42,215 research outputs found

    Unmanned Aerial Vehicle (UAV) for monitoring soil erosion in Morocco

    Get PDF
    This article presents an environmental remote sensing application using a UAV that is specifically aimed at reducing the data gap between field scale and satellite scale in soil erosion monitoring in Morocco. A fixed-wing aircraft type Sirius I (MAVinci, Germany) equipped with a digital system camera (Panasonic) is employed. UAV surveys are conducted over different study sites with varying extents and flying heights in order to provide both very high resolution site-specific data and lower-resolution overviews, thus fully exploiting the large potential of the chosen UAV for multi-scale mapping purposes. Depending on the scale and area coverage, two different approaches for georeferencing are used, based on high-precision GCPs or the UAV’s log file with exterior orientation values respectively. The photogrammetric image processing enables the creation of Digital Terrain Models (DTMs) and ortho-image mosaics with very high resolution on a sub-decimetre level. The created data products were used for quantifying gully and badland erosion in 2D and 3D as well as for the analysis of the surrounding areas and landscape development for larger extents

    Archaeological site monitoring: UAV photogrammetry can be an answer

    Get PDF
    During archaeological excavations it is important to monitor the new excavated areas and findings day by day in order to be able to plan future excavation activities. At present, this daily activity is usually performed by using total stations, which survey the changes of the archaeological site: the surveyors are asked to produce day by day draft plans and sections which allow archaeologists to plan their future activities. The survey is realized during the excavations or just at the end of every working day and drawings have to be produced as soon as possible in order to allow the comprehension of the work done and to plan the activities for the following day. By using this technique, all the measurements, even those not necessary for the day after, have to be acquired in order to avoid a ‘loss of memory'. A possible alternative to this traditional approach is aerial photogrammetry, if the images can be acquired quickly and at a taken distance able to guarantee the necessary accuracy of a few centimeters. Today the use of UAVs (Unmanned Aerial Vehicles) can be considered a proven technology able to acquire images at distances ranging from 4 m up to 20 m: and therefore as a possible monitoring system to provide the necessary information to the archaeologists day by day. The control network, usually present at each archaeological site, can give the stable control points useful for orienting a photogrammetric block acquired by using an UAV equipped with a calibrated digital camera and a navigation control system able to drive the aircraft following a pre-planned flight scheme. Modern digital photogrammetric software can solve for the block orientation and generate a DSM automatically, allowing rapid orthophoto generation and the possibility of producing sections and plans. The present paper describes a low cost UAV system realized by the research group of the Politecnico di Torino and tested on a Roman villa archaeological site located in Aquileia (Italy), a well-known UNESCO WHL site. The results of automatic orientation and orthophoto production are described in terms of their accuracy and the completeness of information guaranteed for archaeological site excavation managemen

    Conservation science in NOAA’s National Marine Sanctuaries: description and recent accomplishments

    Get PDF
    This report describes cases relating to the management of national marine sanctuaries in which certain scientific information was required so managers could make decisions that effectively protected trust resources. The cases presented represent only a fraction of difficult issues that marine sanctuary managers deal with daily. They include, among others, problems related to wildlife disturbance, vessel routing, marine reserve placement, watershed management, oil spill response, and habitat restoration. Scientific approaches to address these problems vary significantly, and include literature surveys, data mining, field studies (monitoring, mapping, observations, and measurement), geospatial and biogeographic analysis, and modeling. In most cases there is also an element of expert consultation and collaboration among multiple partners, agencies with resource protection responsibilities, and other users and stakeholders. The resulting management responses may involve direct intervention (e.g., for spill response or habitat restoration issues), proposal of boundary alternatives for marine sanctuaries or reserves, changes in agency policy or regulations, making recommendations to other agencies with resource protection responsibilities, proposing changes to international or domestic shipping rules, or development of new education or outreach programs. (PDF contains 37 pages.

    Monitoring post-fire forest recovery using multi-temporal Digital Surface Models generated from different platforms

    Get PDF
    Wildfires can greatly affect forest dynamics. Given the alteration of fire regimes foreseen globally due to climate and land use changes, greater attention should be devoted to prevention and restoration activities. Concerning in particular post-fire restoration actions, it is fundamental, together with a better understanding of ecological processes resulting from the disturbance, to define techniques and protocols for long-term monitoring of burned areas. This paper presents the results of a study conducted within an area affected by a stand-replacing crown fire (Verrayes, Aosta (AO), Italy) in 2005, which is part of a long-term monitoring research on post-fire restoration dynamics. We performed a change detection analysis through a time sequence (2008-2015) of DSMs (Digital Surface Models) obtained from LiDAR (ALS - Airborne Laser Scanner) and digital images (UAV - Unmanned Aerial Vehicle flight) to test the ability of the systems (platform + sensor) to identify the ongoing processes. New technologies providing high-resolution information and new devices (i.e. UAV) able to acquire geographic data “on demand” demonstrated great potential for monitoring post disturbance recovery dynamics of vegetation

    Monitoring of Plant Species and Communities on Coastal Cliffs: Is the Use of Unmanned Aerial Vehicles Suitable?

    Get PDF
    Cliffs are reservoirs of biodiversity; therefore, many plant species and communities of inland and coastal cliffs are protected by Council Directive 92/43/EEC (European Economic Community), and their monitoring is mandatory in European Union countries. Surveying plants on coastal cliff by traditional methods is challenging and alternatives are needed. We tested the use of a small Unmanned Aerial Vehicle (UAV) as an alternative survey tool, gathering aerial images of cliffs at Palinuro Cape (Southern Italy). Four photo-interpreters analysed independently the derived orthomosaic and plotted data needed for the monitoring activity. Data showed to be not affected by photo-interpreters and reliable for the prescribed monitoring in the European Union (EU). Using the GIS analysis tools, we were able to: (a) recognise and map the plant species, (b) derive and measure the area of distribution on the cliff of habitat and species, and (c) count Eokochia saxicola individuals and gather quantitative data on their projected area. Quality of the images represented the main constraint, but incoming technological improvements of sensors and UAVs may overcome this problem. Overall results support the use of UAVs as an affordable and fast survey technique that can rapidly increase the number of studies on cliff habitats and improve ecological knowledge on their plant species and communitie

    Predicting growing stock volume of Eucalyptus plantations using 3-D point clouds derived from UAV imagery and ALS data

    Get PDF
    Estimating forest inventory variables is important in monitoring forest resources and mitigating climate change. In this respect, forest managers require flexible, non-destructive methods for estimating volume and biomass. High-resolution and low-cost remote sensing data are increasingly available to measure three-dimensional (3D) canopy structure and to model forest structural attributes. The main objective of this study was to evaluate and compare the individual tree volume estimates derived from high-density point clouds obtained from airborne laser scanning (ALS) and digital aerial photogrammetry (DAP) in Eucalyptus spp. plantations. Object-based image analysis (OBIA) techniques were applied for individual tree crown (ITC) delineation. The ITC algorithm applied correctly detected and delineated 199 trees from ALS-derived data, while 192 trees were correctly identified using DAP-based point clouds acquired fromUnmannedAerialVehicles(UAV), representing accuracy levels of respectively 62% and 60%. Addressing volume modelling, non-linear regression fit based on individual tree height and individual crown area derived from the ITC provided the following results: Model E ciency (Mef) = 0.43 and 0.46, Root Mean Square Error (RMSE) = 0.030 m3 and 0.026 m3, rRMSE = 20.31% and 19.97%, and an approximately unbiased results (0.025 m3 and 0.0004 m3) using DAP and ALS-based estimations, respectively. No significant di erence was found between the observed value (field data) and volume estimation from ALS and DAP (p-value from t-test statistic = 0.99 and 0.98, respectively). The proposed approaches could also be used to estimate basal area or biomass stocks in Eucalyptus spp. plantationsinfo:eu-repo/semantics/publishedVersio
    • 

    corecore