66 research outputs found

    SINGULAB - A Graphical user Interface for the Singularity Analysis of Parallel Robots based on Grassmann-Cayley Algebra

    Get PDF
    This paper presents SinguLab, a graphical user interface for the singularity analysis of parallel robots. The algorithm is based on Grassmann-Cayley algebra. The proposed tool is interactive and introduces the designer to the singularity analysis performed by this method, showing all the stages along the procedure and eventually showing the solution algebraically and graphically, allowing as well the singularity verification of different robot poses.Comment: Advances in Robot Kinematics, Batz sur Mer : France (2008

    Dynamics of the Orthoglide parallel robot

    Get PDF
    Recursive matrix relations for kinematics and dynamics of the Orthoglide parallel robot having three concurrent prismatic actuators are established in this paper. These are arranged according to the Cartesian coordinate system with fixed orientation, which means that the actuating directions are normal to each other. Three identical legs connecting to the moving platform are located on three planes being perpendicular to each other too. Knowing the position and the translation motion of the platform, we develop the inverse kinematics problem and determine the position, velocity and acceleration of each element of the robot. Further, the principle of virtual work is used in the inverse dynamic problem. Some matrix equations offer iterative expressions and graphs for the input forces and the powers of the three actuators

    DeLiA: a New Family of Redundant Robot Manipulators

    Get PDF

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored

    Interval Analysis and Reliability in Robotics

    Get PDF
    A robot is typical of systems that are inherently submitted to uncertainties although they should be highly reliable (i.e. for a robot used in surgical applications). The sources of uncertainties are the manufacturing tolerances of the mechanical parts constituting the robot which make the real robot always different from its theoretical model and control errors. We exhibit properties of a robot that are sensitive to the uncertainties and we present methods, using mainly interval analysis, that allow one to manage these uncertainties to ensure the reliability of the robot

    Reconfigurable kinematics of General Stewart Platform and simulation interface.

    Get PDF

    A methodology for the Lower Limb Robotic Rehabilitation system

    Get PDF
    The overall goal of this thesis is to develop a new functional lower limb robot-assisted rehabilitation system for people with a paretic lower limb. A unilateral rehabilitation method is investigated, where the robot acts as an assistive device to provide the impaired leg therapeutic training through simulating the kinematics and dynamics of the ankle and lower leg movements. Foot trajectories of healthy subjects and post-stroke patients were recorded by a dedicated optical motion tracking system in a clinical gait measurement laboratory. A prototype 6 degrees of freedom parallel robot was initially built in order to verify capability of achieving singularity-free foot trajectories of healthy subjects in various exercises. This was then followed by building and testing another larger parallel robot to investigate the real-sized foot trajectories of patients. The overall results verify the designed robot’s capability in successfully tracking foot trajectories during different exercises. The thesis finally proposes a system of bilateral rehabilitation based on the concept of self-learning, where a passive parallel mechanism follows and records motion signatures of the patient’s healthy leg, and an active parallel mechanism provides motion for the impaired leg based on the kinematic mapping of the motion produced by the passive mechanism

    Symmetric Subspace Motion Generators

    Get PDF
    When moving an object endowed with continuous symmetry, an ambiguity arises in its underlying rigid body transformation, induced by the arbitrariness of the portion of motion that does not change the overall body shape. The functional redundancy caused by continuous symmetry is ubiquitously present in a broad range of robotic applications, including robot machining and haptic interface (revolute symmetry), remote center of motion devices for minimal invasive surgery (line symmetry), and motion modules for hyperredundant robots (plane symmetry). In this paper, we argue that such functional redundancy can be systematically resolved by resorting to symmetric subspaces (SSs) of the special Euclidean group SE(3), which motivates us to systematically investigate the structural synthesis of SS motion generators. In particular, we develop a general synthesis procedure that allows us to generate a wide spectrum of novel mechanisms for use in the applications mentioned

    Kinematics and Robot Design I, KaRD2018

    Get PDF
    This volume collects the papers published on the Special Issue “Kinematics and Robot Design I, KaRD2018” (https://www.mdpi.com/journal/robotics/special_issues/KARD), which is the first issue of the KaRD Special Issue series, hosted by the open access journal “MDPI Robotics”. The KaRD series aims at creating an open environment where researchers can present their works and discuss all the topics focused on the many aspects that involve kinematics in the design of robotic/automatic systems. Kinematics is so intimately related to the design of robotic/automatic systems that the admitted topics of the KaRD series practically cover all the subjects normally present in well-established international conferences on “mechanisms and robotics”. KaRD2018 received 22 papers and, after the peer-review process, accepted only 14 papers. The accepted papers cover some theoretical and many design/applicative aspects
    • …
    corecore