79 research outputs found

    Modeling And Analysis Of Multi–Phase Permanent Magnet Synchronous Machines: Direct–Drive Electric Vehicle Application

    Get PDF
    In commercially existing electric vehicles (EVs), power is transferred from the motor to the wheels through a fixed gear mechanical transmission system. However, such a transmission system contributes to a power loss between 2% to 20% of output power of the motor depending on the operating speed and torque of the motor. Therefore, by removing the transmission, a direct–drive EV configuration is obtained with lower component count, improved motor to wheel efficiency and frequency dependent losses. However, challenges in developing a single on–board permanent magnet synchronous machine (PMSM) for such a configuration include high torque density, low torque ripple and high torque per permanent magnet (PM) volume. Therefore, this dissertation proposes a novel PMSM addressing the aforementioned challenges for a direct–drive application. Initially, the design targets, stator and rotor configuration and phase numbers of the PMSM are chosen to satisfy the requirements of a direct drive application. A novel torque and torque ripple model based on multiple reference frames is proposed, in which the torque ripple from spatial harmonics of flux, inductances and the time harmonics of stator currents are included. Using the analytical model, optimal slot–pole combination of the machine is selected based on adaptive gradient descent algorithm. A new consequent pole rotor topology is proposed to improve the torque density and torque per PM volume thereby reducing the usage of expensive rare earth magnets. The proposed PMSM with novel rotor is further improved in terms of torque density, losses and cost by performing an intensive structural optimization based on novel hybrid analytical model, finite element analysis and supervised learning. The optimized PMSM is then analyzed for various drive cycles and performance in terms of torque, speed and efficiency are discussed. A scaled–down prototype of the proposed PMSM is developed and comprehensive experimental analysis in terms of torque ripple, torque–speed characteristics and efficiency are performed under different speeds and load conditions and are compared with the results obtained from proposed analytical model

    On the Modeling, Analysis and Development of PMSM: For Traction and Charging Application

    Get PDF
    Permanent magnet synchronous machines (PMSMs) are widely implemented commercially available traction motors owing to their high torque production capability and wide operating speed range. However, to achieve significant electric vehicle (EV) global market infiltration in the coming years, the technological gaps in the technical targets of the traction motor must be addressed towards further improvement of driving range per charge of the vehicle and reduced motor weight and cost. Thus, this thesis focuses on the design and development of a novel high speed traction PMSM with improved torque density, maximized efficiency, reduced torque ripple and increased driving range suitable for both traction and integrated charging applications. First, the required performance targets are determined using a drive cycle based vehicle dynamic model, existing literature and roadmaps for future EVs. An unconventional fractional–slot distributed winding configuration with a coil pitch of 2 is selected for analysis due to their short end–winding length, reduced winding losses and improved torque density. For the chosen baseline topology, a non–dominated sorting genetic algorithm based selection of optimal odd slot numbers is performed for higher torque production and reduced torque ripple. Further, for the selected odd slot–pole combination, a novel star–delta winding configuration is modeled and analyzed using winding function theory for higher torque density, reduced spatial harmonics, reduced torque ripple and machine losses. Thereafter, to analyze the motor performance with control and making critical decisions on inter–dependent design parameter variations for machine optimization, a parametric design approach using a novel coupled magnetic equivalent circuit model and thermal model incorporating current harmonics for fractional–slot wound PMSMs was developed and verified. The developed magnetic circuit model incorporates all machine non–linearities including effects of temperature and induced inverter harmonics as well as the space harmonics in the winding inductances of a fractional–slot winding configuration. Using the proposed model with a pareto ant colony optimization algorithm, an optimal rotor design is obtained to reduce the magnet utilization and obtain maximized torque density and extended operating range. Further, the developed machine structure is also analyzed and verified for integrated charging operation where the machine’s winding inductances are used as line inductors for charging the battery thereby eliminating the requirement of an on–board charger in the powertrain and hence resulting in reduced weight, cost and extended driving range. Finally, a scaled–down prototype of the proposed PMSM is developed and validated with experimental results in terms of machine inductances, torque ripple, torque–power–speed curves and efficiency maps over the operating speed range. Subsequently, understanding the capabilities and challenges of the developed scaled–down prototype, a full–scale design with commercial traction level ratings, will be developed and analyzed using finite element analysis. Further recommendations for design improvement, future work and analysis will also be summarized towards the end of the dissertation

    Cogging torque reduction for interior permanent magnet synchronous motors

    Get PDF
    Interior permanent magnet synchronous machines show a good range of behaviours, which make these kinds of machines good candidates for an electromechanical energy conversion. However, in order to improve their accuracy in their torque responses, the cogging torque and torque ripple phenomena should be mitigated to obtain better performance of the machine. In order to reduce the cogging torque and torque ripple, control techniques as well as geometric parameters of the machine have to be improved. In this thesis, geometric parameters such as the use of the fractional slot windings, the improvement of the pole-arc to pole-pitch ratio and the dimensions of the stator slots are considered for the better minimization of the cogging torque and torque ripple. The results are presented to show the performance of the IPMSM with fractional slot windings as well as the reduction of the cogging torque and torque ripple. Furthermore, four models of IPMSM with fractional and integer slot windings are going to be compared with the aim of the attenuation of the cogging torque phenomenon

    Investigation of Magnetic Gearing Effect in Fractional Slot and Vernier Permanent Magnet Synchronous Machines

    Get PDF

    Synchronous reluctance motors with fractional slot-concentrated windings

    Get PDF
    PhD ThesisToday, high efficiency and high torque density electrical machines are a growing research interest and machines that contain no permanent magnet material are increasingly sought. Despite the lack of interest over the last twenty years, the permanent magnet-free synchronous reluctance machine is undergoing a revival and has become a research focus due to its magnet-free construction, high efficiency and robustness. They are now considered a potential future technology for future industrial variable speed drive applications and even electric vehicles. This thesis presents for the first time a synchronous reluctance motor with fractional slot-concentrated windings, utilizing non-overlapping single tooth wound coils, for high efficiency and high torque density permanent magnet-free electric drives. It presents all stages of the design and validation process from the initial concept stage through the design of such a machine, to the test and validation of a constructed prototype motor. The prototype machine utilizes a segmented stator core back iron arrangement for ease of winding and facilitating high slot fill factors. The conventional synchronous reluctance motor topology utilizes distributed winding systems with a large number of stator slots, presenting some limitations and challenges when considering high efficiency, high torque density electrical machines with low cost. This thesis aims to present an advancement in synchronous reluctance technology by identifying limitations and improving the design of synchronous reluctance motors through development of a novel machine topology. With the presented novel fractional slot concentrated winding machine design, additional challenges such as high torque ripple and low power factor arise, they are explored and analysed - the design modified to minimise any unwanted parasitic effects. The electrical and electromagnetic characteristics of the developed machine are also explored and compared with that of a conventional machine. A novel FEA post-processing technique is developed to analyse individual air-gap field harmonic torque contributions and the machines dq theory also modified in order to account for additional effects. The developed machine is found to be lower cost, lower mass and higher efficiency than an equivalent induction or conventional synchronous reluctance motor, but does suffer higher torque ripples and lower power factor. The prototype is validated using static and dynamic testing with the results showing a good match with finite element predictions. The work contained within this thesis can be considered as a first step to developing commercial technology based on the concept for variable speed drive applications.Financial assistance was provided by was provided by the UK Engineering and Physical Sciences Research Council (EPSRC) in the form of a Doctoral Training Award and additional financial assistance was kindly provided by Cummins Generator Technologies, Stamford, UK, through industrial sponsorship of this wor

    Advanced design methodology for permanent magnet synchronous machines in power applications

    Get PDF
    Most of the world electrical energy is consumed by electric motors, and then, the improvement in their performance leads to essential savings in the global energy consumption, required to reduce the CO2 emissions. Actually, the policies of governments and institutions are becoming more demanding and the manufacturers are forced to offer more and more optimized products. Moreover, many applications are increasingly demanding high performance in terms of power density, reliability or dynamic response, as in the case of electric vehicle, wind power generation or railway traction. The high energetic content of neodymium magnets causes that the permanent magnet machines (PMSM) are the more attractive option with respect to power density. In addition, thanks to the almost complete elimination of the rotor losses they are the most energetically efficient machines. The PMSM design requires of a multiphysical approach since it comprises electric, magnetic and thermal aspects. In this work, a comprehensive review of the technical literature regarding these machines has been done, and some areas for improvement have been found. Firstly, it is common that the procedure starts from a quite defined machine and just an optimization of a specific part is realized. Moreover, excessive dependence on designer’s experience and knowhow is observed, without giving clear instructions for taking design decisions. Finally, excessive dependence on time consuming FEM models is found. Hence, the main objective of this thesis is to develop and propose an advanced design methodology for PMSM design, characterized by being clear and complete, considering whole the design process and giving criteria and tools for taking decisions which lead to an optimum choice of the final solution. A PMSM design methodology has been proposed that enables the evaluation of large amounts of configurations in an automatic manner, easing to the designer the process of taking the final design decision. To implement this methodology, several tools have been developed and explained in detail: electromagnetic models coupled to thermal models and lumped parameter electromagnetic models. Some important modifications were done in the thermal models taken as a reference in order to consider different cooling conditions. In addition, a basis permeance network model was adapted to the selected machine topology and it was used to demonstrate its suitability to be used in combination with Frozen Permeability technique. Following the proposed design methodology, a 75 kW PMSM prototype was designed and validated at the IK4‐IKERLAN medium voltage laboratory. The obtained results have validated both the proposed design methodology and the developed and employed tools.La mayor parte de la energía eléctrica mundial es consumida en motores eléctricos, por lo que la mejora de sus prestaciones conduce a ahorros en el consumo energético esenciales si se quieren reducir las emisiones de CO2. De hecho, las políticas de gobiernos y asociaciones cada vez son más exigentes, y los diseñadores se ven forzados a lanzar productos cada vez más optimizados. Además, cada vez hay más aplicaciones que son muy exigentes en términos de densidad de potencia, fiabilidad o prestaciones dinámicas, como son el vehículo eléctrico, la generación eólica o la tracción ferroviaria. El altísimo contenido energético de los imanes de neodimio provoca que las máquinas imanes permanentes (PMSM) sean las más atractivas en términos de densidad de potencia. Además, debido a la casi total eliminación de pérdidas en el rotor se convierten en las máquinas más eficientes energéticamente. El diseño de una PMSM requiere de un enfoque multidisciplinar, ya que engloba aspectos eléctricos, magnéticos y térmicos. En este trabajo, se ha realizado una revisión exhaustiva de la literatura técnica publicada hasta la fecha en relación con el diseño de estas máquinas, y se han encontrado ciertos puntos de mejora. En primer lugar, muchas veces se parte de un diseño bastante definido y se optimiza una parte concreta del mismo. Además, se aprecia excesiva dependencia de la experiencia y knowhow del diseñador, sin establecer pautas claras para la toma de decisiones de diseño. Finalmente, dependen excesivamente del temporalmente costoso FEM. Por lo tanto, el objetivo principal de esta tesis es desarrollar una metodología avanzada de diseño de PMSMs que sea clara y completa, abarcando todo el proceso de diseño y aportando criterios y herramientas para la toma de decisiones que conduzcan a una elección óptima de la solución final. Se ha propuesto una metodología de diseño que permite la evaluación de gran cantidad de configuraciones de PMSM de forma automática, facilitando la decisión de diseño final por parte del diseñador. Para la implementación de esta metodología, diversas herramientas han tenido que ser desarrolladas y son explicadas en detalle: modelos analíticos electromagnéticos acoplados con modelos térmicos, y modelos electromagnéticos de parámetros concentrados. Importantes modificaciones fueron realizadas sobre los modelos térmicos adoptados para considerar diferentes refrigeraciones. Además, el circuito electromagnético de parámetros concentrados fue adaptado a la topología seleccionada y demostró su validez para ser utilizado en combinación con la técnica de Frozen Permeability. Siguiendo la metodología propuesta, se ha diseñado y fabricado un prototipo de 75 kW y se ha realizado la validación experimental en el laboratorio de media tensión de IK4‐IKERLAN. Los resultados obtenidos han servido para validar tanto la metodología de diseño como las herramientas empleadas en la misma.Munduko energia elektrikoaren zatirik handiena motor elektrikoetan kontsumitzen da, eta, ondorioz, prestazioak hobetzeak lagundu egiten du kontsumo energetikoan funtsezko aurrezpenak egiten, CO2 igorpenak murriztu nahi badira. Berez, gobernuen eta elkarteen eskakizunak gero eta zorrotzagoak dira, eta diseinatzaileak produktu gero eta optimizatuak atera beharrean daude. Gainera, gero eta aplikazio gehiago daude zorroztasun handia eskatzen dutenak potentzi dentsitateari, fidagarritasunari edo prestazio dinamikoei dagokienez, esaterako, ibilgailu elektrikoan, sorkuntza eolikoan edo tren trakzioan. Neodimiozko imanen eduki energetiko itzelaren ondorioz, iman makina iraunkorrak (PMSM) dira erakargarrienak potentzi dentsitateari dagokionez. Gainera, errotorearen galerak ia guztiz deuseztatzen direnez, energetikoki makinarik eraginkorrenak dira. PMSM bat diseinatzeko diziplina askoko ikuspegia behar da, alderdi elektrikoak, magnetikoak eta termikoak hartzen baititu bere baitan. Lan honetan orain arte honelako makinen diseinuari buruz argitaratutako literatura teknikoaren azterketa zehatza egin da, eta hobetzeko hainbat puntu aurkitu dira. Lehenik eta behin, askotan, abiapuntua nahiko definituta dagoen diseinu bat izaten da, eta egiten dena da horren zati jakin bat optimizatu. Gainera, gehiegizko mendekotasuna egoten da diseinatzailearen esperientzia eta knowhow‐arekiko, diseinuaren inguruko erabakiak hartzeko jarraibide argiak ezarri gabe. Azkenik, mendekotasun handia dago FEMek behin‐behinean duen kostu handiarekiko. Horrenbestez, tesiaren helburu nagusia da PMSMak diseinatzeko metodologia aurreratu bat garatzea, argia eta osatua, diseinuaren prozesu osoa hartuko duena, eta erabakiak hartzeko irizpideak eta tresnak eskainiko dituena, amaierako soluziorik onena aukeratu ahal izateko. Diseinurako proposatu den metodologiarekin PMSMko konfigurazio kopuru handi bat ebaluatu daiteke automatikoki, diseinatzaileari amaierako diseinua erabakitzen laguntzeko. Metodologia inplementatzeko, hainbat tresna garatu behar izan dira, eta horiek zehatz esplikatzen dira: eredu analitiko elektromagnetikoak, eredu termikoekin uztartuta, eta parametro kontzentratuen bidezko eredu elektromagnetikoak. Hautatutako eredu termikoetan aldaketa garrantzitsuak egin behar izan ziren, hozkuntza desberdinak lantzeko. Horrez gain, parametro kontzentratuen zirkuitu elektromagnetikoa hautatutako topologiara egokitu zen, eta bere balioa frogatu zuen, Frozen Permeability teknikarekin konbinatuta erabiltzeko. Proposatutako metodologiari jarraituz, 75 kW‐eko prototipo bat diseinatu eta fabrikatu da, eta balioztapen esperimentala egin da IK4‐IKERLANeko tentsio ertaineko laborategian. Lortutako emaitzek diseinuaren metodologia zein bertan erabilitako tresnak balioztatzeko balio izan dute

    Multi-level-objective design optimization of permanent magnet synchronous wind generator and solar photovoltaic system for an urban environment application

    Get PDF
    This Ph.D. thesis illustrates a novel study on the analytical and numerical design optimization of radial-flux permanent magnet synchronous wind generators (PMSGs) for small power generation in an urban area, in which an outer rotor topology with a closed-slot stator is employed. The electromagnetic advantages of a double-layer fractional concentration non-overlapping winding configuration are discussed. The analytical behavior of a PMSG is studied in detail; especially for magnetic flux density distribution, time and space harmonics, flux linkages, back-EMF, cogging torque, torque, output power, efficiency, and iron losses computation. The electromagnetic behavior of PMSGs are evaluated when a number of various Halbach array magnetization topologies are presented to maximize the generator’s performance. In addition, the thermal behavior of the PMSG is improved using an innovative natural air-cooling system for rated speed and higher to decrease the machine’s heat mainly at the stator teeth. The analytical investigation is verified via 2-D and 3-D finite element analysis along with a good experimental agreement. Design optimization of electrical machines plays the deterministic role in performance improvements such as the magnetization pattern, output power, and efficiency maximization, as well as losses and material cost minimization. This dissertation proposes a novel multi-objective design optimization technique using a dual-level response surface methodology (D-RSM) and Booth’s algorithm (coupled to a memetic algorithm known as simulated annealing) to maximize the output power and minimize material cost through sizing optimization. Additionally, the efficiency maximization by D-RSM is investigated while the PMSG and drive system are on duty as the whole. It is shown that a better fit is available when utilizing modern design functions such as mixed-resolution central composite (MR-CCD) and mixed-resolution robust (MR-RD), due to controllable and uncontrollable design treatments, and also a Window-Zoom-in approach. The proposed design optimization was verified by an experimental investigation. Additionally, there are several novel studies on vibro-acoustic design optimization of the PMSGs with considering variable speed analysis and natural frequencies using two techniques to minimize the magnetic noise and vibrations. Photovoltaic system design optimization considered of 3-D modeling of an innovative application-oriented urban environment structure, a smart tree for small power generation. The horizon shading is modeled as a broken line superimposed onto the sun path diagram, which can hold any number of height/azimuth points in this original study. The horizon profile is designed for a specific location on the Barcelona coast in Spain and the meteorological data regarding the location of the project was also considered. Furthermore, the input weather data is observed and stored for the whole year (in 2016). These data include, ambient temperature, module’s temperature (open and closed circuits tests), and shading average rate. A novel Pareto-based 3-D analysis was used to identify complete and partial shading of the photovoltaic system. A significant parameter for a photovoltaic (PV) module operation is the nominal operating cell temperature (NOCT). In this research, a glass/glass module has been referenced to the environment based on IEC61215 via a closed-circuit and a resistive load to ensure the module operates at the maximum power point. The proposed technique in this comparative study attempts to minimize the losses in a certain area with improved output energy without compromising the overall efficiency of the system. A Maximum Power Point Track (MPPT) controller is enhanced by utilizing an advanced perturb & observe (P&O) algorithm to maintain the PV operating point at its maximum output under different temperatures and insolation. The most cost-effective design of the PV module is achieved via optimizing installation parameters such as tilt angle, pitch, and shading to improve the energy yield. The variation of un-replicated factorials using a Window-Zoom-in approach is examined to determine the parameter settings and to check the suitability of the design. An experimental investigation was carried out to verify the 3-D shading analysis and NOCT technique for an open-circuit and grid-connected PV module.Esta tesis muestra un novedoso estudio referente al diseño optimizado de forma analítica y numérica de un generador síncrono de imanes permanentes (PMSGs) para una aplicación de microgeneración eólica en un entorno urbano, donde se ha escogido una topología de rotor exterior con un estator de ranuras cerradas. Las ventajas electromagnéticas de los arrollamientos fraccionarios de doble capa, con bobinas concentradas se discuten ampliamente en la parte inicial del diseño del mismo, así como las características de distribución de la inducción, los armónicos espaciales y temporales, la fem generada, el par de cogging así como las características de salida (par, potencia generada, la eficiencia y la distribución y cálculo de las pérdidas en el hierro que son analizadas detalladamente) Posteriormente se evalúan diferentes configuraciones de estructuras de imanes con magnetización Halbach con el fin de maximizar las prestaciones del generador. Adicionalmente se analiza la distribución de temperaturas y su mejora mediante el uso de un novedoso diseño mediante el uso de ventilación natural para velocidades próximas a la nominal y superiores con el fin de disminuir la temperatura de la máquina, principalmente en el diente estatórico. El cálculo analítico se completa mediante simulaciones 2D y 3D utilizando el método de los elementos finitos así como mediante diversas experiencias que validan los modelos y aproximaciones realizadas. Posteriormente se desarrollan algoritmos de optimización aplicados a variables tales como el tipo de magnetización, la potencia de salida, la eficiencia así como la minimización de las pérdidas y el coste de los materiales empleados. En la tesis se proponen un nuevo diseño optimizado basado en una metodología multinivel usando la metodología de superficie de respuesta (D-RSM) y un algoritmo de Booth (maximizando la potencia de salida y minimizando el coste de material empleado) Adicionalmente se investiga la maximización de la eficiencia del generador trabajando conjuntamente con el circuito de salida acoplado. El algoritmo utilizado queda validado mediante la experimentación desarrollada conjuntamente con el mismo. Adicionalmente, se han realizado diversos estudios vibroacústicos trabajando a velocidad variable usando dos técnicas diferentes para reducir el ruido generado y las vibraciones producidas. Posteriormente se considera un sistema fotovoltaico orientado a aplicaciones urbanas que hemos llamado “Smart tree for small power generation” y que consiste en un poste con un generador eólico en la parte superior juntamente con uno o más paneles fotovoltaicos. Este sistema se ha modelado usando metodologías en 3D. Se ha considerado el efecto de las sombras proyectadas por los diversos elementos usando datos meteorológicos y de irradiación solar de la propia ciudad de Barcelona. Usando una metodología basada en un análisis 3D y Pareto se consigue identificar completamente el sistema fotovoltaico; para este sistema se considera la temperatura de la célula fotovoltaica y la carga conectada con el fin de generar un algoritmo de control que permita obtener el punto de trabajo de máxima potencia (MPPT) comprobándose posteriormente el funcionamiento del algoritmo para diversas situaciones de funcionamiento del sistemaLa tesis desenvolupa un nou estudi per al disseny optimitzat, analític i numèric, d’un generador síncron d’imants permanents (PMSGs) per a una aplicació de microgeneració eòlica en aplicacions urbanes, on s’ha escollit una configuració amb rotor exterior i estator amb ranures tancades. Es discuteixen de forma extensa els avantatges electromagnètics dels bobinats fraccionaris de doble capa així com les característiques resultats vers la distribució de les induccions, els harmònics espacials i temporals, la fem generada, el parell de cogging i les característiques de sortida (parell, potencia, eficiència i pèrdues) Tanmateix s’afegeix l’estudi de diferents estructures Halbach per als imants permanents a fi i efecte de maximitzar les característiques del generador. Tot seguit s’analitza la distribució de temperatures i la seva reducció mitjançant la utilització d’una nova metodologia basada en la ventilació natural. Els càlculs analítics es complementen mitjançant anàlisi en 2 i 3 dimensions utilitzant elements finits i diverses experiències que validen els models i aproximacions emprades. Una vegada fixada la geometria inicial es desenvolupen algoritmes d’optimització per a diverses variables (tipus de magnetització dels imants, potencia de sortida, eficiència, minimització de pèrdues i cost dels materials) La tesi planteja una optimització multinivell emprant la metodologia de superfície de resposta i un algoritme de Booth; a més, es realitza la optimització considerant el circuit de sortida. L’algoritme resta validat per la experimentació realitzada. Finalment, s’han considerat diversos estudis vibroacústic treballant a velocitat variable, emprant dues tècniques diferents per a reduir el soroll i les vibracions desenvolupades. Per a finalitzar l’estudi es considera un sistema format per una turbina eòlica instal·lada sobre un pal de llum autònom, els panells fotovoltaics corresponents i el sistema de càrrega. Per a modelitzar l’efecte de l’ombrejat s’ha emprat un model en 3D i les dades del temps i d’irradiació solar de la ciutat de Barcelona. El model s’ha identificat completament i s’ha generat un algoritme de control que considera, a més, l’efecte de la temperatura de la cèl·lula fotovoltaica y la càrrega connectada al sistema per tal d’aconseguir el seguiment del punt de màxima potenciaPostprint (published version

    Mathematical Models for the Design of Electrical Machines

    Get PDF
    This book is a comprehensive set of articles reflecting the latest advances and developments in mathematical modeling and the design of electrical machines for different applications. The main models discussed are based on the: i) Maxwell–Fourier method (i.e., the formal resolution of Maxwell’s equations by using the separation of variables method and the Fourier’s series in 2-D or 3-D with a quasi-Cartesian or polar coordinate system); ii) electrical, thermal and magnetic equivalent circuit; iii) hybrid model. In these different papers, the numerical method and the experimental tests have been used as comparisons or validations

    Detailed Investigation on Electromagnetic Noise in Permanent Magnet Brushless Motors for Hybrid Vehicles

    Get PDF
    Detaillierte Untersuchung des elektromagnetischen Geräusches in Permanenterregten Motoren für Hybridfahrzeuge Im Rahmen dieser Arbeit wurde ein systematischer Ansatz zur theoretischen und praktischen Designbetrachtung, sowie zur rechnerischen Auswertung des Geräuschverhaltens permanenterregter Motoren für den Antriebsstrang von Hybridfahrzeugen untersucht. Diese Arbeit bietet Ingenieuren und Maschinenauslegern detaillierte und spezifische Informationen über das elektromagnetische Betriebsgeräusch, seinen Entstehungsprozess und die für eine Bewertung notwendigen Beziehungen zwischen den verschiedenen physikalischen Bereichen. Dabei werden insbesondere moderne elektromagnetische Konzepte und Wicklungstopologien untersucht, die für die Erfüllung der Anforderungen in einen Hybrid-Antriebsstrang benötigt werden. Die Luftspaltflussdichte, bzw. die magnetischen Kräfte wurden hierbei zeitlich und räumlich analysiert um die entsprechenden Strukturmoden zu ermitteln. Zudem werden wichtige elektromagnetische Parameter vorgestellt, welche einen signifikanten Einfluss auf die Luftspaltoberwellen haben. Detaillierte mechanische und dynamische Analysen, die für den Bewertungsprozess des Betriebsgeräusches notwendig sind, werden im Rahmen der Arbeit ausführlich behandelt. Eine analytische Methode für das Modellieren des Stators und das Berechnen seiner modalen Eigenschaften wurde eingeführt. Die mechanischen Faktoren, die die Ergebnisse von modalen und harmonischen Analysen beeinflussen, wurden sowohl simulativ, als auch experimentell, untersucht. Die Arbeit umfasst zudem die theoretischen Hintergründe von Luft- und Körperschall, sowie weiterer akustisch relevanter Größen. Um den Geräuschpegel berechnen zu können, wurden elektromagnetische, strukturdynamische und akustische Simulationen miteinander kombiniert. Wichtige Maßnahmen, die zu einer Verbesserungen des elektromagnetischen Designs und insbesondere des vibro-akustischen Verhaltens führen, sind herausgearbeitet worden. Beispielsweise wurde der Einfluss von Schrägung auf die Drehmomentwelligkeit und das Geräuschverhalten für eine diskret geschrägte Rotor Topologie untersucht. Eine vollständige Analysekette für die Berechnung des Vibrations- und Geräuschverhaltens wurde sowohl mit analytischen Methoden, als auch mit modernen numerischen Methoden wie der Finite Element Method (FEM), der Boundary Element Method (BEM) und der sogenannten Fast Multi-pole Boundary Element Method (FMBEM) definiert.In this work, a scientific approach for computational evaluation and for theoretical and practical systematic design considerations for noise behavior of Permanent Magnet (PM) brushless motors used in the power train of hybrid vehicles has been established. This work provides designers and engineers with detailed description and specific information about electromagnetic noise, its generation process and the relation between the different scientific fields required in the complete evaluation process. It also explains modern electromagnetic concepts which help to fulfill the requirement of hybrid power train and introduces the different winding topologies. In this work, an explicit analysis of time and space harmonics for air-gap flux density or, rather, of magnetic forces, has been dealt with in detail and then related to their corresponding mechanical modes. The paper also introduces the electromagnetic parameters that contribute to the determination of these harmonics. Detailed mechanical and dynamic analyses needed for the evaluation process of noise have been completely covered. An analytical method for modeling the stator and for calculating its modal characteristics has been introduced. The mechanical factors that affect the results of modal and harmonic analyses are also investigated based on experimental and simulation results. A theoretical background concerning the structure borne sound, the airborne sound and their acoustic parameters is also included. The acoustic simulations were performed to synchronize electromagnetic and mechanical results and subsequently to compute the noise level. The design considerations which improve the electromagnetic design of PM motors and guarantee an enhanced vibration and noise behavior have also been revealed. The skewing effect on the torque ripple and the noise behavior has also been investigated with respect to a discrete skewed rotor topology. A complete chain of analysis for computation of vibration and noise has been defined using the analytical approaches as well as the modern numerical methods such as Finite Element Method (FEM), Boundary Element Method (BEM) and Fast Multi-pole Boundary Element Method (FMBEM)

    Modelling and detection of faults in axial-flux permanent magnet machines

    Get PDF
    The development of various topologies and configurations of axial-flux permanent magnet machine has spurred its use for electromechanical energy conversion in several applications. As it becomes increasingly deployed, effective condition monitoring built on reliable and accurate fault detection techniques is needed to ensure its engineering integrity. Unlike induction machine which has been rigorously investigated for faults, axial-flux permanent magnet machine has not. Thus in this thesis, axial-flux permanent magnet machine is investigated under faulty conditions. Common faults associated with it namely; static eccentricity and interturn short circuit are modelled, and detection techniques are established. The modelling forms a basis for; developing a platform for precise fault replication on a developed experimental test-rig, predicting and analysing fault signatures using both finite element analysis and experimental analysis. In the detection, the motor current signature analysis, vibration analysis and electrical impedance spectroscopy are applied. Attention is paid to fault-feature extraction and fault discrimination. Using both frequency and time-frequency techniques, features are tracked in the line current under steady-state and transient conditions respectively. Results obtained provide rich information on the pattern of fault harmonics. Parametric spectral estimation is also explored as an alternative to the Fourier transform in the steady-state analysis of faulty conditions. It is found to be as effective as the Fourier transform and more amenable to short signal-measurement duration. Vibration analysis is applied in the detection of eccentricities; its efficacy in fault detection is hinged on proper determination of vibratory frequencies and quantification of corresponding tones. This is achieved using analytical formulations and signal processing techniques. Furthermore, the developed fault model is used to assess the influence of cogging torque minimization techniques and rotor topologies in axial-flux permanent magnet machine on current signal in the presence of static eccentricity. The double-sided topology is found to be tolerant to the presence of static eccentricity unlike the single-sided topology due to the opposing effect of the resulting asymmetrical properties of the airgap. The cogging torque minimization techniques do not impair on the established fault detection technique in the single-sided topology. By applying electrical broadband impedance spectroscopy, interturn faults are diagnosed; a high frequency winding model is developed to analyse the impedance-frequency response obtained
    corecore