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Design of Ternary Signals for MIMO Identification in the Presence
of Noise and Nonlinear Distortion

Ai Hui Tan, Keith R. Godfrey, and H. Anthony Barker

Abstract—A new approach to designing sets of ternary periodic
signals with different periods for multi-input multi-output system
identification is described. The signals are pseudo-random signals
with uniform nonzero harmonics, generated from Galois field
��� �, where is a prime or a power of a prime. The signals
are designed to be uncorrelated, so that effects of different inputs
can be easily decoupled. However, correlated harmonics can be
included if necessary, for applications in the identification of
ill-conditioned processes. A design table is given for ��. An
example is presented for the design of five uncorrelated signals
with a common period � ��	. Three of these signals are
applied to identify the transfer function matrix as well as the sin-
gular values of a simulated distillation column. Results obtained
are compared with those achieved using two alternative methods.

Index Terms—Frequency domain design, multi-input multi-
output (MIMO) systems, pseudo-random signals, system identifi-
cation, uncorrelated signals.

I. INTRODUCTION

F OR the identification of multi-input multi-output (MIMO)
systems, it is desirable that the effects of different inputs

can be separated to ensure identifiability. Two approaches are
commonly applied. The first approach uses shifted versions of
the same signal to perturb different inputs, and subsequently
separate their effects using cross correlation methods. The
second approach makes use of uncorrelated signals so that the
effects of different inputs can be decoupled. The latter approach
reduces the overall time taken to perform the identification ex-
periment compared with the former approach, and also ensures
that the system is not operating under different conditions,
which is possible if inputs are perturbed sequentially.

Several methods to design periodic perturbation signals
which are uncorrelated have been proposed in the existing
literature, and are reviewed in Section II. Among the popular
methods are the “zippered spectrum” approach and that of
modulating a signal with rows of a Hadamard matrix to gen-
erate further signals in the set. The former approach allows
signal sets to be designed with very few constraints on the
signal period, but suffers from the fact that a large number of
input levels are required. On the other hand, the latter approach
usually requires a very long common period for the signal set,
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but can be applied to signals with a small number of levels,
including binary signals.

In this paper, a new approach is proposed which combines the
advantages of these two popular methods. This new approach al-
lows a “zippered spectrum” to be realized using sets of ternary
signals. Such a design is robust against the effects of both noise
and nonlinear distortion, as will be shown in Section VII. Exten-
sion to the case of “modified zippered spectrum” is discussed in
Section VI.

II. REVIEW OF PREVIOUS APPROACHES

A. Design of Uncorrelated Signals With the Same Period

For many years, it was thought that it is not possible to
derive uncorrelated periodic signals with the same period, but
MacWilliams [1] disproved this by designing a class of pairs
of uncorrelated binary signals of period , where
is a prime. Briggs and Godfrey [2] showed that, for the pair
of MacWilliams signals with , the autocorrelation
functions of both signals were not remotely of impulsive form.
The magnitudes of the harmonics of these signals are far from
uniform, and one of the signals has nonzero mean, so the
signals are unsuitable for most two-input system identification
applications.

In [3], the design of nearly-uncorrelated ternary and quater-
nary signals of the same period was considered. Three pairs of
signals with periods , 7, or 8 were given, but in the
two-input two-output system identification example presented
there were large differences between the magnitudes of the har-
monics used. As the signal periods were very short, there were
too few usable harmonics for most system identification appli-
cations.

An approach to designing uncorrelated multisine signals with
a “zippered spectrum” was suggested in [4]. For applications in
ill-conditioned processes, a “modified zippered spectrum” can
be used instead, which consists of both uncorrelated and cor-
related harmonic components [5], [6]. The frequency domain
design of multisine signals is very flexible, as they do not have
constraints on the number of signal levels. They are considered
plant-friendly as actuator move sizes are generally smaller than
those used with pseudo-random signals. However, plant-friend-
liness is application specific, and some systems cannot accept
more than a limited number of signal levels. Hence, when such
a limitation exists, a pseudo-random signal is considered more
plant-friendly due to its ease of implementation. An example
is the identification of the frequency response between the ap-
plied force and strip position on a scale model of a hot-dip gal-
vanizing process for steel strip [7]. In this application, the strip
can be moved by two electromagnets, one on either side, but the
associated power electronics only allow one voltage level to be
applied to each. The signals applied are limited to a maximum of
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three levels, corresponding to force to the right, force to the left,
and no force. A further example is the identification of an elec-
tronic nose described in [8]. In this system, there are four com-
partments which can be filled with different chemicals or the
same chemical but with different concentrations. A metal oxide
semiconductor sensor is exposed to the content in one of the
compartments at any particular time. The input is implemented
using four on-off valves. In [8], only two compartments were
used but the physical structure of the system allows a maximum
of four input levels to be applied.

B. Design of Uncorrelated Signals With Different Periods

The design of pseudo-random signals with different periods
for the identification of MIMO systems was considered by
Briggs and Godfrey [9]. By far the most commonly used design
has been that of modulating a pseudo-random binary signal
(PRBS) by rows of a Hadamard matrix, proposed in [10]. Each
of the signals in the set has an autocorrelation function that is
approximately impulsive.

More recently, the authors of the present paper have described
two types of periodic ternary pseudo-random maximum length
(PRML) signals, designed to identify a linear representation of
a single-input system that has noise and nonlinear distortion
[11]. Common sources of nonlinear distortion in a system in-
clude actuator saturation and material property changes across
different operating ranges. A considerable amount of work has
been reported in the literature on using harmonic suppression
to improve the robustness of a signal against nonlinear distor-
tion. Most of this work concentrates on the use of multisine sig-
nals, such as [12]–[14]. Following the definition in [11], a Type
1 signal has even harmonics suppressed, so eliminating com-
pletely errors in odd-order estimates from even-order distortion
and vice versa. Note that it may also have other harmonic mul-
tiples suppressed, but not harmonic multiples of three. A Type 2
signal has harmonic multiples of two and three suppressed, with
the possibility of other harmonic multiples being suppressed as
well, to further reduce errors from nonlinear distortion.

In this paper, the work in [11] is extended to identify MIMO
systems. While such a possibility was briefly alluded to in [11],
the method of design suggested therein requires the signal pe-
riods to be in the ratio , , , . The same restriction
is observed when signals in a set are designed based on modu-
lation with the rows of a Hadamard matrix. Here, this constraint
has been removed by using a different method of design. Other
possible combinations of harmonics which were not considered
in [11] are also included here. The resulting sets of signals have
different periods, but they also share a common period. The pos-
sible combinations are dependent on the generating field. This
follows the concept of the “zippered spectrum” approach which
has hitherto only been possible using computer-optimized sig-
nals such as multisines [5], [6], [15].

III. DESIGN OF PRML SIGNALS FROM GALOIS FIELDS

A Galois field comprises elements which may be
represented by the integers 0 to , where is either a prime

or a power of a prime. A PRML sequence in has
period and is generated from

all (1)

[16], where is a time index, and are the coefficients of a
primitive polynomial of order in , given by

primitive (2)

In a period , each nonzero field element occurs times,
while the zero element occurs times.

A primitive PRML sequence is generated from (1)
with and has period [17]. In a period of

, each nonzero field element occurs once, but the zero
field element does not occur. A primitive PRML signal ,
also of period , can be obtained from a primitive
PRML sequence using the signal conversion

all (3)

[18], where each field element of is converted into a
corresponding signal level . In a period of

(4)

where is a primitive element of the field, having the impor-
tant property that its powers generate all the
nonzero elements of the field. If the same field element conver-
sions are used to convert a PRML sequence with
into a PRML signal with the same period , such that

all (5)

then the harmonic properties of and are related to one
another, provided is odd and . In particular, the mag-
nitudes of the harmonics of , defined through the discrete
Fourier transform (DFT) of as

(6)

are related to the magnitudes of the harmonics of
through

a multiple of (7a)

a multiple of but not of (7b)

not a multiple of (7c)

[18]. The set of relationships in (7) therefore provides an effi-
cient and convenient means for the generation of PRML signals
as the design can be carried out on their primitive versions which
have much shorter periods.
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IV. SIGNAL DESIGN FOR MIMO SYSTEM IDENTIFICATION

To identify a linear representation of a system that has noise
and nonlinear distortion, it is advantageous to minimize the
signal amplitude in order to reduce the effects of the latter.
At the same time, to achieve a high signal-to-noise ratio, the
available power should be increased. These conflicting require-
ments led to the concept of performance index for perturbation
signals (PIPS) [19], defined by

(8)

where , , , and are, respectively, the root
mean square, mean, maximum, and minimum values of the dis-
crete signal . Effectively, PIPS is based on the goal in tra-
ditional experiment design which is to obtain the most accurate
estimates of the system subject to constraint on the maximum al-
lowable amplitude. PIPS is independent of both the signal mean
and amplitude scale. It is 100% for a signal with the best pos-
sible performance, namely a binary signal for which and

have equal duration or number of occurrences.
For the ternary signals described in this paper, PIPS is directly

related to how the elements in are mapped into signal
levels. In particular, for a primitive signal with elements
converted to , elements converted to –1 and
elements converted to 0, PIPS is given by

(9)

For the signal

(10)

In addition to this, it is desirable that the magnitudes of the
harmonics in the signal be uniform, in order to uniformly excite
the system across the frequency band of interest. Multiples of
certain harmonics should also be suppressed for greater robust-
ness against the effects of nonlinear distortion.

One of the methods to design signals with uniform DFT mag-
nitude, and good immunity towards the effects of noise and
nonlinear distortion was introduced in [20], where the idea of
using primitive signals containing several sub-periods within

was first proposed. If is odd, can be designed such
that , [21]. The resulting
signal is Type 1. If is an integer multiple of 6, can be
designed such that , where

is repeated times to
give [22]. The resulting signal is Type 2.

In this paper, the idea of allowing multiple periods within a
common period has been extended, with a search carried out
across different permutations of the signal levels in the first half
period of . The search is carried out separately for signals
in which the even harmonics are zero and the second half of the

Fig. 1. First half period of the DFT magnitudes of uncorrelated signals from
GF(13), with � � �. The primitive signals are B (dots), E (crosses), F (aster-
isks), G (triangles), and H (circles), as given in Table I.

period is the negative of the first half, and for signals in which
the odd harmonics are zero and the second half of the period is
the same as the first half.

The results are tabulated in Table I, which shows all possible
combinations of uncorrelated signals for . For certain
combinations of nonzero harmonics where there is more than
one that results in a uniform spectrum, the one with the
highest is selected. For every signal in a set, the first
nonzero harmonic in Table I must be a factor of , and
the remaining nonzero harmonics must be integer multiples of
the first . No theoretical relationship could be found between

and the possible number of input combinations.
It should be made clear that the common period is not neces-

sarily , but can be a sub-multiple of it. For instance, using
GF(17), if only three uncorrelated signals are needed, then Sig-
nals B, C and D with periods 144, 72, and 36, respectively, can
be selected from Table I. The common period is therefore 144
and not 288 in this case. This leads to a much larger number
of possible common periods designed using the proposed ap-
proach.

A step-by-step guideline on how Table I can be applied is
given in the following.

1) Based on the number of signals required in a signal set,
obtain the possible generating fields from Table I.

2) For each of these fields, calculate the possible common pe-
riods. Choose the field for which the common period is
closest to the most suitable common period for the appli-
cation.

3) For the chosen field, if there is more than one possible
choice of signals then priority should be given to either
Type 1 or Type 2 signals, depending on the application,
and remaining signals should be Type O, which have some
harmonic suppression, or Type N, which have no harmonic
suppression, in that order.

4) If there is still more than one possible combination of sig-
nals, then preference should be given to signals with higher
PIPS values. However, if it is more important that all sig-
nals in a set have similar PIPS values, this can also be
chosen accordingly.
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TABLE I
COMBINATIONS OF UNCORRELATED SIGNALS FOR � � ��. ONLY THE FIRST HALF PERIOD OF ���� IS GIVEN. THE NOTATION ��� DENOTES THAT THE SECOND

HALF PERIOD IS THE SAME AS THE FIRST HALF, WHILE ��� DENOTES THAT THE SECOND HALF PERIOD IS THE NEGATIVE OF THE FIRST HALF

V. DESIGN EXAMPLE

For the purpose of illustration, a set of uncorrelated signals is
generated from GF(13). Since is divisible

by 1, 2, 3, 4, and 6, the eight signals in Table I start with one of
these as the first nonzero harmonic. There are six different ways
these signals can be combined to produce sets of uncorrelated
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signals, but the maximum possible number of inputs in this case
is five, where the signals B, E, F, G, and H are used.

For GF(13), is a primitive element. Using in (4),
the field element conversions for Signal B are

, , ,
, ,
, ,
, ,

, ,
. The conversions for the other

signals can be obtained in a similar manner.
The magnitudes of the harmonics of this set of five uncorre-

lated PRML signals generated using are plotted in Fig. 1
using a common period of . The actual
periods are 168 for B, 84 for E, 56 for F, 42 for G, and 28 for
H. From (7b), harmonic multiples of 12 are suppressed in all
five signals because the corresponding primitive signals have
zero mean. From among the five signals, F and H are Type 1
signals, with even harmonics suppressed, B and E are Type 2
signals, with harmonic multiples of 2 and 3 suppressed, while
G is neither Type 1 nor Type 2 and would therefore be less suit-
able for use in a system that has nonlinear distortion. While the
harmonics are not uniform across different channels, this is not
a problem as different channels are expected to have different
gains. If the approximate gains of the channels are known a
priori, a signal with higher DFT magnitudes can be selectively
applied on a channel with a lower gain.

VI. EXTENSION TO THE IDENTIFICATION OF

ILL-CONDITIONED SYSTEMS

Some MIMO systems are ill-conditioned. This means that
they have strong directionality properties and there are large
differences between the singular values of the steady-state gain
matrix. In the literature, popular approaches for the identifica-
tion of such systems rely on the use of large amplitude correlated
components and small amplitude uncorrelated components. Ex-
amples of these approaches can be found in [5], [6], [15], [23].

The ternary signals proposed in the paper can be shaped be-
yond the standard “zippering”. However, it is important to know
a priori the directional properties of the system, so that the spec-
trum can be shaped accordingly. It should be pointed out that
pseudo-random ternary signals can in most instances only ap-
proximate a required optimum spectrum. This is due to the con-
straint imposed by the number of signal levels permitted. If the
system under study can only accept a limited number of signal
levels, then there is a small price to pay in the design of the har-
monic spectrum.

An example of a two-input design which consists of both cor-
related and uncorrelated harmonics is the use of Signals C and
D from GF(25) in Table I. Here, the correlated harmonics are
2, 10, 14, and 22, whereas the uncorrelated ones are 4, 8, 16,
and 20 for Signal C, and 6 and 18 for Signal D. The harmonic
spectrum of this design is shown in Fig. 2. The total power in
each correlated harmonic is much higher than that in each un-
correlated harmonic, due to the power being contributed by both
signals in the set.

If it is further required that each individual signal has different
amplitudes for correlated and uncorrelated harmonics, a similar

Fig. 2. DFT magnitudes of primitive signals from GF(25). The primitive sig-
nals are C (asterisks) and D (circles), as given in Table I.

search procedure as described in Section IV has to be carried
out to search for signals with the required spectrum. However,
unless the directional properties are known a priori, applying
high amplitude correlated harmonics in the wrong direction may
cause the system output to exceed permissible bounds [24].

VII. APPLICATION ON A SIMULATED DISTILLATION COLUMN

A. Description of Process and Conditions for Simulation

A three-input three-output binary ethanol-water system of a
pilot-plant distillation column, with a side stream as well as
overhead and bottom products, described by Ogunnaike et al.
[25], is simulated. The inputs are reflux flow rate in gpm ,
side stream product flow rate in gpm , and reboiler steam
pressure in psig . The outputs are overhead ethanol mole
fraction , side stream ethanol mole fraction , and tem-
perature of tray number 19 in degrees Celsius . The input-
output relationship, with a time scale in minutes, is given by

(11)

The transfer function matrix in (11) will be denoted as
throughout this paper. Singular value decomposition of the
steady-state gain matrix gives

(12)
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Fig. 3. Inputs � , � , and � used in the distillation column application.

where is the matrix of output singular vectors, is the
matrix of input singular vectors and is the diagonal matrix
of singular values. The distillation column is a very diffi-
cult process to identify, due to the large differences in gain,
time constant and time delay. It is also ill-conditioned, as
the singular values of are very different from one an-
other, their values being , , and

. In particular, the high gain input direction is
whereas the low gain input

direction is . It is worth noting
that while the system is ill-conditioned, it is not highly interac-
tive since the relative gain array at steady-state is

(13)

where denotes the Schur product.
The only a priori knowledge assumed in the experiment

design is that of the smallest and largest time constants in the
system, which constrain the choices of the sampling interval

and the measurement period NT, respectively, together with
the maximum allowable deviations from the usual steady-state
values of the system, which constrain the choices of the input
signal amplitudes. Based on this, signals B, E, and F from
GF(13), with , were chosen and scaled
to amplitudes of 0.065 gpm, 0.039 gpm, and 4.4 psig to form
the inputs , , and , respectively, with a sampling interval

0.5 min and a measurement period
84 min. The inputs are illustrated in Fig. 3. Both Signals B and
E have and , whereas
Signal F has and . Since
all three signals have high PIPS values, they provide a good
balance between the number of nonzero harmonics and the
DFT magnitudes at these nonzero harmonics. No knowledge
of the directionality properties of the system is assumed and no
rotation is applied to any of the input signals.

Fig. 4. Outputs � , � , and � which are corrupted by noise and nonlinear
distortion.

Random noise with zero mean is added to each of the nine
input-output channels such that the signal-to-noise ratio for each
channel is 15 dB. In order to make the identification problem
more challenging, nonlinearity is added to the outputs of each
channel. The nonlinear function is

(14)

for channels , , , , ,
and , but is

(15)

for channels , , and . Different func-
tions (14) and (15) are used as and generally have much
smaller amplitudes than .

B. Identification of Transfer Function Matrix

To estimate the transfer function matrix, one steady-state pe-
riod of the outputs , , and which are corrupted by noise
and nonlinear distortion (see Fig. 4) is used. Contributions from

, , and are first separated at each of the outputs by ex-
tracting the output power only at harmonics present at any par-
ticular input. For example, to find the contribution of to ,
the harmonics 1, 5, 7, 11, 13, 17,…, corresponding to Signal B
are extracted, to find the contribution of to , the harmonics
2, 10, 14, 22, 26, 34,…, corresponding to Signal E are extracted,
and to find the contribution of to , the harmonics 3, 9, 15,
21, 27, 33,…, corresponding to Signal F are extracted. This is
shown in Fig. 5, where the decoupling of the effects of different
inputs can be observed. However, it should be noted that the
channel noise cannot be decoupled, because the noise signals
contain all harmonics except harmonic 0.

In the subsequent step, the frequency domain data are fitted
using the Estimator for Linear Systems (ELiS) [26] in the Fre-
quency Domain System Identification Toolbox. To avoid the ef-
fects of aliasing, the ELiS estimation procedure is applied only
to harmonics , corresponding to frequencies less than 0.4
times the sampling frequency.

Authorized licensed use limited to: WARWICK UNIVERSITY. Downloaded on November 4, 2009 at 08:36 from IEEE Xplore.  Restrictions apply. 



932 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 17, NO. 4, JULY 2009

Fig. 5. DFT magnitudes of the inputs (top) and the signal � (bottom) with
the contributions of � (dots), � (crosses) and � (asterisks) separated. Only
harmonics� ��, corresponding to frequencies less than 0.4 times the sampling
frequency, are shown.

With this procedure, the transfer function matrix of the distil-
lation column is estimated to be

(16)

C. Comparison With Two Other Signal Sets

A well established method to apply pseudo-random signals
for MIMO identification is to start with an original signal and
then modulate the signal using rows of the Hadamard matrix to
generate uncorrelated signals based on the original signal [10].
Four periods of a near-binary pseudo-random signal called a
quadratic residue ternary (QRT) signal of original period 41 are
cascaded to form the input , such that . The inputs
and are generated by multiplying the elements of the signal
to by and , respec-
tively. All the signals are scaled to the amplitudes as given in
Section VII-A. The sampling interval is maintained at 0.5 min.
Using this technique, the transfer function matrix is identified
as

(17)

Another well-established method, described in [9] as the
input phase separation method, is to use appropriately delayed
versions of a PRBS as the system inputs. This method requires
a considerably longer measurement period than the two other
methods described above, because it is necessary for the output
responses due to different input phases to be separable in the
input-output crosscorrelation function. Shifted versions of a
PRBS of period are used to perturb the system,

Fig. 6. Singular values � and � of the gain matrix. Solid line: Theoret-
ical; Circles: Proposed PRML; Crosses: Hadamard-modulated QRT; Asterisks:
Shifted PRBS.

with the optimal shifts calculated based on the knowledge of
the approximate individual time delays of each of the transfer
functions in . This method gives

(18)

D. Identification of Singular Values of Gain Matrix

According to Rasmussen and Jørgensen [27], and Li and Lee
[28], for model-based control, it is very important to identify
accurately the singular values of the gain matrix. The estimated
values of and are shown in Fig. 6, where it can be observed
that the proposed method gives better estimates overall. For ,
all three methods give accurate estimates and these are therefore
not shown.

VIII. CONCLUSION

An approach to designing ternary pseudo-random signals
from Galois fields, suitable for application in the identifica-
tion of MIMO systems, has been described. The signal sets
possess the “zippered spectrum” and are designed using the
harmonic properties of their primitive signals. The approach
takes advantage of the larger number of possible combinations
when allowing multiple periods within a period of the primitive
signal. The signals can be designed to have uniform nonzero
harmonics. Signals with good immunity to the effects of noise
and nonlinear distortion can be easily selected from the design
Table provided. An application has been presented for an
ill-conditioned three-input three-output distillation column.
For this application, the proposed signal set resulted in better
estimates of the singular values of the gain matrix, compared
with Hadamard-modulated QRT signals and shifted PRBS sig-
nals, despite the total experimentation time using the proposed
method being only 1/3 of that of the shifted PRBS technique.
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