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Abstract: In this paper, for the first time, we identify and solve the problem of efficient reverse k-

skyband (RkSB) query processing. Given a set P of multi-dimensional points and a query point q, 

an RkSB query returns all the points in P whose dynamic k-skyband contains q. We formalize 

RkSB retrieval, and then propose five algorithms for computing the RkSB of an arbitrary query 

point efficiently. Our methods utilize a conventional data-partitioning index (e.g., R-tree) on the 

dataset, and employ pre-computation, reuse and pruning techniques to boost the query 

efficiency. In addition, we extend our solutions to tackle an interesting variant of reverse skyline 

queries, namely, ranked reverse skyline (RRS) query where, given a data set P, a parameter K, 

and a preference function f, the goal is to find the K reverse skyline points that have the minimal 

score according to the user-specified function f. Extensive experiments using both real and 

synthetic data sets demonstrate the effectiveness of our proposed pruning heuristics and the 

performance of our proposed algorithms under a variety of experimental settings. 

Keywords: Skyline, reverse k-skyband, ranked reverse skyline, query processing, algorithm 

 

1. Introduction 

The skyline operator is important for many multi-criteria decision making applications. 
Given a set P of multi-dimensional points, a traditional/static skyline query returns all the 
points in P that are not dominated by any other point. A point p dominates another point p′ if p is 
not worse than p′ in all dimensions, and p is strictly better than p′ in at least one dimension. Fig. 
1(a) shows a classical example of the static skyline over a hotel dataset Sh = {p1, p2, … , p15} in a 2-
dimensional (2D) space, where the x-axis represents the room price of each hotel and the y-axis 
captures the distance from each hotel to the  
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4), and (iv) an enhanced experimental evaluation that incorporates the new type of queries (Section 5).  
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beach. Hotel p1 dominates hotel p2 due to its cheaper price and shorter distance to the beach. Since hotels p1, p4, p5, and p14

are not dominated by others, they constitute the static skyline of the dataset Sh. The skyline query can be applied to the
multi-criteria decision-making or some queries with respect to users’ preferences.

As shown in the above example, the objects’ attributes considered in the traditional skyline query are static. Different
from the traditional skyline query, a dynamic skyline query takes into account the attributes of every point that are calcu-
lated w.r.t. user-defined functions or query points dynamically. Specifically, given a query point q, each point p is mapped to
a new point p0 hjp[1] � q[1]j, jp[2] � q[2]j, . . . , jp[d] � q[d]ji with d representing the dimensionality of the dataset. Assume
that a dynamic skyline query is issued at p5 h3,2i, Fig. 1(b) illustrates all the new points p0i. For example, p1 h1,9i is mapped
to p01 h5;9i. The dynamic skyline is to retrieve all the points in P that are not dynamically dominated w.r.t. a given query
point q. Back to Fig. 1(b), p1 is dominated by p3 w.r.t. p5, and the dynamic skyline query returns p2, p3, p4, and p15 as the result
w.r.t. p5.

Based on the dynamic skyline query, reverse skyline is firstly introduced in [9]. In general, if q belongs to the dynamic
skyline of a certain point p, p is said to be a reverse skyline point of q. A reverse skyline query finds all the points in P that
have a given query point q as a member of their dynamic skylines. For instance, Fig. 1(c) depicts the reverse skyline w.r.t. q,
i.e., p3, p10, p12, and p13. The reverse skyline operator is useful for many applications such as business location planning [9,39]
and environmental monitoring [23,37]. As an example, suppose Apple wants to identify the potential customers of its new
iPad mini before its formal launch. The senior manager can take the iPad mini as a query point q and the potential customer
preferences (e.g., display, screen size, memory size, price, etc.) as a dataset P, and then perform the reverse skyline query for
marketing analysis.

Although the reverse skyline query is helpful, it may not well match users’ requests especially when the result returned
by reverse skyline retrieval is very small. Back to the Apple iPad mini example. If the potential customer base of iPad mini is
very small, Apple might need to adjust certain settings in order to ensure a large user base. However, it might not be easy to
change the location of q in the data space such that more points actually include q in their dynamic skylines. Moreover, under
some circumstances, the location of q is fixed, and thus can not be changed. As an alternative, in this paper, we propose a new
operator, namely, reverse k-skyband (RkSB) query. Given a multi-dimensional data set P and a query point q, an RkSB query
retrieves all the points in P whose dynamic k-skyband contains q. The formal definition is to be presented in Section 3.
Fig. 1(d) is an example of the reverse 1-skyband of q, including p3, p4, p5, p9, p10, p12, and p13. Compared with the reverse
skyline shown in Fig. 1(c), the result set of reverse 1-skyband is larger. Hence, it can provide users more useful information.
In addition to the RkSB query, we propose another variant of reverse skyline queries, i.e., ranked reverse skyline (RRS) query.
In particular, given a dataset P, a parameter K, and a preference function f, an RRS query returns the K reverse skyline points
that have the minimal scores according to the input function f. Take Fig. 1(c) as an example again, and suppose K = 2 and
f = L1-norm. Since f(p3) = 12, f(p12) = 9, and f(p13) = 13.8, the result set of RRS retrieval w.r.t. q is hp12,9i, hp3,12i in this order.
Here is the example application of the RRS query. When buying a new computer, different users have different preferences.
For instance, user A may think the capacity of memory and hard disk is most important, while user B may rank the speed of
the processor as the most important factor. The traditional reverse skyline query assumes that all the attributes are equally
important, which cannot reflect the users’ real preferences. RRS retrieval can customize the preference function in order to
address this deficiency.

Actually, the RkSB query is the generalization of the reverse skyline query. As discussed in Section 2, the RkSB query is
different from the reverse skyline query and its variants based on their definitions and query processing techniques. Thus,
the existing methods specifically designed for the reverse skyline query and its variations are not (directly) applicable to
tackle the RkSB query efficiently. Therefore, in this paper, we propose five algorithms to support efficient processing of
the RkSB query, viz., Branch-bound-based RkSB algorithm (BRkSB), Pre-computation-based RkSB algorithm (PRkSB), Optimized
PRkSB (OPRkSB), Reused-based RkSB algorithm (RRkSB), and Global-skyband-based RkSB algorithm (GRkSB). Our approaches uti-
lize a conventional data-partitioning index (e.g., R-tree [3]) on the dataset, and employ offline pre-computation, reuse, and
pruning techniques to improve the query efficiency. Specifically, our algorithms employ a filter-refinement framework,
develop efficient pruning heuristics using dynamic k-skyband and global k-skyband to boost the query performance, and
adopt the reuse technique to avoid the repeated traversal of the R-tree. Furthermore, these techniques can be easily
extended to support RRS search.

In brief, the key contributions of this paper are summarized as follows.

� We formalize the RkSB query, an interesting variant of reverse skyline queries, and identify its characteristics. To the best
of our knowledge, this work is the first attempt on this problem.
� We develop several algorithms, i.e., BRkSB, PRkSB, OPRkSB, RRkSB, and GRkSB, to answer RkSB retrieval, which employ

offline pre-computation, reuse, and pruning techniques to improve the query performance
� We propose a variant of reverse skyline queries, namely, ranked reverse skyline (RRS) query, and extend our techniques to

handle RRS search.
� We conduct extensive experiments with both real and synthetic datasets to verify the efficiency and scalability of our

proposed algorithms under a variety of settings.

A preliminary version of this work has been published in [26]. In this paper, we extend that work by (1) including a more
comprehensive review of the related work, (2) improving the RkSB query processing algorithm via employing the reuse
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mechanism and the new pruning heuristic, (3) proposing the RRS query and its processing algorithms, and (4) enhancing
experimental evaluation to incorporate the new classes of queries.

The rest of the paper is organized as follows. Section 2 reviews the related work. Section 3 formalizes the RkSB query,
presents five RkSB query processing algorithms, and analyzes their correctness. The RRS query and its corresponding algo-
rithms are proposed in Section 4. Section 5 presents the performance evaluation of the proposed algorithms and reports our
findings. Finally, Section 6 concludes the paper with some directions for future work.

2. Related work

In this section, we first overview the previous work on the skyline query and its variants in Section 2.1, and then survey
the reverse skyline query and its variations in Section 2.2.

2.1. Skyline queries

The skyline query is a popular paradigm for extracting interesting objects from multi-dimensional databases. The sky-
line was first investigated by Kung et al. [19] in the computational geometry, and then was introduced to the database
community by Borzsony et al. [4]. The first two algorithms developed are Block Nested Loop (BNL) and Divide-and-Con-
quer (D&C) [4]. Later, Sort-First-Skyline (SFS) algorithm is proposed as an improved version of BNL [7]. In [12], an opti-
mized version of SFS, namely, Linear-Elimination-Sort for Skyline (LESS), is presented, which has attractive worst-case
asymptotical performance. Other representatives include Sort and limit skyline algorithm (SaLSa) [2] and object-based
space partitioning (OSP) scheme [42]. These algorithms mentioned above do not assume any index on the dataset. On
the other hand, indexing techniques have also been exploited to accelerate skyline queries. Representative works include
Bitmap and Index [34] that can retrieve skyline points instantly, Nearest Neighbor (NN) [18] and Branch-and-Bound Skyline
(BBS) [29] that can return skyline points progressively, and Z-SKY [20] that is a generic framework to support skyline
and many of its variants including skyband queries, top-ranked skyline queries, k-dominant skyline queries, and
subspace skyline queries.

Papadias et al. [29] propose several interesting variations of skyline queries, such as dynamic skyline query, k-skyband
query, ranked skyline query, and so forth. Given a dataset P and a parameter k, a k-skyband query reports the set of the points
that are dominated by at most k points. Conceptually, k represents the thickness of the skyline. If k = 0, it corresponds to the
traditional skyline. Ranked skyline query also calls top-K skyline retrieval. Given a dataset P, a parameter K and a preference
function f, a ranked skyline query returns the K skyline points that have the minimum score according to the input function f.

Moreover, a variety of skyline query variants are studied as well, e.g., skyline queries on data streams [10,24,35], uncer-
tain data [30,43], incomplete data [17,27], time series data [15], and keyword-matched data [1,6]; skyline search in peer-to-
peer (P2P) networks [8,38], subspaces [22,31,32,36], and metric spaces [5,11]; skycube computation [16,40,41], continuous
skyline retrieval [13,21,28,44], stochastic skyline query [25], to name but a few.

It is worth pointing out that the above skyline query and its variants are different from the RkSB and RRS queries studied
in this paper. Therefore, the algorithms proposed for skyline retrieval and its variants can not applied to answer RkSB and
RRS queries.

2.2. Reverse skyline queries

The concept of reverse skyline is originally introduced in [9]. In order to compute the reverse skyline of an arbitrary
query point, Branch and Bound Reverse Skyline algorithm (BBRS) and Reverse Skyline using Skyline Approximations algorithm
(RSSA) are proposed. Specifically, BBRS is an improved customization of the original BBS algorithm. It can be divided into
two steps: first it uses a heap to retrieve the global skyline of a specified query point q, which is the superset of the actual
reverse skyline set. Second, BBRS performs a window query for every global skyline point to examine whether or not it is a
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real answer object. If the window query returns no answer, the corresponding point is a reverse skyline point. Consider, for
example, the dataset depicted in Fig. 2 (a), which is indexed by the R-tree shown in Fig. 2(b). The heap contents during the
reverse skyline computation are illustrated in Fig. 2(c), where the set S = {p4,p11,p5,p12} represents the final reverse skyline
set. As for RSSA, it is based on the well known filter-refinement paradigm. Before the algorithm starts, it computes the
dynamic skyline for each database object, which is kept on disk with a fixed-size. By using this approximation in the filter
step, it can be able to identify the partial real reverse skyline points and the unqualified reverse skyline points. The remain-
ing candidate points are then examined in the refinement step using a window query.

In addition to the traditional reverse skyline query, the reverse skyline computation in different environments is also
studied in the literature. The monochromatic and bichromatic reverse skyline search on uncertain data is investigated in
[23], where each object is modeled as a probability distribution function. Probabilistic Reverse Furthest Skyline (PRFS) is pro-
posed in [23] as a complimentary query to probabilistic reverse skyline. The bichromatic reverse skyline retrieval for the tra-
ditional dataset is explored in [39], in which each object is a precise point. In that work, several non-trivial heuristics are
identified, which can optimize the access order to achieve stronger pruning power, and a new algorithm called bichromatic
reverse skyline algorithm (BRS) is developed accordingly. More recently, techniques for reverse skyline computation over
wireless sensor networks [37], data streams [45], and arbitrary non-metric similarity measures [33] have also been explored
in the literature. In wireless sensor networks (WSNs), the power of the sensor node is very precious. Therefore, the reverse
skyline algorithm in such environments should be not only effective but also energy efficient. An energy-efficient approach
based on skyband is proposed in [37] to answer the reverse skyline query in WSNs. As data in data streams update rapidly, it
is very difficult to maintain the index in a dynamic dataset. Toward this, an algorithm termed Divide and Conquer Reverse
Skyline algorithm (DCRS) is developed in [45] to support reverse skyline retrieval on data streams. The DCRS uses the DC-Tree
as the index, and employs effective pruning methods to shrink the search space. The reverse skyline with arbitrary non-met-
ric similarity measures is studied in [33]. Since the attributes do not have a total ordering among their values, many indexes
like R-tree are inapplicable. New algorithms, viz., Block Reverse Skyline (BRS), Sort Reverse Skyline (SRS), and Tree Reverse
Skyline (TRS), are proposed to answer the reverse skyline query with arbitrary non-metric similarity measures. Nowadays,
users may be interested in answering why-not questions in reverse skyline queries [14], which aims to find out why a par-
ticular point is not in a reverse skyline, and what actions we should take to put the point into a reverse skyline. To this end,
Islam et al. [14] show how to modify the why-not point and the query point to include the why not point in the reverse sky-
line of the query point, and propose techniques that incur minimum changes to both the why-not point and the query point.

It is worth mentioning that the reverse skyline query and its variants are different from the RkSB query in terms of prob-
lem definitions and the details of query processing, and thus, the existing algorithms can not be directly applied to compute
the RkSB efficiently.

3. Reverse k-skyband query processing

As mentioned in Section 1, the result set of the reverse skyline query may be very small, far from users’ requests. Hence,
we introduce the reverse k-skyband (RkSB) query. In the sequel, we present the formal definition of RkSB retrieval, propose
five efficient algorithms to answer RkSB queries, and analyze the correctness of these algorithms.

3.1. Problem formulation

Let P be a d-dimensional data set. For any point p 2 P, we use p[i] to denote the i-th dimensional value. A point p 2 P is
said to dominate another point p0 2 P, denoted as p � p0, iff (i) 8i 2 ½1; d�, p[i] 6 p0[i]; and (ii) 9 j 2 ½1; d�, p[j] < p0[j]. For
instance, in Fig. 3(a), point p5 dominates point p6 as p5[1] < p6[1] and p5[2] < p6[2].
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Definition 1 (Dynamic k-Skyband). Given a d-dimensional data set P, a query point q, and a parameter k, if a point p 2 P
belongs to the dynamic k-skyband of q, there are at most k points in P, denoted by O, such that for each point o 2 O, it satisfies:
(1) 8i 2 ½1; d�, jq[i] � o[i]j 6 jq[i] � p[i]j; and (2) 9 j 2 ½1; d�, jq[j] � o[j]j < jq[j] � p[j]j.

A dynamic k-skyband query retrieves all the points that are dynamically dominated by at most k points. Fig. 3(b) illus-
trates the dynamic 1-skyband of a point p5. As shown in Fig. 3, although a point q is not in the dynamic skyline of p5, it
is in p5’s dynamic 1-skyband since the number of the points that dynamically dominate q is 1. Note that, dynamic k-skyband
is a generalization of dynamic skyline [29]. Based on the dynamic k-skyband, we formalize the reverse k-skyband query
below.

Definition 2 (Reverse k-Skyband Query). Given a d-dimensional data set P, a query point q, and a parameter k, a reverse
k-skyband (RkSB) query returns all the points in P whose dynamic k-skyband contains q. Formally, a point p 2 P is in the
reverse k-skyband of q, iff there are at most k points in P, denoted as O, such that 8o 2 O, it holds: (1) 8i 2 ½1; d�,
jp[i] � o[i]j 6 jp[i] � q[i]j; and (2) 9 j 2 ½1; d�, jp[j] � o[j]j < jp[j] � q[j]j.

Take Fig. 3(b) as an example again. Since a point q is included in the dynamic 1-skyband of a point p5, the point p5 belongs
to the reverse 1-skyband of q according to Definition 2. Similarly, we can obtain the complete reverse 1-skyband of q, which
contains {p1,p2,p3,p4,p5,p6,p7,p8}, as depicted in Fig. 3(c). It is worth noting that, conceptually, k represents the thickness of
the reverse skyline. Hence, the case k = 0 corresponds to a conventional reverse skyline query. As mentioned in Section 1, the
user might change the location of the query point to increase the number of reverse skyline points. However, finding a good
query point location such that the number of identified reverse skyline points matches the application need is not easy,
because the size of the result set is affected by many factors. Thus, the RkSB query can solve this problem by relaxing the
condition and returning more answer points, especially for those cases where the change of the query point is impossible.
As an example, a real-estate agent would like to promote a new project to the customers, and he/she can employ the reverse
skyline query to locate the potential customers as the promotion targets. Nonetheless, the reverse skyline set may be too
small. On the other hand, the properties (e.g., the floor height, the size, the build time, etc.) of the project are fixed. In this
case, the agent can utilize the RkSB query to relax the conditions and thus find more promotion targets.

3.2. RkSB query processing algorithms

A naive solution to tackle RkSB retrieval is to, for each point in a specified data set P, perform a dynamic k-skyband query,
and then return those points p 2 P with q 2 DSBðpÞ, in which DSB(p) represents the set of p’s dynamic k-skyband points. Nev-
ertheless, this method is very inefficient as it needs to traverse the data set P multiple times (i.e., jPj times), resulting in high I/O
and CPU costs, especially for larger P. To this end, we propose five efficient algorithms for processing the RkSB query, namely,
Branch-bound-based RkSB algorithm (BRkSB), Pre-computation-based RkSB algorithm (PRkSB), Optimized PRkSB(OPRkSB),
Reused-based RkSB algorithm (RRkSB), and Global-skyband-based RkSB algorithm (GRkSB). We assume that the data set P is
indexed by an R-tree. Furthermore, in order to facilitate the understanding of different RkSB query processing algorithms,
a running example is employed, as shown in Fig. 4, where a 2D data point set P = {p1, p2, . . . , p15} is depicted in Fig. 4(a),
and they are organized in the R-tree with node capacity set to 3, as illustrated in Fig. 4(b).

3.2.1. Branch-bound-based RkSB algorithm
Before presenting the BRkSB algorithm, an improved customization of the original BBS algorithm, we first define the glo-

bal k-skyband, and then propose two lemmas to identify candidate RkSB points.

Definition 3 (Global k-Skyband). Given a d-dimensional data set P, a query point q, and a parameter k, if a point p 2 P is in
the global k-skyband of q, there exist at most k points in P, denote as O, such that 8o 2 O, it satisfies: (1) 8i 2 ½1; d�,
(p[i] � q[i])(o[i] � q[i]) > 0; (2) 8i 2 ½1; d�, jq[i] � o[i]j 6 jq[i] � p[i]j; and (3) 9 j 2 ½1; d�, jq[j] � o[j]j < jq[j] � p[j]j.
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A global k-skyband query retrieves all the points that are globally dominated by at most k points. Note that global k-sky-
band is an extension of global skyline [9]. As shown in Fig. 5, point p11 is only globally dominated by p10, and thus, it is a
global 1-skyband point of q. On the other hand, point p8 is globally dominated by points p9 and p10, and hence, it is not a
global 1-skyband point of q. In Fig. 5, all the global 1-skyband points of q include {p1,p2,p3,p4,p5,p9,p10,p11,p12,p13,p14}.

Lemma 1. Let q be a query point, GSBk(q) be the global k-skyband point set of q, and RSBk(q) be the set of reverse k-skyband points
w.r.t. q. If a point p R GSBk(q), p R RSBk(q).

Proof. If a point p R GSBk(q), we can find at least (k + 1) points (stored in a set S) that globally dominate p, i.e., for every point
s 2 S, it holds (1) 8i 2 ½1; d�, js[i] � q[i]j 6 jp[i] � q[i]j; and (2) 9 j 2 ½1; d�, js[j] � q[j]j < jp[j] � q[j]j, which contradicts with Def-
inition 2 (i.e., p R RSBkðqÞ). Consequently, the proof completes. h

Lemma 2. Given a d-dimensional data set P, a query point q, and a parameter k, suppose a rectangle Rect is centered at a point
p 2 P, and its extent is defined by the coordinate-wise distances to q. If there are more than k points within Rect, p is not a real
reverse k-skyband point of q.

Proof. If there are more than k points inside the rectangle Rect, we can find (k + 1) points (preserved in a set S) such that,
each point s 2 S satisfies: (1) 8i 2 ½1; d�, jp[i] � s[i]j 6 jp[i] � q[i]j; and (2) 9 j 2 ½1; d�, jp[j] � s[j]j < jp[j] � q[j]j. According to
Definition 1, the query point q does not belong to the dynamic k-skyband of the point p. Therefore, p is not a reverse k-sky-
band point of q. h

Consider, for instance, Fig. 6(a), in which the shaded area is the rectangle of a point p. As depicted in Fig. 6(a), point q is
dynamically dominated by points p1 and p2, which are located inside p’s rectangle. Thus, the point q is not in the dynamic 1-
skyband of the point p, and p does not belong to the reverse 1-skyband of q.

We can utilize Lemma 1 to efficiently retrieve a superset of the actual result, i.e., no false missing, and use Lemma 2 to
prune away unqualified candidate reverse k-skyband points. Our first method, namely, BRkSB, employs lemmas 1 and 2 to
process the RkSB query. The pseudo-code of BRkSB is presented in Algorithm 1. The basic idea is as follows. First, BRkSB com-
putes the set GSBk (q) of global k-skyband points that is guaranteed to include all the actual reverse k-skyband points accord-
ing to Lemma 1. Then, the algorithm executes a window query for each candidate global k-skyband point p 2 GSBkðqÞ. If the
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window query returns no more than k points, p 2 RSBkðqÞ. To simplify our discussion, we use the term p’s query window to
refer to the rectangle centered at p with its extent defined by the coordinate-wise distances to q, denoted as W(p,q). It is
worth mentioning that, the window query is implemented as a boolean/empty range query. Specifically, we use a counter
to count the number of the points located into the W(p,q), and the window query terminates once it finds (k + 1) points,
which can be handled efficiently.

Algorithm 1. Branch-bound-based Reverse k-Skyband Algorithm (BRkSB)

Input: an R-tree R on a set of data points, a query point q, a parameter k
Output: the result set RSB that contains all the points belonging to the RkSB of q
/⁄ GSB: the set of global k-skyband points; RSB: the set of reverse k-skyband points; Hg, Hw: min-heaps, sorted in

ascending order of their distances (i.e., L1-norm) to q. ⁄/
1: initialize sets GSB = RSB = £ and min-heaps Hg = Hw = £

2: insert all entries of the root R into Hg

3: while Hg – £ do
4: de-heap the top entry e of Hg

5: if e is globally dominated by (k + 1) points in GSB then discard e // by Lemma 1
6: else // e is globally dominated by less than (k + 1) points in GSB
7: if e is an intermediate node then
8: for each child entry ei 2 e do
9: if ei is globally dominated by at most k point in GSB then insert ei into Hg

10: else // e is a data point
11: add e to GSB // for pruning later
12: perform the window query (using Hw) based on e and q
13: if the window query finds less than (k + 1) points then
14: add e to RSB // e is a RkSB point of q by Lemma 2
15: else discard e // the window query contains more than k points
16: return RSB

Next, we illustrate BRkSB using the running example. Initially, BRkSB visits the root node of the R-tree R, and inserts all its
entries e7, e8 into a min-heap Hg (line 2). Then, the entry e7 with the minimum distance to q is expanded. As e7 is not globally
dominated by any point (line 5) and it is an intermediate node, BRkSB removes the entry e7 from the heap and adds its chil-
dren e4, e5, e6 to Hg (lines 7–9). Similarly, the next two expanded entries are e8 and e4 respectively, in which the first global 1-
skyband point p12 is found. Since p12 is a data point, BRkSB adds p12 to the set GSB for pruning later, and then runs a window
query on it (lines 11–12). As illustrated in Fig. 6(b), there is no point in p12’s query window, and thus, p12 is inserted into the
result set RSB. The algorithm proceeds in the same manner until the heap becomes empty. The final answer points are p3, p4,
p5, p9, p10, p12, and p13. Table 1 depicts the procedure of BRkSB during the processing of the query.

3.2.2. Pre-computation-based RkSB algorithm
Given the fact that the global k-skyband is a superset of the reverse k-skyband as well as it may contain many unqualified

points, we present an enhanced algorithm, called Pre-computation-based Reverse k-Skyband algorithm (PRkSB). To be more spe-
cific, PRkSB employs the traditional (i.e., 0-th) dynamic skyline and the k-th dynamic skyline, which are offline pre-computed
and stored on disk, to identify the reverse k-skyband points. Below, we define the k-th dynamic skyline, and then present
Lemma 3 and Heuristic 1 to support our proposed PRkSB algorithm.
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Definition 4 (k-th Dynamic Skyline). Given a d-dimensional data set P, a query point q, and a parameter k, if a point p 2 P is in
the k-th dynamic skyline of q, there are exactly k points in P, denoted by O, such that for every point o 2 O, it holds: (1)
8i 2 ½1; d�, jq[i] � o[i]j 6 jq[i] � p[i]j; and (2) 9 j 2 ½1; d�, jq[j] � o[j]j < jq[j] � p[j]j.

The k-th dynamic skyline query retrieves the set of the points in P that are dynamically dominated by k points. Fig. 7(a)
illustrates the example of the k-th dynamic skyline, where the 0-th dynamic skyline contains points p1, p2, p5, and p9; the 1st
dynamic skyline includes points p3 and p6; and the 2nd dynamic skyline consists of points p4 and p10. Note that, all of them
form the dynamic 2-skyband of p.

Lemma 3. For a given point p and a query point q, let DSL(p) be the set of 0-th dynamic skyline points of p and kDSL(p) be the set
of k-th dynamic skyline points of p. If a point s 2 DSLðpÞ is dynamically dominated by q, p belongs to the reverse k-skyband of q. If a
point s0 2 kDSLðpÞ dynamically dominates q, p is not in the reverse k-skyband of q.

Proof. If a point s 2 DSLðpÞ is dynamically dominated by q, it means that q is not dynamically dominated by any other point.
Hence, q is in the dynamic k-skyband of p, and p belongs to the reverse k-skyband of q. If s0 2 kDSLðpÞ, there are exactly k
points dynamically dominating s0. As q is dynamically dominated by s0, it is also dynamically dominated by the k points
which dynamically dominate s0. Consequently, q is not in the dynamic k-skyband of p, and p does not belong to the reverse
k-skyband of q. h

Algorithm 2. Pre-computation-based Reverse k-Skyband Algorithm (PRkSB)

Input: an R-tree R on a set of data points, a query point q, a parameter k, the dynamic skyline of the dataset, the k-th
dynamic skyline of the dataset

Output: the result set RSB that contains all the points belonging to the RkSB of q
/⁄ DR(p): the discard region of p containing the points that are dynamically dominated by at least (k + 1) points; HR(p):

the hit region of p including the points that are not dynamically dominated by any other point. ⁄/
1: initialize sets GSB = RSB = £ and min-heaps Hg = Hw = £

2: insert all entries of the root R into Hg

3: while Hg – £ do
4: de-heap the top entry e of Hg

5: if e is globally dominated by (k + 1) points in GSB then discard e // by Lemma 1
6: else // e is globally dominated by less than (k + 1) points in GSB
7: if e is an intermediate node then
8: for each child ei 2 e do
9: if ei is globally dominated by at most k points in GSB then insert ei into Hg

10: else // e is a data point
11: add e to GSB // for pruning later
12: if q is in the HR (e) then add e to RSB // Heuristic 1
13: else if q is in the DRk+1(e) then discard e
14: else
15: perform the window query (using Hw) based on e and q
16: if the window query finds less than (k + 1) points then add e to RSB // by Lemma 2
17: else discard e
18: return RSB

Table 1
Procedure of BRkSB.

Action Heap contents RSB

Access root he7,e8i Ø
Expand e7 he8,e5,e4,ve6i Ø
Expand e8 he4,e3,e5,e1,e2,e6i Ø
Expand e4 hp12,e3,e5,p13,e1,e2,e6i {p12}
Expand e3 hp10,e5,p13,p9,e1,e2,p11,e6i {p12,p10}
Expand e5 hp5,p4,p13,p9,e1,e2,p11,e6i {p12,p10,p5,p4,p13,p9}
Expand e1 hp3, , ,e6,p2,p1i {p12,p10,p5,p4,p13,p9,p3}
Expand e6 h , , , i {p12,p10,p5,p4,p13,p9,p3}
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Consider, for example, Fig. 7(b), where points q1 and q2 are query points. Since point p4 2 2 DSL (p) dynamically dominates
q1, p is not in the reverse 2-skyband of q1. On the other hand, q2 is not dynamically dominated by any other point, and thus, p
belongs to q2’s reverse 2-skyband. Lemma 3 can help prune away unqualified points. To facilitate the point pruning, two
regions w.r.t. a specified point p are defined, namely, the Discard Region of p (i.e., DRk+1(p)) and the Hit Region of p (i.e.,
HR(p)). The former DRk+1(p) is the region that contains the points dynamically dominated by at least (k + 1) points w.r.t.
p; and the latter HR (p) is the region containing all the points not dynamically dominated by any other point w.r.t. p. As
shown in Fig. 7(c), the 0-th dynamic skyline contains points p1, p2, p5, and p9, and all these four points that are not dynam-
ically dominated form HR (p). On the other hand, suppose k = 2, the 2nd dynamic skyline points p4 and p10 form DR3(p), in
which all the points enclosed are dynamically dominated by at least three points w.r.t. p. For instance, point p8 is located
inside DR3(p) and it is dynamically dominated by seven points p2, p3, p4, p5, p6, p7, and p9. Based on these two regions, a given
point p can be evaluated, as stated in Heuristic 1.

Heuristic 1. Given a query point q, a parameter k, and a point p,DRk+1(p) and HR(p) can be derived. If q falls into DRk+1(p), p
is not in the reverse k-skyband of q (and thus is discarded). If q locates within HR(p), p belongs to the reverse k-skyband of q.
If q is not inside either DRk+1(p) or HR(p), p needs to be further evaluated.

Our second approach, i.e., PRkSB, utilizes the above Heuristic 1 to tackle the RkSB query. The pseudo-code of PRkSB is
depicted in Algorithm 2. The main idea is as follows. Before the algorithm starts, for every data point p 2 P, its corresponding
0-th dynamic skyline and k-th dynamic skyline are pre-computed and stored on disk. When a query is issued at a point q,
PRkSB computes its global k-skyband (i.e., GSBk(q)) that is a superset of the final query result, and then, for each point
p 2 GSBkðqÞ, we derive DRk+1(p) and HR(p). If q is within DRk+1(p), p can be pruned safely. If q is inside HR(p), p is an actual
answer point. Otherwise, a window query on the current candidate point p is performed based on Lemma 2, as does in BRkSB.

Algorithm 3. Optimized PRkSB Algorithm (OPRkSB).

Input: an R-tree R on a set of data points, a query point q, a parameter k, the dynamic skyline of the dataset, the k-th
dynamic skyline of the dataset

Output: the result set RSB that contains all the points belonging to the RkSB of q
/⁄ PGSB: the set of global k-skyband points after pruned by Heuristic 1. ⁄/
1: initialize sets GSB = PGSB = RSB = £ and min-heaps Hg = Hw = £

2: insert all entries of the root R into Hg

3: while Hg–£ do
4: de-heap the top entry e of Hg

5: if e is globally dominated by (k + 1) points in GSB then discard e // by Lemma 1
6: else // e is globally dominated by less than (k + 1) points in GSB
7: if e is an intermediate node then
8: for each child ei 2 e do
9: if ei is globally dominated by at most k point in GSB then insert ei into Hg

10: else // e is a data point
11: add e to GSB // for pruning later
12: if q is within HR(e) then add e to RSB // Heuristic 1
13: else if q is inside DRk+1(e) then discard e
14: else add e to PGSB // for the next pruning
15: for each point p 2 PGSB do // Heuristic 2
16: if the window based on p and q contains more than k global k-skyband points then discard p
17: else
18: perform the window query (using Hw) based on p and q
19: if the window query finds less than (k + 1) points then add p to RSB
20: else discard p
21: return RSB
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3.2.3. Optimized PRkSB algorithm
As discussed above, if a specified point p cannot be returned as an answer point or discarded as a non-answer point based

on Heuristic 1, PRkSB employs window queries to decide whether p is a real answer point. As shown in Fig. 6(b), the query
point q partitions the search space into four quadrants. Assume that a point p is currently located in the quadrant qua and it
is observed that all the points located inside quadrants except for qua will not be in the query window. Meanwhile, the global
k-skyband points located into qua are closer to q compared with others, and hence have a higher chance to be within the
query window. As the global k-skyband points are only determined by the query point q and k, they are fixed during the
evaluation of different point p. We can utilize the global k-skyband points to improve the performance of window queries,
as stated in Lemma 4.

Lemma 4. Given a query point q, a parameter k, and a data point p, if there are more than k global k-skyband points inside p’s
query window, p is not in the reverse k-skyband of q.

Proof. The proof is similar as that of Lemma 2, and thus is omitted. h

Lemma 4 can save all the window queries with their corresponding query windows containing more than k global k-
skyband points. For instance, assume that a reverse 1-skyband query is issued at q as depicted in Fig. 8. We can locate
all the global 1-skyband points, and they are {p1,p2,p3,p4,p6,p9,p10,p11,p12}. If p1 is the point currently evaluated, we
need to evaluate how many global 1-skyband points are located within the query window centered at p1. Based on
the positions of p1 and q, we only need to evaluate the global 1-skyband points p3, p4, and p6 that are located in the
same quadrant as p1. Since p3 and p4 are located inside the query window, it is guaranteed that p1 is not in the reverse
1-skyband of q according to Lemma 4. Hence, the window query of p1 is saved without using the boolean/empty
range query. Actually, the global (k � i)-skyband (0 < i 6 k) of q, or the global (k + j)-skyband (j > 0) of q can also be used
for pruning. However, the pruning efficiency of the global (k � i)-skyband is not as well as that of the global k-skyband
because it contains fewer points. As for the global (k + j)-skyband of q, its time cost is larger than that of the
global k-skyband. Consequently, we employ the global k-skyband of q to prune away, as stated in Heuristic 2
below.

Heuristic 2. Given a query point q, a parameter k, and a data point p, if there are more than k global k-skyband points in
the query window of p, p does not belong to the reverse k-skyband of q and thus can be discarded; otherwise, p needs to be
further evaluation.

Based on Heuristic 2, we propose an improved PRkSB algorithm, namely, optimized PRkSB algorithm (OPRkSB), by using
Heuristic 2 before issuing a window query for evaluating a point p. Algorithm 3 presents the pseudo-code of OPRkSB. In par-
ticular, OPRkSB computes the global k-skyband of a given query point q, and then utilizes Heuristic 1 to prune away unqual-
ified global k-skyband points that cannot be the actual answer points. Thereafter, for every remaining candidate point, the
algorithm does not directly execute a window query on it, but employs the global k-skyband of q (instead of the remaining
global k-skyband) as an additional pruning heuristic based on Heuristic 2.

3.2.4. Reused-based RkSB algorithm
All the above three algorithms, viz., BRkSB, PRkSB, and OPRkSB, rely on the window query to refine certain candidate

points. Each window query has to traverse the R-tree to determine whether there are (k + 1) points in the window of the
candidate point. Since there are many candidate points need evaluation, multiple window queries are issued, and the R-tree
is visited repeatedly. Motivated by this observation, we present the Reused-based RkSB algorithm (RRkSB) by using the reuse
mechanism to further boost OPRkSB.
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Algorithm 4. Reused-based RkSB algorithm (RRkSB).

Input: an R-tree R on a set of data points, a query point q, a parameter k, the dynamic skyline of the dataset, the k-th
dynamic skyline of the dataset

Output: the result set RSB that contains all the points belonging to the RkSB of q
1: initialize sets GSB = PGSB = RSB = £ and min-heaps Hg = Hw = £

2: insert all entries of the root R into Hg

3: while Hg–£ do
4: de-heap the top entry e of Hg

5: if e is globally dominated by (k + 1) points in GSB then // by Lemma 1
6: insert ei into Hw //for reuse later
7: else // e is globally dominated by less than (k + 1) points in GSB
8: if e is an intermediate node then
9: for each child ei 2 e do

10: if ei is globally dominated by at most k point in GSB then insert ei into Hg

11: else insert ei into Hw // for reuse later
12: else // e is a data point
13: add e to GSB // for pruning later
14: insert e into Hw // for reuse
15: if q is within HR(e) then add e to RSB // Heuristic 1
16: else if q is inside DRk+1(e) then discard e
17: else add e to PGSB // for the next pruning
18: for each point p 2 PGSB do // Lemma 4
19: if the window based on p and q contains more than k global k-skyband points then discard p
20: else
21: perform the window query (using Hw) based on p and q
22: if the window query finds less than (k + 1) points then add p to RSB // Lemma 2
23: else discard p
24: return RSB

Recalled that there are two processes need to traverse the R-tree, i.e., the computation of the global k-skyband and win-
dow queries. These two processes use the same R-tree. Furthermore, the dominance relationship of the nodes after expand-
ing does not change. Therefore, as long as we keep the integrity of the R-tree (meaning that neither store the visited nodes
repeatedly nor miss some visited nodes), the visited R-tree can be reused in these two processes. In the sequel, we discuss
how to maintain the integrity of the R-tree. There are two methods to store the visited R-tree nodes. One is to maintain an R-
tree with the entire visited nodes, and the other is only to preserve the deepest level’s visited nodes. Since maintaining the
whole R-tree takes considerable space, we implement the second approach. Based on this discussion, we propose the fourth
RkSB algorithm, i.e., RRkSB, with its pseudo-code shown in Algorithm 4. As RRkSB is very similar to OPRkSB, we only highlight
their differences here. First, in order to keep the integrity of the R-tree, we should not discard any node unless it is expanded
and replaced by its child nodes. Consequently, in Algorithm 4, we maintain all these visited nodes via a heap (lines 6, 11, and
14), while in Algorithm 3, these visited nodes are discarded directly. Second, the heap Hw used in Algorithm 3 is empty
because the entries of the heap are released after the termination of the window query; whereas in Algorithm 4, Hw (line
21) is not empty because it stores the deepest level’s visited nodes for the reuse later.

3.2.5. Global-skyband-based RkSB algorithm
By employing the reuse technique in OPRkSB, the node accesses can be reduced significantly. However, the improved I/O

cost comes with an extra cost. With the visited nodes maintained by a heap, the window queries issued at evaluated points
need to scan every entry of the heap. If there are lots of entries in the heap, the whole scanning is costly. Motivated by this
defect of the reuse technique, we develop the Global-skyband-based RkSB algorithm (GRkSB), which does not use the R-tree
nodes in the window query to prune candidate points. Next, we first give the definition of the k-th global skyline.

Definition 5 (k-th Global Skyline). Given a d-dimensional data set P, a query point q, and a parameter k, if a point p 2 P is in
the k-th global skyline of q, there are k points in P, denoted by O, such that for every point o 2 O, it holds: (1) 8i 2 ½1; d�,
(p[i] � q[i])(o[i] � q[i]) > 0; (2) 8i 2 ½1; d�,jq[i] � o[i]j 6 jq[i] � p[i]j; and (3) 9 j 2 ½1; d�, jq[j] � o[j]j < jq[j] � p[j]j.

The k-th global skyline query retrieves the set of the points in P that are globally dominated by exact k points. As shown in
Fig. 5, point p14 is globally dominated by point p12, and point p8 is globally dominated by points p9 and p10. Therefore, p14 is in
the 1-st global skyline of q, and p8 is in the 2-nd global skyline of q. Based on the k-th global skyline, Lemma 6 is developed.
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Lemma 5. Given a d-dimensional data set P, a query point q, and a parameter k, assume that there are k global k-skyband points
in the query window W(p,q) of p 2 P, (i) if all the (k + 1)-th global skyline points are out of W(p,q), then W(p,q) only contains k
global k-skyband points, and thus, p is in the reverse k-skyband of q; otherwise, (ii) W(p,q) contains at least one (k + 1)-th global
skyline point, and hence, p is not in q’s reverse k-skyband.

Proof. First, assume that the statement (i) is not valid, i.e., if W(p,q) contains k global k-skyband points but none of the
(k + 1)-th global skyline points, it still contains at least one i-th global skyline point pi with i 2 fkþ 2; kþ 3; . . .g. Since pi

is one i-th global skyline point, it must be globally dominated by i points in W(p,q) according to Definition 5. Nevertheless,
there are only (k + 1) points, i.e., k global k-skyband points and point p, in W(p,q) when i > (k + 1). Therefore, our assumption
is invalid. Second, assume that the statement (ii) is invalid, i.e., if W(p,q) contains k global k-skyband points and one
(k + 1)-th global skyline point, p is in q’s reverse k-skyband, which contradicts with Lemma 2, and hence, our assumption
is invalid. The proof completes. h

Lemma 6. Given a d-dimensional data set P, a query point q, and a parameter k, if there are less than k global k-skyband points in
p’s query window W(p,q), then W(p,q) can not contain any other point, and thus, p is a real reverse k-skyband point.

Proof. Assume that the above statement is not valid, i.e., W(p,q) actually contains at least one i-th global skyline point p0

with i > k. As p0 is one i-th global skyline point, it must be dominated by i points (including p) with all those i points located
inside W(p,q). However, the number of global k-skyband points (including p) within W(p,q) is at most k if i > k. Consequently,
our assumption is invalid, and the proof completes. h

Algorithm 5. Global-skyband-based RkSB algorithm (GRkSB).

Input: an R-tree R on a set of data points, a query point q, a parameter k, the dynamic skyline of the dataset, the k-th
dynamic skyline of the dataset

Output: the result set RSB that contains all the points belonging to the RkSB of q
/⁄ GS: the set of (k + 1)-th global skyline points ⁄/
1: initialize sets GSB = GS = PGSB = RSB = £ and min-heap Hg = £

2: insert all entries of the root R into Hg

3: while Hg – £ do
4: de-heap the top entry e of Hg

5: if e is globally dominated by (k + 2) points in GSB then discard e
6: else // e is globally dominated by less than (k + 2) points in GSB
7: if e is an intermediate node then
8: for each child ei 2 e do
9: if ei is globally dominated by at most (k + 1) point in GSB then insert ei into Hg

10: else // e is a data point
11: if e is globally dominated by (k + 1) point in GSB then
12: add e to GS
13: else // e is the global k-skyband point
14: add e to GSB // it is the global k-skyband point
15: if q is within HR(e) then add e to RSB // Heuristic 1
16: else if q is inside DRk+1(e) then discard e
17: else add e to PGSB // for the next pruning
18: for each point p 2 PGSB do // Heuristic 3
19: N1 = the number of k global k-skyband points within p’s query window
20: N2 = the number of (k + 1)-th global skyline points within p’s query window
21: if N1 > k then discard p
22: else if N1 = k and N2 = 0 then add p to RSB
23: else if N1 = k and N2 > 0 then discard p
24: else if N1 < k then add p to RSB
25: return RSB

To facilitate the understanding of the newly proposed Lemmas, some examples are illustrated in Fig. 9. First, as shown in
Fig. 9(a), the global 3-skyband points are p1, p5, p7, p8, p9, p10, p12, and p13; and the 4-th global skyline points are p4 and p6. As
the query window of p8 contains three global 3-skyband points (i.e., p7,p9,p10) but none of the 4-th global skyline, point p8 is
a real reverse 3-skyband point based on Lemma 5. Second, as depicted in Fig. 9(b), the dataset changes with the global 3-
skyband points remained but the 4-th global skyline changed to p6 only. Now the query window of p8 contains three global
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3-skyband points (i.e., p7,p9,p10) and one 4-th global skyline p6. Hence, according to Lemma 5, point p8 is not an actual
reverse 3-skyband point. Finally, as shown in Fig. 9(c), the global 3-skyband points are p1, p2, p3, p4, p5, and p6, and the query
window of p1 only contains p1. Based on Lemma 6, p1 is a real reverse 3-skyband point. In the following, we integrate Lemma
4, 5, and 6 into Heuristic 3, which utilizes the global k-skyband and the (k + 1)-th global skyline to refine candidate points.

Heuristic 3. Given a query point q, a data point p, the global k-skyband of q, the (k + 1)-th global skyline, and let W(p,q) be
p’s query window, let N1 be the number of k global k-skyband points in W(p,q), and N2 be the number of (k + 1)-th global
skyline points in W(p,q). Whether p is a reverse k-skyband point of q can be decided based on N1 and N2 as follows: (i) if
N1 > k, p is not a reverse k-skyband point of q; (ii) if N1 = k and N2 = 0, p is a real reverse k-skyband point of q; (iii) if
N1 = k and N2 > 0, p is not a reverse k-skyband point of q; and (iv) if N1 < k, p is an actual reverse k-skyband point of q.

Our last method, namely, GRkSB, is proposed based on Heuristic 3 with its pseudo-code listed in Algorithm 5. First, it com-
putes the global k-skyband and the (k + 1)-th global skyline of q (lines 3–17), and meanwhile prune away certain unqualified
points using Heuristic 1 (lines 15–17). Thereafter, it refines the remaining points using Heuristic 3 (lines 18–24).

3.3. Discussion

In this subsection, we analyze the correctness of our presented algorithms, i.e., BRkSB, PRkSB, OPRkSB, RRkSB, and GRkSB.

Lemma 7. The proposed five algorithms visit (data point and intermediate) entries of an R-tree in ascending order of their
distances to a specified query point q.

Proof. The proof is straightforward since the algorithm always visits the entries according to their mindist (i.e., L1-norm) pre-
served by the heap. h

Lemma 8. Any data point inserted into the result set RSB during the execution of the algorithm is guaranteed to be an actual
reverse k-skyband point.

Proof. This is guaranteed by Lemmas 1 to 6 and Heuristics 1 through 3. h

Lemma 9. Every data point will be examined, unless one of its ancestor nodes has been pruned away.

Proof. The proof is obvious because all the entries that are not discarded by the current global k-skyband points (preserved
in the set GSB) are added to the heap and evaluated. h

Let jRPj be the cardinality of the R-tree indexing a dataset P, g be the number of global k-skyband objects, g0 be the number
of (k + 1)-th global skyband objects, g1 be the number of the global k-skyband objects refined by Heuristic 1, g12 be the num-
ber of the global k-skyband objects refined by Heuristics 1 and 2, and h be the number of maximal heap entries used.

Lemma 10. The times of traversing the R-tree for BRkSB, PRkSB, OPRkSB, RRkSB, and GRkSB are (g + 1), (g1 + 1), (g12 + 1), 1, and 1,
respectively.

Proof. The global k-skyband for BRkSB, the global k-skyband refined by Heuristic 1 for PRkSB, and the global k-skyband
refined by Heuristics 1 and 2 for OPRkSB all need window queries by traversing R-trees. In addition, the computation of glo-
bal k-skyband should traverse the R-tree. Therefore, the times of traversing the R-tree for BRkSB, PRkSB, and OPRkSB are
(g + 1), (g1 + 1), and (g12 + 1), respectively. RRkSB reuses the visited R-tree nodes, and GRkSB only uses the R-tree to compute
the global k-skyband and the (k + 1)-th global skyline, and thus, these two algorithms traverse the R-tree only once. h
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Fig. 9. Illustration of Lemma 5 and Lemma 6.
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Theorem 1. The time complexities of BRkSB, PRkSB, OPRkSB, RRkSB, and GRkSB are O(jRPj � (g + 1)), O(jRPj � (g1 + 1)),
O(jRPj � (g12 + 1)), O(jRPj + h � g12), and O(jRPj + (g + g0) � g12), respectively.

Proof. Both the computation of the global k-skyband and the window query need to traverse the R-tree. In the worst case,
the two processes have to traverse the whole R-tree. Therefore, the computation of the global k-skyband and the window
query should take O(jRPj) time in the worst case. Based on Lemma 10, the times of traversing the R-tree for BRkSB, PRkSB,
and OPRkSB are (g + 1), (g1 + 1), and (g12 + 1), respectively. Hence, the overall time complexities of BRkSB, PRkSB, and OPRkSB
are O(jRPj � (g + 1)), O(jRPj � (g1 + 1)), and O(jRPj � (g12 + 1)), respectively. In addition, RRkSB utilizes the reused nodes that
are stored in a heap to refine candidates, and GRkSB employs the global k-skyband and the (k + 1)-th global skyline to get
the final query result. Thus, RRkSB and GRkSB need to take O(h � g12) and O((g + g0) � g12) for refinement. Consequently,
the overall time complexities of RRkSB and GRkSB are O(jRPj + h � g12) and O(jRPj + (g + g0) � g12), respectively. h

4. Ranked reverse skyline query processing

The traditional reverse skyline retrieval uses the L1-norm to compute the distance. In this section, we propose the ranked
reverse skyline (RRS) query, which employs the user specified function to compute the distance. Accordingly, we present
new algorithms to answer the RRS query and analyze their correctness.

4.1. Problem formulation

First, we formally define the ranked reverse skyline query in Definition 6 below.

Definition 6 (Ranked Reverse Skyline). Given a d-dimensional data set P, a query point q, a function f which is monotone on
each attribute, and a parameter K, let S be the reverse skyline of q, the ranked reverse skyline (RRS) of q contains at most K
points, denoted as SR, such that for any point p 2 SR, o 2 S� SR satisfying (1) SR # S and (2) f(p) 6 f(o).

The RRS query returns K reverse skyline points that have the minimum scores according to the input function. Consider
the example in Fig. 1(c) again, where we suppose K = 2 and the preference function is f(x,y) = x + 5y. Since the reverse skyline
of q in Fig. 1(c) is S = {p3,p12,p13}, we can easily get their scores using f, i.e., f(p3) = 44, f(p12) = 21, and f(p13) = 29. Based on
Definition 6, the output 2 ranked reverse skyline points are hp12,21i and hp13,29i in this order, which is different from the
result set of the RRS query in Section 1.

Although RRS retrieval is similar as the reverse skyline query, it has its own application base. The reverse skyline assigns
the same weight to all the attributes as it employs the L1-norm distance. In those cases, where some attributes are more
important than others, the reverse skyline is not appropriate, because it cannot reflect different weights over various attri-
butes. On the other hand, the RRS query allows the users to customize the function to match their own needs and then uses
the user specified function to compute the distance. In addition, RRS retrieval allows the users to specify the (maximum)
number of the points returned via a parameter K, while the reverse skyline query has no control of the size of the result set.

Algorithm 6. Reused-based RRS algorithm (RRRS).

Input: an R-tree R on a set of data objects, the query point q, the dynamic skyline of the dataset, a function f, a
parameter K.

Output: the result set RRS of a ranked reverse skyline
/⁄GS: the set of global skyline points; RRS: the set of ranked reverse skyline points. ⁄/
1: initialize sets GS = RRS = £ and min-heaps Hg = Hw = £

2: insert all entries of the root into Hg sorted by f
3: while Hg–£ do
4: de-heap the top entry e of Hg

5: if e is globally dominated by points in GS then
6: insert e into heap Hw // for reuse later
7: else // e is not globally dominated by points in GS
8: if e is an intermediate entry then
9: for each child ei of e do

10: if ei is not globally dominated by points in GS then insert ei into Hg

11: else insert e into Hw

12: else // e is a data point
13: insert e into Hw

14: add e to GS
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15: if q is in the DADR(e) then add e to RRS
16: else if q is in the DDR(e) then discard e
17: else
18: execute a window query on e (using Hg and Hw)
19: if the query window contains point(s) then discard e
20: else // the query window does not contain any point
21: add e to RRS
22: if jRRSj = K then break
23: return RRS

Based on the definition, a naive solution is to find all the reverse skyline points in the dataset, and then return those K
points with the smallest values according to the input function. However, the size of the reverse skyline points could be
much larger than K, and thus, it is not necessary to retrieve the complete set of reverse skyline points. In view of this, several
efficient algorithms are proposed below.

4.2. RRS query processing algorithms

In the sequel, we adapt the algorithms for the traditional reverse skyline query to support RRS queries.
The traditional reverse skyline query processing algorithms, i.e., BBRS and RSSA, can be naturally extended to answer RRS

queries. Accordingly, we develop Branch-bound-based RRS algorithm (BRRS) and Pre-computation-based RRS algorithm (PRRS)
for RRS queries, by slightly modifying BBRS and RSSA algorithms, respectively. There are mainly two differences compared
with conventional reverse skyline query processing algorithms. First, we change the mindist function to the new user-input
function f. Due to the monotonicity of f, it is easy to prove that the output points are indeed reverse skyline points. The only
change with respect to the original algorithm is the order of entries visited. It also ensures that the entries are visited in
ascending order of their scores according to a specified function f. Second, the algorithm terminates after K points have been
reported. Therefore, it reduces unnecessary traversal of the R-tree. It is worth noting that the maximal score of the returned K
points is smaller than the score of any remaining object. As BRRS and PRRS are very similar as BBRS and RSSA, we skip their
pseudo-codes for the space saving.

Algorithm 7. Global-skylines-based RRS algorithm (GRRS).

Input: an R-tree R on a set of data objects, the query point q, the dynamic skyline of the dataset, a function f, a parameter
K

Output: the result set RRS of a ranked reverse skyline
/⁄GS1 is used for storing the 1st global skyline, PGS is used for storing the global skyline after pruned by the dynamic

skyline. ⁄/
1: initialize sets GS = GS1 = PGS = RRS = £ and a min-heap Hg = £

2: insert all entries of the root into Hg sorted by f
3: while Hg–£ do
4: de-heap the top entry e of Hg

5: if e is globally dominated by 2 points in GS then
6: discard e // e is not in the global skyline
7: else // e is not globally dominated by points in GS
8: if e is an intermediate entry then
9: for each child ei of e do

10: if ei is globally dominated by less than 2 points in GS then
11: insert ei into Hg

12: else // e is a data point
13: if e is globally dominated by 1 point in GS then add e to GS1
14: else add e to GS
15: if q is in the DADR(e) then add e to RRS
16: else if q is in the DDR(e) then discard e
17: else add e to PGS
18: for each point p2 pgs do // Heuristic 3
19: if the window based on p and q contains GS or GS1 then discard e
20: else
21: insert e into RRS
22: if jRRSj = K then break
23: return RRS
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Since BRRS and PRRS need to traverse the R-tree repeatedly during the processing, we develop the Reused-based RRS algo-
rithm (RRRS), which utilizes the reuse mechanism in PRRS. The pseudo-code of RRRS is depicted in Algorithm 6. Compared
with PRRS, there are many differences. First, RRRS uses two heaps, i.e., Hg and Hw, to store the visited entries. Hg is to store the
entries that are not dominated by the current global skyline and Hw is to store the entries that are dominated by the current
global skyline. Consequently, during the processing, RRRS can not discard any entry unless it is expanded (lines 6, 11, and
13). Second, RRRS uses both Hg and Hw to perform the window query, but PRRS only uses Hg.

As mentioned in Section 1, the reverse k-skyband corresponds to the traditional reverse skyline if k = 0. Moreover, the RRS
query is similar as the reverse skyline query except for the result of RRS. Therefore, some heuristics used for reverse k-sky-
band computation can also be adapted to the RRS query if we set k = 0. For example, we have proposed Heuristic 3 in Sec-
tion 3.2.5 that uses the global k-skyband to prune unqualified objects. If we suppose k = 0, Heuristic 3 can be explained as
follows: Given a query point q and a point p, if p’s query window does not contain any global skyline point or global 1-sky-
band of q, p is a reverse skyline point; otherwise, p is not a reverse skyline point. This can be employed during the processing
of RRS retrieval. Hence, we develop the Global-skyline-based RRS algorithm (GRRS) based on Heuristic 3. It utilizes the global
skylines in the window query, and its pseudo-code is depicted in Algorithm 7. Specifically, GRRS uses a heap Hg to find all the
global skyline and the global 1-skyline (lines 7–13), during which it also employs the dynamic skyline to discard unqualified
points (lines 15–17). Finally, it uses Heuristic 3 to further refine the global skyline and then get the final query result (lines
18–23). GRRS is different from the aforementioned algorithms. To be more specific, when the number of the whole reverse
skyline points is larger than K, BRRS, PRRS, and RRRS all do not need to find the whole global skyline, while GRRS still needs
to find all the global skyline, because the partial global skyline can not fully refine candidate points.

4.3. Discussion

In this subsection, we prove the correctness of our proposed algorithms for RRS queries, namely, BRRS, PRRS, RRRS, and
GRRS.

There are some lemmas presented in [9], which guarantee the correctness of BBRS algorithm. For instance, the algorithm
visits the R-tree entries in ascending order of their distances to a specified query point; the number of the candidates exam-
ined by the algorithm is minimized; each data point will be evaluated unless one of its ancestor nodes has been pruned, and
so on. Since all the four algorithms proposed above, i.e., BRRS, PRRS, RRRS, and GRRS, are adapted from BBRS, the lemmas
mentioned in [9] can also be applied to those algorithms. Next, we present several lemmas that only apply to them.

Let jPj be the cardinality of a data set P (i.e. the number of total data objects), K be the input parameter, s be the number of
reverse skyline objects, g be the number of whole global skyline objects, g00 be the number of currently found global skyline
objects, g1 be the number of the global skyline objects refined by the dynamic skyline, g001 be the number of the currently
found global skyline objects refined by the dynamic skyline.

Lemma 11. If K > s, BRRS, PRRS, RRRS, and GRRS traverse the R-tree (g + 1), (g1 + 1),1, and 1 time(s), respectively; if K 6 s, BRRS,
PRRS, RRRS, and GRRS traverse the R-tree ðg00 þ 1Þ; ðg001 þ 1Þ;1, and 1 time(s), respectively.

Proof. The number that BRRS and PRRS traverse the R-tree depends on the number of the computed global skyline objects.
Hence, BRRS and PRRS traverse the R-tree (g + 1) and (g1 + 1) times, respectively. RRRS reuses the visited nodes, and GRRS
only utilizes the R-tree to compute the global skyline and the 1st global skyline. Consequently, they traverse the R-tree a
single once. The proof completes. h

5. Experimental evaluation

In this section, we evaluate the efficiency and scalability of our proposed algorithms via the experiments on both real and
synthetic datasets. In what follows, we first present the experimental setup in Section 5.1, and then report our experimental
results and findings for RkSB and RRS queries in Section 5.2 and Section 5.3, respectively.

5.1. Experimental settings

We use two real datasets, namely, the CarDB dataset and the NBA dataset. Specifically, CarDB is a 45 K-tuple dataset
extracted from Yahoo! Autos, and we select two attributes (i.e., price and mileage); NBA extracted from http://www.databa-
sebasketball.com includes 15,272 records about 3542 players, and we select four attributes (i.e., number of games played (GP),
total points (PTS), total rebounds (REB), and total assists (AST)). We also generate many synthetic datasets in order to examine
the scalability of the algorithms. These synthetic datasets follow four different distributions, viz., Independent (IN), Clustered
(CL), Correlated (CO), and Anti-correlated (AC). All attribute values of IN datasets are generated independently using a uniform
distribution; CL dataset comprises ten randomly centered clusters, and each of them follows a Gaussian distribution with the
same number of points; CO dataset represents an environment, in which points that are good in one dimension are also good
in other dimensions; AC dataset represents an environment, where points that are good in one dimension are bad in one or
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all of the other dimensions. Fig. 10 illustrates four distributions of the synthetic datasets with 100,000 points in a 2-dimen-
sional space. In the experiments, each dataset is indexed by an R-tree [3], with a page size of 4096 bytes.

We investigate the performance of the proposed algorithms under a variety of parameters, including the number t of
dynamic skyline points, the thickness k of the reverse k-skyband, the number K of returned reverse skyline points, the
dimensionality dim, the cardinality N, and the buffer size. Note that, in every experiment, only one factor varies, whereas
the others are fixed to their default values. The range of the parameters and their default values are summarized in Table 2.
We employ the number of node accesses (# node accesses), the CPU time, and the number of global k-skyband points pruned
(NGP) as the main performance metrics. Each reported value in the following diagrams is the average of 100 queries, and the
query object also follows the corresponding dataset distribution.

All algorithms were implemented by C++, and all the experiments were conducted on a PC with Intel Core 4 Duo 2.8 GHz
processor and 4 GB RAM, running Microsoft Windows XP Professional Edition.

5.2. Results on RkSB queries

The first set of experiments focuses on the RkSB query. It contains two parts, with the first one aiming at verifying the
effectiveness of our presented pruning heuristics and the other part studying the performance of our proposed algorithms
(i.e., BRkSB, PRkSB, OPRkSB, RRkSB, and GRkSB) in answering RkSB queries.

First, we evaluate the pruning efficiency of all proposed heuristics. Fig. 11 shows the results under different t values, with
k fixed at 3 (the median value of Fig. 12) for real and synthetic datasets. Obviously, each heuristic prunes a large number of
points, which validates its effectiveness. Take Heuristic 2 under the CL distribution as an example. It saves the detailed exam-
ination of 407 out of 544 points when t = 50. Compared with Heuristic 1, Heuristic 2 has a more powerful pruning capability.
This is because, as mentioned in Section 3.2, the global k-skyband points are closer to a given query point, compared against
other points, and thus, it has a high probability of falling inside the query window for pruning.

Heuristic 3 is even more powerful than Heuristic 2, since it can discard all the global skyband points. Observe that the NGP
of Heuristic 1 is zero when t = 0, because there is no DR and HR that can be used to prune away unqualified candidate points.
Then, we vary other parameters and report the pruning efficiency of heuristics w.r.t. k, dim, N, and buffer size using both real
and synthetic datasets in Figs. 12–15 respectively. The diagrams confirm the observations and their corresponding explana-
tions in Fig. 11.

The second set of experiments studies the performance of our proposed algorithms. Fig. 16 depicts the impact of t on
PRkSB, OPRkSB, RRkSB, and GRkSB. Note that, since BRkSB does not employ dynamic skylines to prune points, it is excluded
from this experiment. Clearly, OPRkSB outperforms PRkSB in all cases because it integrates Heuristics 1 and 2 to discard
unqualified candidate points. Furthermore, as t grows, the I/O and CPU time of PRkSB drop. The reason is that the bigger
t, the more candidates will be pruned. Therefore, the I/O and CPU time of PRkSB decrease. As expected, RRkSB and GRkSB
are both better than OPRkSB and PRkSB in term of I/O. This is because RRkSB and GRkSB traverse the R-tree only once while
OPRkSB and PRkSB traverse the R-tree multiple times. In addition, the CPU time of RRkSB is the worst among the five algo-
rithms, since RRkSB needs to maintain the reuse heap during the processing, incurring more CPU cost.

Then, we verify the effect of k on the algorithms and report the performance in Fig. 17 for both real and synthetic datasets.
GRkSB clearly outperforms RRkSB, OPRkSB, PRkSB, and BRkSB in all cases, and the advantage of GRkSB becomes more signif-
icant as k increases. This is because, when k becomes larger, more candidate points need to be checked, which results in more
expensive query cost. The I/O cost of BRkSB is the worst since it does not utilize any pruning heuristic, and every candidate
point triggers one window query. Again the CPU time of RRkSB is the worst, while its I/O overhead is very similar to GRkSB.

Next, we investigate the influence of dim on the algorithms. Towards this, we use the synthetic datasets with k = 3,
N = 100 K, and buffer size = 0, and dim varied from 2 to 5, and report the results in Fig. 18. As expected, the performance
of all algorithms degrades with the growth of dim. This degradation is due to the poor efficiency of R-trees in high dimen-
sions. Another reason is that with the growth of dimensionality, the point has a lower possibility to be dominated. Therefore,
the final result intends to include more points with increasing I/O and CPU cost. However, GRkSB still performs the best
among all the algorithms.

(a) IN        (b) CL (c) CO (d) AC

Fig. 10. Dataset distribution.
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We inspect the effect of N on the algorithms, by fixing t = 50, k = 3, dim = 3, and buffer size = 0, and employing synthetic
datasets with cardinality N varied between 40 K and 200 K. Fig. 19 shows the results. Again, GRkSB outperforms the other
four algorithms in all cases. Moreover, the costs of algorithms grow as CN increases. This is because the size of the final query
result set ascends with N.

Finally, we explore the effect of buffer size on the algorithms, by fixing t = 50, k = 3, dim = 3, and N = 100 K. Fig. 20 shows
the results for both real and synthetic datasets. Obviously, as the buffer size grows, the I/O cost drops gradually, whereas the
CPU time remains almost the same. This is due to the mechanism of the buffer. Again, GRkSB outperforms the other four
algorithms in all cases.

In summary, from the above experimental results on both real and synthetic datasets, we can conclude that GRkSB and
RRkSB perform the best in terms of I/O cost, followed by OPRkSB, and PRkSB, and BRkSB is the worst. As for CPU time, GRkSB
is still the best while the RRkSB is the worst.

5.3. Results on RRS queries

In the third sets of experiments, we verify the performance of the algorithms for RRS queries. Five parameters are also
evaluated, i.e., the number K of returned ranked reverse skyline points, the number t of dynamic skyline, the dimensionality
dim, the cardinality N, and the buffer size.

First, we study the effect of K on the algorithms and report the results in Fig. 21. The costs of the algorithms for RRS que-
ries increase with the growth of K except GRRS that remains the same. This is because, when K grows, more candidate points
need to be checked, which incurs more window queries with increased cost. As for GRRS, its cost mainly comes from the
computation of global skyline and global 1-skyline. For a given dataset, the global skyline and the global 1-skyline are fixed.
Consequently, the wall clock time remains the same. Observe that, in Fig. 21, when K is small, the I/O overhead of GRRS is
worse than that of other algorithms. With the growth of K, the I/O cost of GRRS is better than that of BRRS and PRRS, but RRRS
still is the best. The reason is that when getting a global skyline point, BRRS, PRRS, and RRRS examine whether it is in the final

Table 2
Parameters used in our experiments.

Parameter Range Default

Number t of dynamic skyline points 0, 10, 30, 50, 70 50
Thickness k of the reverse k-skyband 0, 1, 2, 3, 4, 5, 6 3
Number K of returned reverse skyline points 10, 20, 30, 40, 50 30
Dimensionality dim 2, 3, 4, 5 3
Cardinality N 40 K, 80 K, 120 K, 160 K, 200 K 100 K
Buffer size (KB) 0, 16, 32, 64, 128, 256, 512 0
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Fig. 11. Pruning efficiency vs. t(k = 3, dim = 3, N = 100 K, buffer size = 0).
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result, and terminate the process once K ranked reverse skyline points are retrieved. In other words, BRRS, PRRS, and RRRS do
not need to find the whole global skyline. However, GRRS is different, and it has to retrieve the complete set of the global
skyline and the global 1-skyline. When K is small, although BRRS and PRRS traverse the R-tree repeatedly, their I/O overhead
is still smaller than that of GRRS. Nevertheless, as K grows, more candidate points should be examined, and the traversal cost
of the R-tree increases, which makes BRRS and PRRS perform worse than GRRS. The point at which GRRS exceeds BRRS and
PRRS is different under various datasets, as shown in Fig. 21. This is caused by different distributions of the datasets.
Although the I/O cost of RRRS performs best, its CPU time is the worst. This is because the RRRS should take more time
in maintaining the reuse heap.
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Fig. 12. Pruning efficiency vs. k(t = 50, dim = 3, N = 100 K, buffer size = 0).
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Second, we explore the impact of t on PRRS, RRRS, and GRRS, and report the results in Fig. 22. Note that, since BRRS does
not utilize dynamic skylines to prune points, it is excluded from this experiment. As t grows, the cost of PRRS drops, while
those of RRRS and GRRS remain almost the same. This is because the number of dynamic skylines increases with the growth
of t, which helps to prune away more points. PRRS only uses the dynamic skyline to prune candidates, while RRRS and GRRS
employ other heuristics or the reuse technique apart from Heuristic 1. Therefore, the decrease tendency of RRRS and GRRS is
not so evident, compared with that of PRRS. Obviously, the I/O cost of RRRS outperforms both GRRS and PRRS in all cases. In
addition, the I/O overhead of that of GRRS is always better than PRRS for CL, CO, and AC datasets, but not IN dataset. This
phenomenon is in accord with the result shown in Fig. 21(a) when K = 30. As for the CPU time, RRRS performs the worst.

Next, we investigate the influence of dim on the algorithms. Towards this, we change dim from 2 to 5 and fix K = 30 and
N = 100 K, with results depicted in Fig. 23. The tendency of IN and AC datasets drops when dim grows, while that under CL
and CO datasets is different. As explained before, when dim increases, it is more likely that an object is not dominated, and
hence the size of final query result enlarges. Since the cardinality is fixed, there are more reverse skyline for the unit number
of points. As r is also fixed, the number of candidate points that are found and refined decreases with the growth of dim. On
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the other hand, the performance of R-trees is poor in high dimensions, which also affects the efficiency of algorithms. For
different data distributions, the influence caused by these two factors is different. For IN and AC datasets, the first factor plays
a more important role, while for CL and CO datasets, the second factor is more important. BRRS degrades as dim grows in all
cases. The reason is that it does not use any pruning technique, and the times it traverses the R-tree is far more than other
algorithms. Similar as previous experiments, the I/O cost of RRRS is still the best for all cases.

Then, we inspect the effect of N on the algorithms, by fixing t = 50, K = 30, dim = 3, buffer size = 0, and employing syn-
thetic datasets with cardinality N varied between 40 K and 200 K. Fig. 24 plots the performance of the algorithms as a func-
tion of N. Again, RRRS always outperforms other algorithms in terms of I/O overhead. With the growth of N, the performance
of GRRS degrades sharply, and it performs even worse than BRRS and PRRS. This is because when r is fixed, BRRS, PRRS, and
GRRS all retrieve the results incrementally. However, GRRS finalizes its result set until it finds all the global skyline and the
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Fig. 17. RkSB cost vs. k(t = 50, dim = 3, N = 100 K, buffer size = 0).
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Fig. 18. RkSB cost vs. dim(t = 50, k = 3, N = 100 K, buffer size = 0).
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Fig. 20. RkSB cost vs. buffer size (t = 50, dim = 3, N = 100 K, k = 3).
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Fig. 21. RRS cost vs. K(t = 50, dim = 3, N = 100 K, buffer size = 0).
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Fig. 22. RRS cost vs. t(K = 30, dim = 3, N = 100 K, buffer size = 0).
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Fig. 23. RRS cost vs. dim(t = 50, K = 30, N = 100 K, buffer size = 0).
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global 1-skyline, which incurs larger I/O cost. As N increases, the cost of the computation for the global skyline and the global
1-skyline also grows, resulting in the poor performance of GRRS.

Finally, we explore the effect of buffer size on the algorithms, by fixing t = 50, K = 30, dim = 3, and N = 100 K. Fig. 25 shows
the performance of the algorithms as a function of buffer size. As expected, the I/O cost drops gradually with the growth of
buffer size. The phenomenon is caused by the mechanism of the buffer.

To sum up, from the above experimental results on both real and synthetic datasets, we can conclude that the I/O over-
head of RRRS performs the best. The performance of GRRS is varying based on the values of parameters.

6. Conclusions

Although the reverse skyline query has been received much attentions in the database community, its applications under
some specified circumstances are limited. To this end, in this paper, we introduce RkSB and RRS queries, and propose a suite
of supporting algorithms based on R-trees. In particular, we investigate the RkSB query, whose dynamic k-skyband contains a
given query point. It corresponds to the traditional reverse skyline retrieval when k = 0. Five algorithms, i.e., BRkSB, PRkSB,
OPRkSB, RRkSB, and GRkSB are developed to answer the RkSB query efficiently. As a second step, we study the RRS query,
which returns the K reverse skyline points whose scores are the minimum. Since RRS retrieval is similar as the traditional
reverse skyline query, we extend BBRS and RSSA to support the RRS query, namely, BRRS and PRRS. Moreover, to boost PRRS,
two improved algorithms RRRS and GRRS are also proposed. In the future, we intend to investigate the reverse skyline query
and its variants in metric spaces and over incomplete data, respectively.
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