44 research outputs found

    Can smartwatches replace smartphones for posture tracking?

    Get PDF
    This paper introduces a human posture tracking platform to identify the human postures of sitting, standing or lying down, based on a smartwatch. This work develops such a system as a proof-of-concept study to investigate a smartwatch's ability to be used in future remote health monitoring systems and applications. This work validates the smartwatches' ability to track the posture of users accurately in a laboratory setting while reducing the sampling rate to potentially improve battery life, the first steps in verifying that such a system would work in future clinical settings. The algorithm developed classifies the transitions between three posture states of sitting, standing and lying down, by identifying these transition movements, as well as other movements that might be mistaken for these transitions. The system is trained and developed on a Samsung Galaxy Gear smartwatch, and the algorithm was validated through a leave-one-subject-out cross-validation of 20 subjects. The system can identify the appropriate transitions at only 10 Hz with an F-score of 0.930, indicating its ability to effectively replace smart phones, if needed

    Speed Bump Detection Using Accelerometric Features: A Genetic Algorithm Approach

    Get PDF
    AmongthecurrentchallengesoftheSmartCity,trafficmanagementandmaintenanceareof utmostimportance. Roadsurfacemonitoringiscurrentlyperformedbyhumans,buttheroadsurface condition is one of the main indicators of road quality, and it may drastically affect fuel consumption and the safety of both drivers and pedestrians. Abnormalities in the road, such as manholes and potholes, can cause accidents when not identified by the drivers. Furthermore, human-induced abnormalities, such as speed bumps, could also cause accidents. In addition, while said obstacles ought to be signalized according to specific road regulation, they are not always correctly labeled. Therefore, we developed a novel method for the detection of road abnormalities (i.e., speed bumps). This method makes use of a gyro, an accelerometer, and a GPS sensor mounted in a car. After having the vehicle cruise through several streets, data is retrieved from the sensors. Then, using a cross-validation strategy, a genetic algorithm is used to find a logistic model that accurately detects road abnormalities. The proposed model had an accuracy of 0.9714 in a blind evaluation, with a false positive rate smaller than 0.018, and an area under the receiver operating characteristic curve of 0.9784. This methodology has the potential to detect speed bumps in quasi real-time conditions, and can be used to construct a real-time surface monitoring system.AmongthecurrentchallengesoftheSmartCity,trafficmanagementandmaintenanceareof utmostimportance. Roadsurfacemonitoringiscurrentlyperformedbyhumans,buttheroadsurface condition is one of the main indicators of road quality, and it may drastically affect fuel consumption and the safety of both drivers and pedestrians. Abnormalities in the road, such as manholes and potholes, can cause accidents when not identified by the drivers. Furthermore, human-induced abnormalities, such as speed bumps, could also cause accidents. In addition, while said obstacles ought to be signalized according to specific road regulation, they are not always correctly labeled. Therefore, we developed a novel method for the detection of road abnormalities (i.e., speed bumps). This method makes use of a gyro, an accelerometer, and a GPS sensor mounted in a car. After having the vehicle cruise through several streets, data is retrieved from the sensors. Then, using a cross-validation strategy, a genetic algorithm is used to find a logistic model that accurately detects road abnormalities. The proposed model had an accuracy of 0.9714 in a blind evaluation, with a false positive rate smaller than 0.018, and an area under the receiver operating characteristic curve of 0.9784. This methodology has the potential to detect speed bumps in quasi real-time conditions, and can be used to construct a real-time surface monitoring system

    Codeveloping and evaluating a campaign to reduce dementia misconceptions on Twitter : machine learning study

    Get PDF
    Background: Dementia misconceptions on Twitter can have detrimental or harmful effects. Machine learning (ML) models codeveloped with carers provide a method to identify these and help in evaluating awareness campaigns. Objective: This study aimed to develop an ML model to distinguish between misconceptions and neutral tweets and to develop, deploy, and evaluate an awareness campaign to tackle dementia misconceptions. Methods: Taking 1414 tweets rated by carers from our previous work, we built 4 ML models. Using a 5-fold cross-validation, we evaluated them and performed a further blind validation with carers for the best 2 ML models; from this blind validation, we selected the best model overall. We codeveloped an awareness campaign and collected pre-post campaign tweets (N=4880), classifying them with our model as misconceptions or not. We analyzed dementia tweets from the United Kingdom across the campaign period (N=7124) to investigate how current events influenced misconception prevalence during this time. Results: A random forest model best identified misconceptions with an accuracy of 82% from blind validation and found that 37% of the UK tweets (N=7124) about dementia across the campaign period were misconceptions. From this, we could track how the prevalence of misconceptions changed in response to top news stories in the United Kingdom. Misconceptions significantly rose around political topics and were highest (22/28, 79% of the dementia tweets) when there was controversy over the UK government allowing to continue hunting during the COVID-19 pandemic. After our campaign, there was no significant change in the prevalence of misconceptions. Conclusions: Through codevelopment with carers, we developed an accurate ML model to predict misconceptions in dementia tweets. Our awareness campaign was ineffective, but similar campaigns could be enhanced through ML to respond to current events that affect misconceptions in real time

    A review of privacy and usability issues in mobile health systems: Role of external factors

    Get PDF
    The increased penetration of mobile devices has created opportunities in the health sector and led to emerging of mobile health systems. As much as the mobile health systems have registered tremendous progress, they have been faced with privacy and usability issues. Due to the sensitivity of health information, there is an ethical need to equip mobile health systems with adequate privacy measures. However, these systems should also be useable by the intended users. Even though many researchers are working on solutions, the issues still persist. External factors such as cultural differences have also contributed to the issues, yet they have been under researched. In this article, we conduct a systematic literature review of 22 articles, categorize and present privacy and usability issues and possible solutions. We then discuss the relevance and implications of external factors to the findings on privacy and usability. We end with recommendations to address these external factors.Peer Reviewe

    “Texting & Driving” Detection Using Deep Convolutional Neural Networks

    Get PDF
    The effects of distracted driving are one of the main causes of deaths and injuries on U.S. roads. According to the National Highway Traffic Safety Administration (NHTSA), among the different types of distractions, the use of cellphones is highly related to car accidents, commonly known as “texting and driving”, with around 481,000 drivers distracted by their cellphones while driving, about 3450 people killed and 391,000 injured in car accidents involving distracted drivers in 2016 alone. Therefore, in this research, a novel methodology to detect distracted drivers using their cellphone is proposed. For this, a ceiling mounted wide angle camera coupled to a deep learning–convolutional neural network (CNN) are implemented to detect such distracted drivers. The CNN is constructed by the Inception V3 deep neural network, being trained to detect “texting and driving” subjects. The final CNN was trained and validated on a dataset of 85,401 images, achieving an area under the curve (AUC) of 0.891 in the training set, an AUC of 0.86 on a blind test and a sensitivity value of 0.97 on the blind test. In this research, for the first time, a CNN is used to detect the problem of texting and driving, achieving a significant performance. The proposed methodology can be incorporated into a smart infotainment car, thus helping raise drivers’ awareness of their driving habits and associated risks, thus helping to reduce careless driving and promoting safe driving practices to reduce the accident rate.The effects of distracted driving are one of the main causes of deaths and injuries on U.S. roads. According to the National Highway Traffic Safety Administration (NHTSA), among the different types of distractions, the use of cellphones is highly related to car accidents, commonly known as “texting and driving”, with around 481,000 drivers distracted by their cellphones while driving, about 3450 people killed and 391,000 injured in car accidents involving distracted drivers in 2016 alone. Therefore, in this research, a novel methodology to detect distracted drivers using their cellphone is proposed. For this, a ceiling mounted wide angle camera coupled to a deep learning–convolutional neural network (CNN) are implemented to detect such distracted drivers. The CNN is constructed by the Inception V3 deep neural network, being trained to detect “texting and driving” subjects. The final CNN was trained and validated on a dataset of 85,401 images, achieving an area under the curve (AUC) of 0.891 in the training set, an AUC of 0.86 on a blind test and a sensitivity value of 0.97 on the blind test. In this research, for the first time, a CNN is used to detect the problem of texting and driving, achieving a significant performance. The proposed methodology can be incorporated into a smart infotainment car, thus helping raise drivers’ awareness of their driving habits and associated risks, thus helping to reduce careless driving and promoting safe driving practices to reduce the accident rate

    NIAS Annual Report 2014-2015

    Get PDF

    Probabilistic model for single and multi-sensing intrusion detection in wireless sensor networks

    Get PDF
    Wireless Sensor Networks consists of tiny devices capable of processing, routing the sensed data and are capable of detecting the intruders. The process of detecting any suspected (anomalous) moving object (attacker) within the reach of a Wireless Sensor Network area is referred to as intrusion detection. In this paper, we propose an algorithm to detect the intruder by the cluster heads in a 2D and 3D homogeneous Wireless Sensor Networks. This algorithm overcomes the attacks on implementation and also, reduces the energy consumption. The proposed algorithm considers Single Sensing and Multi-Sensing Intrusion Detection using minimum number of sensor nodes and a probabilistic model has been developed for both 2D and 3D homogeneous networks. Simulation results show that the power analysis attack and energy consumption is minimized by activating only few sensor nodes for detection and using only few sensor nodes for processing of data. The performance of the proposed algorithm is better compared to using all the sensor nodes for detection where the energy consumption is more

    Use Of Smartphones for Ensuring Vulnerable Road User Safety through Path Prediction and Early Warning: An In-Depth Review of Capabilities, Limitations and Their Applications in Cooperative Intelligent Transport Systems

    Get PDF
    The field of cooperative intelligent transport systems and more specifically pedestrians to vehicles could be characterized as quite challenging, since there is a broad research area to be studied, with direct positive results to society. Pedestrians to vehicles is a type of cooperative intelligent transport system, within the group of early warning collision/safety system. In this article, we examine the research and applications carried out so far within the field of pedestrians to vehicles cooperative transport systems by leveraging the information coming from vulnerable road users’ smartphones. Moreover, an extensive literature review has been carried out in the fields of vulnerable road users outdoor localisation via smartphones and vulnerable road users next step/movement prediction, which are closely related to pedestrian to vehicle applications and research. We identify gaps that exist in these fields that could be improved/extended/enhanced or newly developed, while we address future research objectives and methodologies that could support the improvement/development of those identified gaps

    Human-mobility-based sensor context-aware routing protocol for delay-tolerant data gathering in multi-sink cell-phone-based sensor networks

    Get PDF
    Ubiquitous use of cell phones encourages development of novel applications with sensors embedded in cell phones. The collection of information generated by these devices is a challenging task considering volatile topologies and energy-based scarce resources. Further, the data delivery to the sink is delay tolerant. Mobility of cell phones is opportunistically exploited for forwarding sensor generated data towards the sink. Human mobility model shows truncated power law distribution of flight length, pause time, and intercontact time. The power law behavior of inter-contact time often discourages routing of data using naive forwarding schemes. This work exploits the flight length and the pause time distributions of human mobility to design a better and efficient routing strategy. We propose a Human-Mobility-based Sensor Context-Aware Routing protocol (HMSCAR), which exploits human mobility patterns to smartly forward data towards the sink basically comprised of wi-fi hot spots or cellular base stations. The simulation results show that HMSCAR significantly outperforms the SCAR, SFR, and GRAD-MOB on the aspects of delivery ratio and time delay. A multi-sink scenario and single-copy replication scheme is assumed
    corecore