908 research outputs found

    Investigations on skeleton completeness for skeleton-based shape matching

    Get PDF
    Skeleton is an important shape descriptor for deformable shape matching, because it integrates both geometrical and topological features of a shape. As the skeletonisation process often generates redundant skeleton branches that may seriously disturb the skeleton matching and cause high computational complexity, skeleton pruning is required to remove the inaccurate or redundant branches while preserving the essential topology of the original skeleton. However, pruning approaches normally require manual intervention to produce visually complete skeletons. As different people may have different perceptions for identifying visually complete skeletons, it is unclear how much the accuracy of skeleton-based shape matching is influenced by human selection. Moreover, it is also unclear how skeleton completeness impacts the accuracy of skeleton-based shapematching. We investigate here these two questions in a structured way. In addition, we present experimental evidence to show that it is possible to do automatic skeleton pruning while maintaining the matching accuracy by estimating the approximate pruning power of each shape

    Image Processing Techniques for Detecting Chromosome Abnormalities

    Get PDF
    With the increasing use of Fluorescence In Situ Hybridization (FISH) probes as markers for certain genetic sequences, the requirement of a proper image processing framework is becoming a necessity to accurately detect these probe signal locations in relation to the centerline of the chromosome. Automated detection and length measurements based on the centerline relative to the centromere and the telomere coordinates would highly assist in clinical diagnosis of genetic disorders and thus improve its efficiency significantly. Although many image processing techniques have been developed for chromosomal analysis such as ’’karyotype analysis” to assist in laboratory diagnosis, they fail to provide reliable results in segmenting and extracting the centerline of chromosomes due to the high variability in shape of chromosomes on microscope slides. In this thesis we propose a hybrid algorithm that utilizes Gradient Vector Flow active contours, Discrete Curve Evolution based skeleton pruning and morphological thinning to provide a robust and accurate centerline of the chromosome, which is then used for the measurement of the FISH probe signals. Then this centerline information is used to detect the centromere location of the chromosome and the probe signal location distances were measured with respective to these landmarks. The ability to accurately detect FISH probe locations with respective to its centerline and other landmarks can provide the cytogeneticists with detailed information that could lead to a faster diagnosis

    Spatial Reconstruction of Biological Trees from Point Cloud

    Get PDF
    Trees are complex systems in nature whose topology and geometry ar

    Holistic and component plant phenotyping using temporal image sequence

    Get PDF
    Background: Image-based plant phenotyping facilitates the extraction of traits noninvasively by analyzing large number of plants in a relatively short period of time. It has the potential to compute advanced phenotypes by considering the whole plant as a single object (holistic phenotypes) or as individual components, i.e., leaves and the stem (component phenotypes), to investigate the biophysical characteristics of the plants. The emergence timing, total number of leaves present at any point of time and the growth of individual leaves during vegetative stage life cycle of the maize plants are significant phenotypic expressions that best contribute to assess the plant vigor. However, image-based automated solution to this novel problem is yet to be explored. Results: A set of new holistic and component phenotypes are introduced in this paper. To compute the component phenotypes, it is essential to detect the individual leaves and the stem. Thus, the paper introduces a novel method to reliably detect the leaves and the stem of the maize plants by analyzing 2-dimensional visible light image sequences captured from the side using a graph based approach. The total number of leaves are counted and the length of each leaf is measured for all images in the sequence to monitor leaf growth. To evaluate the performance of the proposed algorithm, we introduce University of Nebraska–Lincoln Component Plant Phenotyping Dataset (UNL-CPPD) and provide ground truth to facilitate new algorithm development and uniform comparison. The temporal variation of the component phenotypes regulated by genotypes and environment (i.e., greenhouse) are experimentally demonstrated for the maize plants on UNL-CPPD. Statistical models are applied to analyze the greenhouse environment impact and demonstrate the genetic regulation of the temporal variation of the holistic phenotypes on the public dataset called Panicoid Phenomap-1. Conclusion: The central contribution of the paper is a novel computer vision based algorithm for automated detection of individual leaves and the stem to compute new component phenotypes along with a public release of a benchmark dataset, i.e., UNL-CPPD. Detailed experimental analyses are performed to demonstrate the temporal variation of the holistic and component phenotypes in maize regulated by environment and genetic variation with a discussion on their significance in the context of plant science

    Proceedings of the 7th International Conference on Functional-Structural Plant Models, Saariselkä, Finland, 9 - 14 June 2013

    Get PDF

    Cultivation Techniques

    Get PDF
    • …
    corecore