7 research outputs found

    Mathematical Infinity, Its Inventors, Discoverers, Detractors, Defenders, Masters, Victims, Users, and Spectators

    Get PDF
    "The definitive clarification of the nature of the infinite has become necessary, not merely for the special interests of the individual sciences, but rather for the honour of the human understanding itself. The infinite has always stirred the emotions of mankind more deeply than any other question; the infinite has stimulated and fertilized reason as few other ideas have ; but also the infinite, more than other notion, is in need of clarification." (David Hilbert 1925

    Distributive Proper Forcing Axiom

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Cardinal Arithmetic: From Silver’s Theorem to Shelah’s PCF Theory

    Get PDF
    Treballs Finals del Màster de Lògica Pura i Aplicada, Facultat de Filosofia, Universitat de Barcelona, Curs: 2019-2020, Tutor: Joan Bagaria PigrauThe main goal of this master’s thesis is to give a detailed description of the major ZFC advances in cardinal arithmetic from Silver’s Theorem to Shelah’s pcf theory and his bound on 2אω. In our attempt to make this thesis as self-contained as possible, we have devoted the first chapter to review the most elementary concepts of set theory, which include all the classical results from the first period of developement of cardinal arithmetic, from 1870 to 1930, due to Cantor, Hausdorff, König, and Tarski

    Contributions to the theory of Large Cardinals through the method of Forcing

    Full text link
    [eng] The present dissertation is a contribution to the field of Mathematical Logic and, more particularly, to the subfield of Set Theory. Within Set theory, we are mainly concerned with the interactions between the largecardinal axioms and the method of Forcing. This is the line of research with a deeper impact in the subsequent configuration of modern Mathematics. This area has found many central applications in Topology [ST71][Tod89], Algebra [She74][MS94][DG85][Dug85], Analysis [Sol70] or Category Theory [AR94][Bag+15], among others. The dissertation is divided in two thematic blocks: In Block I we analyze the large-cardinal hierarchy between the first supercompact cardinal and Vopenka’s Principle (Part I). In Block II we make a contribution to Singular Cardinal Combinatorics (Part II and Part III). Specifically, in Part I we investigate the Identity Crisis phenomenon in the region comprised between the first supercompact cardinal and Vopenka’s Principle. As a result, we settle all the questions that were left open in [Bag12, §5]. Afterwards, we present a general theory of preservation of C(n)– extendible cardinals under class forcing iterations from which we derive many applications. In Part II and Part III we analyse the relationship between the Singular Cardinal Hypothesis (SCH) and other combinatorial principles, such as the tree property or the reflection of stationary sets. In Part II we generalize the main theorems of [FHS18] and [Sin16] and manage to weaken the largecardinal hypotheses necessary for Magidor-Shelah’s theorem [MS96]. Finally, in Part III we introduce the concept of _-Prikry forcing as a generalization of the classical notion of Prikry-type forcing. Subsequently we devise an abstract iteration scheme for this family of posets and, as an application, we prove the consistency of ZFC + ¬SCH_ + Refl([cat] La present tesi és una contribució a l’estudi de la Lògica Matemàtica i més particularment a la Teoria de Conjunts. Dins de la Teoria de Conjunts, la nostra àrea de recerca s’emmarca dins l’estudi de les interaccions entre els Axiomes de Grans Cardinals i el mètode de Forcing. Aquestes dues eines han tigut un impacte molt profund en la configuració de la matemàtica contemporànea com a conseqüència de la resolució de qüestions centrals en Topologia [ST71][Tod89], Àlgebra [She74][MS94][DG85][Dug85], Anàlisi Matemàtica [Sol70] o Teoria de Categories [AR94][Bag+15], entre d’altres. La tesi s’articula entorn a dos blocs temàtics. Al Bloc I analitzem la jerarquia de Grans Cardinals compresa entre el primer cardinal supercompacte i el Principi de Vopenka (Part I), mentre que al Bloc II estudiem alguns problemes de la Combinatòria Cardinal Singular (Part II i Part III). Més precisament, a la Part I investiguem el fenòmen de Crisi d’Identitat en la regió compresa entre el primer cardinal supercompacte i el Principi de Vopenka. Com a conseqüència d’aquesta anàlisi resolem totes les preguntes obertes de [Bag12, §5]. Posteriorment presentem una teoria general de preservació de cardinals C(n)–extensibles sota iteracions de longitud ORD, de la qual en derivem nombroses aplicacions. A la Part II i Part III analitzem la relació entre la Hipòtesi dels Cardinals Singulars (SCH) i altres principis combinatoris, tals com la Propietat de l’Arbre o la reflexió de conjunts estacionaris. A la Part II obtenim sengles generalitzacions dels teoremes principals de [FHS18] i [Sin16] i afeblim les hipòtesis necessàries perquè el teorema de Magidor-Shelah [MS96] siga cert. Finalment, a la Part III, introduïm el concepte de forcing _-Prikry com a generalització de la noció clàssica de forcing del tipus Prikry. Posteriorment dissenyem un esquema d’iteracions abstracte per aquesta família de forcings i, com a aplicació, derivem la consistència de ZFC + ¬SCH_ + Refl

    The Universality Problem

    Get PDF
    The theme of this thesis is to explore the universality problem in set theory in connection to model theory, to present some methods for finding universality results, to analyse how these methods were applied, to mention some results and to emphasise some philosophical interrogations that these aspects entail. A fundamental aspect of the universality problem is to find what determines the existence of universal objects. That means that we have to take into consideration and examine the methods that we use in proving their existence or nonexistence, the role of cardinal arithmetic, combinatorics etc. The proof methods used in the mathematical part will be mostly set-theoretic, but some methods from model theory and category theory will also be present. A graph might be the simplest, but it is also one of the most useful notions in mathematics. We show that there is a faithful functor F from the category L of linear orders to the category G of graphs that preserves model theoretic-related universality results (classes of objects having universal models in exactly the same cardinals, and also having the same universality spectrum). Trees constitute combinatorial objects and have a central role in set theory. The universality of trees is connected to the universality of linear orders, but it also seems to present more challenges, which we survey and present some results. We show that there is no embedding between an ℵ2-Souslin tree and a non-special wide ℵ2 tree T with no cofinal branches. Furthermore, using the notion of ascent path, we prove that the class of non-special ℵ2-Souslin tree with an ω-ascent path a has maximal complexity number, 2ℵ2 = ℵ3. Within the general framework of the universality problem in set theory and model theory, while emphasising their approaches and their connections with regard to this topic, we examine the possibility of drawing some philosophical conclusions connected to, among others, the notions of mathematical knowledge, mathematical object and proof

    Singular Cardinals And The PCF Theory

    No full text
    this paper we present a brief history of the singular cardinals problem, the present knowledge, and an introduction into Shelah's pcf theory. In Sections 2, 3 and 4 we introduce the reader to cardinal arithmetic and to the singular cardinals problems. Sections 5, 6, 7 and 8 describe the main results and methods of the last 25 years and explain the role of large cardinals in the singular cardinals problem. In Section 9 we present an outline of the pcf theory
    corecore