109,381 research outputs found

    Singular ARMA signals

    Get PDF
    Singular random signals are characterized by the fact that their values at each time are singular random variables, which means that their distribution functions are continuous but with a derivative almost everywhere equal to zero. Such random variables are usually considered as without interest in engineering or signal processing problems. The purpose of this paper is to show that very simple signals can be singular. This is especially the case for autoregressive moving average (ARMA) signals defined by white noise taking only discrete values and filters with poles located in a circle of singularity introduced in this paper. After giving the origin of singularity and analyzing its relationships with fractal properties, various simulations highlighting this structure will be presented

    Rough differential equations driven by signals in Besov spaces

    Full text link
    Rough differential equations are solved for signals in general Besov spaces unifying in particular the known results in H\"older and p-variation topology. To this end the paracontrolled distribution approach, which has been introduced by Gubinelli, Imkeller and Perkowski ["Paracontrolled distribution and singular PDEs", Forum of Mathematics, Pi (2015)] to analyze singular stochastic PDEs, is extended from H\"older to Besov spaces. As an application we solve stochastic differential equations driven by random functions in Besov spaces and Gaussian processes in a pathwise sense.Comment: Former title: "Rough differential equations on Besov spaces", 37 page

    Design of ternary signals for MIMO identification in the presence of noise and nonlinear distortion

    Get PDF
    A new approach to designing sets of ternary periodic signals with different periods for multi-input multi-output system identification is described. The signals are pseudo-random signals with uniform nonzero harmonics, generated from Galois field GF(q), where q is a prime or a power of a prime. The signals are designed to be uncorrelated, so that effects of different inputs can be easily decoupled. However, correlated harmonics can be included if necessary, for applications in the identification of ill-conditioned processes. A design table is given for q les 31. An example is presented for the design of five uncorrelated signals with a common period N = 168 . Three of these signals are applied to identify the transfer function matrix as well as the singular values of a simulated distillation column. Results obtained are compared with those achieved using two alternative methods

    Mathematical Analysis of Ultrafast Ultrasound Imaging

    Get PDF
    This paper provides a mathematical analysis of ultrafast ultrasound imaging. This newly emerging modality for biomedical imaging uses plane waves instead of focused waves in order to achieve very high frame rates. We derive the point spread function of the system in the Born approximation for wave propagation and study its properties. We consider dynamic data for blood flow imaging, and introduce a suitable random model for blood cells. We show that a singular value decomposition method can successfully remove the clutter signal by using the different spatial coherence of tissue and blood signals, thereby providing high-resolution images of blood vessels, even in cases when the clutter and blood speeds are comparable in magnitude. Several numerical simulations are presented to illustrate and validate the approach.Comment: 25 pages, 13 figure

    Isotropically Random Orthogonal Matrices: Performance of LASSO and Minimum Conic Singular Values

    Full text link
    Recently, the precise performance of the Generalized LASSO algorithm for recovering structured signals from compressed noisy measurements, obtained via i.i.d. Gaussian matrices, has been characterized. The analysis is based on a framework introduced by Stojnic and heavily relies on the use of Gordon's Gaussian min-max theorem (GMT), a comparison principle on Gaussian processes. As a result, corresponding characterizations for other ensembles of measurement matrices have not been developed. In this work, we analyze the corresponding performance of the ensemble of isotropically random orthogonal (i.r.o.) measurements. We consider the constrained version of the Generalized LASSO and derive a sharp characterization of its normalized squared error in the large-system limit. When compared to its Gaussian counterpart, our result analytically confirms the superiority in performance of the i.r.o. ensemble. Our second result, derives an asymptotic lower bound on the minimum conic singular values of i.r.o. matrices. This bound is larger than the corresponding bound on Gaussian matrices. To prove our results we express i.r.o. matrices in terms of Gaussians and show that, with some modifications, the GMT framework is still applicable

    Non-stationary vibration studying based on singular spectrum analysis

    Get PDF
    In this paper nonstationary vibrations are studied by means singular spectrum analysis (SSA) – a model-free method of time series analysis and forecasting. SSA allows decomposing the nonstationary time series into trend, periodic components and noise and forecasting subsequent behavior of system. The method can be successfully used for processing the signals from the vibrating constructional elements and machine parts. This paper shows application of this method for random and nonlinear vibrations study on the examples of construction elements vibration under seismic action

    Multiple scattering of ultrasound in weakly inhomogeneous media: application to human soft tissues

    Full text link
    Waves scattered by a weakly inhomogeneous random medium contain a predominant single scattering contribution as well as a multiple scattering contribution which is usually neglected, especially for imaging purposes. A method based on random matrix theory is proposed to separate the single and multiple scattering contributions. The experimental set up uses an array of sources/receivers placed in front of the medium. The impulse responses between every couple of transducers are measured and form a matrix. Single-scattering contributions are shown to exhibit a deterministic coherence along the antidiagonals of the array response matrix, whatever the distribution of inhomogeneities. This property is taken advantage of to discriminate single from multiple-scattered waves. This allows one to evaluate the absorption losses and the scattering losses separately, by comparing the multiple scattering intensity with a radiative transfer model. Moreover, the relative contribution of multiple scattering in the backscattered wave can be estimated, which serves as a validity test for the Born approximation. Experimental results are presented with ultrasonic waves in the MHz range, on a synthetic sample (agar-gelatine gel) as well as on breast tissues. Interestingly, the multiple scattering contribution is found to be far from negligible in the breast around 4.3 MHz.Comment: 35 pages, 11 figures, final version, contains the appendix of the original articl
    corecore