28 research outputs found

    A Multiband Low Noise Amplifier for Software Defined Radio Using Switchable Active Shunt Feedback Input Matching

    Get PDF
    Radio frequency (RF) receivers are the key front-end blocks in wireless devices such as smartphones, pagers, PDAs etc. An important block of the RF receiver is the Low-noise amplifier. It’s function is to amplify with little noise addition, the RF signal received at the atenna. Modern wireless devices for example the smartphone, incorporates multiple functionalities supported by various RF standards- GPS, Bluetooth, Wifi, GSM etc. Thus, the current trend in the wireless technology is to integrate radio receivers for each RF standard into a single system-on-chip (SoC) in order to reduce cost and area of the devices. In view of this, multiband RF receivers have been developed which feature multiband LNAs. This thesis presents the design and implementation of a multiband LNA for Software Defined Radio Applications. In this thesis, basic radio-frequency concepts are discussed which is followed by a discussion of pros and cons of various multistandard low-noise amplifier topologies. This is then followed by the design of the proposed reconfigurable LNA. The LNA is designed and fabricated in IBM 0.18um CMOS technology. It is made up of dual LC resonant tanks, one to switch between 5.2GHz and 3.5GHz frequency bands and the other, to switch between 2.4GHz and 1.8GHz bands. The input matching of the LNA is achieved using a switchable shunt active feedback network. The LNA achieves S21 of between 10.1dB and 13.43dB. It achieves an input matching (S11) between -13.44 dB and -11.97 dB. The noise figure measured ranges from 2.8 dB to 4.3 dB. The LNA also achieves an IIP3 from -7.12 dBm to -3.45 dBm at 50 MHz offset. The power consumption ranges from 7 mW to 7.2 mW

    Design of reconfigurable multi-mode RF circuits

    Get PDF
    Wireless communication systems and devices have been developing at a much faster pace in the past few years. With the introduction of new applications and services and the increasing demand for higher data rate comes the need for new frequency bands and new standards. One critical issue for next generation wireless devices is how to support all of the existing and emerging bands while not increasing the cost and power consumption. A feasible solution is the concept of the software-defined radio where a single receiver can be reconfigured to operate in different modes, each of which supports one or several bands and/or standards. To implement such a reconfigurable receiver, reconfigurable RF building blocks, such as the LNA, mixer, VCO, etc., are required. This dissertation focuses on two key blocks: the low noise amplifier (LNA) and the voltage controlled oscillator (VCO). First the design, modeling and characterization of a multi-tap transformer are discussed. Simple mathematical calculations are utilized to estimate the inductances and coupling coefficients from the physical parameters of a multi-tap transformer. The design method is verified with several designed multi-tap transformers that are characterized up to 10 GHz using Momentum simulation results. The effect of switch loss on a switched multi-tap transformer is explored and a broadband lumped-element model of the multi-tap transformer is also proposed. Next a reconfigurable multimode LNA capable of single-band, concurrent dual-band, and ultra-wideband operation is presented. The multimode operation is realized by incorporating a switched multi-tap transformer into the input matching network of an inductively degenerated common source amplifier. The proposed LNA achieves single band matching at 2.8, 3.3, and 4.6 GHz; concurrent dual-band matching at 2.05 and 5.65 GHz; and ultra-wideband matching from 4.3 to 10.8 GHz. The chip was fabricated in a 0.13 m CMOS process, and occupies an area of 0.72 mm2, and has a power dissipation of 6.4 mW from a 1.2-V supply. Finally, a triple-mode VCO using a transformer-based 4th order tank with tunable transconductance cells coupling the primary and secondary inductor is introduced. The tank impedance can be re-shaped by the transconductance cells through the tuning of their biasing currents. With the control of biasing current, VCO is configured in three modes, capable of generating a single frequency in 3- and 5- GHz bands, respectively, and two frequencies in both 3- and 5- GHz bands simultaneously. The triple-mode VCO was fabricated in a 0.13 μm CMOS process, occupies an area of 0.16 mm2, and dissipates 5.6 mW from a 1.2-V supply

    Built-in-self-test of RF front-end circuitry

    Get PDF
    Fuelled by the ever increasing demand for wireless products and the advent of deep submicron CMOS, RF ICs have become fairly commonplace in the semiconductor market. This has given rise to a new breed of Systems-On-Chip (SOCs) with RF front-ends tightly integrated along with digital, analog and mixed signal circuitry. However, the reliability of the integrated RF front-end continues to be a matter of significant concern and considerable research. A major challenge to the reliability of RF ICs is the fact that their performance is also severely degraded by wide tolerances in on-chip passives and package parasitics, in addition to process related faults. Due to the absence of contact based testing solutions in embedded RF SOCs (because the very act of probing may affect the performance of the RF circuit), coupled with the presence of very few test access nodes, a Built In Self Test approach (BiST) may prove to be the most efficient test scheme. However due to the associated challenges, a comprehensive and low-overhead BiST methodology for on-chip testing of RF ICs has not yet been reported in literature. In the current work, an approach to RF self-test that has hitherto been unexplored both in literature and in the commercial arena is proposed. A sensitive current monitor has been used to extract variations in the supply current drawn by the circuit-under-test (CUT). These variations are then processed in time and frequency domain to develop signatures. The acquired signatures can then be mapped to specific behavioral anomalies and the locations of these anomalies. The CUT is first excited by simple test inputs that can be generated on-chip. The current monitor extracts the corresponding variations in the supply current of the CUT, thereby creating signatures that map to various performance metrics of the circuit. These signatures can then be post-processed by low overhead on-chip circuitry and converted into an accessible form. To be successful in the RF domain any BIST architecture must be minimally invasive, reliable, offer good fault coverage and present low real estate and power overheads. The current-based self-test approach successfully addresses all these concerns. The technique has been applied to RF Low Noise Amplifiers, Mixers and Voltage Controlled Oscillators. The circuitry and post-processing techniques have also been demonstrated in silicon (using the IBM 0.25 micron RF CMOS process). The entire self-test of the RF front-end can be accomplished with a total test time of approximately 30µs, which is several orders of magnitude better than existing commercial test schemes

    The 30/20 GHz flight experiment system, phase 2. Volume 2: Experiment system description

    Get PDF
    A detailed technical description of the 30/20 GHz flight experiment system is presented. The overall communication system is described with performance analyses, communication operations, and experiment plans. Hardware descriptions of the payload are given with the tradeoff studies that led to the final design. The spacecraft bus which carries the payload is discussed and its interface with the launch vehicle system is described. Finally, the hardwares and the operations of the terrestrial segment are presented

    ANALYSIS AND DESIGN OF SILICON-BASED MILLIMETER-WAVE AMPLIFIERS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    High Performance RF and Basdband Analog-to-Digital Interface for Multi-standard/Wideband Applications

    Get PDF
    The prevalence of wireless standards and the introduction of dynamic standards/applications, such as software-defined radio, necessitate the next generation wireless devices that integrate multiple standards in a single chip-set to support a variety of services. To reduce the cost and area of such multi-standard handheld devices, reconfigurability is desirable, and the hardware should be shared/reused as much as possible. This research proposes several novel circuit topologies that can meet various specifications with minimum cost, which are suited for multi-standard applications. This doctoral study has two separate contributions: 1. The low noise amplifier (LNA) for the RF front-end; and 2. The analog-to-digital converter (ADC). The first part of this dissertation focuses on LNA noise reduction and linearization techniques where two novel LNAs are designed, taped out, and measured. The first LNA, implemented in TSMC (Taiwan Semiconductor Manufacturing Company) 0.35Cm CMOS (Complementary metal-oxide-semiconductor) process, strategically combined an inductor connected at the gate of the cascode transistor and the capacitive cross-coupling to reduce the noise and nonlinearity contributions of the cascode transistors. The proposed technique reduces LNA NF by 0.35 dB at 2.2 GHz and increases its IIP3 and voltage gain by 2.35 dBm and 2dB respectively, without a compromise on power consumption. The second LNA, implemented in UMC (United Microelectronics Corporation) 0.13Cm CMOS process, features a practical linearization technique for high-frequency wideband applications using an active nonlinear resistor, which obtains a robust linearity improvement over process and temperature variations. The proposed linearization method is experimentally demonstrated to improve the IIP3 by 3.5 to 9 dB over a 2.5–10 GHz frequency range. A comparison of measurement results with the prior published state-of-art Ultra-Wideband (UWB) LNAs shows that the proposed linearized UWB LNA achieves excellent linearity with much less power than previously published works. The second part of this dissertation developed a reconfigurable ADC for multistandard receiver and video processors. Typical ADCs are power optimized for only one operating speed, while a reconfigurable ADC can scale its power at different speeds, enabling minimal power consumption over a broad range of sampling rates. A novel ADC architecture is proposed for programming the sampling rate with constant biasing current and single clock. The ADC was designed and fabricated using UMC 90nm CMOS process and featured good power scalability and simplified system design. The programmable speed range covers all the video formats and most of the wireless communication standards, while achieving comparable Figure-of-Merit with customized ADCs at each performance node. Since bias current is kept constant, the reconfigurable ADC is more robust and reliable than the previous published works

    Minimum power design of RF front ends

    Get PDF
    This thesis describes an investigation into the design of RF front ends with minimum power dissipation. The central question is: "What are the fundamental limits for the power dissipation of telecommunication front ends, and what design procedures can be followed that approach these limits and, at the same time, result in practical circuits?" After a discussion of the state of the art in this area, the elementary operations of a front end are identified. For each of these elementary operations, the fundamental limits for the power dissipation are discussed, divided into technology imposed limits and physics imposed limits. A traditional DECT front end design is used to demonstrate the large difference between the fundamental limits and the power dissipation of existing circuits. To improve this situation, first the optimum distribution of specifications across individual subcircuits needs to be determined, such that the requirements for a specific system can be fulfilled. This is achieved through the introduction of formal transforms of the specifications of subcircuits, which correspond with transforms of the subcircuit itself. Using these transforms, the optimum distribution of gain, noise, linearity and power dissipation can be determined. As it turns out, this optimum distribution can even be represented by a simple, analytical expression. This expression predicts that the power dissipation of the DECT front end can be reduced by a factor of 2.7 through an optimum distribution of the specifications. Using these optimum specifications of the subcircuits, the boundaries for further power dissipation reduction can be determined. This is investigated at the system, circuit and technology level. These insights are used in the design of a 2.5GHz wireless local area network, implemented in an optimized technology ("Silicon on Anything"). The power dissipation of the complete receiver is 3.5mW, more than an order of magnitude below other wireless LAN receivers in recent publications. Finally, the combination of this minimum power design method with a platform based development strategy is discussed
    corecore