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ABSTRACT Recently, skyline query processing over data stream has gained a lot of attention especially
from the database community owing to its own unique challenges. Skyline queries aims at pruning a search
space of a potential large multi-dimensional set of objects by keeping only those objects that are not worse
than any other. Although an abundance of skyline query processing techniques have been proposed, there
is a lack of a Systematic Literature Review (SLR) on current research works pertinent to skyline query
processing over data stream. In regard to this, this paper provides a comparative study on the state-of-the-
art approaches over the period between 2000 and 2022 with the main aim to help readers understand the
key issues which are essential to consider in relation to processing skyline queries over streaming data.
Seven digital databases were reviewed in accordance with the Preferred Reporting Items for Systematic
Reviews (PRISMA) procedures. After applying both the inclusion and exclusion criteria, 23 primary papers
were further examined. The results show that the identified skyline approaches are driven by the need
to expedite the skyline query processing mainly due to the fact that data streams are time varying (time
sensitive), continuous, real time, volatile, and unrepeatable. Although, these skyline approaches are tailored
made for data stream with a common aim, their solutions vary to suit with the various aspects being
considered, which include the type of skyline query, type of streaming data, type of sliding window, query
processing technique, indexing technique as well as the data stream environment employed. In this paper,
a comprehensive taxonomy is developed along with the key aspects of each reported approach, while several
open issues and challenges related to the topic being reviewed are highlighted as recommendation for future
research direction.

INDEX TERMS Skyline query processing, data stream, certain data stream, uncertain data stream.

I. INTRODUCTION
In recent past, skyline queries have gained a lot of inter-
est from the database community. Numerous applications
for multi-criteria decision-making relied heavily on skyline
computation. The introduction of the skyline operator by [1]
has triggered an abundance of skyline algorithms being pro-
posed [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12],
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[13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23],
[24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34],
[35], [36], [37], [38], [39], [40], [41], [42], [43], [44], [45],
[46], [47], [48], [49], [50], [51], [52], [53], [54], [55], [56],
[57], [58], [59], [60], [61]. These skyline algorithms were
developed with the aim to optimize the skyline computa-
tion. However, they differ in various aspects, namely: (i) the
characteristics of data they handled such as uncertain data,
incomplete data, encrypted data, streaming data, big data,
etc.; (ii) the platform they considered such as distributed,
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cloud computing, road networks, etc.; and (iii) the type of
skyline queries they processed such as range skyline, spatial
skyline query, reverse skyline query, etc. The skyline operator
introduced by [1] filters the collection of objects in a data
set by selecting those objects that are not dominated by any
other objects. An object dominates another object if it is as
good as the other object in all dimensions and better in at
least one dimension. This approach is commonly used to
identify the best, most preferred objects known as skylines,
from a given data set in satisfying a user’s preferences that
are specified as the skyline query. A classic example is iden-
tifying an apartment to rent that would meet the following
user’s preferences (i) apartment with the cheapest rent rate
and (ii) apartment that is nearest to the city center. This is
demonstrated in Figure 1(a) where the dimensions d1 and d2
represent the rent rate and distance, respectively. Applying
the dominance analysis over the given twelve objects results
in the objects o5, o6, o10, and o12 as the skyline objects.

Data stream is crucial in decision making applications.
These applications come in a variety of forms including
sensor networks, manufacturing, web applications, telecom-
munications data management, security, network monitoring,
and others. Unlike the conventional applications that gen-
erate data that are stored in finite persistent relations, data
streams are time varying (time sensitive), continuous, real
time, volatile, and unrepeatable [62]. Hence, every object
oi has a timestamp indicating the arrival time, tarr (oi), and
expiry time, texp(oi), of the object in the stream. Processing
data stream is challenging due to several reasons: (i) the
objects in the stream arrive online, (ii) the system has no
control over the order in which objects arrive to be processed,
either within a data stream or across data streams, (iii) data
streams are potentially unbounded in size, and (iv) once an
object from a data stream has been processed it is discarded
or archived, it cannot be retrieved easily unless it is explicitly
stored in memory, which typically is small relative to the size
of the data streams [63].

The paradigm shift from static data to streaming data has
recently attracted the attention of the database community
simply because the traditional database techniques are ineffi-
cient at addressing the unique characteristics of data streams,
such as rapid data arrivals, strict response time constraints,
etc. Skyline query processing is no exception where skyline
objects need to be continuously updated with objects arriving
and expiring while time passes. For example, a user may
ask the most preferable apartment deals advertised and want
the results to be updated every 30 minutes. Using similar
example as given in Figure 1(a), figures 1(b) and 1(c) depict
the skyline objects at time, t = 14 and t = 17, respectively.
Meanwhile, Figure 1(d) presents the arrival and expiry time
of each object that are denoted by red dots and green dots,
respectively. At time t = 14, nine objects are analyzed, i.e.
o1, o2, . . . , o9, in which objects o1, o3, o4, o5, and o6 are
the skyline objects. Meanwhile, at time t = 17, the objects
o1, o2, and o3 are considered outdated while o10, o11, and
o12 are the new arrival objects. Analyzing the valid objects

at time t = 17 results in o5, o6, o10, and o12 as the skyline
objects. Obviously, a skyline query over data stream implies
a continuous query which requires continuous evaluation as
the query results (skylines) vary with the change of time.

A. RELATED REVIEWS
Several review studies have addressed the skyline computa-
tion issues faced during the processing of skyline queries.
A recent survey conducted in [64], discusses on various flexi-
ble/restricted skyline solutions that are proposed to overcome
the traditional ranking queries’ inadequacies. These solutions
include Restricted Skyline queries (R-skylines), trade-off sky-
line, applications of ρ-dominance, Top-k dominating queries,
Uncertain Top-k queries (UTK), Skyline ordering, and regret
minimization.

In [65], three skyline approaches are analyzed, and their
main properties are highlighted. These approaches are F-
skyline, regret minimization, and skyline ranking and they are
introduced with the aim at overcoming the limitations of clas-
sic methods such as top-k and skyline queries. The following
criteria are used in discussing the pros and cons of each
technique: flexible input, mix top-k & skyline approaches,
weight-based, multiple scoring functions, user interaction,
scale invariant, stable, attribute order compensation, k selec-
tion, rank results, all-d inclusive, uncontrollable output size,
and partial imprecision of output. The results of the com-
parison can be used as a guidelines in selecting the suitable
approach in dealing with users’ problems.

Dzolkhifli et al. [66] in their review has proposed a taxon-
omy of skyline query processing techniques over data stream.
In reviewing the two main types of skyline queries over data
stream, i.e. single query and multi queries; the following
approaches are identified: basic skyline, top-k skyline, n-of-N
skyline, probabilistic skyline, dynamic skyline, group skyline,
and reverse skyline. The types of data stream which are cate-
gorized into two, namely: uncertain data stream and certain
data stream; also play an important role in deciding the
suitable approach in skyline computation. Moreover, to pro-
cess the skyline queries over data stream where objects are
frequently updated in rapid time, a sliding window approach
is utilized. Twomain well-known sliding window approaches
that are count based and time-based are part of their devel-
oped taxonomy.

In [67], a comparative study has been conducted on sky-
line query processing on big data. The study has compared
various skyline algorithms which include basic distributed
skyline (BDS), improved distributed skyline (IDS), progres-
sive distributed skylining (PDS), mobile ad-hoc network
(MANET), SKYPEER/SKYPEER+, parallel distributed sky-
line (PaDSkyline), feedback based distributed skyline (FDS),
distributed skyline (DSL), skyline space partitioning (SSP),
SKYFRAME, and iSKY.
Gothwal et al. [68] presented a review on skyline algo-

rithms that deal with varieties of data generated by differ-
ent data-specific applications that include uncertain data,
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FIGURE 1. (a) Example of skylines for non-streaming data, (b) example of skylines for streaming data at time, t = 14, (c) example of skylines for
streaming data at time, t = 17, (d) the arrival and expiry time of each object.

incomplete data, time series data, and interval uncertain
data. The following fundamental skyline algorithms are
reviewed: Block-Nested Loop (BNL), Divide and Conquer
(D&C), Bitmap,Nearest Neighbor Search (NNS), and Branch
and Bound (BBS). Meanwhile, the following skyline algo-
rithms DSUD, e-DSUD, IDSUD, and ADSUD which focus
on processing skyline queries over uncertain data in highly
distributed environment are analyzed. To compute the skyline
queries for uncertain data on MapReduce framework consid-
ering both discrete and continuous models; three algorithms
are discussed that arePS-QPF-MR,PS-BR-MR, andPS-BRF-
MR. The ISkyline algorithm is the only skyline algorithm
discussed in [68] that handled the issue of incompleteness of
data. In addition, the α/β-Dominant Skyline, Naïve method
(NA), Bounding method (BM), and Online Skyline Query
Answering Algorithm (OKQA) that are devised to perform
skyline computation on data arranged in series of time are
also reviewed. The skyline algorithms to process skyline
queries on uncertain data where the dimension of each object
is represented as an interval or an accurate value are also
analyzed. These include: Branch and-Bound Interval Skyline
(BBIS), CIS, and Constrained NN (CNN).

A comprehensive survey on the state-of-the-art techniques
for skyline query processing has been conducted in [69]. The
survey emphasized on the numerous variations of the skyline
algorithms that are proposed since the introduction of the
skyline operator by [1] till the year 2013. The fundamen-
tal skyline algorithms that include D&C, Bitmap, INDEX,
NN, BBS, Sort-Filter-Skyline (SFS), Linear Elimination Sort
for Skyline (LESS), and Sort and Limit Skyline algorithm
(SaLSa) are discussed. The different types of skyline queries
and their applications are also presented. These include con-
strained skyline queries, dynamic skyline queries, reverse
skyline queries, group by and join skyline queries, top-k
skyline query, thick skyline query, etc.
A taxonomy of skyline algorithms over uncertain database

is presented in [70]. The taxonomy divides the skyline algo-
rithms over uncertain data into two main groups, namely:
index-based and non-index approach. The non-index-based
algorithms do not require any mechanism to organize the
objects in the collections; while the index-based algorithms
rely on an indexing technique such as B-Tree to expedi-
ate the process of filtering the objects in the collection.
The index-based algorithms are further grouped into two
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depending on the nature of data that they handled, i.e.
certain data or uncertain data. Under the uncertainty of
data, further grouping is performed reflecting two differ-
ent uncertainty models assumed by the algorithms. These
models are dimension level and object level. Based on the
developed taxonomy, the following skyline algorithms are
analyzed: NN, BBS, Bitmap, probabilistic skyline (p-skyline),
ε-approximate, U-Skyline, D&C, Effective Probabilistic Sky-
line Update (EPSU), LookOut, ISkyline, and Skyline Query
over Uncertain Data (SkyQUD).

A brief survey on skyline query processing algorithms
and their different applications in various fields has been
conducted in [71]. Their survey focused on static skyline
query, dynamic skyline query, spatial skyline query, and net-
work skyline query. The static skyline algorithms covered in
their survey include D&C, BNL, BBS, NN, and FAST-SKY.
Meanwhile, I-SKY, N-SKY, and KMS are among the dynamic
skyline algorithms discussed in [71]. Furthermore, Threshold
Farthest Spatial Skyline (TFSS), Branch and Bound Farthest
Spatial Skyline (BBFS), Branch and Bound Spatial Skyline
(B2S2), Voronoi based Spatial Skyline (VS2), and Voronoi
based Continuous Spatial Skyline (VCS2) are the spatial sky-
line algorithms reviewed where spatial locations are part of
the query requirements. Nonetheless, several skyline algo-
rithms meant for network environment are also discussed
which include efficient distributed skyline based on mobile
computing (EDS-MC) and Network nearest neighbor skyline
(N3S).

The survey in [72] reviewed the state-of-the-art of dis-
tributed skyline approaches for highly distributed environ-
ment. The analysis led to the development of a taxonomy
of skyline query processing where three important fac-
tors that influence the performance of a distributed skyline
approach are considered. These factors are query routing,
result propagation, and filter points. Based on these factors,
several distributed skyline approaches are compared, which
includeDistributed Skyline (DSL), Skyline Space Partitioning
(SSP)/Skyframe, iSKY, Semantic Small World (SSW), Single
Filtering Point (SFP), Distributed Data Summaries (DDS),
SKYPEER, SKYPEER+, BITPEER, Parallel Distributed Sky-
line (PaDSkyline), a grid based approach for distributed
skyline (AGiDS), Feedback based Distributed Skyline (FDS),
and SkyPlan.
In [73], a survey on various skyline computation method-

ologies from centralized environment to modern compu-
tational environments that include distributed, real-time,
mobile, and web is presented. It covers the fundamental
skyline algorithms, namely: BNL, D&C, SFS, LESS, SaLSa,
Bitmap, NN, and BBS. Meanwhile, the skyline algorithms
proposed for processing a distributed skyline query, namely:
SkyPlan, PadDSkyline, BSkyTree-S, BSkyTree-P, Parallel
Skyline (PSkyline), and Search Space Partitioning (SSP)
are briefly discussed. For real-time environment where the
data set may be uncertain, three skyline algorithms are
analyzed. They are PSkyline, LookOut, and Constrained
Skyline Computing (CSC). In addition, Ring-Skyline (RS), I-

SKY, N-SKY, Range to Range Skyline Query (R2R), Point
to Range Skyline Query (P2R) are the skyline algorithms
listed under the mobile environment. Several skyline algo-
rithms proposed for the web environment are analyzed
which include Collaborative Filtering Skyline (CFS) and
SkyRank.

Table 1 summarizes the related review studies on skyline
computation as reported in this section. For each study, the
table highlights its main contribution, the year of referenced
articles used in their analysis, whether SLR is used as the
methodology in conducting the review, the nature of data
under review, and the outcome of the study. From the table,
it is obvious that most of the studies focus on certain and/or
uncertain data. Only a few studies have constructed taxon-
omy [66], [70], [72] while none of the studies have applied the
SLR methodology in conducting their review. Also, most of
the review is within a short period of time (9 years – 15 years)
except for [65] and [68].Most significantly, since themajority
of the articles they reviewed are older than five years [66],
[67], [68], [69], [70], [71], [72], [73], it is particularly crucial
to update the information presented in these studies to include
the most recent works related to the study.

B. MOTIVATIONS AND CONTRIBUTIONS
Despite the development of the topic under study, to the best
of our knowledge, none of the previous studies [64], [65],
[66], [67], [68], [69], [70], [71], [72], [73] used the SLR
methodology to systematically and comprehensively identify,
classify, and compare the various skyline techniques over
data stream. Thus, by providing a thorough and organized
analysis of the scholarly literature between 2000 and 2022,
this study seeks to help interested researchers to obtain an up-
to-date review of works related to skyline query processing
over data stream. The main contributions of this work are as
follows:

• Proposing a comprehensive taxonomy of skyline query
processing over data stream. The taxonomy is built
based on the main key aspects that are identified through
the literature research, namely: type of skyline query,
type of streaming data, type of sliding window, query
processing technique, indexing technique as well as
the data stream environment employed.

• Providing a comparative study on the state-of-the-art
approaches in processing skyline queries over data
stream.We have developed seven key research questions
that serve as the foundation for the comparative analysis
of the most cutting-edge approaches.

• Highlighting open issues and challenges related to sky-
line computation over data stream as recommendation
for future research direction. Based on the results of
the SLR, we have identified three significant issues that
warrant further investigation. They are (i) flexibility in
query requirements of the users, (ii) adaptive system for
extremely fast data streams, and (iii) dirty data sets with
data quality problems.

72816 VOLUME 11, 2023



M. A. Mohamud et al.: SLR of Skyline Query Processing Over Data Stream

TABLE 1. A summary of related review studies on skyline computation.

C. ORGANIZATION OF THE PAPER
The rest of the paper is structured as follows. In Section II, the
necessary definitions and notations, which are used through-
out the paper, are set out. Section III defines the review
steps of the SLR methodology which are based on the Pre-
ferred Reporting Items for Systematic Reviews (PRISMA)
2020 guidelines [74], while Section IV presents the results of
classifying, analyzing, and synthesizing the selected articles
based on the seven review questions that we have designed.
The study results and open issues are discussed in Section V.
Finally, we conclude our study in Section VI.

II. BACKGROUND
In this section, we present the necessary definitions and intro-
duce the notations that are used throughout this paper. These
definitions have been defined either formally or informally
in the literature [1], [14], [22], [25], [80], [81]. Examples are
provided where necessary to further clarify the definitions.
Definition 1 (Dominance): Given a database, D, with m

dimensions, d = {d1, d2, . . . , dm} and n objects D =

{o1, o2, . . . , on}, oi is said to dominate oj denoted by oi ≺ oj
if and only if the following condition holds: ∀dk ∈ d, oi.dk ≤

oj.dk ∧ ∃dl ∈ d, oi.dl < oj.dl . Here, we assume that lower
values are preferred over higher ones. If otherwise, then the
comparison operators ≥ and > are used in the definition
instead of ≤ and <, respectively. For instance, given the

objects o1(6, 3, 2, 10) and o2(12, 3, 4, 10), then o1 ≺ o2
as o1 is better than o2 in the first and third dimensions (true
on the second part of the condition), while o1 is equal to o2
in the second and fourth dimensions (true on the first part of
the condition).
Definition 2 (Skyline): Given a database D with n objects

D = {o1, o2, . . . , on}, oi is a skyline of D if there is no other
objects oj ∈ D that dominates oi. Hence, the set of skylines
of a database D can be denoted by S = {s1, s2, . . . , sl} where
each si ∈ D. Skylines hold the transitivity property that means
if si dominates sj and sj dominates sk , this implies that si
dominates sk [1].
Definition 3 (Discrete Uncertainty Model): Given a

database D with n objects D = {o1, o2, . . . , on}, an oi is
modelled as a probability distribution that is defined on a
finite set of l instances (states), oi1, oi2, . . . , oil with each oij
is associated with a probability value. Here, the objects in D
are said to be uncertain (uncertain objects) while D is called
uncertain database.
Definition 4 (Continuous Uncertainty Model): Given a

database D with n objects D = o1, o2, . . . , on, an oi is mod-
elled as a continuous range of value or approximate value,
vi, which is associated with a probability density function
representing the possible values of the object. Here, the value
vi is said to be uncertain (uncertain value/data) while D is
called uncertain database.
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FIGURE 2. Illustration of objects with certain and uncertain data.

Definition 5 (Continuous Range Value): A value vi =

[lb:ub] is a continuous range value (uncertain value) where
lb and ub are the lower bound and upper bound values of vi,
respectively. The possible values of vi lie at any point within
the range [lb:ub] including the endpoints. For instance, the
value of the second dimension of object o3(6, [3:7], 2, 10) is
in the form of a continuous range value.
Definition 6 (Exact Value): A value vi is an exact value

when its precise value is known. For instance, the values of
the first, third, and fourth dimensions of object o3(6, [3:7], 2,
10) are examples of exact values.

Figure 2 shows five objects with two dimensions, namely:
salary and distance. It demonstrates that the salary values of
objects b1 and c2 are in continuous range values with a lower
bound and an upper bound limit. Although c2 is better than
b1 in distance, we cannot certainly conclude that c2 is better
than b1 in salary since the exact values of both objects are not
known.
Definition 7 (Data Stream): A data stream D is an infinite

sequence of objects, D = {o1, o2, . . .} with each oi has a
timestamp, tarr (oi), indicating the arrival time of the object
in the stream.
Definition 8 (Query Over Data Stream): A query, qi, over

a data stream, D, commonly known as continuous query,
is specified with a sliding window (moving window), wj[qi],
that is either (i) a timestamp-based window of duration t;
with each time-based window, wj[qi], consists of the set of
objects whose arrival timestamp is within the time t . The
window wj[qi] is defined by two parameters range and slide,
where range specifies the length of the window extent and
slide specifies the step by which the window extent moves,
(ii) sequence-based window (count-based window) is a fixed
window size j where each count-based window, wj[qi], is the
set of j most recent objects to arrive. Given k queries, Q =

{q1, q2, . . . , qk}, if each query, qi, in Q is processed indi-
vidually/separately then the processing approach is called
single query processing; otherwise the term multi queries
processing is used instead. In addition, if the query utilizes the
skyline operator, then it is named continuous skyline query.
Examples of query over data stream are as follows: a user
may ask themost preferable deals advertised during the recent
3 hours and want the results to be updated every 30 minutes,

while another user may request the results to be updated every
15 minutes over the past 30 minutes.

III. REVIEW METHODOLOGY
To address the objectives of the research, a systematic lit-
erature review approach is adopted. To ensure reproducible,
transparent, and scientifically suitable systematic reviews, the
Preferred Reporting Items for Systematic Reviews (PRISMA)
2020 guidelines [74] is closely followed. Consequently, our
review methodology consists of five steps including review
questions, selection of information sources, search strategy,
criteria used in making the selections, and data extraction and
analysis.

First, we defined the following review questions (RQ):

RQ1: Howdoes research in skyline queries over data stream
evolve over time?

RQ2: What are the types of skyline query focused by the
studies and what are the techniques employed in pro-
cessing these queries?

RQ3: What are the types of data stream considered in the
studies related to skyline queries?

RQ4: What is the query processing approach employed
by each study in processing the continuous skyline
queries?

RQ5: What are the indexing techniques employed by the
studies in facilitating the skyline computation?

RQ6: What is the type of data set commonly used in the
analysis conducted by the studies of skyline query on
streaming data?

RQ7: What are the performance metrics frequently used in
the studies of skyline query over data stream?

A. INFORMATION SOURCE AND SEARCH STRATEGY
The systematic literature review conducted in this work
included an advanced search of the available literatures
between the years 2000 and 2022. To ensure that none of the
relevant studies are missed, we utilized the seven well-known
electronic databases that are: Web of Science (WoS), IEEE
explore, Scopus, Wiley, Science Direct, ACM, and Springer.
Meanwhile, to avoid having a limited number of publications,
a collection of digital libraries that covers a wide range of arti-
cles is selected. Furthermore, motivated by several literature
reviews like [57], [66], [69], [80], and [96], a comprehensive
search string is created that is relevant to the topic being
investigated. These search terms are sufficient to match the
article title, abstract, and keywords of a large number of
papers. The exact search strings and keywords used for each
information source are shown in Table 2.
To strengthen the integrity and credibility of the study, only

journal articles are included. Specific inclusion and exclusion
criteria are established to include only those studies that are
pertinent to the aim of the study. These criteria are shown
in Table 3. On the basis of exclusion and inclusion criteria,
additional parameters (language: English; document type:
articles) are utilized to further refine the search results in
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each database. In September 2022, a final search across all
databases is conducted.

B. DATA COLLECTION AND ANALYSIS
The systematic literature review is conducted in five stages in
accordance to the PRISMA 2020 guidelines [74]. A prelimi-
nary review of the literature made up the first stage. A total
of 1,075 articles were identified in the selected electronic
databases with the following distributions: WoS (n = 174,
16.2%), Scopus (n = 132, 12.3%), IEEE (n = 184, 17.1%),
ScienceDirect (n= 62, 5.8%), ACM (n= 82, 7.6%), Springer
(n = 379, 35.2%), and Wiley (n = 62, 5.8%). Based on the
EX1 and EX2 exclusion criteria and IC1 and IC2 inclusion
criteria, 99 articles and 103 articles are ruled ineligible by
human and database automation tools, respectively. These
202 articles are eliminated due to the language used and the
type of publications. Meanwhile, considering the EX3 exclu-
sion and IC3 inclusion criteria and utilizing the Microsoft
Excel application, 45 articles are found to be duplicated
and hence are omitted. The first stage results in 828 arti-
cles that are further reviewed in the second stage. The title
and abstract of these articles are thoroughly examined to
only include/exclude those that are related/not related to the
database management system as stated by the inclusion and
exclusion criteria, IC4 and EX4, respectively. We browsed
the complete article in cases where the abstract is unclear or
insufficient. In the third stage, we have identified 16 articles
that are not fully text accessible. They are not included in
the study following the EX5 exclusion criterion. In the fourth
stage, the exclusion criterion, EX6, and inclusion criterion,
IC6, are rigorously applied to the remaining 230 articles.
This stage results in 23 articles that are related to skyline and
data stream. These 23 articles are thoroughly reviewed in the
final stage for relevancy in answering the research questions
and the objectives that have been designed for this study.
A PRISMA flow diagram as shown in Figure 3 summarized
the described procedure.

The final selected articles that met all the exclusion and
inclusion criteria presented in Table 3, are further analyzed
to extract the required data. At this stage a full text reading
is conducted where three researchers are randomly appointed
to evaluate each article, after which data are extracted and
crosschecked. To simplify further analyses, the data are
saved in Excel spreadsheets. The following information is
extracted from each article, namely: type of skyline query,
proposed method, type of data, type of query processing
(single/multiple), indexing technique used (if any), type of
data set, and performance metrics employed. This process
simplifies the analysis and classification to be conducted in
answering our research questions.

IV. RESULTS
In this section, we statistically analyze the results of the SLR
that are related to skyline query processing over data stream.
Based on the extracted data of the 23 articles, we respond to
the analytical questions RQ1 till RQ7.

RQ1: How does research in skyline queries over data
stream evolve over time?

Between the year 2000 and 2022, 23 journal articles
are identified to have studied the issues related to skyline
queries over data stream. This is illustrated in Figure 4,
where the number of articles that appeared in each year is
presented. From this figure, it is obvious that the topic is
attracting considerable interest starting from year 2010 and
increased in numbers in year 2013, 2014, and 2016. It is
worth noting that the first article was published in 2006 in the
Journal of IEEE Transactions on Knowledge and Data Engi-
neering [75]. In [75], the skyline queries are processed by
taking into account a sliding window covering themost recent
objects. Objects are continuously monitored while the sky-
lines are maintained incrementally. Meanwhile, the first work
to address skyline queries over distributed data streams is
reported in [78]. Here, the data streams are assumed to derive
from multiple horizontally split data sources. The challenges
in computing skyline queries over uncertain data stream are
first raised in [79]. Several probabilistic skyline algorithms
are then developed [79], [80], [82], [83], [86], [87]. On the
other hand, several works like [84], [85], and [95] investi-
gated the parallel skyline query problem over uncertain data
stream. In these works, parallelization is employed during the
process of computing skylines. Nonetheless, the recent work
related to skyline queries over data stream was published
in 2022 in the IEEE Transactions on Computers [97]. The
work in [97] focuses on handling the spatial-keyword sky-
line queries over geo-textual streams to continuously obtain
good skyline results. Meanwhile, Figure 5 presents the total
number of citations of the articles according to the year of
publication. Intuitively, the recent articles show lesser number
of citations as compared to the older one.

Among one of the essential technologies in today’s century
is sensor technology that is widely used for environmental
monitoring and event surveillance, including habitat mon-
itoring, agricultural monitoring, and forest fire detection.
A skyline query can be used to monitor the extreme sensed
data that are continuously generated over data streams. Since
the sensor devices have limited battery power, memory size,
and data processing capability, designing an energy efficient
method for sensor devices to process skyline query, is one
of the most challenging tasks. Hence, it is expected that
research in this field will continue to evolve especially with
the introduction of new technologies like sensor networks,
IoT, fog computing, etc.

RQ2: What are the types of skyline query focused by the
studies and what are the techniques employed in processing
these queries?

Due to the unbounded length of data streams, computing
the skylines is a significant challenge [75]. To process the
skyline queries over a data stream, the sliding window has
been widely used. For instance, in [84], [85], [86], [90], and
[95], a count-based window of the most recent n received
objects is employed in computing the skylines. Thus, in a
count-based window, the number of active objects remains
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TABLE 2. Search strategy and information source.

TABLE 3. Inclusion and exclusion criteria used in our work.

constant. The arriving ofm new objects will result inm oldest
objects being discarded. Meanwhile, the continuous skyline
queries are processed using a time-based window in [75],
[76], [77], [78], [79], [80], [81], [82], [83], [87], [88], [89],
[91], [92], [93], [94], [96], and [97] while both count-based
and time-based sliding windows are used in [78]. In a time-

based window, the number of active objects may not be
constant since only objects with arrival time within the last
t time instances are considered active.

In [75] and [76], the Lazy and Eager and LookOut algo-
rithms that process skyline queries over data streams are
proposed, respectively. The Lazy and Eager algorithms con-
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FIGURE 3. PRISMA flow diagram [74].

FIGURE 4. Number of articles per year.

tinuously monitor the incoming objects and incrementally
maintain the skylines [75]. The database in [75] is divided
into two, namely: DBsky and DBrest for storing objects that
are and are not the current skylines, respectively. Some
objects in DBrest will eventually be skylines whenever a sky-
line object in DBsky expired. While, the LookOut algorithm
is proposed in [76] to efficiently evaluate the continuous
time-interval skyline queries. Additionally, a new skyline
operator is introduced named continuous time-interval sky-
line to continuously evaluate a skyline over multidimensional

FIGURE 5. Number of citations per year.

objects wherein each object is valid for a particular time
range. Furthermore, with the assumption that the speed of
skyline computation is critical, [76] has opted the quadtree
as the choice of index structure.

An efficient and scalable two-phase approach to return the
skyline objects in different subspaces is proposed in [77].
The Naïve Maintenance Algorithm (NMA) is employed in the
first phase to produce the seed skylines from the full-space
skylines. In the second phase, three novel pruning techniques,
namely: timestamp-based pruning (TSP), attribute based
pruning (ATP), and timestamp-and-attribute based pruning
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(TAP), are utilized to improve the maintaining efficiency.
Both the TSP and ATP work by pruning the cells that overlap
with the dominance regions of incoming objects; while the
TAP prunes the cells that overlap with the anti-dominance
regions of incoming objects. To provide an efficient mech-
anism for evicting expiring valid objects, [77] stored all the
valid objects in a single list and they are evicted in a first-
in-first-out manner. The new arrival objects are positioned
at the end of the list while those that fall out of the win-
dow are discarded from the head of the list. For each cell,
three pointer lists are constructed each pointing to the corre-
sponding inactive objects, candidate full-space skylines, and
full-space skylines, respectively.

To address the issues related to skyline queries over dis-
tributed data streams, the work in [78] has presented an
efficient and effective algorithm called Based On Changes
of Skylines (BOCS). All objects at the remote site are saved
in a local buffer and observed during the current timestamp.
Once the timestamp changes, the local skylines on remote
sites are updated and maintained by an efficient centralized
algorithm named GridSky. Here, the skyline increment, delta
skyline, is calculated by observing the difference between
the current skylines and the skylines of the latest timestamp,
which is then sent to the coordinator. A central buffer is
utilized to preserve the delta skylines. This is then followed
by the process of integrating the remote increments with the
latest global skylines to obtain the final global skylines. Both
the GridSky and the associated communication protocol are
parts of BOCS.

Subsequently, skyline algorithms that are based on prob-
ability computation on uncertain data stream have been
presented in [79], [80], and [82]. A probabilistic skyline
algorithm, PSkyline, is developed in [79] to compute exact
skyline probabilities of all objects in a given uncertain data
set. Furthermore, a new in-memory tree structure called Z-
tree is employed by PSkyline to increase the likelihood of
finding incomparable groups of instances and dispensing
with unnecessary dominance tests altogether. In addition,
the online probabilistic skyline algorithm, O-PSkyline, and
top-k probabilistic skyline algorithm, K-PSkyline, are devel-
oped to find the skyline objects for online uncertain data
streams and top-k objects with the highest skyline probabil-
ities, respectively. In [80], a novel sliding window skyline
model is proposed where the Wp-Skyline (p, t) is calculated
to identify those objects whose probabilities of becoming
skylines are at least p at timestamp t . To maintain the list of
candidates that might become skylines in the future sliding
windows, the candidate list (CL) approach is introduced.
Several algorithms and an enhanced refinement strategy,
a combination between a multi-dimensional indexing struc-
ture and grouping-and-conquer strategy, are proposed with
the aim to maintain the skyline candidate set incrementally
by continuously monitoring the newly incoming and expired
objects. Similar to [79] and [80], [82] investigated the prob-
lem of efficiently computing skyline against sliding windows
over an uncertain data stream and formally defined the prob-

ability threshold based skyline problem. Several techniques
are introduced as follows: SSKY to continuously compute
skyline with the probability no less than a given q, q-skyline,
against a sliding window, MSKY to continuously compute
multiple q-skylines concurrently of multiple given probabil-
ity thresholds, QSKY to process a skyline query with an ad
hoc probability threshold, TOPK to retrieve k objects with
the largest skyline probabilities, and TIMESTAMP to contin-
uously compute q-skyline against the timestamp based sliding
window model. Also, the minimum information needed in
continuously computing the probabilistic skylines against
sliding window is characterized which is efficiently kept and
maintained in a candidate set.

A variety of skyline queries that employ probability com-
putation over uncertain data stream have been investigated
which include reverse skyline queries [83], probabilistic
subspace skyline [86], and n-of-N skyline queries [87].
Focusing on the problem of continuously processing reverse
skyline queries on sliding windows against uncertain data
streams, [83] proposed the Continuous Probabilistic Reverse
Skyline (CPRS) algorithm which is based on the R-tree to
process the queries over the most recent n uncertain objects.
Meanwhile, to tackle the problem of probabilistic subspace
skyline query processing over sliding windows on uncertain
data streams, [86] developed the probabilistic subspace sky-
line (PSS) algorithm using a regular grid indexing structure.
PSS retrieves all objects from the most recent window of
streaming data in a user-selected subspace with a skyline
probability no smaller than a given threshold. Two variants of
PSS called Approximate PSS (APSS) and CUDA-based PSS
(CPSS) are also introduced to deal with high-dimensional
databases and very large databases, respectively. On the other
hand, in dealing with the problem of efficiently computing
probabilistic skylines against the most recent n uncertain
objects in a data stream, the following are developed in [87]:
(i) an efficient pruning technique to minimize the num-
ber N (N ≤ N ) of uncertain objects to be kept in the
most recent N objects for processing all probabilistic n-
of-N queries, (ii) a novel encoding scheme on the stored
objects together with the efficient update algorithms based
R-tree and interval tree techniques, and (iii) a trigger based
technique for continuously processing probabilistic skyline
query following the n-of-N model. Then, several algorithms
are proposed and evaluated for Pn-of-N queries, that are: the
stabbing query processing algorithm (pnN), an algorithm for
continuously maintaining the data structures for supporting
Pn-of-N queries (pmnN), and the continuous query processing
algorithm (pcnN) for continuously outputting the Pn-of-N
results. Moreover, following the probability threshold fash-
ion, each object in the data stream is associated with an
occurrence probability and maintained in a minimum candi-
date set.

In contrast, instead of relying on probability calculations,
the works in [84], [85], and [95] employed parallelization in
processing skylines over uncertain data stream. For instance,
the work in [85] proposed an effective framework named
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distributed parallel framework (DPF) to address the paral-
lel skyline query problem. Moreover, the parallel streaming
skyline (PSS) approach with an optimized streaming item
mapping strategy and the grid index are proposed to fur-
ther optimize the parallel skyline computation. The parallel
query processing settings utilized in [85] consist of three
types of nodes, namely: (i) monitor node that is responsible
for delivering the arriving streaming objects to the parallel
computing nodes, (ii) peer nodes that are responsible for
computing the skyline probabilities for new streaming objects
and maintaining the objects in its own sliding window, and
(iii) query node that is responsible for continuously collecting
the skyline results from all peer nodes. The work in [84]
extended their earlier solution in [85] to handle the parallel
skyline query problem over uncertain data streams in cloud
computing algorithms. They proposed three parallel models,
namely: Simple Parallel Model (SPM), Alternate Parallel
Model (APM), and Distributed Parallel Model (DPM) based
on the sliding window partitioning. Furthermore, an adaptive
sliding granularity adjustment strategy and a load balance
strategy are proposed to further optimize the queries. Mean-
while, to meet the query requirements of different window
scales at the same time, the work in [95] proposed a frame-
work for parallelizing the query computation for uncertain
n-of-N skylines. Several strategies are introduced, namely: (i)
a sliding window partitioning strategy and a streaming items
mapping strategy to realize the load balance for each node; (ii)
a spatial index structure RST based on R-tree to organize the
objects within each individual sliding window and candidate
set; (iii) an encoding interval scheme to transform the n-of-
N query into stabbing query in each compute node; and (iv)
a red-black tree named RBI to store all stabbing intervals.
Similar to [84] and [85], the parallel iterative query contains
three kinds of nodes that are (i)monitor node for maintaining
the global sliding window and delivering the new arriving
streaming objects to the parallel compute nodes, (ii) compute
node for maintaining its own sliding window and computing
the n-of-N skyline query, and (iii) collector node for gathering
the uncertain n-of-N skyline query results from all compute
nodes. Initially, the global sliding window is partitioned into
several local sliding windows to the given strategy to achieve
load balance. Meanwhile, the new arriving objects are passed
alternately among the compute nodes to improve the utiliza-
tion rate of the compute nodes. Tomaximally reduce the extra
communication overhead, the non-blocking modes is used
to communicate between the computation nodes. Finally, the
global skyline query results are gathered by the collector node
from each compute node.

Unlike, the skyline algorithms presented earlier that are
tailored for processing a single continuous skyline query,
the FAst Skyline compuTation for multiple queries (FAST)
method in [81] is introduced for processing multiple con-
tinuous skyline queries over a data stream. FAST uses a
filtering technique and a discriminant to discard an object
that will not be a member of any future skyline of con-
tinuous queries and determine which objects in memory

are skyline objects for which queries, respectively. An effi-
cient semidominance based approach called Semidominance
Based Reverse Skyline (SDRS) is proposed in [88] to effi-
ciently evaluate continuous reverse skyline queries over
sliding windows. To minimize the number of objects to be
kept in the sliding window, an effective pruning approach
utilizing the semidominance relationships and the first-in-
first-out property of the sliding window is presented in [88].
Moreover, an extension is also proposed to handle the n-
of-N and (n1, n2)-of-N reverse skyline queries. Skyline
group problem which involves finding k-object groups that
cannot be dominated by any other k-object group is inves-
tigated in [89]. Efficient algorithms are proposed to find
and update skyline groups incrementally over data stream
by reusing dominance information. Moreover, hash table,
dominance graph, and a dynamic programming matrix are
employed to store dominance information and update the
results incrementally. Specifically, the dominance graph is
used to store reusable candidate objects while the matrix is
incrementally constructed based on the selected candidate
objects.

The problem of calculating k representative skyline over
data streams is explored in [90]. A new criterion is proposed
to choose the k skylines as the representation to the entire data
set in the stream, named k largest dominance skyline (k-LDS).
To solve the k-LDS problem in a 2 dimensional space, the
Prefix-based Algorithm (PBA) is introduced, while a greedy
algorithm is designed to answer the k-LDS queries for a
d-dimensional space with d ≥ 3. The work in [91] argued
that most of the past works rely on sequential algorithms in
processing the continuous skyline queries over data streams.
In [91], a parallelization of the eager algorithm based on the
notion of Skyline Influence Time (SIT) is proposed to solve the
problem of parallel skyline queries. The SIT of an incoming
object p denoted by SITp is defined as the minimum time
in which p may become a skyline object. If SITp is reached
and p is still an active object, then p is added to the skyline.
Nonetheless, if a younger object r dominates p before SITp is
reached, then p is discarded. While to achieve near-optimal
speedup, the optimizations of the reduce phase and several
load-balancing strategies are developed. The ρ-dominant sky-
line query based on data stream is explored in [92]. The query
controls the base of the result set by adjusting data proportion.
Amethod is then proposed in [92] named ρ-Dominant Skyline
Query on data stream over Sliding Window (DSSW) in order
to improve the efficiency of ρ-dominant skyline query. The
skyline set SN is divided into three groups that are: (i) ρ-
Dominant Skyline Point (DN ) – the set of objects in SN which
are not ρ-dominated by any other points, (ii) Candidate Point
(CN ) – the set of objects in SN which are ρ-dominated by an
older object rather than a younger object, and (iii) Candidate
Point (AN ) – the set of objects in SN which are ρ-dominated
by a younger object but not fully-dominated by any younger
objects. The work is then extended to n-of-N ρ-dominant
skyline query and (n1,n2)-of-N ρ-dominant skyline query in
data stream.
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Unlike most of the existing works that assume the data in
the data streams are complete and available, the works in [93]
and [94] focus on incomplete data sets, i.e. data sets with
missing attribute values or missing objects. Two algorithms
are proposed in [93], namely: kISkyline algorithm that is
based on the traditional sliding window model with a split
bucket strategy and sISkyline algorithm that is based on a
real point, virtual point, and shadow point with a split bucket
strategy along with the traditional sliding windowmodel. The
split bucket method divides the incomplete points. This is
then followed by the virtual point and shadow point method
with the aim to reduce the number of comparisons in the
sliding window and consequently reduce the size of the
candidate skyline points. As a result, the bottleneck prob-
lem of kISkyline algorithm in computing the global skyline
points is resolved by the sISkyline algorithm. On the other
hand, to solve the problem of skyline query over incomplete
data stream (Sky-iDS), an efficient Sky-iDS query answer-
ing algorithm is proposed in [94]. The algorithm integrates
several techniques, that are: (i) differential dependency (DD)
rules to impute missing attributes of objects from incomplete
data stream, (ii) effective pruning strategies, namely: spatial
pruning, max-corner pruning, and min-corner pruning to
greatly reduce the search space of the Sky-iDS problem, and
(iii) cost-model-based index structures, i.e. data synopses
and skyline tree (ST) indexes, to facilitate the data imputa-
tion via DD rules and skyline computation by dynamically
maintained the Sky-iDS candidates. Meanwhile, the index
structures Ij is constructed over a complete data repository
R to facilitate missing data imputation. The Sky-iDS query
answers from incomplete data stream are continuously mon-
itored by utilizing both the data synopsis ST and indexes Ij,
following the style of imputation and query processing at the
same time.

Motivated with the problem of multidimensional skyline
queries over streaming data, [96] proposed a Multidimen-
sional Skyline over Streaming Data (MSSD) framework that
contains three data structures, namely: a buffer β, a data
set R, and an index structure named Negative SkyCube
with timestamps (NSCt) to store the summary of subspaces
where each object is dominated during its lifetime. The
micro-batch processing approach is adopted where the stream
source emits one object every θ units of time. The MSSD
gathers the objects into β during k units of time. These
buffered objects are inserted intoRwhile the outdated objects
are removed from R. Meanwhile, the NSCt is called to
compute the skyline whenever a subspace skyline query is
issued. On the other hand, [97] proposed a distributed skyline
query processing framework based on the distributed top-k
spatial-keyword query processing framework for large-scale
spatial-keyword publish/subscribe systems. The framework
is based on Apache Storm and consists of six components,
namely: query spouts, tuple spouts, distribution bolts, query
bolts, tuple bolts, and aggregation bolts. Once query bolts
send requests due to new objects arrive or old objects expire,
both the tuple bolts and aggregation bolts cooperatively

execute the skyline computing. Each tuple bolt maintains a
geo-textual index and generates a partial skyline result over its
local sliding window. Then, the global skylines are computed
by the aggregation bolts based on the partial skyline results
from all tuple bolts. The final skyline results are then sent
to the query bolts. Moreover, to efficiently index geo-textual
streaming objects in the framework, an update-efficient and
space-saving indexing structure, Memo-and-Filter-based Rt-
tree (MF-Rt-tree), is proposed. Furthermore, to suit with the
streaming setting, a fast processing approach is introduced
for processing a continuous spatial-keyword skyline query.
In addition, to reduce the communication cost of the proposed
framework, a novel communication optimization method
employing the spatial cuckoo filter and one-permutation min-
wise signature method for keyword pruning is developed.

Since the introduction of the skyline operator, numerous
types of skyline queries have been introduced, each focusing
on solving problems related to a specific type of application.
In data stream, these skyline queries differ with regard to the
features that are considered in deriving the skyline objects
which among others include the searching space whether
total (full space skyline queries) or partial (subspace skyline
queries), the occurrence probability of the objects (proba-
bilistic skyline queries), the recency of the skyline objects
(n-of-N skyline queries), the query point whether dynamic
or static (dynamic skyline query, reverse skyline query), etc.
These features are taken into consideration when designing
the skyline algorithms. In addition, the time-varying (time-
sensitive), continuous, real-time, volatile, and unpredictable
characteristics of data streams have led to methods that
attempt at eliminating needless skyline computation. Intu-
itively, indexing techniques are widely employed, along with
distributed and parallel processing.

The query type and the proposed technique of each study
are summarized in Table 4.

RQ3: What are the types of data stream considered in the
studies related to skyline queries?

From the 23 articles being analyzed, 12 of them [75], [76],
[77], [78], [81], [88], [89], [90], [91], [92], [96], [97] focused
on certain data stream, i.e. the values of each object in the
stream are assumed deterministic, precise, and available dur-
ing the processing of the skyline queries. The main challenge
faced by these studies is handling the data streams that are
known to have the properties of time varying (time sensitive),
continuous, real time, volatile, and unrepeatable. In addition,
the answers to the queries are presumed to be timely and
continuously updated to reflect the changes in the states of
the environments. Meanwhile, with the arguments that uncer-
tainty is inherent and inevitable in many real applications,
while the amount of uncertain data collected and accumulated
in a streaming fashion is rapidly increasing, 9 of the 23 arti-
cles [79], [80], [82], [83], [84], [85], [86], [87], [95] have
explored the uncertain data stream following the discreate
uncertainty model where an object oi is modelled as a proba-
bility distribution that is defined on a finite set of l instances
(states), oi1, oi2, . . . , oil (see Definition 3). Uncertain data
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TABLE 4. The type of skyline queries and their proposed technique.

are unavoidable with the emergence of a large number of
practical applications in domains like sensor network, radio
frequency identification (RFID) network, data cleaning and
integration, online shopping, trend prediction, location-based
service, moving object management, network traffic analysis,
GPS systems, radar detection, economic decision making,
and market surveillance [80], [82], [84], [85], [86], [87],
[95]. The presence of data uncertainty is primarily due to
various factors such as limitations of measuring equipment,
delay or loss in data updates/transfer, data randomness and
incompleteness, interference of external environment, and
privacy preservation [80], [82], [84], [85], [87], [95]. Here,
in dealing with skyline queries over uncertain data stream,
not only the dominant relationships between objects need to
be examined but also the probability of each object to be
a skyline needs to be calculated which is computationally
expensive. This implies that the traditional pruning strategy
cannot be used directly. On the other hand, only 2 arti-
cles [93], [94] have tackled the issue of incompleteness of
data stream where objects of the stream may have one or
more missing attribute values. In practice, the incompleteness
of data is often due to device anomalies, imperfect data
collection techniques, environmental factors, and privacy
protection [93], [94].

Data uncertainty is normally attributed to the degree
to which data are inaccurate, imprecise, untrusted, and
unknown. Data streams come from a wide variety of sources
and in many different formats that they may have missing
or uncertain values. Having a rigid assumption that the data
streams are always certain (complete and precise) would
limit the solutions to certain type of applications. Exploring
the various types of data uncertainty is crucial as today’s
advancement in technology shows that uncertain data are
inevitable in many emerging applications.

RQ4: What is the query processing approach employed
by each study in processing the continuous skyline
queries?

It is observed that in most articles [75], [76], [77], [78],
[79], [80], [82], [83], [84], [85], [86], [87], [88], [89], [90],
[91], [92], [93], [94], [95], [96], [97], the single query pro-
cessing approach (seeDefinition 8) is employed by which the
proposed techniques designed in [75], [76], [77], [78], [79],
[80], [82], [83], [84], [85], [86], [87], [88], [89], [90], [91],
[92], [93], [94], [95], [96], and [97] are performed in such
a way that a single continuous skyline query is processed
at a time over the data stream. This means given k queries,
Q = {q1, q2, . . . , qk}, the proposed technique is repeated for
each query, qi, in Q, i.e. the k continuous skyline queries are
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processed independently over the data stream. Nonetheless,
the solution proposed in [81] applied the multi queries pro-
cessing approach where multiple continuous skyline queries
can run concurrently; with each query may have different
range and slide values. This is to avoid duplication of the
same or similar partial skyline computations owing to these
multiple queries that are issued over the data stream may
involve several objects in common [81].

To accommodate a wide range of users and applications,
the skyline algorithms should be effective enough to manage
multiple queries over a collection of continuously generated
input data streams and analyze these data streams in close
to real-time to offer fast response. It is unwise to process
each user’s query individually because the same streams of
objects will be analyzed repeatedly. On the other hand, the
objects that have been scanned might reappear in the stream
at a different time. The domination analysis that has been
conducted over these objects might have to be repeated at a
later time, which result in unnecessary re-computation of the
domination analysis. Thus, dealing with the aforementioned
issues would further reduce the skyline computation time.

RQ5: What are the indexing techniques employed by the
studies in facilitating the skyline computation?

A variety of indexing techniques have been employed
by most of the 23 articles analyzed with the main aim to
reduce the skyline computation cost by pruning irrelevant
objects. Most of them made use of the R-tree indexing
structure [79], [80], [82], [83], [87], [88], [89] due to its
simplicity and its reasonable performance for real-world
data [75]; while others employed the R∗-tree [75], [81],
and quadtree indexing structures [76], [81]. Several notable
experimental studies have shown that quadtrees can man-
age objects more effectively than the R-tree family [76].
As reported in [76], the quadtree index has significantly
speeds up skyline computation by up to an order of magnitude
or more in some cases, and is never slower than the R∗-
tree approach. Using the quadtree also results in smaller
memory consumption. Nonetheless, the work in [75] has
utilized different indexing techniques to index the objects.
These include linked list and R∗-tree to manage the objects
of Lazy algorithm and B-tree and R-tree to index the event
list of Eager algorithm. Similar to [75], the following studies
have also incorporated several indexing techniques in their
solutions: [79] (Z -tree, R-tree, ZB-trees), [80] (R-tree, hash
table), [81] (R∗-tree, PR quadtree), and [89] (R-tree, hash
table, dominance graph, matrix). Some of these techniques
are utilized to store dominance information to update the
skyline results incrementally [89]. Meanwhile, grid index is
also a common indexing structure used by the studies [77],
[78], [85], [86], [91] where objects are indexed in a multi-
dimensional array. There are also studies that have proposed
new indexing techniques based on existing established tech-
niques such as [94], [95], [96], and [97], where skyline
tree, RST, NSCt, and MF-Rt-tree, are introduced, respec-
tively. RST, for instance, is a spatial indexing structure based
on R-tree introduced in [95] to organize the objects within

TABLE 5. Indexing techniques used.

each individual sliding window. On the other hand, NSCt,
an extended indexing structure of negative skycube is used
in [96] to store the lossless summary of the subspaces of
objects not in the skyline. Interestingly, the work in [97]
has introduced an update-efficient and space-saving indexing
structure, MF-Rt-tree, to efficiently index the geo-textual
streaming objects; MF-Rt-tree is developed by fusing and
improving the features of Rt-tree, cuckoo filter, and RUM-
tree. Unlike the above studies, [84], [90], [92], and [93] are
found not to use any indexing techniques. Table 5 summa-
rizes the various indexing techniques used by each study in
facilitating the process of computing skylines.

Although there are various indexing techniques, the R-
tree family has been extensively used by researchers to offer
efficient processing of skyline queries in multi-dimensional
data sets. Besides its simplicity, it is capable of handling
diverse types of objects. An efficient filtering step is provided
thru its minimum bounding rectangle (MBR) which leads
to considerable decrease in computational and I/O time in
comparison to other techniques.

RQ6: What is the type of data set commonly used in
the analysis conducted by the studies of skyline query on
streaming data?

With the intent to produce original research results and
validate the research findings, two main types of data set are
commonly used in the analysis of studies related to skyline
query. They are synthetic and real data sets. Most of the
studies [75], [76], [77], [78], [79], [80], [81], [82], [83], [84],
[85], [86], [87], [88], [89], [90], [91], [92], [93], [94], [95],
[96] except [97] have used synthetic data set in their analysis.
The main reason is synthetic data are easier to generate and
manipulate in a controlled way than real data. It is also
observed that most of these studies generated different types
of data distributions which are anticorrelated, correlated,
and independent to fairly verify the effectiveness of their
proposed solutions [75], [76], [77], [78], [79], [80], [81],
[82], [83], [84], [85], [86], [87], [88], [90], [91], [92], [93],
[94], [95], [96]. To strengthen the research findings, [79],
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FIGURE 6. Type of data set employed by the studies.

[80], [81], [82], [83], [84], [85], [86], [87], [88], [90], [93],
[94], [95], [96] have used both types of data set, i.e. syn-
thetic and real data sets. Meanwhile, various different real
data sets have been utilized by these studies, which include
NBA [79], [93], Long Beach county road (LBC) [80], New
York Stock Exchange (NYSE) [82], [87], Zillow [84], [85],
IPUMS [85], [95], e-business [86], Stock [88], [90], Yahoo
Financial Website [88], Forest environment [90],Movie [93],
Intel lab [94], UCI gas sensor [94], Antallagma time series
[94], Pump sensor data [94], and tweets [96], [97]. The
only work that does not utilize the synthetic data set is [97]
where a real-life data set, tweets, is employed to evaluate
the performance of their proposed distributed skyline query
processing framework. The types of data set used by each
study is summarized in Table 6 while Figure 6 presents the
number of studies that utilized solely the real data set or
synthetic data set, and both types of data set.

The skyline operator is designed to find a set of interest-
ing objects over a large dimensional data collection, thus to
validate the efficiency of a skyline algorithm, the selected
data sets should resemblance the real data collection. The
standard data sets, namely: NBA, MOVIE, and TWEETS as
well as synthetic data sets are the typical data sets utilized by
researchers working in skyline queries. These standard data
sets are also employed in studies relating to skyline query
over data streams in which they are manipulated by randomly
incorporating the arrival time and expiry time of each object.
Moreover, since the standard data sets contain a finite set
of objects, synthetic data sets are employed as additional
data sets that can be easily prepared according to the dis-
tinctive characteristics of data streams, namely: continuous,
unbounded, time-sensitive, and high-volume. Furthermore,
depending on the type of applications targeted by a solution,
the chosen data sets should closely reflect the nature of the
applications besides the unique characteristics of the data
streams.

RQ7: What are the performance metrics frequently used
in the studies of skyline query over data stream?

The data streams are known to be time varying (time sensi-
tive), continuous, real time, volatile, and unrepeatable, hence
measuring the processing time incurred by any solutions is
inevitable. This is evident as all studies reported the process-

ing time [75], [76], [77], [78], [79], [80], [81], [82], [83], [84],
[85], [86], [87], [88], [89], [90], [91], [92], [93], [94], [95],
[96], [97] as one of the crucial performance metrics in their
experiments. However, there is a slight difference between
the studies with regard to the time being measured. For
instances, per-tuple (per-object) processing time [75], [81],
query response/processing time [77], [81], [82], [87], [88],
[94], [97], amortized time [78], [90], elapsed time [79], [86],
run time [80], [93], [97], response time [81], [92], average
delay [82], [88], time per update [84], [85], [95], processing
speed/speedup [84], [91], [97], execution time [89], [96],
maximum input rate [91], wall clock time (maintenance and
query times) [94], processing time per update [95], and time
ratio [96], are among the processing time reported in the
studies.

Meanwhile, to validate the effect of employing the
quadtree, heap size and number of pages accessed are the two
metrics used in [76] which relate to the amount of memory
needed for computing skylines. Similarly, the work in [75]
measured the space consumption which demonstrated the
average amount of memory consumed by their proposed
methods, Lazy and Eager. Also, in [81], space efficiency of
the FASTmethod is measured based on the maximum and the
average number of objects inmemory during executionwhich
include the number of objects waiting in the queue. Mean-
while, in [82], the memory usage of the SSKY algorithm is
measured based on the maximum number of pages accessed.
Furthermore, to test the impact of the grid granularity on
PPS, memory consumption is measured in [86]. The memory
consumption is also considered in [96] to measure the effect
of their proposed index structure, NSCt, in storing a summary
of subspaces where an object is dominated during its lifetime.
Additionally, the MF-Rt-tree proposed in [97] to store key-
words in indexing nodes is also evaluatedwith regard to space
cost.

Nonetheless, space consumption is also evaluated by the
studies that maintain the candidate/skyline results. This
is clearly seen in [77] where the full-space skylines and
candidate full-space skylines are stored in a grid-based main-
tenance algorithm, while in [78] local skylines on remote sites
are maintained byGridSky. Also, the space usage of the SSKY
algorithm in terms of maximum candidate size and maximum
skyline size in SN,q is evaluated in [82]. Meanwhile, the space
usage measured in [88] represents the maximal number of
objects kept in the SN list.
Maintenance performance is also used by several studies

like [77] and [80] to evaluate the maintaining efficiency of
their proposed solutions. For instances, the amortized cost
is measured in [77] to evaluate their NMA maintenance
algorithm in maintaining the full-space skylines and can-
didate full-space skylines, while the number of quantified
skylines is the measurement used in [80] to evaluate the
efficiency of the CL approach and Wp-Skyline query proce-
dure in maintaining the candidate set, DBcand . Meanwhile,
in [82], the number of the MBRs accessed is the metric used
to validate the SSKY algorithm in storing and maintaining
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TABLE 6. Type of data set used.

the current skyline and remaining objects. In addition, [82]
measured the average maintenance cost ofMYSKY algorithm
in updating each object of the R-trees. On the other hand, [87]
reported the efficiency of the maintenance technique, pmnN,
based on the maintenance time per object to continuously
maintain the data structures for supporting Pn-of-N queries.
In [88], the maintenance time is reported as the time
of constructing the R-tree index. Furthermore, to evaluate
the efficiency of incrementally maintaining their proposed
multi-layer tree structure, Skyline Tree (ST), [94] measured
the maintenance time which is part of the wall clock time.
The work in [97] also reported the maintenance time in
maintaining the NSCt index structure.

To study the effect of ϵ on the accuracy of ϵ-constraint
greedy algorithm (ϵ-GA), i.e. the default algorithm of
k-LDS, [90] measured the dominance size and ratio of dom-
inance size which are then compared to GA. Meanwhile, the
f-score metric is used in [94] to test the accuracy of the Sky-
iDS approach.
On the other hand, communication load is a measure-

ment used by studies that involved data streams in a
distributed [78], parallel [84], [85], as well as cloud comput-
ing [84] environments in which several nodes are involved
in the computation of skylines. For examples, the total load
incurred by the BOCS is measured in [78], while load balanc-
ing in [84] and [85]. Others, like [91] measured the offered
bandwidth as a function of the parallelism degree on the
Intel architecture, while [97] reported the communication cost
as an evaluation of their proposed distributed skyline query
processing framework.

Table 7 presents the list of performance metrics employed
by each study while Table 8 summarizes the perfor-
mance metrics used by each study according to efficiency,
space/memory consumption, maintenance, communication,
and effectiveness.

Table 9 summarizes the 23 articles analyzed in this paper
that are related to skyline query processing over data stream.
It highlighted the reference, the query type, the type of slid-
ing window (time-based and/or count-based), the proposed
technique, the type of data stream (certain, uncertain, incom-
plete), the query processing approach (single or multiple),
the indexing technique, the data set (synthetic and/or real),
and the performance metric (efficiency, space consumption,
maintenance, communication, effectiveness) used by each
study. Meanwhile, Figure 7 presents the taxonomy that is
derived based on the entries of Table 9. It is presented in
three parts, namely: 7(a), 7(b), 7(c); each focusing on a par-
ticular environment, i.e. distributed, parallel, and centralized
respectively. Based on Figure 7, it is obvious that most studies
assumed a centralized environment where a single node is
responsible for computing the skylines [75], [76], [77], [79],
[80], [81], [82], [83], [86], [87], [88], [89], [90], [92], [93],
[94], [96]. Also, most of the studies focused on certain data
stream [75], [76], [77], [78], [81], [88], [89], [90], [91], [92],
[96], [97]. Most profoundly, there are many unexplored paths
as shown by paths without references.

V. DISCUSSION
In the following, we discuss the potential opportunities for
further exploration based on the findings of the SLR per-
formed on the 23 articles. Generally, the future directions
as highlighted in these articles can be categorized into three,
namely: (i) flexibility in query requirements of the users, (ii)
adaptive system for extremely fast data streams, and (iii) dirty
data sets with data quality problems.

A. FLEXIBILITY IN QUERY REQUIREMENTS OF THE USERS
Skyline queries aim to prune a search space of large numbers
of multi-dimensional objects to a small set of interesting
objects by eliminating objects that are dominated by others.
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TABLE 7. List of performance metrics employed by the studies.

TABLE 8. Summarized of performance metrics employed by the studies.

Existing skyline algorithms [75], [76], [78], [79], [80], [81],
[82], [84], [85], [93], [94], [96] assume that the query require-

ments of the users are based on the same fixed set of
dimensions (all dimensions) that are available in the data set,
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TABLE 9. Summary of studies related to skyline query processing over data stream (2000 – 2022).

hence the full space skylines are the final outcomes of these
algorithms. However, the applicability of skyline queries suf-
fers from severe drawbacks because this rigid assumption
often lead to an impractical skyline size especially with
high multi-dimensional objects which no longer offer any
interesting insights. Moreover, in practice different users
may be interested with different dimensions of the objects.
Furthermore, in some applications only certain dimensions
are accessible to protect data privacy and anonymity [84].
Therefore, supporting concurrent and unpredictable subspace
skyline queries over data streams has been the aim of [77],
[86] to ensure users are given flexibility to select a sub-
set of dimensions (subspace) as their query requirements.

On the other hand, considering different forms of skyline
retrieval like top-k skyline, k-dominate skyline, n-of-N sky-
line, and k representative skyline would also maximizing
the user’s preference function [75], [84], [85]. Instead of
returning all skyline objects which are likely large in size, top-
k skyline returns only the k most interesting skyline objects
based on some kind of preference specified by the user.
Inherently, the skyline computation over data stream would
require less data in memory. On the other hand, to deal with
dimensionality curse, one possibility is to reduce the number
of dimensions considered. Nonetheless, to determine which
dimensions to retain is not easy. Hence, without any intimate
knowledge of the application domain, the k-dominate skyline
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FIGURE 7. (a) Taxonomy of skyline queries over data stream – distributed environment. (b) Taxonomy of skyline queries over data stream –
parallel environment. (c) Taxonomy of skyline queries over data stream – centralized environment.
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is said to be the best option. Given an n-dimensional data
set, a k-dominant skyline object is an object that is not k-
dominated by any other objects where k ≤ n. In addition,
the query flexibility can be effectively enhanced by utilizing
the n-of-N skyline operator which works by supporting the
query for the most recent n (n ≤ N ) objects at the same
time [95]. The k representative skyline is useful if the number
of skyline objects is large. A representative skyline contains
k skyline objects that can represent its corresponding full
skyline. Besides, there are several works like [87] and [95]
that rely on a probability threshold value in determining the
skyline objects. Here, an object is a probabilistic skyline
object if its skyline probability is not below a given proba-
bility threshold. Obviously, it is difficult for users to specify
a meaningful threshold value. If the threshold value is set too
high, then important results may be lost; while if it is too
low a lot of low quality results may be returned. This means,
a solution which could support several probability thresholds
at the same time [95] would further enhance the flexibility of
the user’s query requirements.

B. ADAPTIVE SYSTEM FOR EXTREMELY FAST DATA
STREAMS
A data stream is a continuous and typically rapid feed of
data from variety of sources like sensors, geo-positioning
devices, communication network traffic, HTTP request, etc.
One of the main challenges in managing the data stream
is to support real time processing. The data stream sources
are often bursty, prone to dramatic spikes in volume, have
limited system resources like CPU, memory, and bandwidth,
with data characteristics that vary over time. Because the
data arrival rates are unpredictable with peak load during a
spike can be orders of magnitude higher than typical loads,
the overloaded system will be unable to process all the input
data and keep up with the rate of data arrival. This will cause
latency in processing. Therefore, it is important for systems
processing continuous monitoring queries over data streams
to be adaptive to unanticipated spikes in input data rates that
exceed the system capacity. In order for the system to con-
tinue to provide up-to-date query responses, load shedding
technique is one of the prominent solutions for extremely fast
streams. It is the process of reducing resource requirements
by dropping excess load from the systemwhen the demand on
resources is above the system capacity. As reported in [75],
their proposed techniques, Lazy and Eager algorithms, can
handle very spiky traffic (up to 105 objects per second) and
to make their solutions more meaningful in practice, they
attempted to incorporate the load shedding techniques in their
solutions. A different view is presented in [77], in which
to accommodate the extremely fast streams, a more effi-
cient index structures are suggested to be incorporated into
their proposed grid-based maintenance algorithm, NMA, and
pruning techniques, i.e. TSP, ATP, and TAP. Presently, with
the arrival rate of stream objects fixed to 1,000 objects/s,
the query time taken by their proposed solution does not
exceed 0.01s in all cases. An efficient index structure for

evaluating skylines should have the non-overlapping parti-
tioning characteristics that leads to a natural decomposition
of space that can more effectively prune the index nodes
that must be searched [76]. On the other hand, developing
parallel algorithms for fast data streams is one of the future
studies highlighted in [93]. To realize an efficient parallel
query processing, the fault-tolerant parallel techniques are
crucial to ensure that the continuous skyline query is not
interrupted even when failures occur during the query pro-
cess [84], [85]. The interruption of the query process will
not only waste plenty of the computing resources but will
also seriously affect the correctness of skyline results and the
query experience of the users [85].

C. DIRTY DATA SETS WITH DATA QUALITY PROBLEMS
Data setsmay suffer from quality issues in particular when the
data have been gathered from different data stream sources.
The data may be incomplete, inaccurate, inconsistent, inse-
cure, out-of-date, or might contain duplicates. The presence
of dirty data or bad quality data in the data set would impact
the computed skylines if they dominate some other objects
with better quality. Currently, issues related to both uncertain
data and incomplete data over data streams have been well
investigated [79], [80], [82], [83], [84], [85], [86], [87], [93],
[94], [95]. However, the uncertain data stream explored by
these studies [79], [80], [82], [83], [84], [85], [86], [87] fol-
lowed the discreate uncertainty model. There is no study that
has adopted the continuous uncertainty model in computing
skylines over data stream. Here, an object oi is modelled
as a continuous range of value or an approximate value,
vi, which is associated with a probability density function
representing the possible values of the object (see Definition
4). The precise value of the object is not known during skyline
computation, which can be specified in one of the following
forms: range value (e.g. 100 – 200) or approximate value
(eg. ≈100, ± 100). Therefore, developing efficient skyline
algorithms on dirty data sets with data quality problems other
than incompleteness and discrete uncertainty remain an open
research problem [93].

VI. CONCLUSION
This study presents a systematic literature review of skyline
query processing over data streams whereby 23 research
articles are selected based on the 6 inclusion and 6 exclusion
criteria. Seven research questions are designed and an exten-
sive comparison is performed to address each question. This
work aims at assisting interested researchers to have an up-
to-date review of works related to skyline query processing
over data stream by presenting a complete and systematic
review of the scholarly literature over the period between
2000 and 2022. The findings demonstrate that the identified
skyline techniques are motivated by the need to speed up the
processing of skyline queries, primarily due to the unique
characteristics of data streams that are continuously changing
over time (time-sensitive), real-time, volatile, and unpre-
dictable. Although these skyline approaches are designed
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specifically for data streams and share a common goal, their
solutions differ with regard to the type of skyline query, type
of streaming data, type of sliding window, query processing
technique, indexing technique as well as the data stream
environment employed. Based on these main key aspects
a comprehensive taxonomy is developed. The taxonomy
revealed that most studies assumed a centralized environment
with certain data stream. Furthermore, open issues and chal-
lenges as recommendations for future research direction are
discussed, that include flexibility in query requirements of the
users, adaptive system for extremely fast data streams, and
dirty data sets with data quality problems.
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