas a in a local cubic

neighbourhood ηi of xi. Firstly, patch similarity was compared using the Structural

Similarity (SS) metric (Wang et al., 2004): where µ is the patch mean and σ is

the patch standard deviation (Equation 8). Atlas patches with a SS ≤ 0.95 were

discarded.

SS =
2µiµa,j

µ2
i + µ2

a,j
×

2σiσa,j

σ2
i + σ2

a,j
. (8)

A vote was taken from the remaining atlas patch labels l(xa,j) weighted by their

similarity to the target patch, w(Pi, Pa,j), to obtain a label La,i for atlas a:
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w1
w2

w3

wN

Input Image

Atlas Set

Figure 22: Patch search and weighting. The input image and atlas images are co-aligned
so that similar patches (yellow) can be found within a local neighbourhood
(green) around an input voxel. The patch similarity can then give a weighting
when fusing the atlas labels.

La,i =

⌊
0.5 +

∑j w(Pi, Pa,j)l(xa,j)

∑j w(Pi, Pa,j)

⌋
. (9)

w(Pi, Pa,j) = exp(
−SSD(Pi, Pa,j)

ha
). ha = min(SSD(Pi, Pa,j)). (10)

Finally, after computing a binary labelling La,i using each atlas in turn, a majority

vote was taken between all atlases to reach a final binary labelling L̂i:

L̂i =

⌊
0.5 +

1
N ∑

a
La,i

⌋
. (11)

The limited variation in the shape of the cranial cavity was exploited to speed

up extraction by defining a Region of Interest (ROI) in which to label voxels. The
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union of all N atlas labels ai defined a region where brain voxels were possible,

a1 ∪ a2 ∪ . . . ∪ aN , while the intersection defined a region where brain voxels were

almost certain, a1 ∩ a2 ∩ . . . ∩ aN . The set difference,(a1 ∪ a2 ∪ . . . ∪ aN)\(a1 ∩ a2 ∩

. . . ∩ aN), yielded a ROI over which to apply patch-based brain extraction, which

was dilated to account for possible variation not captured by the atlas set. The most

similar atlases were chosen to label a new image based on their global similarity,

measured by the SSD within the ROI.

As the accuracy of the atlas set is critical for accurate extraction, fetal atlases were

constructed from manual delineations of the cerebrum, brain-stem, lateral ventri-

cles and extra-cerebral CSF, filling the small remaining voids (cavum, third ven-

tricle) automatically. A set of 35 atlases was generated, each consisting of an MR

image and a binary mask with foreground voxels defining the matter inside the

skull. Each atlas was then mirrored along the centre-line of the brain, effectively

doubling the size of the atlas set to 70 in total.

Before extraction, the atlas set and input image were all co-aligned using affine

transformations and intensity normalised. By aligning the images, and only con-

sidering patches in a small local neighbourhood, the computational cost is reduced

considerably and the influence of dissimilar distant patches is removed. For this

purpose, all atlases were affinely registered to a target subject of mean gestational

age within the cohort and each new input image was then registered to this tar-

get before labelling. Patch similarity was evaluated using the SSD, therefore all the

images were normalized using histogram matching (Nyúl and Udupa, 1999) to

standardise the intensity scale, allowing SSD to be used as a meaningful similarity

metric.

To determine the best parameters for brain extraction, a leave-one-out cross-

validation was performed which resulted in a high mean Dice coefficient of 0.983
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using 24 atlases, a patch diameter of 7 voxels and a neighbourhood diameter of 5

voxels.

3.2.3 Automatic Segmentation

For brain tissue segmentation purposes, the algorithm of Ledig et al. (2012) was

adopted, which employs a second order MRF term to reduce misclassification of PV

voxels on the cortical boundary, by penalizing the prior probability of WM when

there is a high probability of both GM and CSF within its vicinity (see Section 2.2.4,

adopted methods subsection).

MRI volumes were automatically segmented into a background class and seven

foreground classes: cortical GM, deep grey nuclei, germinal matrix, WM, non-

cerebral tissue (brain stem and cerebellum), intra-cerebral CSF, and extra-cerebral

CSF. For this, a previously created non-rigid spatio-temporal atlas, comprising of

a sequence of MR image templates at one week intervals (Serag et al., 2012b) and

associated tissue probability maps (Wright et al., 2012) was used as prior infor-

mation to guide the segmentation process. Each template was constructed using

the target free approach of Seghers et al. (2004). All contributing images were

non-rigidly registered in a pairwise manner using the FFD framework (Rueckert

et al., 1999), and for each image in turn, the resulting transformations were aver-

aged, giving a mapping towards a mean MR template. Templates and associated

tissue probability maps were then created by averaging the transformed image

intensities and segmentations.

Subject specific tissue probability maps were constructed on a leave-one-out basis

to remove bias from manual segmentations, i.e. manual segmentations for each

subject did not contribute to its own prior tissue probabilities. For further details
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of the atlas construction, the reader is referred to (Serag et al., 2012b). Before seg-

mentation, the atlas template with the closest age to the subject was non-rigidly

registered to the input image. The associated tissue probability maps were subse-

quently transformed onto the native voxel grid of the subject before segmentation.

The FFD control point spacing used for pairwise registration during atlas construc-

tion controls the flexibility of the local deformation between subjects and has a

considerable impact on the “sharpness” of the average MR intensity template and

its associated tissue probability maps. As the control point spacing is reduced,

the number of parameters increases and the registration becomes less robust and

inherently more susceptible to misalignment errors, due to convergence to local

minima. Furthermore, as atlas priors become sharper, they have stronger influence

over a resulting segmentation. In this case, an EM algorithm will be dominated by

the prior information and fail to compensate for registration misalignments, lead-

ing to a segmentation that does not appropriately describe the subject’s anatomy.

Conversely, with a coarse control point spacing, the MR template and probability

maps will be considerably less sharp and less informative. In this case, when an

atlas prior is aligned with an input image, there can be significant WM probability

overlapping cortical sulci and vice versa. This can lead to an increase in partial

volume misclassification (Serag et al., 2012b).

Therefore, a relatively fine control point spacing of 1.5 mm was used for regis-

tration during atlas construction, which produces crisp tissue priors that can be

relaxed (e.g. by blurring) during segmentation to compensate for misalignment of

the original tissue priors (Cardoso et al., 2013). This relaxation step occurs after

the EM algorithm has first converged to a solution before continuing. A wider FFD

spacing of 3 mm was chosen for registering an age-matched template to each input

image, giving a more robust registration.
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After segmentation, a post-processing step was used to restrict the sub-cortical

matter to a single mass, removing WM probability that is topologically implau-

sible. Posterior probability maps for sub-cortical regions (germinal matrix, WM,

deep grey nuclei) and intra-cerebral CSF were combined and then binarized using

a threshold of 0.95. The Largest Connected Component (LCC) was assumed to be

brain tissue, while all other residual components were assumed to be sulcal PV

voxels. The binarisation threshold was chosen heuristically as the highest value

which did not result in WM voxels inside thin gyri becoming disconnected from

the LCC. All voxels with probability below the threshold were then classified as

either brain tissue or sulcal PV voxels, based on proximity to the LCC and residual

components. Finally, for all voxels determined to be sulcal PV voxels, WM poste-

rior probability was redistributed to external CSF. This procedure was repeated

iteratively using a descending threshold to remove all mislabelled WM.

3.2.4 Voxel-based surface representation

The surface of the brain is not an ideal location for measuring curvatures. As gyri-

fication proceeds, sulci narrow, adjacent gyri begin to squeeze against each other,

and it becomes increasingly difficult to delineate the cerebrum boundary using

a voxel-based representation. Furthermore, inexact brain extraction may remove

small amounts of cortical GM where the cerebrum is very close to the skull. There-

fore curvatures were estimated for the inner cortical boundary which is easier to

delineate and robustly segment.

A 1 mm voxel grid is too coarse to give an accurate surface representation using

a binary volume and sub-voxel accuracy is required to capture the curvature of

the convoluted cortex. Therefore, the input image was upsampled by a factor of



3.2 material and methods 103

3 and a second segmentation step was performed using the previously calculated

posteriors as priors. This resolution was found to be sufficient for accurate surface

representation while retaining acceptable computation time and memory require-

ments. Further upsampling was also tested, but there was little visible difference

between surfaces when visualised as a mesh.

For each subject, the inner cortical surface was approximated directly on the up-

sampled voxel grid by combining the posterior probability maps for four tissues:

germinal matrix, WM, the deep grey nuclei and intra-cerebral CSF, . This map was

smoothed using a Gaussian kernel with a full width at half maximum of 2 mm

which was found to ameliorate segmentation irregularities arising from artefacts

in the reconstruction process, while retaining the fidelity of the estimated bound-

ary. The map was then binarised using a threshold that preserved its volume and

the largest connected component was retained. A surface voxel was then defined

as any foreground voxel that shared a face with a background voxel.

3.2.5 Principle curvature estimation

For each surface voxel at location xi, the principal curvatures k1 and k2 were calcu-

lated using the structure tensor and Hessian matrix using the method of (Rieger

et al., 2004), which have previously been applied to neonatal images (Rodriguez-

Carranza et al., 2008) (see Fig. 23 for an overview). The structure tensor is a matrix

derived from the partial derivatives of a scalar function and can be used to analyse

the gradient orientation of a neighbourhood. Numerical estimates of the gradient

were obtained from a scalar map I obtained by smoothing the binary WM volume.
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Figure 23: Calculating the principal curvatures. The surface voxels, where the principal
curvatures are evaluated, are defined as any foreground voxel that shares a
face with a background voxel within the binary WM volume. The binary vol-
ume was smoothed to produce a scalar field on which to estimate the image
derivatives. The calculation of the principal curvature magnitudes and signs is
then split into two processes. The structure tensor is computed from the image
derivatives and allows the principal curvature directions and magnitudes to be
computed. The signs of the principal curvatures are then recovered using the
Hessian matrix.

The structure tensor S(xi) for a surface voxel xi is defined as the sum of outer

products S0(xj) of the derivative vector v(xj) with Gaussian weighting w(xi, xj)

for each voxel xj in a local neighbourhood ηi:

S(xi) = ∑
xj∈ηi

S0(xj)w(xi, xj).

S0(xj) = v(xj) v(xj)
T.
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v(xj) =

[
∂I
∂x

(xj)
∂I
∂y

(xj)
∂I
∂z

(xj)

]T

.

Eigen-decomposition of the tensor summarises the gradient directions. Assuming

an ordering of the eigenvalues: λ1 > λ2 > λ3, then the gradient, the eigenvector e1

and n the surface normal are all aligned. The eigenvectors e2 and e3 are aligned

with the maximum and minimum curvature directions t1 and t2 respectively.

Unfortunately, the normal cannot be differentiated with respect to the principal di-

rections to get the principal curvatures, as the vector field obtained from the first

eigenvector is discontinuous i.e. e1 = ±n. Instead, a mapping M(e1) = e1eT
1 / ‖e1‖

is used to calculate the magnitudes and the sign of the curvature is recovered using

the Hessian matrix. The gradient of M(e1) along the second and third eigenvec-

tors is linearly related to the norm of the first and second principle curvatures

respectively, by a constant
√

2:

|k1| =
1√
2
‖∇e2 M‖ = 1√

2

∥∥∥∥∥ 3

∑
n=1

∂M
∂φn en

2

∥∥∥∥∥ ,

|k2| =
1√
2
‖∇e3 M‖ = 1√

2

∥∥∥∥∥ 3

∑
n=1

∂M
∂φn en

3

∥∥∥∥∥ ,

‖M‖ := Frobenius norm of M.

To recover the sign of a principal curvatures k1,2 the Hessian matrix is employed

H (Equation 12) and the second derivative is examined along the corresponding

principal direction t1,2, specifically tTHt is evaluated. If the result is less than zero,
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the principal curvature k1,2 is positive (the curve is convex), otherwise the principal

curvature is negative (the curve is concave).

H =



∂I
∂x2

∂I
∂xy

∂I
∂xz

∂I
∂xy

∂I
∂y2

∂I
∂yz

∂I
∂xz

∂I
∂yz

∂I
∂z2


. (12)

3.2.6 Folding measures

To quantify gyrification, eight curvature-based folding measures from the lit-

erature were used including global mean curvature (HG) (Magnotta et al.,

1999), global Gaussian curvature (KG) (Magnotta et al., 1999), global curvedness

(CG) (Awate et al., 2008; Rodriguez-Carranza et al., 2008), mean curvature L2 norm

(HN) (Batchelor et al., 2002), Gaussian curvature L2 norm (KN) (Batchelor et al.,

2002), intrinsic Gaussian curvature (KI) (Van Essen and Drury, 1997), mean cur-

vature norm ratio (HR) (Rodriguez-Carranza et al., 2008) and Gaussian curvature

norm ratio (KR) (Rodriguez-Carranza et al., 2008). Each of these measures was

adapted to be independent of scale and surface area (Table 2). These measures

were evaluated globally for each cortical surface and also for different regions. An

atlas with nine cortical labels derived from (Gousias et al., 2012) was registered to

each image volume, parcellating the cortical surface representations (Fig. 24) .

Rodriguez-Carranza et al. (2008) used a normalization factor T = 3V/A to cor-

rect folding measures so that they are independent of scale and also surface area,

which is required in order for values to be comparable over regions with different

surface areas (Note r = 3V/A for a sphere). An alternative approach is taken in
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this work where the principal curvatures are first normalized for scale using a

different normalization factor, so that the integration of a shape descriptor over a

surface is normalized simply by dividing by its area.

The principal curvatures and the derived descriptors do not reflect the complex-

ity of a surface as they are dependant on its scale. For example, the curvature

of a sphere varies depending on its size. To remove the influence of scale on our

measures, the principal curvatures were first normalized by multiplying by a cor-

rection factor r, which captures the scale of the brain. r was chosen as the radius

of a sphere with equivalent volume to the WM, i.e. r = 3
√

3VWM/4π. This has the

desirable property of producing a dimensionless quantity which is 1 for any point

on the surface of a sphere. As a result, all of the derived folding measures in ta-

ble 2 are also unitless and their values are also 1 for a sphere of any size. During

experimentation, this method was also found to give better correlations between

the folding measures and GA, possibly because it gives a better normalization of

scale.

A voxel weighting term, w, was introduced to address the issue of unequal sam-

pling density over the surface due to the voxel-based representation. For example,

a plane perpendicular to an axis is more densely sampled than a diagonal plane.

To compensate for this, the influence of each voxel was weighted depending on its

connectivity configuration with background voxels and other surface voxels when

computing a folding measure using the method described in (Windreich et al.,

2003) .
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Gyri fusiformis & parahippocampalis
Temporal lobe, anterior
Temporal lobe, medial
Temporal lobe, posterior
Insula
Occipital lobe
Cingulate
Frontal lobe
Parietal lobe

Figure 24: Regional parcellation. Example of a brain parcellated into nine different re-
gions by registering an anatomical atlas.

Global mean curvature HG = ∑xi
Hw / ∑xi

w
Global Gaussian curvature KG = ∑xi

Kw / ∑xi
w

Global curvedness CG = ∑xi
Cw / ∑xi

w

Mean curvature L2 norm HN =
√

∑xi
H2w / ∑xi

w

Gaussian curvature L2 norm KN = 4
√

∑xi
K2w / ∑xi

w

Intrinsic Gaussian curvature KI =
√

∑xi∈K+ Kw / ∑xi∈K+ w
Mean curvature norm ratio HR = ∑xi

H2w / ∑xi
|H|w

Gaussian curvature norm ratio KR =
√

∑xi
K2w / ∑xi

|K|w

Table 2: Folding measures. The degree of gyrification was quantified using eight folding
measures, each of which was formulated by summarising a shape descriptor over
all surface voxels, xi. A weighting, w, was applied to each voxel which depended
on its surface voxel configuration. Each of these measures was formulated to en-
sure its independence of the scale and surface area. Note, K+, denotes the set of
voxels with positive Gaussian curvature.

3.3 results & discussion

3.3.1 Segmentation

To assess the accuracy of the automated segmentation procedure, sixteen of the 80

subjects were manually segmented by a clinical expert and the discrepancy of the

GM/WM boundary was measured. Details of the manual segmentation procedure

can be found in (Kyriakopoulou et al., 2014). These subjects were chosen at evenly
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spaced intervals throughout the cohort age range. A surface mesh was extracted

from the manual segmentation using the marching cubes algorithm (Lorensen and

Cline, 1987) and a boundary displacement map was extracted from the automated

segmentation and interpolated to give a local displacement at each vertex on the

mesh. A systematic bias was observed where the automated surface was displaced

“inside” the manual surface by approximately 0.65 mm, on average, for the sixteen

subjects. This can be explained by the tendency of the EM algorithm to overesti-

mate the thickness of the cortex. GM/WM PV voxels are predominantly labelled as

GM due to the greater variance in its intensity distribution (Van Leemput et al.,

1999), thus leading to an overly thick cortical segmentation. The absolute devia-

tion of the displacements around the median was fairly low at around 0.33 mm,

on average. For comparison, intra and inter-rater error were also assessed and the

median absolute displacement was found to be around 0.12 mm and 0.13 mm re-

spectively. A visual comparison of manual and automated segmentations can be

seen in Figure 25.

36.43 34.14 31.29 28.14 24.00
GA [weeks]

Figure 25: Comparison of cortical surface meshes for manual and automatic segmenta-
tions. Mesh representations of the surfaces were construction using the march-
ing cubes algorithm for visualization purposes. Colour mapping depicts nor-
malized mean curvature (H) at each point on the cortical surface.
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−4 −3 −2 0 1 2 3 4
Displacement [mm]

22.35

23.27

24.31

24.44

26.37

26.28

27.28

28.34

28.30

29.30

30.31

31.31

31.35

32.41

34.40

36.44

GA [weeks]

-0.47

-0.72

-0.42

-0.50

-0.51

-0.58

-0.79

-0.46

-0.69

-0.86

-0.66

-0.63

-0.74

-0.81

-0.74

-0.50

Median [mm]
displacment

0.35

0.27

0.31

0.44

0.37

0.28

0.28

0.34

0.30

0.30

0.31

0.31

0.35

0.41

0.40

0.44

MAD [mm] Kernel density estimate

−1

Table 3: Segmentation accuracy. Each row summarises the local displacements for an au-
tomated segmentation of an individual subject from its manual “ground truth”.
The median displacement and the median absolute deviation (MAD) from the me-
dian are shown, as well as a kernel estimate of the distribution of displacements
(σ = 0.1). Note, a negative displacement here means that the automated surface
is “inside” the manual surface.
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3.3.2 Folding Measures

Folding measures were computed over the automatically delineated cortical sur-

faces for all 80 subjects and also over the manually delineated cortical surfaces for

sixteen of the subjects (Fig. 26). For six of the folding measures (CG, HN , KN , KI ,

HR, KR) a strong positive correlation with GA was observed. This suggests that

these particular measures are effective for quantifying cortical folding and neu-

rological development. Moreover, the correlation between these folding measures

and GA is stronger than that of GA and volume (Table 4a), suggesting that neural

development is more strongly linked to cortical complexity than brain size in this

age range. These measures suggest that folding initially proceeds slowly, followed

by a period of rapid change from 25 weeks onwards, which begins to slow to-

wards birth. This reflects what has been observed visually (Garel et al., 2001), i.e.

the brain is initially lissencephalic at 22 weeks with the sylvian fissure present as

a shallow depression. Then primary sulci, such as the central sulcus appear first

around 24-25 weeks before lobar gyrification intensifies around 30 weeks. By 34

weeks GA, all of the primary and most of the secondary sulci are present.

The computed values based on automatic segmentation were consistently lower

than the computed values derived from manual segmentation and this discrep-

ancy seemed to increase with GA. This can be explained partly by a systematic

segmentation bias that led to an underestimation of the WM volume, which in

turn would have decreased the magnitude of the normalized principal curvatures

and the computed folding measures. The increasing discrepancy may be explained

by an increase in segmentation error, for example, a missing fold may decrease the

complexity of the estimated surface. The levelling off of computed values at later

gestational ages is likely to be overestimated, therefore, and folding measures may

in fact converge to a much higher value.
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The asymptotic growth in cortical complexity suggested by these results, where

the rate is slowest at the start and end of a time period, is accurately modelled

by a Gompertz function, which was first proposed by Gompertz in 1825. This

function has been successfully used to model various phenomena that reach a

saturation point, such as mobile phone users (Tao, 2010) and tumour cells (Laird,

1964). In the instance of tumour growth, a cellular population initially increases at

an exponential rate but growth slows as nutritional supplies deplete. Gyrification

is also a growth process that must eventually reach a saturation point. In this case,

folding is limited by the thickness of the cortical sheet, which cannot be folded

indefinitely due to physiological limitations. A Gompertz function is, therefore, a

good candidate for modelling the rate of gyrification through gestation.

3.3.3 Gompertz model

In this section the suitability of a Gompertz-like function for modelling the rela-

tionship between the folding measures and gestational age is assessed. The chosen

function (Eqn. 13), predicts the value of a folding measure y given a gestational

age t and a set of non-negative parameters βi. In this model, parameter β1 is

the initial value of y when the brain is lissencephalic before folding commences,

β1 + β2 is the upper limit of y when folding has ceased increasing, β3 controls the

growth rate that determines the increase of y during gyrification and β4 is a cen-

tring parameter, which determines the gestational age where y increases fastest.

The fitting of the model and estimation of the confidence intervals was carried out

using the Statistics Toolbox functions nlinfit and nlpredci in the MatLab Software

package (MATLAB and Toolbox, 2011) .
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Figure 26: Global folding measures with gestational age. Folding measures computed
from automated segmentations are shown as either green or blue circles,
whereas curvatures computed from manual segmentations are shown as red
triangles. For each subject that was segmented both manually and automati-
cally, the corresponding points are shown in red and green respectively and
joined together by a line. The remaining subjects that were only segmented au-
tomatically are represented by a blue circle. A Gompertz function (black line)
was fitted to each plot except global mean curvature, which did not exhibit a
Gompertz-like relationship. Upper and lower confidence intervals are shown as
dashed grey lines.
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t̂ = t− β4.

f (t̂) = β1 + β2e−e−β3 t̂
. (13)

f
′
(t̂) = β2β3e−β3 t̂− e−β3 t̂

. (14)

To determine whether a Gompertz function accurately models the relationship be-

tween folding measures and gestational age, the goodness of fit for unseen data

was evaluated by performing 100 iterations of 10 fold cross validation. The data

were partitioned into 10 equal folds and each fold was held back in turn while

a model was fitted to the remaining data and a residual was predicted for each

omitted observation. The sum of square prediction residuals, ε̂, gave an evalua-

tion measure, which was averaged over 100 iterations. The Gompertz model was

compared against two other models: a linear function and a quadratic function (Ta-

ble 4), to determine whether a simpler model could fit the data as well. Globally,

Gompertz functions were found to fit the data closely (R2 = 0.99) and consider-

ably better than a simple quadratic or linear fit (Table 4a). On average, adopting

a Gompertz model reduced ε̂ by a third over a quadratic model and by almost a

half over a linear model.

It must be noted that while gyrification must cease increasing at some point, and

although the relationship between folding measures and age is expected to be

well modelled by a Gompertz function, systematic segmentation errors towards

the latter gestational ages, where segmentation is particularly challenging, may

lead to a false estimate of growth. If the segmentation algorithm fails to segment

an increasingly complex cortical surface, the curvature measures may be underes-

timated and an asymptotic value may be reached before gyrification has actually

ceased, and the value of model parameter β2 will therefore be underestimated.
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Measure
Gompertz Quadratic Linear
ε̂ R2 ε̂ R2 ε̂ R2

CG 8.4 0.991 16.3 0.983 22.7 0.977
HN 5.5 0.992 10.2 0.984 11.9 0.982
KN 10.3 0.989 15.4 0.983 22.6 0.975
KI 6.1 0.992 11.3 0.985 15.0 0.980
HR 7.2 0.992 12.3 0.986 14.3 0.984
KR 19.5 0.984 24.8 0.980 35.3 0.971

Volume - - - - - 0.958
(a) Model fit with different folding measures and volume

Region
Gompertz Quadratic Linear
ε̂ R2 ε̂ R2 ε̂ R2

Global 5.5 0.992 10.2 0.984 11.9 0.982
Gyri fusiformis & parahippocampalis 9.9 0.986 15.8 0.978 20.7 0.971

Temporal lobe, anterior 23.5 0.950 22.2 0.953 22.1 0.953
Temporal lobe, medial 6.3 0.989 9.3 0.984 13.8 0.976

Insula 8.8 0.969 8.8 0.969 9.3 0.967
Occipital lobe 6.3 0.990 11.1 0.983 16.2 0.975

Temporal lobe, posterior 10.5 0.988 22.8 0.974 25.4 0.971
Cingulate 19.0 0.959 20.6 0.955 26.8 0.941

Frontal lobe 5.8 0.991 10.1 0.984 11.5 0.982
Parietal lobe 7.3 0.991 15.6 0.981 15.3 0.981

(b) Model fit in individual regions for HN

Table 4: Modelling the relationship of folding measures and GA. Three models were
fitted to the data: a Gompertz model, a quadratic model and a linear model. The
predicted sum of square residuals ε̂ and coefficient of determination R2 were
estimated to evaluate the fit of each model.

Given the precise timing of sulcal development(Garel et al., 2001), a high corre-

lation between age and folding measures is expected. However, the possibility

of a strong bias towards the atlas priors further reducing variability and falsely

strengthening the observed correlation, is ruled out. Each atlas frame is con-

structed by averaging FFDs for contributing subjects towards other subjects within

a time window. The anatomy and segmentations are then transformed to an av-
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Figure 27: Folding measures computed from atlas priors. The mean curvature L2 norm
(HN) is shown for each subject computed from automated segmentations (ei-
ther green or blue circles), manual segmentations (red triangles) and atlas pri-
ors (black triangles). For subjects segmented both manually and automatically,
the corresponding points are shown in red and green respectively and joined
together by a line. Note the values of HN computed from atlas priors are much
lower than for subjects of a similar age.

erage atlas space using this deformation. The resulting atlas template does not

exhibit the typical anatomy of each subject but rather an average, with reduced

variability of gyral location and an overall smoother cortical surface. Therefore,

curvature measures computed from atlas priors are expected to be lower than

from an aged-matched subject. If the atlas priors were to dominate the segmen-

tation and the algorithm failed to capture the subject’s anatomy, then this would

be reflected in the curvature measures. Fig. 27 shows that this is not the case,

as the curvatures computed from atlas priors are considerably lower than those

computed for individual subjects with a similar age.

3.3.4 Regional Folding

Examining folding measures locally revealed regional differences in sulcation. Lo-

bar regions exhibited a similar relationship between GA and computed folding

measures to what was observed globally, and were also well modelled by a Gom-
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pertz function (Fig. 28a). The insula and the anterior temporal lobe, however, did

not display the same behaviour. A steady increase in folding measures with GA

was observed in the anterior temporal lobe over the time period, whereas the in-

sula remained relatively smooth, with folding measures not increasing with GA at

the same rate as other regions. Consequently, a linear model gave a better fit for

these regions. (Table 4b).

The rate of growth at different gestational ages was estimated by solving the

derivative of the fitted Gompertz functions (Eqn. 14) for the folding measure HN .

The models suggest that peak growth occurs around 30 weeks GA for all lobar

regions, which suggests that this is a critical time period and any developmental

disturbances could have a greater impact around this point (Fig. 28b). Regional

differences in growth rates were also observed, with the posterior temporal lobe

and parietal lobe showing the highest peak growth, with other regions such as the

frontal lobe and medial temporal lobe developing more slowly, and the cingulate

considerably slower (Table 5).
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(a) Change of HN over time in different regions.
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(b) Rate of increase of HN with .

Gyri fusiformis & parahippocampalis
Temporal lobe, anterior
Temporal lobe, medial
Insula
Occipital lobe
Temporal lobe, posterior
Cingulate
Frontal lobe
Parietal lobe

Figure 28: Regional differences in folding measures. (a) The change in mean curvature
L2 norm (HN) over individual regions with gestational age is shown. All lobar
regions expect the insula and anterior temporal lobe exhibit a Gompertz like
growth pattern. (b) The rate of growth across gestational ages was computed
from the derivative of the fitted Gompertz functions for HN in lobar regions.
The rate of growth peaked around 30 weeks gestational age for all regions,
however there are differences in growth rates.

Region Peak Growth GA

Temporal lobe, posterior 1.00 29.8
Parietal lobe 0.90 29.6

Gyri fusiformis & parahippocampalis 0.84 30.9
Occipital lobe 0.78 31.2
Frontal lobe 0.74 30.4

Temporal lobe, medial 0.71 31.5
Cingulate 0.63 32.2

Table 5: Relative peak growth rate in lobar regions. The peak increase of HN is shown for
all regions relative to the posterior temporal lobe. Peak growth occurred around
30 weeks gestational age for all lobar regions and regional differences in growth
rates are apparent.
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3.3.5 Physiological Age

The strong relationship between GA and folding measures allowed an accurate

prediction of GA to be made. The inverse of the Gompertz function fitted for mea-

sure HN was taken to predict GA from the value of HN observed for each fetus.

Prediction accuracy was inherently lower where the rate of folding was slowest.

When gyrification changes very little, folding measures become a poor indicator

of GA, as fetuses in close proximity have a similar degree of gyrification. There-

fore poor age prediction is expected towards the extremities of the age range in

the cohort (Fig. 29). The mean prediction error was 0.47 weeks (± 0.40) in the age

range 24− 37 weeks, and 0.88 weeks (± 0.61) outside of this range, where the rate

of folding was considerably slower. Given that the real GA is unknown and is es-

timated from either an obstetric ultrasound scan or the last menstrual period, the

measured prediction accuracy of the classifier is limited and may not reflect the

real accuracy.

Predicting the real GA of a fetus from an MR image is not a genuinely useful

application of this work, given that GA may be estimated by obstetric ultrasound.

However, by estimating the age of a fetus based on the observed anatomy, it is

actually the physiological age which is being estimated i.e. the average age of a

normal fetus with the equivalent level of neurological development. A difference

in real GA and estimated GA could, therefore, indicate a delay or acceleration from

normal development, associated with some pathology. For example, in (Dittrich

et al., 2014) age was predicted for a group of fetuses with lissencephaly, a condition

which results in a smoother cortical surface from defective neuronal migration,

and a mean prediction offset of −3.0 ± 3.5 days was observed.
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Figure 29: GA prediction error. Gestational age was predicted from the observed value of
HN by taking the inverse of the Gompertz function fitted to the data for HN .

3.4 conclusions

In this chapter, a complete framework to quantify gyrification was presented and

applied to a cohort of 80 normal fetuses (age range 22− 39 weeks). The curvature-

based folding measures that were employed were strongly correlated with GA.

Moreover, these measures were better correlated with GA than volume, suggesting

that neurological development is more closely linked with the convolution of the

cortex than the size of the cerebrum.

The increase in folding measures with GA reflected the rate of gyrification that has

been observed visually (Garel et al., 2001), with gyrification accelerating rapidly

between 25 and 30 weeks. A Gompertz function was found to fit the observed

data well, and better than a simple linear or quadratic model. However, curvature

measures were systematically underestimated at older gestational ages when us-

ing automated methods, and therefore, it is likely that curvature estimates will

reach an asymptotic level while gyrification is continuing. Thus, further work is

needed to assess the reliability of predictions based on this model at times when

the gyrification process is nearing completion.
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The Gompertz model allowed an accurate prediction of GA of a fetus with a mean

error of approximately half a week between 24− 37 weeks GA. The neurological

development of a fetus can then be characterised using the notion of physiological

age and a developmental delay or acceleration can be quantified in weeks. The

model also allowed us to analyse growth rates over time, and peak gyrification

was observed in all lobar regions around 30 weeks. Therefore, this period may be

a critical time for neurological development.

This framework is well-suited for detecting gross discrepancies in gyrification as-

sociated with various neurological disorders globally, and also locally, over prede-

fined regions. Disturbances in development may be localised and abnormal fold-

ing may remain undetected when averaging over a relatively large region. Cortical

anatomy may be analysed on a fine scale when aligned to a surface template using

surface-based morphometry in a procedure analogous to VBM for images. In the

next chapter, we will look at the difficult task of constructing a cortical surface-

atlas, which will facilitate this goal.





4
C O N S T R U C T I O N O F A S PAT I O - T E M P O R A L S U R FA C E AT L A S

4.1 introduction

The methodology presented in the previous chapter focused on quantifying cor-

tical development at a global and lobar scale. Folding measures were computed

that summarised the average extent of folding over a given region with a single

scalar value. Folding anomalies that are highly localised may remain undetected

using this methodology. It is desirable to be able to compare cortical anatomy on

a finer scale. An average model or atlas can facilitate this by providing a densely

sampled reference space where the anatomies of a population can be co-aligned

and morphometric analysis performed. MRI based atlases have been used previ-

ously to align and compare neuroanatomy between cohorts on a voxel-wise basis

using VBM (Ashburner and Friston, 2000). This methodology can also be applied

to surfaces, undertaking morphometric analysis on a vertex-wise basis using mesh

models (Chung et al., 2008).

Constructing a surface atlas requires finding smooth and accurate correspon-

dences between cortical surfaces from different subjects at different ages, which

can be a challenging task. Surfaces may be registered in 3D using transformation

models commonly used for image-based registration, such as an affine transfor-

mation matrix or an FFD. For each optimisation iteration, dissimilarity may be esti-

mated as the sum of square distances, for each target mesh vertex from its nearest

123



124 construction of a spatio-temporal surface atlas

source mesh vertex, once transformed. For highly convoluted surfaces, however,

this procedure often converges to an incorrect solution.

Embedding cortical surfaces into some 2D domain before registration is a more

robust strategy for finding correspondences. A cortical surface may be flattened

by making a series of cuts, allowing it to be embedded onto a plane with mini-

mal distortion (Van Essen and Drury, 1997). Flattened surfaces may be registered

by adapting methods developed for image registration, using scalar information

associated with the mesh vertices (e.g. mean curvature) as a substitute for image

intensities.

Alternatively, a cortical surface may be embedded in a 2D spherical coordinate sys-

tem. This avoids cutting the cortical surface, thus preserving its topology. (Fischl

et al., 1999b) proposed a method for “inflating” a cortical surface by minimizing

an energy functional consisting of two terms: a distance term (to reduce geometric

distortions) and an oriented areal term (to unwrap folds). Note as distances are

preserved, this procedure is more analogous to inflating a scrunched up paper bag

than a balloon. Manifold learning techniques, such as spherical multi-dimensional

scaling (Elad et al., 2005) or spherical Isomap (Tenenbaum et al., 2000), may also be

used to embed a cortical surface, constraining its vertices to lie on a sphere. A num-

ber of authors have developed registration methodologies specific to a spherical co-

ordinate systems, including Freesurfer (Fischl et al., 1999a), spherical demons (Yeo

et al., 2010) and multi-modal surface matching (Robinson et al., 2014)·

Spectral graph theory gives the basis for a fast alternative to the traditional reg-

istration methods discussed so far, using the eigenvalues and eigenvectors of the

graph Laplacian matrix (Chung, 1997). The eigenvalues of the Laplacian may be in-

terpreted as the natural oscillating frequencies, or resonances, of a physical shape.

Each of these resonances has a distinct pattern of displacement, a so-called nor-
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mal mode of the shape, which is given by the eigenvectors. At any given resonant

frequency, equivalent locations on similarly shaped surfaces will have a similar rel-

ative amplitude and phase, which allows surface points to be matched in the spec-

tral domain. Accuracy with spectral methods can be limited due to macroscopic

variations in brain shape, such as expansion or compression, that can cause signif-

icant changes in a cortical surface’s spectral representation. Previous attempts to

address this problem include registering the derived spectral representations (Jain

and Zhang, 2006; Mateus et al., 2008; Lombaert et al., 2011; 2013a).

More recently, Lombaert et al. (2013b) proposed a novel spectral-based method

to acquire a mapping between surfaces that is comparable in accuracy to

Freesurfer (Fischl et al., 1999a) and spherical demons (Yeo et al., 2010), while main-

taining a considerable speed advantage. Moreover, atlases generated are more con-

sistent when varying the initial reference surface for aligning a group of surfaces.

The standard deviation of atlas boundaries was found to be significantly lower

for the spectral method (0.0014 mm ± 0.0009) compared to spherical demons

(0.28 mm ± 0.08). In this method, a preliminary point-wise correspondence be-

tween two surface graphs is established from their spectral representations and

from additional information, such as sulcal depth. A novel dual-layered graph

is then constructed by linking the corresponding vertices across the two graphs.

The spectral decomposition of this dual-layered graph provides an orthonormal

basis where accurate correspondences between the two cortical surfaces can be

estimated. Orasanu et al. (2014) used this methodology to analyse cortical devel-

opment in neonates born very preterm (around 26 weeks). Cortical surfaces for five

subjects were modelled at two time-points, 30 weeks and 40 weeks equivalent ges-

tational ages. For each individual, cortical correspondences were then estimated

between the two time-points, enabling longitudinal changes in cortical geometry

to be measured at matched locations.
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Given the considerable diversity of cortical shape during gestation, a single

anatomical atlas may not be appropriate. Indeed, a sulcus on the surface of an

older, more neurologically developed brain may not yet exist on a younger brain

and thus it may not be possible to establish a meaningful correspondence. With-

out any detectable surface sulcation, from some shape descriptor (e.g. mean curva-

ture), the spectral properties alone can be used to determine the correspondences.

Unfortunately, variations in cerebral shape can alter the spectral vibration modes,

limiting matching accuracy. Furthermore, macroscopic changes in cerebral shape

during gestation alter vibration modes over time, therefore accuracy will also

fall as the discrepancy in age increases. A spatio-temporal approach (Serag et al.,

2012a) can be used to avoid these difficulties, as an average anatomical template

is constructed at several time points, each within a specific time interval where

anatomy is similar or not expected to change significantly.

To date, there have only been a handful of studies which have constructed atlases

of the developing cortex. Hill et al. (2010) constructed a single cortical surface

template from neonates born at term to compare hemispheric asymmetries in in-

fants and adults. Van Essen (2005) used a landmark based registration algorithm

to align spherical representations of the cortex. More recently, Li et al. (2014) con-

structed an infant spatio-temporal surface atlas, generating atlas templates for 1,

3, 6, 9, 12, 18 and 24 months of age. This work also aligned cortices on the sphere

using spherical demons (Yeo et al., 2010).

A significant portion of the cortical folding process is completed before term, in-

cluding the formation of primary and secondary sulci (Garel et al., 2001), and dis-

turbances in development during this period may have a profound effect. Preterm

neonatal imaging, therefore, provides an opportunity to visualise an important

part of the cortical folding process. However, the complications associated with

premature birth mean that this cohort is not ideally suited for characterising nor-
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mal development (Ajayi-Obe et al., 2000; Kapellou et al., 2006). For this reason, in

utero MR imaging may ultimately provide improved visualisation and quantifica-

tion of the developing cortex over this critical period.

Two studies have constructed average surface templates of the fetal cortex from in

utero MRI. Habas et al. (2012) described an image-analysis framework to investigate

early folding patterns, revealing asymmetric hemispheric development in a cohort

of fetuses from 20 to 28 weeks GA. MR image volumes were co-aligned at each

week of gestation using image-based registration and an average cortical surface

was extracted from the combined subject tissue maps. 3D image-based registration

is, however, ill-suited for cortical alignment at older gestational ages, where the

geometry of the cortex is significantly more complex.

More recently, Clouchoux et al. (2012) constructed a spatio-temporal surface at-

las consisting of four templates based on twelve in utero MR images of healthy

fetuses (25.2 to 35.1 weeks gestational age), which enabled a quantitative analysis

of cortical development. Surfaces were reconstructed using a deformable model,

CLASP (Kim et al., 2005), and correspondences were found on the unit sphere

using an iterative group registration scheme (Lyttelton et al., 2007). This method-

ology was also used to compare development in normal fetuses and fetuses with

a severe form of congenital heart disease (Clouchoux et al., 2013), where a delay

in cortical development was observed.

4.1.1 Chapter overview

Most of the atlas construction techniques discussed have utilised a spherical coor-

dinate system to register cortical surfaces. In this chapter, an alternative spectral

method is presented for constructing a spatio-temporal surface atlas from a cohort
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of 80 healthy fetal subjects (Section 1.4). Average surface templates are constructed

for each week of gestation from 23 to 37 weeks (15 templates in total). A natural ex-

tension to the spectral-based method of Lombaert et al. (2013b) is used to embed a

group of cortical surfaces simultaneously, thus eliminating bias due to the choice

of an initial reference surface for alignment. Kernels (Nadaraya, 1964) are then

used to compute a spatially and temporally weighted estimate of the average sur-

face boundary, which can be readily converted to a mesh representation (Kazhdan

and Hoppe, 2013).

The methodology developed is evaluated by examining sulcal alignment, regional

overlaps, and embedding regularity in comparison with spherical demons and

conventional 3D surface registration algorithms. Additionally, the consistency of

the average templates is demonstrated by generating multiple instances from dis-

joint subsamples of the dataset of varying sizes.

4.2 material and methods

4.2.1 Surface Modelling

For each MR image, several anatomical structures were first segmented using an EM

algorithm (Makropoulos et al., 2014), including cortical GM, WM, CSF, the deep grey

nuclei, lateral ventricles, brain stem and cerebellum. A probability map was then

formed for matter inside the GM/WM boundary by summing the posterior prob-

ability for WM, the deep grey nuclei and the lateral ventricles. A super-sampled

binary volume B was then extracted (threshold = 0.5) and from this a distance map

D was computed (Maurer et al., 2003); this implicitly defines the surface boundary
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in the image space. A negative distance indicated a voxel was inside the surface

boundary, while a positive distance indicated a voxel was outside.

An explicit surface representation was extracted by deforming a mesh with spher-

ical topology towards the implicit isosurface D = 0 using a similar approach to

previous authors (Dale and Sereno, 1993; Davatzikos and Bryan, 1996; MacDonald

et al., 2000; Kim et al., 2005). The deformation maintains the topology of the mesh

and fits the mesh directly to the probability map rather than the image intensities.

Let surface model S be defined as pair S = {V, E}, where V denotes a set of

vertices V = (x1, . . . , x|V|) with position vectors xi, and E denotes an adjacency

matrix, where eij = 1 if the vertices i and j form an edge, or 0 otherwise. The cortex

consists of a thin continuous sheet of GM, enclosing the WM and sub-cortical GM

structures beneath. Its surface is appropriately modelled as a closed 2D manifold

that is homeomorphic to a sphere, therefore S can be initialised by any convex,

uniformly sampled, closed triangulated mesh with zero genus, which encloses a

binary volume B.

The cortical surface is then estimated by iteratively deforming S towards the

boundary defined implicitly by D (Algorithm 1). Each vertex xi is updated in

turn and its new position is given by stepping along the inward surface normal

direction ni, with step size γ:

γ =


γmax D(xi) > γmax

−γmax D(xi) < −γmax

D(xi) else

.

xi is only updated if a ray cast along γni intersects with B, thus ensuring that

vertices only move towards the boundary. Additionally, if a ray cast along γni first

intersects with S at yi and γ + ‖xi − yi‖ > d, where d is the closest permissible
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distance between S and itself, then xi is not updated, to ensure the mesh does not

self intersect.

After all vertices have been updated, their positions are smoothed, taking an aver-

age of the neighbouring vertex positions, ensuring each vertex moves consistently

with its neighbours (Algorithm 2). To allow the surface to dynamically expand

and compress without affecting the vertex density or topology of the mesh, S

is remeshed after each iteration, splitting long edges and collapsing short edges.

Both the update and smoothing steps are then repeated until S has converged to

the implicit surface D = 0.

Algorithm 1: Deform Mesh.
Data: S = {V, E}, D, B
for 1 to n do

for xi ∈ V do

γ =


γmax D(xi) > γmax

−γmax D(xi) < −γmax

D(xi) else
if Intersect(B, xi, γni) and not SelfIntersect(S, xi, γni) then

xi = xi + γni

S = Smooth(S);
S = Remesh(S);

Algorithm 2: Smooth.
Data: S = {V, E}
for i = 1 to |V| do

N = { j |eij = 1}
xi = ∑j∈N xjwj (wj ∝ 1/

∥∥xi − xj
∥∥2 and ∑j∈N wj = 1)

for i = 1 to |V| do
xi = xi

All meshes that were extracted were tested and confirmed to be topologically cor-

rect with no self-intersections. To estimate the surface extraction error, a distance

map was computed for a segmented boundary (Maurer et al., 2003), and distance
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values were linearly interpolated at the mesh vertex locations. The average dis-

tance error for a vertex was 0.106 mm (± 0.006) (see Fig. 30 for surface contour

examples).

23.57 30.71 37.71 [weeks]

Figure 30: Cortical Surface Extraction. Cortical surface models for a selection of gesta-
tional ages are overlaid on their corresponding MR image volumes. The isosur-
face of the sub-cortical tissue probabilities is shown as a yellow contour while
the cross-section of the cortical surface model is overlaid as a red contour.

4.2.2 Atlas construction overview

Given the temporal diversity of anatomy within the cohort, a spatio-temporal

framework was adopted, building an average template of cortical shape for each

week of gestation across the cohort (Fig. 31). In particular, the approach avoids

the difficult task of aligning very disparate cortical anatomies and trying to find

accurate correspondences between them. Each template was built from a group

of cortical hemisphere surfaces (N = 19.6 ± 3.1) within a narrow time-window
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of ± 1 week, where cortical features are similar. Both hemisphere surfaces were

used to generate the atlas templates (mirroring the right hemisphere), effectively

doubling the sample size, thus allowing a more reliable estimate of the population

average surface boundary. By choosing overlapping windows, correspondences

between successive embeddings can still be established (Section 4.2.7). For each

template, the contributing surfaces were first affine-aligned by registering all pairs

of surfaces, and deforming each surface using the computed average affine trans-

formation (Seghers et al., 2004). This improved matching accuracy by removing

differences in global shape and size. Spectral matching was then performed be-

tween all pairs of surfaces, yielding initial vertex-wise correspondences. Surfaces

were connected using these preliminary correspondences and a joint spectral anal-

ysis gave an embedding in which all the surfaces were co-aligned. The average

surface position was then estimated using kernel regression at each point within

the embedding, allowing a mean surface to be reconstructed. The following de-

scribes these steps in further detail.

4.2.3 Spectral Matching

Spectral matching is a basic concept that has been used by several authors (Jain

and Zhang, 2006; Mateus et al., 2008; Lombaert et al., 2011; 2013a;b; Orasanu et al.,

2014) to find correspondences between two surfaces from their spectra. To recap,

for a surface model S = {V, E}, its |V| × |V| weighted adjacency matrix W is de-

fined, wij = eij‖xi − xj‖−2. The diagonal degree matrix D = diag(d1, d2, . . . , d|V|)

is then given by summing all edge weights for each node, di = ∑j wij. The |V| × |V|

general graph Laplacian L = D−W can now be constructed from W and D.
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Figure 31: Framework. An average cortical surface template is constructed for each week
of gestation, with all subjects within a week of the target age contributing to
the output. A spectral analysis yields spatial correspondences between a group
of cortical surfaces, allowing the average surface position to be computed and
a template surface constructed. Note the red/blue surface colour mapping de-
picts the mean curvature of the surfaces.
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Solving the eigenvector problem L = UΛU−1 gives the diagonal eigenvalue ma-

trix, Λ = diag(λ0, λ1, . . . , λ|V|) and the corresponding eigenvector matrix U =

(u0, u1, . . . , u|V|), where each eigenvector ui = (u0i, u1i, . . . , u|V|i)T is a column

of U. Each of the eigenvectors or eigenmodes, ui, can be viewed as a pattern of vi-

bration for the surface model S (Fig. 32) associated with the resonant frequency λi.

The first eigenvector is not a vibration mode as λ0 = 0 and is thus discarded. These

eigenmodes give a useful parameterisation which can be used to match points on

another similarly shaped surface. For correct matching, eigenmodes may need

to be corrected for their sign ambiguity, multiplicity, and perturbation in isome-

try (Lombaert et al., 2011; 2013a).
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Figure 32: Surface Eigenmodes. The 1st three vibration modes of two surfaces are shown.
Each mode depicts a pattern of displacement for a resonant frequency of the sur-
face between poles, colour mapped to blue and red respectively. Figure adapted
from Lombaert et al. (2013b).

To match points between surfaces the concept of a spectral representation is use-

ful (Fig. 33). The spectral representation of S is denoted by a k-dimensional em-

bedding, where the ith vertex has the spectral coordinates u′i = (ui1, ui2, . . . uik)
T,

which is obtained from a row of the truncated matrix Uk = (u1, u2, . . . , uk). A cor-

respondence map c gives the point-wise correspondences between two surfaces SI

and SJ . For each vertex xi ∈ SI , with spectral coordinates u′i, the corresponding

vertex yj ∈ SJ , with spectral coordinates v′j, is determined by the shortest Eu-

clidean distance in the spectral domain, c(i) = j = argmink ‖u′i − v′k‖. To achieve
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a more accurate match, surface descriptors such as mean curvature or the surface

normal direction may be added to the embedding as extra dimensions (Lombaert

et al., 2011). This ensures that a sulcus (or gyrus) from one surface matches with a

nearby sulcus (or gyrus) from another surface. The values for each descriptor may

be scaled in order to weight their influence when finding correspondences.

(a) cortical surfaces

u1

u3

u2 u1

u3

u2

(b) 3D spectral representations

Figure 33: Spectral Matching. Vertex-wise correspondences between two surfaces (a) are
given by the shortest Euclidean distance in the spectral domain (b). Colour
mapping is given by the first three spectral coordinates which are mapped to
RGB channels respectively. Figure adapted from Lombaert et al. (2013b).

This nearest neighbour approach to define an initial correspondence map c be-

tween two surfaces (Section 4.2.3) lacks regularisation and the matched locations

may be incoherent, i.e. two vertices that are close on one surface may match with

vertices that are distant on another surface. This can cause irregularities in the em-

bedded surfaces (Section 4.3.4), particularly when incorporating scalar informa-

tion into the embedding, which is not determined by surface position (e.g. mean

curvature), or where scalar data may be noisy.

To address this, edge-based smoothing (Field, 1988) is used in the spectral domain

to regularise the connections between two surfaces SI and SJ , given an initial corre-

spondence map c = cI J (Algorithm 3). For each vertex xi ∈ SI , with corresponding

vertex yc(i) ∈ SJ and corresponding spectral coordinate values v′c(i), a smooth

spectral coordinate v̄′i is first obtained. This is achieved by taking a weighted av-

erage of the neighbouring spectral coordinates v′c(j), based on the edge set EI ,
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v̄′i = ∑j∈N(i) wjv′c(j). A more regular correspondence map can then be defined c(i)

= argmink ‖v̄′i − v′k‖.

Algorithm 3: Regularise correspondences.
Data: SI , SJ , correspondence c = cI J
for i = 1 to |VI | do

N(i) = { j : eij ∈ EI}
v̄′i = ∑j∈N(i) wjv′c(j)

where wj ∝ 1/
∥∥∥v′c(i) − v′c(j)

∥∥∥2
and ∑j∈N wj = 1

for i = 1 to |VI | do
c(i) = argmink ‖v̄′i − v′k‖

4.2.4 Joint spectral analysis

In (Lombaert et al., 2013b), a novel, dual-layered surface graph is built from two

meshes interconnected by a preliminary correspondence map generated by spec-

tral matching (Section 4.2.3). A joint spectral analysis of the connected surfaces

produces a set of shared eigenmodes as opposed to two independent sets of eigen-

modes. This produces a single parameterisation of the surfaces.

In this work, this approach is extended to k subjects by building a combined graph

for surface graphs S1, . . . , Sk , allowing a joint spectral analysis of all surfaces

simultaneously. A multi-layered surface graph Sc = {Vc, Ec} is formed where

Vc = V1 ∪ V2 . . . ∪ Vk is a concatenation of all mesh vertices and Ec is the com-

bined connectivity matrix. Ec preserves the intra-surface vertex connectivity de-

fined in surface graphs S1, . . . , Sk as well as incorporating additional inter-surface

connections. For each pair of surfaces SI and SJ , an edge is formed between each

vertex xi ∈ SI and its corresponding vertex yc(i) ∈ SJ , where c = cI J is a prelimi-

nary correspondence map between SI and SJ . As surfaces are linked pairwise, the
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number of inter-surface edges may be far greater than the number of intra-surface

edges. To compensate for this, a parameter φ is introduced to control the relative

weighting of intra and inter-mesh edges. Intra-mesh edges are weighted as before,

by the inverse squared Euclidean distance, w = ‖xi − xj‖−2. For inter-surface con-

nections, the weighting w = 3φ
k−1‖xi − yc(i)‖−2 was chosen. Note, φ = 1 gives an

equal weighting between intra-surface and inter-surface edges. For a triangular

surface mesh S, with V vertices, F triangles, E edges and e connections to k − 1

other surfaces, the ratio E : e is given:

1. 2E = 3F (number of half edges in the graph)

2. V − E + F = 2 (Euler’s characteristic for a zero genus polyhedron)

3. e = V(k− 1) (one connection for each vertex to every other surface)

V − E +
2
3

E ≈ 0 (given that E > V � 2)

V − 1
3

E ≈ 0

E ≈ 3V

E ≈ 3
k− 1

e

The spectral decomposition of the graph Laplacian Lc = UcΛcU−1
c , built from

the multi-layered surface graph Sc, gives a set of shared eigenmodes Uc and an

orthonormal basis where surfaces S1, . . . , Sk are co-aligned (Fig. 34).

4.2.5 Kernel Regression

The coordinate system provided by the shared eigenmodes Uc (obtained from a

joint spectral analysis of a group of surfaces) is referred to as the spectral domain,
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u1

u3

u2

Figure 34: 3D Spectral Embedding of a Group of Surfaces. Embedded vertices of 18 cor-
tical surfaces are shown (29− 31 weeks GA). Colour mapping depicts the mean
curvature at each point on the original surfaces (red, convex; blue, concave).

or spectral embedding (Fig. 34). This coordinate system allows the value of a scalar

variable associated with the surfaces to be estimated at matched locations on the

cortex. For example, each embedded vertex may have associated shape descriptors

(e.g. mean curvature, sulcal depth) or regional anatomical labels (e.g. Brodmann

areas) as well as spatial location.

Kernel regression (Nadaraya, 1964) is a non-parametric technique that can be used

to estimate the value of one of these scalar variables y, at any given spectral loca-

tion, by averaging the values of y associated with nearby vertices, using a kernel

based weighting function w. Let ȳi denote the expected value of y at spectral loca-

tion u′i and N(i) a set of vertices close to u′i. Then ȳi is given by a weighted average

of y for all vertices in N(i), i.e. ȳi = ∑j∈N(i) yj w(i, j)/ ∑j∈N(i) w(i, j). The vertices

of each surface are evenly sampled in the spatial domain, however this is not the

case in the spectral domain. Therefore, N(i) was defined as the k nearest vertices

to u′i in order to achieve uniform spatial smoothness.

The weighting function w(i, j) = wu(u′i, u′ j) wt(tj) / C(j) was chosen which has

three terms: a spatial weighting wu, a temporal weighting wt and a count func-
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tion C. C(j) simply counts the number of vertices in N(i) that originate from

same surface mesh as j. This removes the influence of different vertex densi-

ties for each surface at different locations within the embedding. A Gaussian

kernel was used for the spatial weighting wu(u′i, u′ j) = exp(−‖u′i − u′ j‖2/2σ2
u)

and the temporal weighting wt(tj) = exp(−(t′ − tj)
2/2σ2

t ), where t′ is a tar-

get GA. The temporal smoothness and spatial smoothness of ȳi are controlled

by σt and σu respectively. σu, can be chosen adaptively, so that the average dis-

tance of the k vertices is equal to the full width at half maximum of the kernel,

σu = 1
2
√

2 ln2
1
k ∑j∈N(i) ‖u′i− u′ j‖. Note, the parameter k now effectively controls the

spatial smoothness. Temporal smoothness, σt, can be fixed for all time-points or

adjusted within regions where the temporal sampling is lower (Serag et al., 2012a).

This will sacrifice temporal sharpness when estimating ȳi, in order to smooth out

variations in cortical anatomy by incorporating more subjects.

4.2.6 Surface Reconstruction

For each embedded vertex i (Fig. 34), the average cortical surface position, x̄i, can

be estimated using kernel regression, given its spectral location u′i and a target

gestational age t′. This is achieved by treating each spatial dimension as a separate

scalar field. The estimated location for each vertex, x̄i, gives a smooth point sam-

pling of the average surface (Fig. 35a). Reconstructing surfaces from point data

is a well-studied problem driven by the need for measurement and visualisation

of real world objects that are geometrically sampled, for example, with 3D range

scanning technology. For this work, the popular screened Poisson surface recon-

struction algorithm (Kazhdan and Hoppe, 2013) was used to reconstruct an aver-

age surface template from x̄ (Fig. 35b). This technique also requires an estimate
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of the average surface normal direction, N̄i, for each point sample of the average

surface boundary, x̄i.

Averaging orientations is a non-trivial problem given the periodicity of the domain.

At a corresponding location on the cortical surface, it is not biologically plausible

to have large variations in orientation between subjects. By assuming that the max-

imum deviation from the average is bounded by π, the difference in orientation

can be taken to be the shortest path on the unit sphere, ignoring any issues due to

“wrapping”.

A widely used but naive approach to this problem is the “vector sum algorithm”

which averages each x, y, z component of the surface normal vector, which is

equivalent to minimising the squared chord length on the unit sphere associated

with each observation (Olson, 2011). Assuming Gaussian noise, minimising the

arc length is a more accurate method since the length of the arc is proportional

to the difference in orientation. However, this level of accuracy is unnecessary as

the chosen method is robust to inaccuracies in normal direction (Kazhdan, 2005).

N̄i is therefore estimated from the original surface normal directions associated

with each point, weighted using kernel regression, treating each dimension as a

separate scalar value, and normalising the results.
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(a) point sampling of the average cortical bound-
ary

(b) reconstructed surface

Figure 35: Average cortical surface template for a 30 week fetus. Kernel regression in the
spectral domain is used to find the average surface position. This gives a point
sampling of the average cortical surface (a). Poisson surface reconstruction, is
then used to extract a closed surface (b), from (a).

4.2.7 Temporal Correspondence

Establishing temporal correspondences between embeddings is important as it

permits a longitudinal analysis of cortical growth. For each embedding, a number

of the contributing surfaces will also contribute to a neighbouring embedding, as a

spectral analysis was performed across several overlapping time windows (Fig. 31).

For the surfaces that are not shared with a particular neighbouring embedding, the

position of each of their vertices can be estimated. This is achieved by treating the

neighbouring embedding coordinates as a labelling associated with each surface

vertex within the current embedding. The neighbouring coordinates can then be

estimated at unlabelled vertex locations using kernel regression (Section 4.2.5) by

restricting the k nearest vertices to the set of vertices already labelled.

This procedure is the equivalent of multi-atlas label propagation (Rohlfing et al.,

2003; Heckemann et al., 2006), adapted for a set of embedding coordinates. This

can also be iterated to propagate a set of coordinates to every surface within the
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cohort (Fig. 36). This ultimately enables all surfaces to be embedded in a single co-

ordinate system and for correspondences to be found between subjects of different

ages, even if these differ significantly in their cortical surface geometry (Fig. 37b).

Additionally, the propagation of nineteen anatomical labels derived from a neona-

tal atlas set (Gousias et al., 2012) is also demonstrated. The MRI volumes for fetuses

whose age was greater than 36 weeks GA were first parcellated by registering the

neonatal atlas set to each volume and fusing the atlas labels. Each surface voxel

was then assigned the anatomical label of its nearest voxel from the corresponding

MR volume. This formed a surface atlas set for stepwise propagation to all other

cortical surfaces (Fig. 37a).
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Figure 36: Stepwise Embedding Coordinate Propagation. This diagram illustrates the
propagation of a set of embedding coordinates (t′ = 37) to the cortical sur-
faces of younger subjects. Surface colour mapping shows the first 3 embedding
coordinates encoded as RGB values. These coordinates can be viewed as a sur-
face labelling, which may be propagated to neighbouring surfaces via surfaces
that are shared across neighbouring embeddings. At each iteration, labelled
subjects are treated as atlases, whose labels are propagated to any unlabelled
surfaces within the same embedding using kernel regression. This process can
be repeated iteratively until all surfaces are labelled, yielding a shared parame-
terisation for all surfaces. The dashed lines enclose the surfaces used to create
each of the embeddings.
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(a) (b)

Figure 37: Multi-atlas Label Propagation. Three examples of surfaces automatically la-
belled using kernel regression. (a) A 19 region parcellation. (b) The first em-
bedding coordinates (for t′ = 37) mapped to RGB channels respectively (See
Fig. 36).

4.3 results & discussion

4.3.1 Model Parameters

Graph Laplacian Edge Weighting

The parameter φ was introduced to control the weighting of inter-mesh edges rela-

tive to intra-mesh edges when constructing the graph Laplacian for a multi-layered

surface graph (φ = 1, gives an equal total weighting to both types of edges). The

value φ = 0.1 was chosen empirically to achieve a compromise between embed-

ding regularity and sulcal alignment accuracy, determined using the validation

methods discussed later in this section, and also by visual inspection of the 3D
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representations of the final embeddings. This value could be tuned further to in-

crease sulcal alignment. However, increasing the value of φ substantially can have

a detrimental effect on embedding regularity.

Kernel Parameters

The kernel parameters, σt = 1 and k = 100 were chosen by observing the smooth-

ness of the final atlas templates. As the fetal subjects are fairly evenly distributed

with age (Section 1.4), a constant temporal smoothness value σt = 1 was chosen.

Both parameters are dependent on the size of the dataset. Additionally, the value

chosen for k will depend on the required resolution of the surface meshes.

4.3.2 Sulcal Alignment Accuracy

To determine the precision of the sulcal alignment a common anatomical feature

was manually delineated for each subject; the central sulcus. A “polyline” (a line

defined by a successive sequence of vertices) was extracted by traversing each

surface along the centre of the sulcus. These lines were then mapped pairwise

between subjects within each embedding using the established spectral correspon-

dence (Fig. 38). The similarity between the central sulci after alignment was then

assessed using two established measures: the discrete Fréchet distance (Fd) (Alt

and Godau, 1995) and the average Fréchet distance (Fa) (Brakatsoulas et al., 2005).

The central sulcus was selected as it is a well-defined feature that can be easily

delineated. It is the one of the first sulci to form, and is therefore detectable at an

early GA (25 weeks) (Garel et al., 2001) and was observed in most of the subjects

within the cohort (> 75).
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Figure 38: Aligned Central Sulci. An example of a manual delineation of the central sul-
cus (depicted in red), along with 38 central sulci delineations mapped from
other subjects, using the established spectral correspondence (shown in white).

The Fréchet distance was chosen as it takes into account the location and ordering

of the points along a curve, unlike the popular Hausdorff distance, and is therefore

more sensitive to discontinuities in mapped polylines. Furthermore, the Fréchet

distance has a well defined average (Brakatsoulas et al., 2005) while the Hausdorff

distance is a maximum distance measure, increasing its sensitivity to outliers. The

Fréchet distance is often referred to as the “dog walker’s distance” as it can be

described intuitively using the scenario of an owner walking its dog. It is given by

the minimum leash length needed to connect a dog and its owner as they traverse

two separate paths. The owner and dog may proceed at any speed, and even stop,

but may not backtrack. Formally, let S be a metric space, then a curve A in S is a

continuous mapping from the unit interval A : [0, 1] → S. A reparameterisation

α is a continuous monotonic mapping α : [0, 1] → [0, 1]. If A and B are two

curves in S, then their Fréchet distance F(A, B) is defined as the infimum, over

all reparameterisations α and β, of the maximum distance in S between A(α(t))

and B(β(t)), for all t ∈ [0, 1].

F(A, B) = inf
α,β

max
t∈[0,1]

{d (A(α(t)), B(β(t)))} .
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Here d is a distance function of S. The sulcal alignment error was compared with

that given by spherical demons (Yeo et al., 2010) and two further baseline methods

which register surfaces using transformation in 3D: Iterative Closest Point (ICP)

registration using affine transformations and ICP using FFDs (with a control point

spacing of 2.5 mm) (Rueckert et al., 1999). Alignment error was first compared

within each embedding, i.e. between subjects of a similar age. The error between

spectral matching and spherical demons was similar, with both outperforming

the baseline methods, especially at older ages. The spectral alignment accuracy

improved from 25 weeks onwards, with the lowest mean error, Fa ≈ 0.4 mm, at

30 weeks (Fig. 39). This trend was replicated with spherical demons and may be

explained by the central sulcus becoming more distinct as it transforms from a

shallow depression into a deep sulcus, which is more easily matched. After this,

the mean matching accuracy dropped for both methods as the cortical complexity

increased, with the largest average error seen around 36 weeks (Fa ≈ 1 mm).

The sulcal mapping accuracy was also compared between subjects of different

ages, by first embedding both of their surfaces in the same coordinate system

(Section 4.2.7). Accuracy was then compared when mapping sulcal delineations

from younger subjects (≈ 27 weeks) to progressively older subjects (Fig. 40a) and

also when mapping sulci for older subjects (≈ 37 weeks) to progressively younger

ones (Fig. 40b). Again, performance of the two methods was similar and superior

to the baseline methods.
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Figure 39: Intra-embedding sulcal mapping error. For each embedding, the sulcal delin-
eations were mapped pairwise for all surfaces. The average alignment error is
shown for four methods, quantified by the Fréchet distance, Fd (top), and the
average Fréchet distance, Fa (bottom). Error bars show the standard deviation
of the alignment error.
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(a) Source gestational age : 27 weeks
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(b) Source gestational age : 37 weeks

Figure 40: Inter-embedding sulcal mapping error. Central sulcus delineations were
mapped between surfaces that contributed to different embeddings by first
establishing temporal correspondences (Section 4.2.7). The average alignment
error, quantified by the average Fréchet distance, Fa, is shown for four meth-
ods (a) when mapping delineations for younger source subjects (≈ 27 weeks)
to progressively older target subjects and (b) when mapping delineations for
older source subjects (≈ 37 weeks) to progressively younger target subjects.
Error bars show the standard deviation of the alignment error.

4.3.3 Regional Overlaps

To assess the alignment accuracy over the whole brain surface, the overlap between

different regions of the brain was also evaluated. Each surface was parcellated

into 6 regions using a publicly available neonatal MR atlas database (Gousias et al.,

2012) (Fig. 41). MR atlases were first registered to each subject’s MR image volume

using the FFD model (Rueckert et al., 1999), and the atlas labels were fused to create

a volumetric parcellation for the subject. This parcellation was then refined using
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the method of Makropoulos et al. (2014). Each surface vertex was then assigned

the anatomical label of its nearest voxel from the corresponding MR image volume.

Labels were propagated between each pair of surfaces within an embedding using

the spectral (or spherical) correspondences, and their overlap measured using the

Dice coefficient (Sørensen, 1948).

The results were again similar between the spectral method and spherical demons

over all six regions (Table 6). As expected, higher Dice scores were observed in

the lobar regions that have a larger surface area. The lowest Dice scores were

observed for the insula, which is likely due to the absence of a clearly defined

inferior anatomical boundary.

Temporal Lobe

Insula
Occipital Lobe
Cingulate

Frontal Lobe
Parietal Lobe

Figure 41: Surface Parcellation. An example of a cortical surface model parcellated into 6
regions.

Region Spectral Spherical Demons

Temporal lobe 0.937 (± 0.015) 0.931 (± 0.015)
Insula 0.747 (± 0.088) 0.746 (± 0.084)

Occipital Lobe 0.929 (± 0.024) 0.914 (± 0.025)
Cingulate 0.829 (± 0.045) 0.823 (± 0.050)

Frontal Lobe 0.964 (± 0.009) 0.962 (± 0.011)
Parietal Lobe 0.922 (± 0.020) 0.913 (± 0.025)

Table 6: Cortical region overlap. Region labels were propagated between pairs of corti-
cal surfaces using the established spectral or spherical correspondences, before
measuring their overlap using the Dice coefficient. Average Dice scores are sum-
marised.
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4.3.4 Embedding Regularity

The nth eigenvector of the Laplacian has the property of being smooth and

monotonous over a surface between, at most, n poles (Lombaert et al., 2013b).

This gives a diffeomorphic mapping between a surface and its spectral representa-

tion. The local structure of a surface graph is preserved in the embedding, i.e. an

embedded vertex is central to its connected vertices. A simple experiment was con-

ducted to ascertain whether the local structure of each surface graph is preserved

when a group of surfaces are embedded using the methodology outlined in this

chapter.

For each surface vertex i with spatial location xi and embedded position u′i,

edge-based smoothing (Field, 1988) was used to find the spectral centroid, ū′i, of

its neighbouring vertices j, i.e. ū′i = ∑j∈N(i) wju′j, where wj ∝ 1/
∥∥xi − xj

∥∥ and

∑j∈N(i) wj = 1. If the local structure is preserved, u′i and ū′i should be close. The

closest vertex to ū′i was found in the spectral domain, with spatial position x̄i, and

the distance ‖x̄i − xi‖ was measured. This distance should be small if the vertex i

is embedded close to its neighbouring mesh vertices.

This experiment was repeated for spectral matching with and without regular-

isation of the surface links (Section 4.2.3, final paragraph) and also for spheri-

cal demons replacing the spectral embedding coordinates with the method’s as-

sociated spherical coordinates. For each graph, the percentage of voxels where

‖x̄i − xi‖ = 0 was computed, i.e. the percentage of voxels where the local structure

of the graph was preserved. The average percentage was high for spherical demons

(99.57%) and for both variations of spectral matching (with regularisation, 99.91%,

and without, 98.83%) (Table 7). For points where ‖x̄i − xi‖ > 0, the mean distance

was also computed and this was found to be, on average, around the mesh resolu-
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tion for all methods (mesh edge length ≈ 0.5 mm). The average maximum distance

was relatively high for spectral matching with irregular surface links (4.15 mm),

however this decreased substantially with regularisation (0.724 mm) in line with

spherical demons (0.949 mm).

Spectral Matching

Measure irregular regularised Spherical Demons

Percentage 98.35 (± 1.12) 99.91 (± 0.09) 99.57 (± 0.34)

Mean[mm] 0.65 (± 0.14) 0.40 (± 0.03) 0.41 (± 0.032)

Max[mm] 4.15 (± 2.55) 0.72 (± 0.23) 0.95 (± 0.38)

Table 7: Embedding regularity. Percentage of mesh vertices where structure is preserved
(see text).

These results show that the local structure is largely preserved for all methods

and that most irregularities are small. However, there was a small number of large

irregularities with spectral matching without regularisation, particularly at older

gestational ages as the cortical surfaces become more complex (Fig. 42).
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Figure 42: Embedding regularity visualisation. Each line signifies a vertex where the local
structure of the surface was not preserved in the embedding. The length of
the line is proportional to the distance that the embedded vertex is from the
centroid of its neighbouring vertices, when both are mapped back to the spatial
domain (the exact distance in mm is given by the colour mapping). Note the
irregularities seen when the initial surface links are not regularised.

4.3.5 Average Cortical Surfaces

Average cortical surfaces were generated for each week of gestation from the spec-

tral embeddings as well as via spherical demons (Fig. 43). Generating an average

surface from a spectral embedding was discussed in Section 4.2.6, and for spherical
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demons a similar approach was taken. A regularly sampled spherical mesh gives

the correct topology and provides the vertex connectivity for an average surface.

This was readily generated by subdividing a platonic solid mesh and projecting

the vertices back onto the sphere. Kernel regression (Section 4.2.5) can then be

used to find an average surface position at each vertex. Transforming the spherical

mesh back to the spatial domain, using the average surface position at each vertex,

gives an average cortical surface.
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Spherical Demons
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Figure 43: Average cortical surface templates. Cortical surface templates were constructed
for each week of gestation, for both spectral embeddings and spherical demons.
Both methods produced visually similar templates, capturing an estimate of the
average growth for the cohort.
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For both methods, the timing of the sulcation observed in the average surfaces

matched previous observations from MR images (Garel et al., 2001). At 23 weeks,

the global shape of the brain has already formed and the sylvian, calcarine, parieto-

occipital and hipocampic fissures, as well as the cingulate, are all well defined

on the average surfaces. The first sulcus to form is the central sulcus, which is

detectable from 24 weeks and very prominent after 27 weeks. By 29 weeks the

precentral and postcentral sulci, frontal sulci, superior temporal sulcus and intra-

parietal sulcus are all clearly visible on the cortical surfaces. Visually the atlas

templates are similar to those previously constructed by Habas et al. (2012) and

Clouchoux et al. (2013).

Atlas templates constructed using the spherical demons pipeline produced

“sharper” templates at the expense of regularity; deeper sulcal pits were observed

as well as discontinuities at the posterior end of the Sylvian fissure. This sug-

gests that the spectral pipeline has a stronger regularising effect, as indicated by

the experiments conducted in Section 4.3.4. A trade-off exists between regularity

and smoothness and these differences may easily be accounted for by the chosen

parameter values for each of the pipelines. With the spectral method, the initial

regularisation of surface links (Algorithm 3) and the intra-inter edge weighting

(φ) will affect the smoothness of the templates, as well as the choice of kernel

parameters (σt, k). These parameters were not fine tuned extensively and more

experimentation is needed to ascertain whether a finer sulcal alignment may be

achievable while preserving regularity.
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4.3.6 Variability of average cortical surfaces

To estimate the variability of generated average surface templates, given a sample

size N, two distinct templates were computed from two disjoint subsets, both of

size N, of the cortical surface models within a temporal window, and then the

average distance between them was measured. This was performed for a range of

sample sizes (2-11) and 4 target ages (24, 28, 32 and 36 weeks). For each sample size

and target age, 10 iterations were performed using randomly generated disjoint

pairs of subsets from the available data. The average of these 10 iterations is shown

as a point in Fig. 44.
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Figure 44: Effect of sample size on the variability of generated atlas templates. The aver-
age distance between distinct templates generated from disjoint subsets of the
cortices was computed to give an estimate of the variability of generated surface
templates. The points plotted show an average of 10 iterations for a particular
sample size and age, with the error bars showing the standard deviation of the
10 iterations. The lines show a power law fit of the data for each target age.

At 36 weeks, where anatomical variation is the largest (for the target ages exam-

ined), the average surface generated was consistent to around 0.54 mm ± 0.04,

for N = 9. The relationship between sample size and the average distance be-
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tween generated average surfaces is well-modelled by a power law curve (R2 =

0.992 ± 0.003) for sample sizes up to 11. Extrapolating this relationship to sample

sizes above 11, the consistency of the average surfaces generated from the complete

dataset was predicted (Table 8). At 36 weeks, for the full sample size (N = 18), it

is therefore estimated that the atlas templates generated are consistent to around

0.40 mm, with smaller values for ages less than 36 weeks.

Target Age (t) [weeks] 24 26 28 30 32 34 36

Sample Size (N) 22 16 22 22 22 16 18
Variability [mm] 0.114 0.159 0.164 0.237 0.271 0.396 0.403

Table 8: Atlas template variability prediction. By extrapolating the power law fit of the
variability measured to sample sizes greater than 11 (see Fig. 44), it is possible to
estimate the variability of surface templates generated using the full dataset size.

4.4 conclusion

In this chapter, a spatio-temporal surface atlas of the developing fetal brain was

constructed. Establishing a set of preliminary correspondences between cortical

surfaces allowed a group of surface graphs to be linked. This permitted an analy-

sis of their graph Laplacian spectrum as a single entity, yielding an orthonormal

basis for modes of an entire group of surfaces. This gave accurate and unbiased

correspondences between surfaces in a fraction of the time required by spherical

registration methods.

Average cortical surface templates were constructed for each week of gestation

by averaging the surface position over the spectral embeddings. These accurately

capture the global shape and the timing of sulcal development over the cortex.
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Furthermore, the prominence of visible sulcation suggested a good alignment

between embedded surfaces. The average surfaces generated were reproducible,

with an average boundary variability of around 0.54 mm, for disjoint subsamples

of the dataset (N = 9) and a target age of 36 weeks, where sulcal variation is high.

The sulcal alignment was found to be significantly better than 3D deformation

methods and comparable to spherical demons, a state of the art 2D surface reg-

istration technique. The regularity of the embedded surfaces was also examined,

which is necessary for a diffeomorphic mapping across surfaces, and this was also

found to be comparable with that provided by spherical demons. A key advantage

of spectral matching over spherical demons is the ability to do group-wise atlasing

without bias to a reference. Lombaert et al. (2013b) have demonstrated that their

spectral method has minimal bias when compared to spherical demons and the

group-wise extension presented in this chapter further removes bias.

A spatio-temporal atlas is an extremely useful tool for analysing cortical shape

and, in the next chapter, the potential of this methodology for comparing cortical

anatomy will be explored. For this, surface templates will be constructed for both

fetuses and preterm neonates, and the difference in mean shapes will be quantified

by computing displacements for matched locations.





5
A C O M PA R I S O N O F C O RT I C A L S H A P E F O R F E T U S E S A N D

P R E T E R M S

5.1 introduction

At the time of writing, very little work has been done to investigate the differences

in cortical geometry between fetuses and preterms at equivalent ages. A first at-

tempt was made by Clouchoux et al. (2012) who measured a reduction in cortical

plate surface area for preterms. More recently, Lefèvre et al. (2015) quantified cor-

tical folding for fetuses (N = 14) and also preterms (N = 27, imaged shortly after

birth) and found differences for a number of metrics, including global folding mea-

sures, lateral surface area and gyrification index (age range overlap: 25-35 weeks).

This suggests that the process of birth itself may have some effect on the shape

of the brain or that folding characteristics may diverge in preterms due to their

exposure to an ex utero environment after birth.

Meaningful comparison of brain development between fetuses and neonates is a

difficult task. Inescapable differences in image acquisition such as native voxel

resolution, signal-to-noise ratio and the additional post-processing image recon-

struction step for addressing movement in fetal data, may systematically influence

image segmentation, mesh extraction and ultimately any quantification of shape

or gyrification between the two groups. Therefore, great care must be taken when

drawing conclusions from any quantitative comparison.

161
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The fetal images used in this thesis were created by first acquiring 2D slices with

a resolution of 1.25× 1.25× 2.5 mm, (disoriented due to fetal motion) which were

then reconstructed into a coherent 3D volume with an isotropic resolution of

1.18× 1.18× 1.18 mm, using SVR registration method (Jiang et al., 2007). In com-

parison, the neonatal image datasets have a resolution of 0.86× 0.86× 1 mm. Due

to the relatively thick slices of the fetal acquisition and the non-super resolution

reconstruction, extracted fetal surfaces are smoother than comparable neonatal sur-

faces. Thus a comparison of fine sulcal geometry using mean curvature or sulcal

depth is confounded. This chapter therefore focusses on quantifying global shape

differences between the two cohorts.

Note the aim of this thesis is develop methods for quantifying folding and when

higher quality data become available (for example, through the Developing Hu-

man Connectome Project), the methodology developed in this chapter and the

previous chapter may be readily applied to a quantification of folding.

5.1.0.1 Overview

In this chapter, surface atlas templates are constructed for both fetuses and

neonates for the postmenstrual age range 28 - 36 weeks and a comparison of

mean cortical shapes across this age range is presented. Note, for the purpose of

this thesis, the term postmenstrual age is defined as gestational age plus chrono-

logical age, thus postmenstrual age and gestational age are equivalent for a fetus.

The cortical shape of the preterm brain is likely to depend not only on PMA at

scan but also GA at birth, i.e. prematurity. Thus, preterm surface templates were

constructed for groups of subjects with a similar PMA at scan and also GA at birth

where sufficient imaging data were available. This allowed changes in cortical

shape due to birth and also changes that occur due to a longer exposure to an ex
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utero environment to be investigated. Differences in shape between preterm tem-

plates and corresponding fetal templates (constructed for the same target PMA) are

quantified through displacements measured between matched locations over the

surfaces. In the next section, full details of atlas construction are given including

a weighting scheme that explicitly tackles unevenness in the distribution of ages

at which imaging data are available. In the following section, preliminary results

from this analysis are presented.

5.2 atlas construction

Image segmentation, mesh extraction and atlas template construction were per-

formed using the same protocols for both fetuses and preterms (as outlined Chap-

ter 4). Left and right cortical surface meshes were extracted for 78 fetal subjects and

196 neonatal subjects, with both hemispheres contributing to the construction of

symmetric templates of mean cortical shape. Nine fetal and 27 preterm templates

were constructed in total for the postmenstrual age range 28-36 weeks (the over-

lap in age range for the two groups). For fetuses, a template was constructed for

each week of gestation, with a temporal window width of 3 weeks. For preterms,

templates were constructed for groups of subjects with both a similar GA at birth

and PMA. For this, circular windows (diameter = 3 weeks) were defined in the 2D

age space (Fig. 45) with centroids at integer values of PMA and GA at birth, and

atlases were constructed if enough subjects were available. The sample size for

each template constructed is detailed in Table 9.
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Figure 45: Preterm atlas construction using temporal windows. Each circle depicts a win-
dow for atlas construction, where the surfaces for subjects contained within are
averaged to generate a mean template. Colours correspond to developmental
trajectories for babies born at different gestational ages. For example, purple
correspondences to babies born at 26 weeks GA ± 1.5.
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GA at birth [weeks] Sample size

fetal (N/A) 17 17 15 20 13 14 8 14 13

25 – 20 – – – – – – –

26 28 35 25 19 18 – – – –

27 – 31 30 24 17 – – – –

28 – – 37 42 – – – – –

29 – – – 32 34 – – – –

30 – – – – 36 35 – – –

31 – – – – – 42 36 16 –

32 – – – – – 31 36 17 –

33 – – – – – – 21 17 –

34 – – – – – – – 16 20

35 – – – – – – – – 18

PMA [weeks] 28 29 30 31 32 33 34 35 36

Table 9: Sample sizes for atlas construction. The number of subjects that contributed to
the construction of each template is shown. Note that symmetric templates were
constructed from both the left and right hemisphere of each brain, thus the num-
ber of surfaces averaged to form a template was double the sample size above.

5.2.1 Accurate mean surface estimation from irregularly distributed samples

5.2.1.1 Fetal subjects

Previous kernel-based methods for constructing atlas templates (Kuklisova-

Murgasova et al., 2011; Serag et al., 2012a) for a target age have not addressed

the issue of unevenness in the distribution of ages for subjects within a temporal

window. Note the method of Serag et al. is aimed to adapt to low or high sample

density within a window as a whole and does not address the potentially asym-

metric distribution of samples. To illustrate this issue, if we have twice as many

subjects that are younger than the target age, the constructed template would have

lower cerebral volume and the cortical surface would be less convoluted than ex-

pected for the target age. This can lead to inconsistent increases in brain size and



166 a comparison of cortical shape for fetuses and preterms

convolution between templates that are constructed for regular time-intervals. Re-

moving this bias is important for an atlas-based comparison of cortical shape. In

order to address this, a scheme for initialising a set of weights and subsequently

adjusting them (reweighting) is described below.

Let ti denote the GA of the i-th subject and ttarget denote the target age, i.e. the age

for which we wish to generate an average anatomy for. Assuming that the average

surface position is linearly related to time within a window, then an ideal set of

weights to reconstruct the average surface must satisfy:

ttarget = ∑
i

witi,

i.e. the target age is the a weighted mean (or centroid) of the ages. If weights are

first initialised using a Gaussian distribution (Serag et al., 2012a), they can then

be reweighted to satisfy this requirement by scaling the weights for all subjects

younger (or older) than the target age. Let t
′
i denote the difference in age of subject

i from the target age, i.e. t
′
i = ti− ttarget, then the weighting for the younger subjects

may be recomputed by multiplying them by following scale factor:

∑t′i>0 wi|t
′
i|

∑t′i<0 wi|t
′
i|

. (15)

Alternatively, the inverse scale factor may be used to reweight the older subjects.

Note the weights must now be renormalised so that they sum to one. Unfortu-

nately, if the data within a window is highly non-uniformly distributed, this sim-

ple approach can lead to very high weights for a few individual subjects. For

example, if only only a few subjects are older than the target with a large number

of younger subjects, then this reweighting would introduce a strong bias towards

the individual anatomy of the few older subjects. To mitigate this problem, a limit
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was placed on the maximum weight attributed to any single subject. A reweight-

ing factor was computed iteratively starting at 1 and incrementing up to the opti-

mum value determined by Eqn. 15, while all weights remain below the maximum

allowed value (a value 0.1 was chosen for this purpose).

5.2.1.2 Preterm subjects

For preterm subjects, templates were constructed for circular windows in the 2D

age space (Fig 45). Again, if subjects are not well distributed within a window,

the mean shape will not be representative for a target PMA and GA at birth. Let a

point in the 2D age-domain be denoted as a vector t = [ t1, t2 ], representing the

GA at birth and PMA respectively, and let a target point be denoted ttarget. An ideal

weighting is given when the weighted mean of the subject age vectors is equal to

the target age vector:

ttarget = ∑
i

witi. (16)

In some cases, a set of positive weights that satisfy this equation may not exist, for

example, if all points are located within a sector of the window with an arc length

of less than 180 degrees. In this case, it is not possible to construct the average

shape for a target age vector at the centre of the window.

To automatically determine if a window was suitable for constructing an average

template, the angular density was estimated along numerous directions using a

Gaussian kernel (Rosenblatt, 1956; Parzen, 1962). If all the densities computed

were greater than a certain threshold, then an atlas was constructed for the window

in question. For subject i with age vector ti inside a window centred at ttarget, with
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Euclidean displacement from the centre t
′
i = ti − ttarget, its angular displacement

θi is given:

θi = angle(t
′
i),

angle(t) = arctan
(
|t1|
|t2|

)
.

Then for a group of k subjects with angular displacements Θ = [θ1, θ2, . . . , θk], the

density may be estimated by a Gaussian kernel G for a particular direction φ:

density(Θ, φ) = ∑i G(wrap(θi − φ)),

G(θ) = exp
(
−θ2

2σ2

)
, wrap(θ) =


θ − 2π if θ > π

θ + 2π if θ < −π

θ else

.

Here G is a Gaussian weighting function and “wrap” is a function that ensures the

angular displacement θi − φ is given by the shortest route around the circle. Den-

sities were computed for several uniformly spaced directions Φ = [φ1, φ2, . . . , φl ],

φi =
2πi

l . If the estimated density was greater than a threshold τ for all directions

φi, then an atlas was constructed for ttarget. Parameter values σ = π
√

2× ln(2) (i.e.

FWHM = π
2 ) and τ = 1.5 were chosen through experimentation, by observing the

windows selected in the 2D age domain.

After selecting windows for atlas construction, subject weights were again ini-

tialised with a Gaussian weighting (Serag et al., 2012a) and iteratively reweighted

to gain a better estimate of the average anatomy for a target PMA/GA. When averag-

ing a group of cortical surfaces, each subject exerts a “pull” away from the desired
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average anatomy towards an anatomy more similar to itself. The exact relationship

between the average surface position and both PMA and GA is unknown. However,

if we assume locally linear relationships within a window, this “pull” is given by

the product of its weight and its displacement from the centre of the window, and

balancing this for all subjects is equivalent to satisfying Eqn. 16. Therefore, to gain

a better estimate of the average surface for a target GA/PMA, each subject’s weight

was normalised by the inverse of the density of the “pull” for its particular an-

gular displacement. This procedure was carried out iteratively while the subjects’

weights did not exceed a threshold (see Alg. 4 for a technical description). Using

this reweighting approach, the average estimation error ε =
∥∥ttarget −∑ witi

∥∥
2 was

reduced by a factor of approximately 10 from 0.212 ± 0.097 weeks to 0.028 ± 0.030

weeks.
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Algorithm 4: Subject reweighting scheme. The intuition here is that all subjects
exert a “pull” away from the desired average anatomy. The magnitude of the
“pull” is given by the product of its weight and its distance away from the target
age in the 2D age domain. Reweighting is achieved by normalizing this “pull”
for all angular directions. An assumption here is that there are no large angular
displacements between subjects within the window.
Data:

subject age vectors: t1, . . . , tk
target age vector: ttarget
initial weighting: w = [w1, . . . , wk]
angular displacements: Θ = [θ1, . . . , θk]

Initialise Parameters:
εbest = ∞, εmin = 0.01, wmax = 0.1, max_iterations = 10

for i = 1 to max_iterations do

// compute centriod error ε
ε =

∥∥ttarget −∑ witi
∥∥

2

// update best weights if error is lower than previous iterations

if ε < εbest & ∀wi. wi < wmax then
εbest = ε
wbest = w
// exit if error is acceptable

if ε < εmin then
break

// copy old weights

for i = 1 to k do
vi = wi

// reweight by the inverse weighted density

for i = 1 to k do
densityi = ∑k

j=1
∥∥ti − ttarget

∥∥
2 vj G(wrap(θj − θi))

wi = vi/densityi

// normalise weights

wtotal = ∑i wi
w = w/wtotal

return wbest
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5.3 results

Fig. 47 shows average cortical templates constructed for extremely preterm sub-

jects (25-29 weeks), while Fig. 48 shows templates for very preterm (30-32 weeks)

and moderately preterm subjects (33-35 weeks). Fetal templates with equivalent

postmenstrual ages are also shown for comparison. Note the colour mapping on

these templates is to aid visual perception of the surface geometry; convex and

concave regions are shown as blue and red respectively. More views are presented

in Appendix A.1. Volumes were also estimated for each template using the diver-

gence theorem algorithm (Alyassin et al., 1994) and can be seen in Fig. 49.

The volumes for preterm templates were generally lower compared to fetal tem-

plates with the same PMA, with a few exceptions at later PMAs. Furthermore, for

extremely preterm babies born around 26-27 weeks GA (where enough data was

available to construct several templates along a developmental trajectory), a non-

linear increase in volume was observed compared to a linear increase for fetal

templates. Initially, a slow increase in volume was observed followed by a fast in-

crease in volume. This suggests that an adjustment period may occur after birth as

the brain adapts to its new environment, where growth is adversely affected, and

after this point development may accelerate to compensate.

For extremely preterm babies, the most striking difference in shape between the

surface templates, which can be observed visually, is the shift of the occipital lobe

anteriorly (Fig. 47). For fetal templates, the extremity of the occipital lobe is no-

ticeably more angular and posterior. Additionally, the depth of the inferior and

superior frontal sulci as well as the superior temporal sulcus appeared reduced.

For preterm babies born later (30-36 weeks), visible differences were not as appar-
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ent (Fig. 48). In the next section, these differences in shape will be quantified by

computing displacements for matched surface locations.

5.3.1 Surface displacement

In order to quantify differences in cortical shape, for each preterm template, dis-

placements were computed for matched locations on the corresponding fetal tem-

plate that was constructed for the same target PMA. For this, the preterm template

mesh was first rigidly aligned with its corresponding fetal template mesh using

ICP registration. The pair of surfaces were then embedded in the spectral domain

via a joint spectral decomposition and corresponding fetal template spatial coordi-

nates were estimated for each preterm template vertex using kernel regression in

the spectral domain (see Chapter 4). For each preterm template, the scalar projec-

tion of the displacement along the outward surface normal N was computed by

taking the dot product. This allows displacements to be characterised as positive

(outward) and negative (inward) relative to the surface, and can be visualised as a

colour mapping over the surface. For the complete set of surfaces with the scalar

projection of the displacement colour mapped see Appendix A.2.

A common pattern of displacements was observed for templates constructed for

extremely preterm babies relative to templates constructed for fetal subjects (see

Fig. 50 & 51). The occipital lobe and temporal lobes were shifted anteriorly rela-

tive to the parietal lobe, which was shifted superiorly. Additionally, the superior

edge of the anterior temporal lobe appeared to be displaced superiorly. Negative

displacements were also seen around the middle temporal gyrus and the middle

frontal gyrus. For the same premenstrual age, this pattern of displacements was

intensified for babies born more prematurely (see Appendix A.2).
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For templates constructed for moderate and very preterm babies, again, negative

displacements were seen around the middle temporal gyrus and the superior edge

of the anterior temporal lobe appeared to be displaced superiorly. However, a

different pattern of displacements was observed elsewhere. Positive displacements

were seen at the anterior and posterior extremities of the brain, resulting in an

elongated head shape. Once again, for the same premenstrual age, the pattern of

displacements was more pronounced in babies born more prematurely.

5.4 discussion

For the fetal images used in this chapter, the relatively thick slices acquired

(1.25× 1.25× 2.5 mm) and non-super resolution SVR reconstruction (Jiang et al.,

2007) results in significant blurring of fine scale structures. As a result, extracted

cortical surface models are noticeably smoother at later gestations and segmenta-

tion errors are common in highly convoluted regions such as the calcarine and

parieto-occipital fissures. This may explain the relatively large negative displace-

ment in these regions for templates constructed for 33-36 weeks PMA (Fig 63, Ap-

pendix A.2). For an example of typical segmentation errors, please see Figure 46.

Analysis in this chapter has, therefore, been restricted to macroscopic shape differ-

ences rather than sulcal geometry. However, with better quality data, this method-

ology is readily applied to an analysis of sulcal geometry.

Fetal imaging is a relatively new area of research and image quality is still being

improved, for example, through advances in acquisition such as 3T MRI (Victoria

et al., 2016). The increased magnetic field strength over 1.5T may be used to de-

crease noise, increase resolution or speed up acquisition to reduce motion blurring
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artefacts. Acquiring images at 3T is a challenging task, however, due to increased

inhomogeneity in the magnetic field.

Post-processing techniques such as super-resolution reconstruction (Rousseau

et al., 2010; Kuklisova-Murgasova et al., 2012; Kainz et al., 2015) have also been

used to enhance the resolution of images. These techniques exploit overlapping

slices to infer boundary locations with sub-voxel accuracy by observing the graded

intensity response of adjacent voxels, similarly to how the human eye can discern

thousands of hues from just three different cone types. Instead of simply interpo-

lating 2D slice voxel intensities, an image may be reconstructed by estimating an

unknown high resolution image volume (e.g. 0.75 mm3) whose voxel intensities

best explain the acquired 2D slices, after applying a Point Spread Function (PSF)

(the impulse response of the imaging system to a point source). For an SSFSE imag-

ing sequence, a 3D Gaussian kernel is a good approximation of the PSF. In practice,

the unknown 3D volume is estimated by minimising the SSD between acquired

slice voxel intensities and the estimated intensities after the 3D Gaussian kernel is

applied.

A large dataset of high quality fetal brain images is currently being acquired on the

Developing Human Connectome Project (which makes use of both 3T acquisition

and super-resolution reconstruction). Surface models extracted from these data are

greatly improved compared to those used in this chapter, with fewer segmentation

errors, deeper sulci and better reproduction of fine scale detail (Fig. 46). When

enough datasets become available, it will be possible to investigate the findings in

this chapter further and also compare sulcal geometry between groups.



5.4 discussion 175

Figure 46: Influence of imaging quality on extracted cortical surface models. Typical cor-
tical surface models automatically extracted for two subjects aged 32 weeks GA,
from a 1.5T non-super resolution image (a) and a 3T super-resolution image (b).
Note the reduced sulcal depth in (a) and also the implausible geometry around
the calcarine fissure due to segmentation error.
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5.5 conclusion

In this chapter, an atlas-based comparison of mean shape between preterms and

fetuses was undertaken. Nine fetal and 27 preterm templates were constructed

in total over the postmenstrual age range 28-36 weeks. The problem of irreg-

ularly distributed subjects within a temporal window was highlighted, and a

weighting scheme was proposed which contrasts with that of (Serag et al., 2012a)

and (Kuklisova-Murgasova et al., 2011). Surface displacements were computed be-

tween preterm templates and corresponding fetal templates for matched locations

over the surfaces, allowing an analysis of shape between the two cohorts. Pat-

terns of displacement were uncovered that were intensified in more premature

babies for the same PMA. Due to the low resolution of the reconstructed fetal im-

ages, a comparison of fine scale cortical structure, such as folding, was prohibited.

However, when high quality data becomes available in the future (e.g. through

the Developing Human Connectome Project), the methodology developed in this

chapter will enable such a comparison.

There is a lot of scope for further analysis with this methodology. For example,

geometric features such as mean curvature may be compared across a surface

template to discover differences in sulcation between the two groups. Moreover,

changes in curvature over time can be analysed in order to determine the rate of

development along different developmental trajectories. This will be discussed in

more detail in the next chapter, where the contributions of this thesis are reviewed

and future work is explored.
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Figure 47: Atlas templates (GA at birth: 25-29 weeks). For the preterm templates, each
row shows a developmental trajectory for subjects born around the same age.
Note the background colour for each birth age corresponds with Fig. 45 & 49.
The colour mapping shows mean curvature (red, convex; blue, concave), which
enhances visual perception of the template geometries.
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Figure 48: Atlas templates (GA at birth: 30-36 weeks) For the preterm templates, each
row shows a developmental trajectory for subjects born around the same age.
Note the background colour for each birth age corresponds with Fig. 45 & 49.
The colour mapping shows mean curvature (red, convex; blue, concave), which
enhances visual perception of the template geometries.
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Figure 49: Template volumes. Each colour depicts a developmental trajectories for
subjects born at a particular age. These colours correspond to those in
Fig. 45, 47 & 48.
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Figure 50: Typical template displacement for extremely preterm babies (lateral view).
The template shown was constructed for babies born at 27 ± 1.5 weeks GA and
scanned at 29 ± 1.5 weeks PMA. Arrows depict displacements from matched lo-
cations on the corresponding fetal template constructed for subjects with a GA
of 29 ± 1.5 weeks. The length of the arrows show the magnitude of the displace-
ment with a one-to-one scaling. Colour mapping depicts the scalar projection of
the displacement along the surface normal (red: +3 mm, blue: −3 mm). Warmer
colours show positive (outward) displacements and cooler colours show nega-
tive (inward) displacements.
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Figure 51: Typical template displacement for extremely preterm babies (medial view).
The template shown was constructed for babies born at 27 ± 1.5 weeks GA and
scanned at 29 ± 1.5 weeks PMA. Arrows depict displacements from matched lo-
cations on the corresponding fetal template constructed for subjects with a GA
of 29 ± 1.5 weeks. The length of the arrows show the magnitude of the displace-
ment with a one-to-one scaling. Colour mapping depicts the scalar projection of
the displacement along the surface normal (red: +3 mm, blue: −3 mm). Warmer
colours show positive (outward) displacements and cooler colours show nega-
tive (inward) displacements.
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Figure 52: Typical template displacement for moderately preterm babies (lateral view).
The template shown was constructed for babies born at 33± 1.5 weeks GA and
scanned at 35± 1.5 weeks PMA. Arrows depict displacements from matched lo-
cations on the corresponding fetal template constructed for subjects with a GA
of 35± 1.5 weeks. The length of the arrows show the magnitude of the displace-
ment with a one-to-one scaling. Colour mapping depicts the scalar projection of
the displacement along the surface normal (red: +3 mm, blue: −3 mm). Warmer
colours show positive (outward) displacements and cooler colours show nega-
tive (inward) displacements.
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Figure 53: Typical template displacement for moderately preterm babies (medial view).
The template shown was constructed for babies born at 33± 1.5 weeks GA and
scanned at 35± 1.5 weeks PMA. Arrows depict displacements from matched lo-
cations on the corresponding fetal template constructed for subjects with a GA
of 35± 1.5 weeks. The length of the arrows show the magnitude of the displace-
ment with a one-to-one scaling. Colour mapping depicts the scalar projection of
the displacement along the surface normal (red: +3 mm, blue: −3 mm). Warmer
colours show positive (outward) displacements and cooler colours show nega-
tive (inward) displacements.





6
C O N C L U S I O N

This thesis has presented work on quantifying cortical folding patterns for fetuses

and preterm neonates. Techniques have been developed for quantifying global and

regional gyrification, and also for constructing a spatio-temporal surface atlas of

cortical morphology. These techniques have been used to investigate and compare

folding patterns for both fetuses and preterms. In the following section, the con-

tributions of this thesis will be reviewed for each chapter and then, in Section 6.2,

avenues for future work will be explored.

6.1 contributions

In Chapter 3, an image analysis framework for quantifying gyrification was pre-

sented. Eight curvature-based folding measures from the literature were adapted

and applied to a normal fetal dataset (N = 80) over a large gestational age range

(21.7− 38.9 weeks), extending our understanding of how the cortex folds through

this critical developmental period. The relationship between folding measures and

GA reflected the rate of gyrification that has been observed visually with sulcation

accelerating rapidly over this time-period, suggesting that these measures provide

a good characterisation of gyrification. Moreover, folding measures were found

to be better correlated with age than cerebral volume, suggesting they may be a

185
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better biomarker for assessing the neural health of fetuses. A Gompertz function

was found to be a good fit for this relationship, which subsequently allowed an

accurate prediction of physiological age. The concept of physiological age allows

a developmental delay to be characterised by an offset in weeks, which may be of

more meaningful in a clinical setting. Although this framework is well-suited for

detecting gross discrepancies in gyrification, a limitation is that localised distur-

bances may remain undetected when averaging curvatures over a relatively large

region.

Chapter 4 proposed a framework for constructing a spatio-temporal surface atlas,

which allows folding to be analysed on a localised scale. Cortical surface models

were extracted for fetal subjects by deforming a mesh with spherical topology to-

wards a segmented cortical boundary. Correspondences were then established for

age-matched groups of surfaces through a joint spectral analysis. Fifteen surface

templates were constructed at weekly intervals using kernels to gain a spatially

and temporally weighted estimate of the average surface position. Templates con-

structed from disjoint samples of the available data were found to be reproducible

with a small amount of deviation measured between them. This methodology

performs favourably in comparison to a state of the art spherical registration al-

gorithm, spherical demons. Comparable sulcal alignment accuracy was achieved

with a reduced computational burden. Furthermore, a key advantage is the ability

to perform group-wise atlasing without bias to an initial reference.

In Chapter 5, an atlas-based comparison of cortical shape for fetuses and preterms

was presented. The problem of unevenly distributed subjects within a tempo-

ral window was highlighted and subject weighting schemes were proposed to

compensate for this, allowing a more accurate estimation of the average surface

for a particular target age. For preterms, surface templates were constructed for

groups of subjects with both a similar GA at birth and PMA, allowing the effects
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of premature birth to be investigated along different developmental trajectories.

Mean shape was compared between each preterm template and its correspond-

ing fetal template (constructed for the same PMA). For this, correspondences were

established via a joint spectral analysis and displacements were computed for

matched surface locations. Patterns of displacement were characterised for ex-

tremely preterm babies and also for very and moderately preterm babies. More-

over, these patterns appeared intensified in more premature babies for the same

PMA. It is possible that the differences in imaging data used for this comparison

had some influence over the results, therefore more work is needed to assess the

reliability of these preliminary findings. This will be possible when large, high-

quality datasets become available through the (Developing Human Connectome

Project).

6.2 limitations and future work

A spatio-temporal surface atlas is an extremely useful tool for comparing cortical

anatomy between cohorts. In this thesis, due to the limited size of the fetal dataset

used, cortical shape was compared using symmetric templates only. However, with

enough data, separate hemispheric templates could be generated, thus allowing

lateralisation of the cortical surface to be investigated and to determine how pre-

maturity effects this. Another interesting pathway that was not explored using

this methodology is the temporal evolution of the cortical surface. This could be

accomplished by comparing surface position or curvature between temporally ad-

jacent atlas templates. Alternatively, all subjects may be embedded in a common

reference space as in Section 4.2.7 and regression models constructed to model

cortical evolution for various locations over a template as in (Habas et al., 2012).
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A direct comparison of average surface position through surface templates (as

in Chapter 5) has a weakness: the reliability of displacements measured is not

quantified, i.e. there is no control over type 1 errors. In Section 4.3.6 the consistency

for a fetal surface template was found to be around 0.4 mm on average for a sample

size of 20 and a target GA of 36 weeks. Thus, a displacement measured from a

preterm template to a matched location on a fetal template of this magnitude

could easily be due to random variation. A surface atlas does, however, facilitate

a more robust comparison through Surface-Based Morphometry (SBM) , which is

a surface-based analogue to VBM. For this, the surface locations of the individual

subjects are first mapped onto an average surface template. A statistical test is

then performed at each template vertex location, to determine if the difference in

mean surface position is significant between the two groups. SBM is not limited to

discovering significant displacements between groups and can also be applied to

any vertex data accompanying the individual cortical surface models. For example,

geometric features such as mean curvature or sulcal depth may be compared, as

can neurological parameters that can be projected onto the surface, such as cortical

thickness.

In this thesis, techniques to quantify cortical folding have been applied to normal

fetuses and preterms, however, these techniques could also be applied to inves-

tigate folding in other populations with congenital anomalies. Cohorts of partic-

ular interest include fetuses and infants with mild ventricular enlargement (ven-

triculomegaly) and congenital heart disease. Ventriculomegaly is one of the most

common congenital anomalies, with a prevalence of around 1%. In most cases,

prognosis is good (Gaglioti et al., 2005), however, it is associated with a greater

risk of cognitive, language, and behavioural impairments in infancy. It is thought

that disturbances in cortical development may be indicative of poor outcome in

these babies (Kyriakopoulou et al., 2014). Congenital Heart Disease (CHD) is an-



6.2 limitations and future work 189

other common birth defect, with around 0.6% of live births having moderate or

severe cases (Hoffman and Kaplan, 2002). There is increasing evidence that brain

development is altered in utero. For example, Limperopoulos et al. (2010) found

evidence of impaired neuroaxonal development and metabolism for fetuses with

CHD in the third trimester and also smaller brain volumes compared to normal

fetuses. Furthermore, reduced gyrification has been observed in utero (Clouchoux

et al., 2013) and also before surgical intervention (Ortinau et al., 2013).
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A
A P P E N D I X

a.1 cortical surface templates

Average cortical surface templates constructed for preterm babies and fetuses are

shown (see Chapter 5) for multiple different viewpoints (lateral, medial, superior

and inferior). The colour mapping shows mean curvature (red, convex; blue, con-

cave), which enhances visual perception of the template geometries.
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Figure 54: Lateral view, templates for extremely preterm babies (25-29 weeks GA at
birth).
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Figure 55: Lateral view, templates for very and moderately preterm babies (30-35 weeks
GA at birth).
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Figure 56: Medial view, templates for extremely preterm babies (25-29 weeks GA at
birth).



A.1 cortical surface templates 219

Postmenstrual age [weeks]

33 34 35 3632

G
e
s
ta

ti
o
n

a
l 
a

g
e

 a
t 
b

ir
th

 [
w

e
e

k
s
]

30

31

32

33

34

35

Fetal

Preterm

Figure 57: Medial view, templates for extremely preterm babies (25-29 weeks GA at
birth).
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Figure 58: Superior/lateral view, templates for all preterm babies.
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Figure 59: Inferior/medial view, templates for all preterm babies.
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a.2 cortical surface displacement maps

In this appendix, average cortical surface templates constructed for preterm ba-

bies and fetuses are shown (see Chapter 5). Each preterm template has a colour

mapping which visualises the displacements for matched locations on its corre-

sponding fetal template, i.e. the template constructed for subjects with the same

PMA. Specifically the colour mapping corresponds to the scalar projection of the

computed displacements along the surface normal. Thus positive values depicted

by hotter colours, show outward displacements relative to the fetal template, while

negative values depicted by cooler colours show inwards displacements.
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Figure 60: Lateral view, templates for extremely preterm babies (25-29 weeks GA at
birth).
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Figure 61: Lateral view, templates for very and moderately preterm babies (30-35 weeks
GA at birth).
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Figure 62: Medial view, templates for extremely preterm babies (25-29 weeks GA at
birth).
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Figure 63: Medial view, templates for extremely preterm babies (25-29 weeks GA at
birth).
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Figure 64: Superior/lateral view, templates for all preterm babies.
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Figure 65: Inferior/medial view, templates for all preterm babies.
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