653 research outputs found

    Finding Top-k Dominance on Incomplete Big Data Using Map-Reduce Framework

    Full text link
    Incomplete data is one major kind of multi-dimensional dataset that has random-distributed missing nodes in its dimensions. It is very difficult to retrieve information from this type of dataset when it becomes huge. Finding top-k dominant values in this type of dataset is a challenging procedure. Some algorithms are present to enhance this process but are mostly efficient only when dealing with a small-size incomplete data. One of the algorithms that make the application of TKD query possible is the Bitmap Index Guided (BIG) algorithm. This algorithm strongly improves the performance for incomplete data, but it is not originally capable of finding top-k dominant values in incomplete big data, nor is it designed to do so. Several other algorithms have been proposed to find the TKD query, such as Skyband Based and Upper Bound Based algorithms, but their performance is also questionable. Algorithms developed previously were among the first attempts to apply TKD query on incomplete data; however, all these had weak performances or were not compatible with the incomplete data. This thesis proposes MapReduced Enhanced Bitmap Index Guided Algorithm (MRBIG) for dealing with the aforementioned issues. MRBIG uses the MapReduce framework to enhance the performance of applying top-k dominance queries on huge incomplete datasets. The proposed approach uses the MapReduce parallel computing approach using multiple computing nodes. The framework separates the tasks between several computing nodes that independently and simultaneously work to find the result. This method has achieved up to two times faster processing time in finding the TKD query result in comparison to previously presented algorithms

    Missing values estimation for skylines in incomplete database

    Get PDF
    Incompleteness of data is a common problem in many databases including web heterogeneous databases, multi-relational databases, spatial and temporal databases and data integration. The incompleteness of data introduces challenges in processing queries as providing accurate results that best meet the query conditions over incomplete database is not a trivial task. Several techniques have been proposed to process queries in incomplete database. Some of these techniques retrieve the query results based on the existing values rather than estimating the missing values. Such techniques are undesirable in many cases as the dimensions with missing values might be the important dimensions of the userโ€™s query. Besides, the output is incomplete and might not satisfy the user preferences. In this paper we propose an approach that estimates missing values in skylines to guide users in selecting the most appropriate skylines from the several candidate skylines. The approach utilizes the concept of mining attribute correlations to generate an Approximate Functional Dependencies (AFDs) that captured the relationships between the dimensions. Besides, identifying the strength of probability correlations to estimate the values. Then, the skylines with estimated values are ranked. By doing so, we ensure that the retrieved skylines are in the order of their estimated precision

    Answering skyline queries over incomplete data with crowdsourcing (Extended Abstract)

    Get PDF

    A systematic literature review of skyline query processing over data stream

    Get PDF
    Recently, skyline query processing over data stream has gained a lot of attention especially from the database community owing to its own unique challenges. Skyline queries aims at pruning a search space of a potential large multi-dimensional set of objects by keeping only those objects that are not worse than any other. Although an abundance of skyline query processing techniques have been proposed, there is a lack of a Systematic Literature Review (SLR) on current research works pertinent to skyline query processing over data stream. In regard to this, this paper provides a comparative study on the state-of-the-art approaches over the period between 2000 and 2022 with the main aim to help readers understand the key issues which are essential to consider in relation to processing skyline queries over streaming data. Seven digital databases were reviewed in accordance with the Preferred Reporting Items for Systematic Reviews (PRISMA) procedures. After applying both the inclusion and exclusion criteria, 23 primary papers were further examined. The results show that the identified skyline approaches are driven by the need to expedite the skyline query processing mainly due to the fact that data streams are time varying (time sensitive), continuous, real time, volatile, and unrepeatable. Although, these skyline approaches are tailored made for data stream with a common aim, their solutions vary to suit with the various aspects being considered, which include the type of skyline query, type of streaming data, type of sliding window, query processing technique, indexing technique as well as the data stream environment employed. In this paper, a comprehensive taxonomy is developed along with the key aspects of each reported approach, while several open issues and challenges related to the topic being reviewed are highlighted as recommendation for future research direction
    • โ€ฆ
    corecore