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Abstract

This paper provides a mathematical analysis of ultrafast ultrasound imaging. This newly
emerging modality for biomedical imaging uses plane waves instead of focused waves in order
to achieve very high frame rates. We derive the point spread function of the system in the
Born approximation for wave propagation and study its properties. We consider dynamic
data for blood flow imaging, and introduce a suitable random model for blood cells. We
show that a singular value decomposition method can successfully remove the clutter signal
by using the different spatial coherence of tissue and blood signals, thereby providing high-
resolution images of blood vessels, even in cases when the clutter and blood speeds are
comparable in magnitude. Several numerical simulations are presented to illustrate and
validate the approach.
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flow imaging.

Mathematics Subject Classification. 65Z05, 74J25, 35R30.

1 Introduction
Conventional ultrasound imaging is performed with focused ultrasonic waves [18, 17]. This
yields relatively good spatial resolution, but clearly limits the acquisition time, since the entire
specimen has to be scanned. Over the last decade, ultrafast imaging in biomedical ultrasound has
been developed [16, 19, 8]. Plane waves are used instead of focused waves, thereby limiting the
resolution but increasing the frame rate considerably, up to 20,000 frames per second. Ultrafast
imaging has been made possible by the recent technological advances in ultrasonic transducers,
but the idea of ultrafast ultrasonography dates back to 1977 [5]. The advantages given by the
very high frame rate are many, and the applications of this new modality range from blood flow
imaging [2, 8], deep superresolution vascular imaging [9] and functional imaging of the brain
[14, 15] to ultrasound elastography [10]. In this paper we focus on blood flow imaging.

A single ultrafast ultrasonic image is obtained as follows [16]. A pulsed plane wave (focused
on the imaging plane – see Figure 1b) insonifies the medium, and the back-scattered echoes are
measured at the receptor array, a linear array of piezoelectric transducers. These spatio-temporal
measurements are then beamformed to obtain a two-dimensional spatial signal. This is what we
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call static inverse problem, as it involves only a single wave, and the dynamics of the medium is
not captured. The above procedure yields very low lateral resolution, i.e. in the direction parallel
to the wavefront, because of the absence of focusing. In order to solve this issue, it was proposed
to use multiple waves with different angles: these improve the lateral resolution, but has the
drawback of reducing the frame rate.

For dynamic imaging, the above process is repeated many times, which gives several thousand
images per second. In blood flow imaging, we are interested in locating blood vessels. One of the
main issues lies in the removal of the clutter signal, typically the signal scattered from tissues,
as it introduces major artifacts [3]. Ultrafast ultrasonography allows to overcome this issue,
thanks to the very high frame rate. Temporal filters [2, 14, 15], based on high-pass filtering the
data to remove clutter signals, have shown limited success in cases when the clutter and blood
velocities are close (typically of the order of 10−2 m·s−1), or even if the blood velocity is smaller
than the clutter velocity. A spatio-temporal method based on the singular value decomposition
(SVD) of the data was proposed in [8] to overcome this drawback, by exploiting the different
spatial coherence of clutter and blood scatterers. Spatial coherence is understood as similar
movement, in direction and speed, in large parts of the imaged zone. Tissue behaves with higher
spatial coherence when compared to the blood flow, since large parts of the medium typically
move in the same way, while blood flow is concentrated only in small vessels, which do not share
necessarily the same movement direction and speed. This explains why spatial properties are
crucial to perform the separation.

In this work, we provide a detailed mathematical analysis of ultrasound ultrafast imaging. To
our knowledge, this is the first mathematical paper addressing the important challenges of this
emerging and very promising modality. Even though in this work we limit ourselves to formalize
the existing methods, the mathematical analysis provided gives important insights, which we
expect will lead to improved reconstruction schemes.

The contributions of this paper are twofold. First, we carefully study the forward and inverse
static problems. In particular, we derive the point spread function (PSF) of the system, in
the Born approximation for ultrasonic wave propagation. We investigate the behavior of the
PSF, and analyze the advantages of angle compounding. In particular, we study the lateral and
vertical resolutions. In addition, this analysis allows us to fully understand the roles of the key
parameters of the system, such as the directivity of the array and the settings related to angle
compounding.

Second, we consider the dynamic problem. The analysis of the PSF provided allows to study
the doppler effect, describing the dependence on the direction of the flow. Moreover, we consider
a random model for the movement of blood cells, which allows us to study and justify the SVD
method for the separation of the blood signal from the clutter signal, leading to the reconstruction
of the blood vessels’ geometry. The analysis is based on the empirical study of the distribution of
the singular values, which follows from the statistical properties of the relative data. We provide
extensive numerical simulations, which illustrate and validate this approach.

This paper is structured as follows. In Section 2 we describe the imaging system and the
model for wave propagation. In Section 3 we discuss the static inverse problem. In particular, we
describe the beamforming process, the PSF and the angle compounding technique. In Section 4
the dynamic forward problem is considered: we briefly discuss how the dynamic data are obtained
and analyze the doppler effect. In Section 5 we focus on the source separation to solve the dynamic
inverse problem. We discuss the random model for the refractive index and the method based
on the SVD decomposition of the data. In Section 6 numerical experiments are provided. Some
concluding remarks and outlooks are presented in the final section.
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Figure 1: The pulse f of the incident wave ui and the focusing region.

2 The Static Forward Problem
The imaging system is composed of a medium contained in R3

+ := {(x, y, z) ∈ R3 : z > 0} and
of a fixed linear array of transducers located on the line z = 0, y = 0. This linear array of
piezoelectric transducers (see [18, Chapter 7]) produces an acoustic illumination that is focused
in elevation – in the y coordinates, near the plane y = 0 – and has the form of a plane wave in
the direction k ∈ S1 in the x, z coordinates (see Figure 1b). Typical sizes for the array length
and for the penetration depth are about 10−1 m.

We make the assumption that the acoustic incident field ui can be approximated as

ui (x, y, z, t) = Az (y) f
(
t− c−1

0 k · (x, z)
)
,

where c0 is the background speed of sound in the medium. The function Az describes the beam
waist in the elevation direction at depth z (between 4 · 10−3 m and 10−2 m). This is a simplified
expression of the true incoming wave, which is focused by a cylindrical acoustic lens located near
the receptor array (see [18, Chapters 6 and 7]). The function f is the waveform describing the
shape of the input pulse:

f(t) = e2πiν0tχ (ν0t) , χ (u) = e−
u2

τ2 , (1)

where ν0 is the principal frequency and τ the width parameter of the pulse (see Figure 1a).
Typically, ν0 will be of the order of 106 s−1. More precisely, realistic quantities are

c0 = 1.5 · 103 m·s−1, ν0 = 6 · 106 s−1, τ = 1. (2)

Let c : R3 → R+ be the speed of sound and consider the perturbation n given by

n (x) =
1

c2 (x)
− 1

c20
.

We assume that suppn ⊆ R3
+. The acoustic pressure in the medium satisfies the wave equation

∆u (x, t)− 1

c2 (x)

∂2

∂t2
u (x, t) = 0, x ∈ R3,
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with a suitable radiation condition on u−ui. Let G denote the Green’s function for the acoustic
wave equation in R3 [1, 20]:

G(x, t,x′, t′) = − (4π)−1

|x− x′|
δ
(
(t− t′)− c−1

0 |x− x′|
)
.

In the following, we will assume that the Born approximation holds, i.e. we consider only first
reflections on scatterers, and neglect subsequent reflections [1, 7] (in cases when the Born approx-
imation is not valid, nonlinear methods have to be used). This is a very common approximation
in medical imaging, and is justified by the fact that soft biological tissues are almost acoustic
homogeneous, due to the high water concentration. In mathematical terms, it consists in the
linearization around the constant sound speed c0. In this case, the scattered wave us := u − ui
is given by

us (x, t) =

∫
R

∫
R3

n (x′)
∂2ui

∂t2
(x′, t′)G (x, t,x′, t′) dx′dt′, x ∈ R3, t ∈ R+,

since contributions from n∂2
t u

s are negligible. Therefore, inserting the expressions for the Green’s
function and for the incident wave yields

us (x, t) = −
∫
R3

(4π)−1

|x− x′|
n (x′)Az′ (y

′) f ′′
(
t− c−1

0 ((x′, z′) · k + |x− x′|)
)
dx′,

where we set x = (x, y, z) and x′ = (x′, y′, z′). Since the waist of the beam in the y direction is
small compared to the distance at which we image the medium, we can make the assumption

|x− (x′, y′, z′)| ' |x− (x′, 0, z′)| , x = (x, 0, 0) ∈ R3,

so that the following expression for us holds for x = (x, 0, 0) ∈ R3 and t > 0:

us (x, t)=

∫
R2

−(4π)−1

|x− (x′, 0, z′)|
f ′′
(
t− c−1

0 ((x′, z′) · k + |x− (x′, 0, z′)|)
)
ñ(x′, z′)dx′dz′,

where ñ is given by

ñ(x′, z′) :=

∫
R
n (x′)Az′ (y

′) dy′, x′ = (x′, y′, z′) ∈ R3. (3)

Since our measurements are only two-dimensional (one spatial dimension given by the linear
array and one temporal dimension), we cannot aim to reconstruct the full three-dimensional
refractive index n. However, the above identity provides a natural expression for what can be
reconstructed: the vertical averages ñ of n. Since Az is supported near y = 0, ñ reflects the
contribution of n only near the imaging plane. In physical terms, ñ contains all the scatterers in
the support of Az; these scatterers are in some sense projected onto y = 0, the imaging plane.
For simplicity, with an abuse of notation from now on we shall simply denote ñ by n, since the
original three-dimensional n will not play any role, due to the dimensionality restriction discussed
above. Moreover, for the same reasons, all vectors x and x′ will be two-dimensional, namely,
x = (x, z) and similarly for x′. In view of these considerations, for x = (x, 0) ∈ R2 and t > 0 the
scattering wave takes the form

us (x, t) = −
∫
R2

(4π)−1

|x− x′|
f ′′
(
t− c−1

0 (x′ · k + |x− x′|)
)
n (x′) dx′. (4)

It is useful to parametrize the direction k ∈ S1 of the incident wave by k = kθ = (sin θ, cos θ)
for some θ ∈ R; in practice, |θ| ≤ 0.25 [16].
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3 The Static Inverse Problem
The static inverse problem consists in the reconstruction of n (up to a convolution kernel) from
the measurements us at the receptors, assuming that n does not depend on time. This process
provides a single image, and will be repeated many times in order to obtain dynamic imaging,
as it is discussed in the next sections.

3.1 Beamforming
The receptor array is a segment Γ = (−A,A) × {0} for some A > 0. The travel time from the
receptor array to a point x = (x, z) and back to a receptor located in u0 = (u, 0) is given by

τθx (u) = c−1
0 (x · kθ + |x− u0|) .

The beamforming process [18, 16] consists in averaging the measured signals on Γ at t = τθx (u),
which results in the image

sθ(x, z) :=

∫ x+Fz

x−Fz
us
(
u0, τ

θ
x (u)

)
du, x = (x, z) ∈ R2

+ := {(x, z) ∈ R2 : z > 0}.

The dimensionless aperture parameter F indicates which receptors are chosen to image the
location x = (x, z), and depends on the directivity of the ultrasonic array (in practice, 0.25 ≤
F ≤ 0.5 [16]). In general, F depends on the medium roughness and on θ, but this will not
be considered this work. The above identity is the key of the static inverse problem: from the
measurements us((u, 0), t) we reconstruct sθ(x, z).

We now wish to understand how sθ is related to n. In order to do so, observe that by (4) we
may write for x ∈ R2

+

sθ(x, z) = −
∫
x′∈R2

n (x′)

∫ x+Fz

x−Fz

(4π)−1

|x′ − u0|
f ′′
(
τθx (u)− τθx′ (u)

)
du dx′

=

∫
x′∈R2

gθ (x,x′)n (x′) dx′,

(5)

where gθ is defined as

gθ (x,x′) = −
∫ x+Fz

x−Fz

(4π)−1

|x′ − u0|
f ′′
(
τθx (u)− τθx′ (u)

)
du, (6)

(see Figure 2a for an illustration in the case when θ = 0). In other words, the reconstruction
sθ is the result of an integral operator given by the kernel gθ applied to the refractive index n.
Thus, the next step is the study of the point spread function (PSF) gθ (x,x′), which should be
thought of as the image corresponding to a delta scatterer in x′.

3.2 The point spread function
In its exact form, it does not seem possible to simplify the expression for g further: we will
have to perform some approximations. First, observe that setting hθx,x′(u) = τθx (u)− τθx′ (u) for
x,x′ ∈ R2

+ we readily derive

(hθx,x′)
′(u) = c−1

0 (
u− x
|x− u0|

− u− x′

|x′ − u0|
) ≈ c−1

0 (
u− x
|x′ − u0|

− u− x′

|x′ − u0|
) = c−1

0

x′ − x
|x′ − u0|

,
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Figure 2: The real part of the point spread function g0 and its approximations are shown in these figures
(with parameters as in (1) and (2), and F = 0.4). The size of the square shown is 2 mm × 2 mm, and
the horizontal and vertical axes are the x and z axes, respectively. The relative error in the L∞ norm
is about 7% for the approximation shown in panel (b) and about 9% for the approximation shown in
panel (c).

for x close to x′ (note that, otherwise, the magnitude of the PSF would be substantially lower).
As a consequence, by (6) we have

gθ (x,x′) ≈ c0(4π)−1

x− x′

∫ x+Fz

x−Fz
(hθx,x′)

′(u)f ′′
(
hθx,x′(u)

)
du

=
c0(4π)−1

x− x′
[
f ′(hθx,x′(x+ Fz))− f ′(hθx,x′(x− Fz))

]
.

(7)

In order to simplify this expression even further, let us do a Taylor expansion of wθ±(x, z) :=
hθx,x′(x± Fz) with respect to (x, z) around (x′, z′). Direct calculations show that

wθ±(x′, z′) = 0, ∇wθ±(x′, z′) =
c−1
0√

1 + F 2
(
√

1 + F 2 sin θ ∓ F, 1 +
√

1 + F 2 cos θ),

whence

hθx,x′(x± Fz)≈
c−1
0√

1 + F 2

(
(1 +

√
1 + F 2 cos θ)(z − z′)+(

√
1 + F 2 sin θ ∓ F )(x− x′)

)
.

Substituting this expression into (7) yields

gθ(x,x
′) ≈ g̃θ(x− x′), (8)

where

g̃θ(x) =
c0

4πx

[
f ′
(

c−1
0√

1 + F 2

(
(1 +

√
1 + F 2 cos θ)z + (

√
1 + F 2 sin θ − F )x

))
−f ′

(
c−1
0√

1 + F 2

(
(1 +

√
1 + F 2 cos θ)z + (

√
1 + F 2 sin θ + F )x

))]
, (9)

(see Figure 2b for an illustration in the case θ = 0), thereby allowing to write the image sθ given
in (5) as a convolution of g̃θ and the refractive index n, namely

sθ(x) =

∫
x′∈R2

g̃θ(x− x′)n (x′) dx′ = (g̃θ ∗ n)(x), x ∈ R2
+.
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Figure 3: The exact PSF with different values of the aperture parameter F (with parameters as in (1)
and (2), and θ = 0). The size of the square shown is 2 mm × 2 mm, and the horizontal and vertical axes
are the x and z axes, respectively.

The validity of this approximation, obtained by truncating the Taylor expansion of wθ± at the
first order, is by no means obvious. Indeed, by construction, the pulse f(t) is highly oscillating
(ν0 ≈ 6 · 106 s−1), and therefore even small variations in t may result in substantial changes in
f(t). However, this does not happen, since if (x, z) is not very close to (x′, z′) then the magnitude
of the PSF is very small, if compared to the maximum value. The verification of this fact is quite
technical, and thus is omitted: the details may be found in Appendix A.
Remark 1. From this expression, it is easy to understand the role of the aperture parameter F ,
which depends on the directivity of the array. Ignoring the second order effect in F and taking,
for simplicity θ = 0, we can further simplify the above expression as

g̃0(x) ≈ c0
4πx

[
f ′
(
c−1
0 (2z − Fx)

)
− f ′

(
c−1
0 (2z + Fx)

)]
.

It is clear that F affects the resolution in the variable x: the higher F is, the higher the resolution
is. Moreover, the aperture parameter affects also the orientation of the diagonal tails in the PSF.
These two phenomena can be clearly seen in Figure 3. In general, the higher the aperture is
the better for the reconstruction: as expected, the intrinsic properties of the array affects the
reconstruction.
Remark 2. It is also easy to understand the role of the angle θ. In view of

g̃θ(x) ≈ c0
4πx

[
f ′
(
c−1
0 ((1 + cos θ)z + (sin θ − F )x)

)
−f ′

(
c−1
0 ((1 + cos θ)z + (sin θ + F )x)

)]
,

an angle θ 6= 0 substantially gives a rotation of the PSF; see Figure 4.
We have now expressed gθ as a convolution kernel. In order to better understand the different

roles of the variables x and z, it is instructive to use the actual expression for f given in (1).
Since f ′(t) = ν0e

2πiν0tχ̃(ν0t), with χ̃(t) = 2πiχ(t) + χ′(t), we can write

f ′
(

c−1
0√

1 + F 2

(
(1 +

√
1 + F 2 cos θ)z + (

√
1 + F 2 sin θ ± F )x

))
= ν0e

2πiν0c
−1
0√

1+F2
((1+

√
1+F 2 cos θ)z+(

√
1+F 2 sin θ±F )x)

χ̃

(
ν0c
−1
0√

1 + F 2

(
(1 +

√
1 + F 2 cos θ)z + (

√
1 + F 2 sin θ ± F )x

))
≈ ν0e

2πiν0c
−1
0 (2z+(θ±F )x)χ̃

(
2ν0c

−1
0 z
)
,
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(d) The PSF with θ =
0.3.

Figure 4: The exact PSF with different values of the angle θ (with parameters as in (1) and (2), and
F = 0.4). The size of the square shown is 2 mm × 2 mm, and the horizontal and vertical axes are the x
and z axes, respectively.

where we have approximated the dependence on F and θ at first order around F = 0 and θ = 0
in the complex exponential (recall that F and θ are small) and at zero-th order (F = 0 and
θ = 0) inside χ̃: the difference in the orders is motivated by the fact that the variations of the
complex exponentials have much higher frequencies than those of χ̃, since several oscillations are
contained in the envelope defined by χ, as it can be easily seen in Figure 1a (and similarly for
χ′). This approximation may be justified by arguing as in Appendix A. Inserting this expression
into (9) yields

g̃θ(x) ≈ c0
4πx

[
ν0e

2πiν0c
−1
0 (2z+(θ−F )x)χ̃

(
2ν0c

−1
0 z
)
−ν0e

2πiν0c
−1
0 (2z+(θ+F )x)χ̃

(
2ν0c

−1
0 z
)]

= − iν0c0
2πx

χ̃
(
2ν0c

−1
0 z
)
e4πiν0c

−1
0 ze2πiν0c

−1
0 θx sin(2πν0c

−1
0 Fx),

whence for every x = (x, z) ∈ R2

g̃θ(x) ≈ −iν2
0Fχ̃

(
2ν0c

−1
0 z
)
e4πiν0c

−1
0 ze2πiν0c

−1
0 θx sinc(2πν0c

−1
0 Fx), (10)

where sinc(x) := sin(x)/x (see Figure 2c). This final expression allows us to analyze the PSF
g̃θ, and in particular its different behaviors with respect to the variables x and z. Consider for
simplicity the case θ = 0 (with τ = 1). In view of the term χ̃

(
2ν0c

−1
0 z
)
, the vertical resolution is

approximately 0.8·ν−1
0 c0; similarly, in view of the term sinc(2πν0c

−1
0 Fx), the horizontal resolution

is approximately 1
2F ν

−1
0 c0. Even though horizontal and vertical resolutions are comparable, in

terms of focusing and frequencies of oscillations the PSF has very different behaviours in the two
directions. Indeed, we can observe that the focusing in the variable z is sharper than that in the
variable x: the decay of χ̃ is much stronger than the decay of sinc. Moreover, in the variable z
we have only high oscillations, while in the variable x the highest oscillations are at least four
times slower (2 = 41

2 ≥ 4F ), and very low frequencies are present as well, due to the presence of
the sinc. As it is clear from Figure 2, this approximation introduces evident distortions of the
tails, as it is expected from the approximation F = 0 inside χ̃; however, the center of the PSF is
well approximated. Similar considerations are valid for the case when θ 6= 0: as observed before,
this simply gives a rotation.

The same analysis may be carried out by looking at the expression of the PSF in the frequency
domain. For simplicity, consider the case θ = 0: the general case simply involves a translation in
the frequency domain with respect to x. Thanks to the separable form of g̃θ given in (10), the
Fourier transform may be directly calculated, and results in the product of the Fourier transform
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Figure 5: The absolute values of the Fourier transforms of the point spread functions and its approx-
imations (with parameters as in (1) and (2), and F = θ = 0). The frequency axes are normalized by
ν0c
−1
0 : the PSF is a low pass filter with cut-off frequency Fν0c

−1
0 with respect to the variable x and a

band pass filter around 2ν0c
−1
0 with respect to z.

of χ̃ and the Fourier transform of the sinc. More precisely, we readily derive

F g̃θ(ξx,ξz) =

∫
R2

g̃θ(x, z)e
−2πi(xξx+zξz) dxdz

≈ −iν2
0F

∫
R

sinc(2πν0c
−1
0 Fx)e−2πixξx dx

∫
R
χ̃
(
ν0c
−1
0 z
)
e−2πi(−2ν0c

−1
0 +ξz)z dz.

Thus, since the Fourier transform of the sinc may be easily computed and is a suitable scaled
version of the rectangle function, we have

F g̃θ(ξx, ξz) ≈ −iν2
0F

1

2ν0c
−1
0 F

1[−F,F ]

(
c0ν
−1
0 ξx

) ∫
R
χ̃
(
ν0c
−1
0 z
)
e−2πi(−2ν0c

−1
0 +ξz)z dz

= − ic0ν0

2
1[−F,F ]

(
c0ν
−1
0 ξx

) 1

ν0c
−1
0

F χ̃
(
−2ν0c

−1
0 + ξz

ν0c
−1
0

)
,

whence
F g̃θ(ξx, ξz) ≈ −ic20 1[−F,F ]

(
c0ν
−1
0 ξx

)
F χ̃

(
−2 + ν−1

0 c0ξz
)
/2. (11)

Therefore, up to a constant, the Fourier transform of the PSF is a low-pass filter in the variable
x with cut-off frequency Fν0c

−1
0 and a band pass filter in z around 2ν0c

−1
0 (since χ̃ is a low-pass

filter). This explains, from another point of view, the different behaviors of g̃θ with respect
to x and z. This difference is evident from Figure 5, where the absolute values of the Fourier
transforms of the different approximations of the PSF are shown.

3.3 Angle compounding
We saw in the previous subsection that, while very focused in the direction z, the PSF is not
very focused in the direction x due to the presence of the sinc function, see (10). In order
to have a better focusing, it was proposed in [16] to use multiple measurements corresponding
to many angles in an interval θ ∈ [−Θ,Θ] for some 0 ≤ Θ ≤ 0.25. The reason why this
technique is promising is evident from Figure 4: adding up several angles together will result in
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(a) The PSF gθ with θ = 0.
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(b) The PSF gacΘ with Θ =
0.25.
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(c) The PSF g̃acΘ with Θ =
0.25.

Figure 6: A comparison of the PSF related to the single illumination with the PSF associated to multiple
angles (with parameters as in (1) and (2), and F = 0.4). The better focusing in the variable x for gac

Θ is
evident, as well as the good approximation given by g̃ac

Θ . The size of the square shown is 2 mm × 2 mm,
and the horizontal and vertical axes are the x and z axes, respectively.

an enhancement of the center of the PSF, and in a substantial reduction of the artifacts caused
by the tails in the direction x. Let us now analyze this phenomenon analytically.

In a continuous setting, angle compounding corresponds to setting

sacΘ (x) =
1

2Θ

∫ Θ

−Θ

sθ(x) dθ, x ∈ R2
+. (12)

Thus, by linearity, the corresponding PSF is given by

gac
Θ (x,x′) =

1

2Θ

∫ Θ

−Θ

gθ(x,x
′) dθ, x,x′ ∈ R2

+. (13)

Let us find a simple expression for gac
Θ . By using (8), we may write gac

Θ (x,x′) ≈ g̃ac
Θ (x− x′),

where g̃ac
Θ is given by g̃ac

Θ (x) = 1
2Θ

∫ Θ

−Θ
g̃θ(x) dθ, so that the image may be expressed as

sacΘ (x) = (g̃ac
Θ ∗ n)(x), x ∈ R2

+. (14)

Thus, in view of the approximation (10), we can write

g̃ac
Θ (x) = − iν

2
0F

2Θ

∫ Θ

−Θ

χ̃
(
2ν0c

−1
0 z
)
e4πiν0c

−1
0 ze2πiν0c

−1
0 θx sinc(2πν0c

−1
0 Fx) dθ

= −iν2
0Fχ̃

(
2ν0c

−1
0 z
)
e2iν0c

−1
0 zsinc(2πν0c

−1
0 Fx)sinc(2πν0c

−1
0 Θx).

Therefore, we immediately obtain

g̃ac
Θ (x) = g̃0(x)sinc(2πν0c

−1
0 Θx), x ∈ R2. (15)

This expression shows that the PSF related to angle compounding is nothing else than the PSF
related to the single angle imaging with θ = 0 multiplied by sinc(2πν0c

−1
0 Θx). Thus, for Θ = 0

we recover g̃θ for θ = 0, as expected. However, for Θ > 0, this PSF enjoys faster decay in the
variable x. See Figure 6 for an illustration of gac

Θ and g̃ac
Θ and a comparison with gθ and Figure 5d

for an illustration of the Fourier transform of gac
Θ .

To sum up the main features of the static problem, we have shown that the recovered image
may be written as sacΘ = g̃ac

Θ ∗ n, where g̃ac
Θ is the PSF of the imaging system with measurements

taken at multiple angles. The ultrafast imaging technique is based on obtaining many of these
images over time, as we discuss in the next section.
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4 The Dynamic Forward Problem

4.1 The quasi-static approximation and the construction of the data
The dynamic imaging setup consists in the repetition of the static imaging method over time
to acquire a collection of images of a medium in motion. We consider a quasi-static model:
the whole process of obtaining one image, using the image compounding technique discussed in
Subsection 3.3, is fast enough to consider the medium static, but collecting several images over
time gives us a movie of the movement over time. In other words, there are two time scales: the
fast one related to the propagation of the wave is considered instantaneous with respect to the
slow one, related to the sequence of the images.

In view of this quasi-static approximation, from now on we neglect the time of the propagation
of a single wave to obtain static imaging. The time t considered here is related to the slow time
scale. In other words, by (14) at fixed time t we obtain a static image s(x, t) of the medium
n = n(x, t), namely

s(x, t) = (g̃ac
Θ ∗ n( · , t)) (x). (16)

Repeating the process for t ∈ [0, T ] we obtain the movie s(x, t), which represents the main data
we now need to process. As mentioned in the introduction, our aim is locating the blood vessels
within the imaged area, by using the fact that s(x, t) will be strongly influenced by movements
in n.

4.2 The doppler effect
Measuring the medium speed is an available criterion to separate different sources; thus, we want
to see the influence on the image of a single particle in movement, as by linearity the obtained
conclusions naturally extend to a group of particles. For a single particle, we are interested in
observing the generated Doppler effect in the reconstructed image, namely peaks in the Fourier
transform away from zero.

Intuitively, Figure 5d shows that there is a clear difference in the movements depending on
their orientation. We want to explore this difference in a more precise way. Let us consider
n(x, z, t) = δ(0,vt)(x, z), i.e. a single particle moving in the z direction with velocity v. The
resulting image, as a function of time, is obtained via equations (15) and (16)

s(x, z, t) ≈
∫
R2

g̃ac
Θ (x− x′, z − z′)δ(0,vt)(x′, z′)dx′dz′

= g̃ac
Θ (x, z − vt)

= g̃0(x, z − vt)sinc(2πν0c
−1
0 Θx).

Therefore, arguing as in (11), we obtain that the Fourier transform with respect to the time
variable t of the image is given by

Ft(s)(x, z, ξ) ≈
∫
R
g̃0(x, z − vt)e−2πiξtdt sinc(2πν0c

−1
0 Θx)

=
1

v
e−2πi ξzv F2(g̃0)(x,− ξ

v
)sinc(2πν0c

−1
0 Θx),

where F2 is the Fourier transform with respect to the variable z. Adopting approximation (10),
we obtain

Ft(s)(x, z, ξ)≈−
1

v
iν2

0Fe
−2πi ξzv sinc(2πν0c

−1
0 Θx)sinc(2πν0c

−1
0 Fx)F(χ̃)

( −ξ
2ν0c

−1
0 v
− 1
)
.

11



Given the shape of χ̃, its Fourier transform has a maximum around 0, thus we can see a peak of
|Ft(s)(x, z, ξ)| when ξ is around −2ν0c

−1
0 v, and so we have the Doppler effect.

In the case when the particle is moving parallel to the detector array, namely n(x, z, t) =
δ(vt,0)(x, z), following an analogous procedure as before, we obtain

s(x, z, t) ≈ g̃0(x− vt, z)sinc(2πν0c
−1
0 Θ(x− vt)),

and applying the Fourier transform in time yields

Ft(s)(x, z, ξ) ≈
1

v
e−2πi ξxv F(g̃0(·, z)sinc(2πν0c

−1
0 Θ·))(− ξ

v
).

Using approximation (10), the convolution formula for the Fourier transform and the known
transform of the sinc function, gives

Ft(s)(x, z, ξ) ≈ −i
e−2πi ξxv

4Θv
ν0c0χ̃(2ν0c

−1
0 z)e4πiν0c

−1
0 z(1[−F,F ] ∗ 1[−Θ,Θ])

(
− ξ

vν0c
−1
0

)
.

The convolution of these characteristic functions evaluated at η is equal to the length of interval
[−F + η, F + η] ∩ [−Θ,Θ], because

(1[−F,F ] ∗ 1[−Θ,Θ])(η)=

∫
R
1[−F,F ](η − s)1[−Θ,Θ](s)ds=

∫
R
1[−F+η,F+η](s)1[−Θ,Θ](s)ds.

Since both intervals are centered at 0, this value is maximized for η (and thus ξ) around 0, like
in the static case, and so the observed Doppler effect is very small.

These differences are fundamental to understand the capabilities of the method for blood flow
imaging. This phenomenon will be experimentally verified in Section 6.

4.3 Multiple scatterer random model
We have seen the effect on the image s(x, z, t) of a single moving particle. We now consider the
more realistic case of a medium (either blood vessels or tissue) with a large number of particles
in motion. This will allow to study the statistical properties of the resulting measurements.

We consider a rectangular domain Ω = (−Lx/2, Lx/2) × (0, Lz), which consists in N point
particles. Let us denote the location of particle k at time t by ak(t). In the most general case,
each particle is subject to a dynamics

ak(t) = ϕk (uk, t) , ak(0) = uk, (17)

where (uk)k=1,...,N are independent uniform random variables on Ω and (ϕk)k=1,...,N are in-
dependent and identically distributed stochastic flows: for instance, they can be the flows of
a stochastic differential equation or the deterministic flows of a partial differential equation.
Thus, the aks are independent and identically distributed stochastic processes. In view of these
considerations, we consider the medium given by

n (x, t) =
C√
N

N∑
k=1

δak(t) (x) , (18)

where C > 0 denotes the scattering intensity and 1√
N

is the natural normalization factor in view
of the central limit theorem.
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To avoid minor issues from boundary effects, which are of no interest to us in the analysis
of this problem, we assume the periodicity of the medium. In other words, we consider the
periodization

np(x, t) =
∑
l∈Z2

n(x + l · L, t), (19)

where L = (Lx, Lz). Let g (x) :=
∑

l∈Z2 g̃ac
Θ (x + l · L) be the periodic PSF, which is more

convenient than g̃ac
Θ (given by (15)) for a Ω-periodic medium. The dynamic image s is then given

by

s(x, t) = (g̃ac
Θ ∗ np (·, t)) (x) = (g ∗ n( · , t))(x) =

C√
N

N∑
k=1

g (x− ak (t)) .

Let us also assume for the sake of simplicity that, at every time t, ak (t) modulo Ω is a uniform
random variable on Ω, namely

E
∑
l∈Z2

w(ak(t) + l · L) = |Ω|−1

∫
R2

w(y) dy, w ∈ L1(R2). (20)

As a simple but quite general example, it is worth noting that in the case when ak(t) = uk+F (t),
where F (t) is any random process independent of uk, the above equality is satisfied, since

E
∑
l∈Z2

w(uk + F (t) + l · L) = |Ω|−1E
∑
l∈Z2

∫
Ω

w(y + F (t) + l · L)dy = |Ω|−1

∫
R2

w(y) dy,

where the expectation in the first term is taken with respect to uk and F (t), while in the second
term only with respect to F (t).

We now wish to compute the expectation of the random variables present in the expression
for s(x, t). By (10) and (15), since g̃ac

Θ is a derivative of a Schwartz function in the variable z,
we have

∫
R2 g̃

ac
Θ (y)dy = 0. Thus, by (20) the expected value may be easily computed as

E (g (x− ak (t))) = E
∑
l∈Z2

g̃ac
Θ (x− ak(t) + l · L) = |Ω|−1

∫
R2

g̃ac
Θ (y)dy = 0. (21)

Let (xi)i=1,...,mx
and (tj)j=1,...,mt

be the sampling locations and times respectively. The data
may be collected in the Casorati matrix SN ∈ Cmx×mt defined by

SN (i, j) = s(xi, tj).

By (21), according to the multivariate central limit theorem, the matrix SN converges in distribu-
tion to a Gaussian complex matrix S ∈ Cmx×mt , the distribution of which is entirely determined
by the following correlations, for i, i′ = 1, . . . ,mx and j, j′ = 1, . . . ,mt

E(S(i, j)) = 0,

Cov (S(i, j), S(i′, j′)) = C2E (g (xi − a1 (tj)) g (xi′ − a1 (tj′))) , (22)

Cov
(
S(i, j), S(i′, j′)

)
= C2E

(
g (xi − a1 (tj)) g (xi′ − a1 (tj′))

)
. (23)

More precisely, let w ∈ Cmxmt be a column vector containing all the entries of S. Let v ∈ C2mxmt

and V ∈ C2mxmt×2mxmt be defined by

v = (w1, w1, w2, w2, ..., wmxmt , wmxmt)
T and V = E

(
vvT

)
.
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The covariance matrix V can be easily computed from (22) and (23). Then the probability
density function f of v can be expressed as [4]:

f (v) =
1

πmxmt det (V )
1
2

exp

(
−1

2
v∗V −1v

)
.

Moreover, it is possible to generate samples from this distribution: ifX is a complex unit variance
independent normal random vector, and if

√
V is a square root of V , then

√
V X is distributed

like v. This allows for simulations of sample image sequences for a large number of particles with
a complexity independent of the number of particles.

The analysis carried out here will allow us to study the distribution of the singular value of the
matrix S, depending on the properties of the flows ϕk. This will be the key ingredient to justify
the correct separation of blood and clutter signals by means of the singular value decomposition
of the measurements.

5 The Dynamic Inverse Problem: Source Separation

5.1 Formulation of the dynamic inverse problem
As explained in the introduction, the aim of the dynamic inverse problem is blood flow imaging.
In other words, we are interested in locating blood vessels, possibly very small, within the
medium. The main issue is that the signal s(x, t) is highly corrupted by clutter signal, namely the
signal scattered from tissues. In the linearized regime we consider, we may write the refractive
index n as the sum of a clutter component nc and a blood component nb, namely n = nc +
nb. Blood is located only in small vessels in the medium, whereas clutter signal comes from
everywhere: by (3), since blood vessels are smaller than the focusing height, even pixels located
in blood vessels contain reflections coming from the tissue. Let us denote the location of blood
vessels by Ωb ⊂ Ω. The inverse problem is the following: can we recover Ωb from the data
s(x, t) = sc(x, t) + sb(x, t)? Here, sc and sb are given by (16), with n replaced by nc and nb,
respectively. In this section, we provide a quantitative analysis of the method described in [8]
based on the singular value decomposition (SVD) of s.

5.2 The SVD algorithm
We now review the SVD algorithm presented in [8]. The Casorati matrix S ∈ Cmx×mt is defined
as in previous section by

S(i, j) = s (xi, tj) , i ∈ {1, ...,mx} , j ∈ {1, ...,mt} .

Without loss of generality, we further assume that mt ≤ mx. We remind the reader that the
SVD of S is given by

S =

mt∑
k=1

σkukvk
T ,

where (u1, ..., umx) and (v1, ..., vmt) are orthonormal bases of Cmx and Cmt , and σ1 ≥ σ2 ≥
... ≥ σmt ≥ 0. For any K ≥ 1, SK =

∑K
k=1 σkukvk

T is the best rank K approximation of S in
the Frobenius norm. The SVD is a well-known tool for denoising sequences of images, see for
example [11]. The idea is that since singular values for the clutter signal are quickly decaying
after a certain threshold, the best rank K approximation of S will contain most of the signal
coming from the clutter, provided that K is large enough. This could be used to recover clutter
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data, by applying a “denoising” algorithm, and keeping only SK . But it can also be used to
recover the blood location, by considering the “power doppler”

Ŝb,K (i) :=

mt∑
k=K+1

σ2
k|uk|2(i) =

mt∑
j=1

|(S − SK) (i, j)|2 , i ∈ {1, ...,mx} .

As we will show in the following subsection, clutter signal can be well approximated by a low-rank
matrix. Therefore, SK will contain most of the clutter signal for K large enough. In this case,
even if the intensity of total blood reflection is small, S − SK will contain more signal coming
from the blood than from the clutter and therefore high values of Ŝb,K (i) should be located in
blood vessels.

Before presenting the justification of this method, let us briefly provide a heuristic motivation
by considering the SVD of the continuous data given by

s(x, t) =

∞∑
k=1

σkuk(x)vk(t).

In other words, the dynamic data s is expressed as a sum of spatial components uk moving
with time profiles vk, with weights σk. Therefore, since the tissue movement has higher spatial
coherence than the blood flow, we expect the first factors to contain the clutter signal, and the
remainder to provide information about the blood location via the quantity Ŝb,K .

5.3 Justification of the SVD in 1D
We will assume that the particles of the blood and of the clutter have independent dynamics
described by (17)-(19). We add the subscripts b and c to indicate the dynamics of blood and
clutter, respectively.

In this subsection, using the limit Gaussian model presented in §4.3, we present the statistics
of the singular values in a simple 1D model. These are useful to understand the behavior of
SVD filtering. The results of §4.3 allow to simulate large number of sample signals s, given that
we can compute the covariance matrices (22) and (23). Since these matrices are very large, we
restrict ourselves to the 1D case, so that all sampling locations xi are located at x = 0, and are
thus characterized by their depth zi. We will therefore drop all references to x in the following.
We also consider very simplified dynamics, which can be thought of as local descriptions of the
global dynamics at work in the medium. Let ab = a1,b and ac = a1,c be the random variables for
the dynamics of blood and clutter particles, respectively, as introduced in (17). The dynamics
is modelled by a Brownian motion with drift, namely

aα (t) = uα + vαt+ σαBt, α ∈ {b, c} .

Here, uα represents the position of the particle at time t = 0, and is uniformly distributed in
(0, Lα), where Lb � Lc. The deterministic quantity vα is the mean velocity of the particles. In
order to take into account the random fluctuations of the particles in movement, we added a
diffusion term σαBt, where Bt is a Brownian motion and σ2

α is a diffusion coefficient quantifying
the variance of the fluctuations of the particle position relative to the mean trajectory. We also
make the simplifying assumption that the diffusion terms are independent over different particles.
More precisely, we have the following conditional expectation and variance:

E (aα (t)|uα) = uα + vαt, Var (aα (t)|uα) = tσ2
α.
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The difference between clutter and blood dynamics is in the diffusion coefficient: in the case
of clutter, since it is an elastic displacement, σ2

c ≈ 0. For simplicity, from now on we set σc = 0.
In the case of blood, which is modelled as a suspension of cells in a fluid, we have σ2

b = σ2 > 0.
This coefficient is expressed in m2s−1, and models the random diffusion in a fluid transporting
red blood cells due to turbulence in the fluid dynamics and collisions between cells. In practice,
σ2 is much larger than the diffusion coefficient of microscopic particles in a static fluid, and
depends on the velocity vb [6]. As for the mean velocities, in the most extreme cases, vb and vc
can be of the same order, even though most of the time vb > vc.

Let Sb and Sc denote the data matrix constructed in §4.3, related to blood and clutter signal,
respectively. We now compute the covariance matrix V of Sα:

Cov(Sα(i, j), Sα(i′, j′)) = C2
αE (g (zi − aα (tj)) g (zi′ − aα (tj′)))

=
C2
α

L
E
∫ L

0

g
(
zi − y − vαtj − σαvαBtj

)
g
(
zi′ − y − vαtj′ − σαvαBtj′

)
dy

= C2
αECgg

(
zi − zi′ + vα

(
tj′ − tj + σα(Btj′ −Btj )

))
,

where Cgg (z) = 1
L

∫ L
0
g(y)g(z+y)dy and Cb and Cc denote the intensity of the blood and clutter

signals, respectively. The expectation operator is taken over all possible positions uα and all
possible drifts Btj and Btj′ in the first line, and only over all drifts in the second and third lines.
By standard properties of the Brownian motion, Btj′ −Btj is Gaussian distributed, of expected
value 0 and variance |tj − tj′ | and so it has the same distribution as Btj′−tj . Thus, in the case
of the blood, we can write

Cov (Sb(i, j), Sb(i
′, j′)) = C2

bECgg
(
zi − zi′ + vb(tj′ − tj + σbBtj′−tj )

)
.

Likewise,

Cov
(
Sb(i, j), Sb(i′, j′)

)
= C2

bECgḡ
(
zi − zi′ + vb(tj′ − tj + σbBtj′−tj )

)
,

where Cgḡ (z) = 1
L

∫ L
0
g(y)ḡ(z+ y)dy. The tissue model is then given by σc = 0, and is therefore

deterministic given the initial position. Thus

Cov (Sc(i, j), Sc(i
′, j′)) = C2

cCgg (zi − zi′ + vc (tj′ − tj)) ,

Cov
(
Sc(i, j), Sc(i′, j′)

)
= C2

cCgḡ (zi − zi′ + vc (tj′ − tj)) .

On one hand, in the case of blood, since Cgḡ and Cgg are oscillating and with very small support
(see Figures 7a and 7b), the integration done when taking the expectation in the blood case
should yield small correlations as long as |tj′− tj | is large enough. On the other hand, in the case
of clutter, correlations will be high between the two signals as long as zi−zi′ and vc (tj − tj′) are
of the same order and almost cancel out. This heuristic is confirmed by numerical experiments.
In Figure 7c, we compare the clutter model and the blood model in one dimension: velocities are
in the z direction, and we only consider points aligned on the z axis. As we can see, correlations
are quickly decaying as we move away from (0, 0) in the case of blood. In the case of clutter,
there are correlations at any times at the corresponding displaced locations.

Once the correlation matrix is computed, we can generate a large number of samples to
study the distribution of the singular values in different cases. In Figure 8a, we compare the
distribution in the two models (blood and clutter), using the Gaussian limit approximation for
the simulations, with the same intensity for both models. A comparison with a white noise
model with the same variance shows that blood and noise have approximately the same singular
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(c) Absolute values of the correlations in the clutter model (σ = 0, vc = 10−2 m·s−1) and in the blood model
(σ2 = 10−6 m2s−1, vb = 10−2 m·s−1).

Figure 7: Correlations of the Casorati matrix.
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Figure 8: The distribution of the singular values of the Casorati matrix S in different cases.

value distribution. On the contrary, the distribution of the singular values of clutter presents a
much larger tail. A comparison of the distribution of the singular values for the clutter model at
different velocities shows no real difference in the tail of the distribution (Figure 8b).

As a consequence, the clutter signal sc is well approximated by a low rank matrix, and the
blood signal can be thought of as if it were only noise. Therefore, the SVD method act as a
denoising algorithm and extracts the clutter signal, according to the discussion in the previous
subsection.

6 Numerical Experiments
In this section, we consider again a more realistic 2D model, given by (17). This framework will
allow us to simulate generic blood flow imaging sequences from particles. The dynamics of blood
and clutter are modelled as follows. Let us assume that clutter is subject to a deterministic and
computable flow ϕc. The randomness of the motion of red blood cells in vessels is modelled by
a stochastic differential equation, given by

dy = vb (t, y) dt+ σ(y) dBt, (24)

where Bt is a two dimensional Brownian motion and σ is determined by the effective diffusion
coefficient K = 1

2σ
2. In blood vessels, this diffusion coefficient is proportional to the product

γ̇r2 where γ̇ is the shear stress in the vessel, and r is the radius of red blood cells. As in the
previous section, let ac = a1,c and ab = a1,b. Let ϕb be the flow associated to (24). We assume
that ϕb represents the dynamics of blood particles, relative to overall clutter movement, so that

ac (t) = ϕc (uc, t) , ϕc(uc, 0) = uc, (25)

and
ab (t) = ϕc (ϕb (ub, t) , t) , ϕb(ub, 0) = ub. (26)
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Figure 9: Single frame of ultrafast ultrasound (real part).

The dynamics of all the other particles are then taken to be independent realizations of the
same dynamics. The velocity field vb and the clutter dynamics ϕc are computed beforehand and
correspond to the general blood flow velocity and to an elastic displacement, respectively. In our
experiments, we let ϕc be an affine displacement of the medium, changing over time: a global
affine transformation, with slowly varying translation and shearing applied to the medium at
each frame, namely

ϕc(u, t) =
[

1 w1(t)
0 1

]
u+

[
w2(t)
w3(t)

]
,

where wi are smooth and slowly varying (compared to ϕb) functions such that wi(0) = 0. As for
the blood velocity flow vb, it is parallel to the blood vessels, with its intensity decreasing away
from the center of the blood vessel [18, Section 11.3]. More precisely, vb is a Poiseuille laminar
flow, namely the mean blood flow velocity is half of the maximum velocity, which is the fluid
velocity in the center of the vessel.

The relative blood displacements bk,j = ϕk,b (ub,k, tj) are computed according to the following
discretization of the stochastic differential equation (24):

bk,j+1 = bk,j + δtvb (tj , bk,j) +
√
δtσ (bk,j)Xk,j + o (δt) ,

where (Xk,j) are centered independent Gaussian random variables and δt = tj+1 − tj is taken
to be constant. The blood particle positions ak,b (tj) are then computed simply by applying the
precomputed flow ϕc.

In order to validate the SVD approach, we explore the effects of the blood velocity and of
the direction of the blood vessels on the behavior of the singular values and on the quality of the
reconstruction. In each case, the clutter displacement is the same composition of time-varying
shearing and translation, and the mean clutter velocity is 1 cm·s−1. We choose Cc = 5 and
Cb = 1, for the same density of scatterers from clutter and blood: per unit of area, the clutter
intensity is therefore five times higher than the blood intensity. A single frame of ultrafast
ultrasound imaging is presented in Figure 9: it is clear that without further processing, it is
impossible to locate the blood vessels.

In Figure 10, the results for various velocities and orientations are presented. The reconstruc-
tion intensities are expressed in decibels, relatively to the smallest value in the image. The SVD
method allows for reconstruction of blood vessels, even if the maximum blood velocity is close
to, or oven lower than, the mean velocity of clutter. We always use the threshold K = 20. As
we can see, due to the better resolution in the z direction discussed in Section 3, vessels oriented
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(a) Maximum blood velocity: 2 cm·s−1; mean clutter velocity: 1 cm·s−1.
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(b) Maximum blood velocity: 1 cm·s−1; mean clutter velocity: 1 cm·s−1.
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(c) Maximum blood velocity: 0.5 cm·s−1; mean clutter velocity: 1 cm·s−1.

Figure 10: The SVD method for different velocities and orientations. In each case, we have from left to
right: the blood velocity and location, the reconstructed blood location, the decay of the singular values.
The squares are 5 mm × 5 mm, and the horizontal and vertical axes are the x and z axes, respectively.
The parameters used are those given in (1) and (2), F = 0.4 and Θ = 7◦. The density of particles for
both blood and clutter is 2,000 per mm2, and σ = 2.5 · 10−5.

20



0 0.02 0.04 0.06 0.08 0.1

-5

0

5
×10

15

(a) Flow parallel to the receptor array.
0 0.02 0.04 0.06 0.08 0.1

-1

-0.5

0

0.5

1
×10

16

(b) Flow perpendicular to the receptor array.

Figure 11: Time behavior of a single pixel (real part), located in a constant velocity flow.
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Figure 12: Effect of the threshold K on the reconstruction. From left to right: K = 10, 20, 30, 40.

parallel to the receptor array have a reconstruction with a better resolution. But due to the
oscillating behavior of the PSF in the z direction, and the low-pass filter behavior of the PSF
in the x direction, the sensitivity is better for vessels oriented perpendicularly to the receptor
array, and the SVD method is able to reconstruct smaller vessels with lower velocities. This
follows from the discussion in Subsection 4.2. In order to visualize this phenomenon even better,
Figure 11 presents the time behavior of a single pixel from the data of Figure 10c. We can clearly
see the doppler effect in the case when the flow is perpendicular to the receptor array, and the
low frequency behavior of the signal in the case when it is parallel to the receptor array.

In Figure 12, results of an investigation on the effect of the threshold K on the reconstruction
are presented. Except for K, the parameters of Figure 10b are used. If the threshold is too
low, the reconstruction is not satisfactory and artefacts appear everywhere in the reconstructed
image. If the threshold is too high, the reconstruction still works but the contrast becomes lower.
With our parameters, K = 20 seems to produce the best results.

In order to further validate the method, we consider the impact of measurement noise on
the recovery. To this end, we add independent white Gaussian noise to the data, and consider
the quality of the reconstruction as a function of the noise intensity. Let us define the contrast
of the reconstruction as the ratio between the mean intensity of the reconstructed image inside
and outside the blood domain. The parameters of Figure 10b are used. Blood intensity is five
times lower than clutter intensity, and therefore a noise intensity of 10% corresponds to half the
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Figure 13: Effect of noise on the reconstruction. The parameters are the same used in Figure 10b.

intensity of blood. In Figure 13, sample reconstructions at different noise levels are provided.
We can conclude that contrast is robust to moderate levels of noise, since blood vessels can still
be identified up to 7.5% of noise if they are oriented along the z axis, and up to 2.5% of noise if
they are oriented along the x axis. Figure 13 also clearly quantifies the better contrast for vessels
oriented along the z axis.

7 Concluding Remarks
In this paper, we have provided for the first time a detailed mathematical analysis of ultrafast ul-
trasound imaging. By using a random model for the movement of the blood cells, we have shown
that an SVD approach can separate the blood signal from the clutter signal. Our model and
results open a door for a mathematical and numerical framework for realizing super-resolution
in dynamic optical coherence tomography [12], in ultrafast ultrasound imaging by tracking mi-
crobubbles [9], as well as in acousto-optic imaging based on the use of ultrasound plane waves
instead of focused ones, which allows to increase the imaging rate drastically [13]. These three
modalities are under investigation and their mathematical and numerical modeling will be the
subject of forthcoming papers.

A The Justification of the Approximation of the PSF
This appendix is devoted to the formal justification of the PSF approximation (8) which was
obtained by truncating the Taylor expansion of wθ± at the first order: we shall show here that
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the error caused by this truncation is small. For simplicity, we shall consider only the case when
z = z′ and θ = 0: the general case may be tackled in a similar way. Without loss of generality,
we may set x′ = 0 and suppose x ≥ 0. We also suppose that we are not too close to the detectors,
namely z ≥ 10−2 m. Moreover, in order to be able to be quantitative, we consider the particular
case when F = 0.4 and τ = 1.

The expression of the PSF that we want to approximate is (see (7))

g(x) := g0((x, z), (0, z)) =
c0

4πx
[f ′(w+(x))− f ′(w−(x))] ,

where w±(x) is given by

w±(x) := h0
x,x′(x± Fz) = c−1

0

(√
1 + F 2z −

√
z2 + (x± Fz)2

)
.

(Note that, for simplicity of notation, we have removed the dependence of w on θ and z.) An
immediate calculation shows that

w±(0) = 0, w′±(0) =
∓c−1

0 F√
1 + F 2

, w′′±(x) =
−c−1

0 z2

((x± Fz)2 + z2)
3/2

.

Hence, there exists ξx ∈ [0, x] such that

w±(x) =
∓c−1

0 F√
1 + F 2

x+ cx
x2

2
, |cx| = |w′′±(ξx)| ≤ c−1

0 z−1.

Therefore, the absolute error E(x) due to the truncation of the Taylor series of w± at first order
is given by

E(x) = c0(4π)−1 [E+(x)− E−(x)] ,

where

E±(x) =
1

x

[
f ′(
∓c−1

0 F√
1 + F 2

x+ cx
x2

2
)− f ′( ∓c

−1
0 F√

1 + F 2
x)

]
.

We now consider two cases, depending on x. First, consider the case when x > 5 · 10−3 m.
From the above calculations we immediately have

|E(x)| ≤ c0(4π)−1 4

x
‖f ′‖∞ ≤

2

5
c0103ν0 ≤ 3.7 · 1012.

Next, consider the case when x ≤ 5 · 10−3 m. By using again the mean value theorem we
obtain

E±(x) = cx
x

2
f ′′(θx), θx =

∓c−1
0 F√

1 + F 2
x+ δxcx

x2

2

for some δx ∈ [0, 1]. Since |f ′′(t)| is even and decreasing for t > 0, we have that

|E±(x)| ≤ c−1
0

x

2z
|f ′′( c−1

0 F√
1 + F 2

x− c−1
0

x2

2z
)|,

since the inequality x ≤ 5 · 10−3 m guarantees that c−1
0 F√
1+F 2

x− c−1
0

x2

2z > 0. Therefore we have

|E(x)| ≤ (4π)−1xz−1|f ′′( c−1
0 F√

1 + F 2
x− c−1

0

x2

2z
)|.
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Let us look at the right hand side of this inequality. As x → 0 the error tends to 0: this is
expected, because of the Taylor expansion around 0. On the other hand, for big x, the value of
|f ′′( c−1

0 F√
1+F 2

x− c−1
0

x2

2z )| is very small, since |f ′′(t)| decays very rapidly for large t. Therefore, the
maximum of the right hand side is attained in a point x∗ ∈ (0, 0.005). The value in this point
may be explicitly calculated, and we have

|E(x)| ≤ 4 · 1012, 0 ≤ x ≤ 5 · 10−3 m.

To summarize the above derivation, we have shown that the absolute error E(x) is bounded
by

|E(x)| ≤ 4 · 1012, x ≥ 0. (27)

We now wish to estimate the relative error ‖E‖∞ / ‖g‖∞. In order to do this, let us compute
g(0). Since the Taylor expansion becomes exact as x → 0, we may very well compute g(0) by
using the approximated version. Thus, setting G = F/

√
1 + F 2 we have

g(0) = lim
x→0
− c0

4πx

[
f ′(c−1

0 Gx)− f ′(−c−1
0 Gx)

]
= lim
x→0
−G(4π)−1

[
f ′(c−1

0 Gx)− f ′(0)

c−1
0 Gx

+
f ′(−c−1

0 Gx)− f ′(0)

−c−1
0 Gx

]
= −2G(4π)−1f ′′(0),

whence |g(0)| ≥ 8.8 · 1013 by a direct calculation of |f ′′(0)|. Finally, combining this inequality
with (27) allows to bound the relative error by

‖E‖∞
‖g‖∞

≤ 5%.

We have proven that the relative error of the approximation obtained by truncating the
Taylor expansions of w± at the first order is less than 5%. This has been proven only in the
particular case when z = z′: the general case may be done by extending the above argument to
two dimensions.
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