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Abstract

The theme of this thesis is to explore the universality problem in set theory in

connection to model theory, to present some methods for finding universality

results, to analyse how these methods were applied, to mention some results and

to emphasise some philosophical interrogations that these aspects entail.

A fundamental aspect of the universality problem is to find what determines the

existence of universal objects. That means that we have to take into consideration

and examine the methods that we use in proving their existence or nonexistence,

the role of cardinal arithmetic, combinatorics etc. The proof methods used in the

mathematical part will be mostly set-theoretic, but some methods from model

theory and category theory will also be present.

A graph might be the simplest, but it is also one of the most useful notions in

mathematics. We show that there is a faithful functor F from the category L of

linear orders to the category G of graphs that preserves model theoretic-related

universality results (classes of objects having universal models in exactly the same

cardinals, and also having the same universality spectrum).

Trees constitute combinatorial objects and have a central role in set theory. The

universality of trees is connected to the universality of linear orders, but it also

seems to present more challenges, which we survey and present some results. We

show that there is no embedding between an ℵ2-Souslin tree and a non-special

wide ℵ2 tree T with no cofinal branches. Furthermore, using the notion of ascent
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path, we prove that the class of non-special ℵ2-Souslin tree with an ω-ascent path

a has maximal complexity number, 2ℵ2 = ℵ3.

Within the general framework of the universality problem in set theory and

model theory, while emphasising their approaches and their connections with

regard to this topic, we examine the possibility of drawing some philosophical

conclusions connected to, among others, the notions of mathematical

knowledge, mathematical object and proof.
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Introduction and Summary

The universality problem in set theory and model theory addresses the question

of the existence of a universal element or a family of elements in certain classes

of objects, such as linear orders, graphs or trees. To a certain extant, it

represents a way of approaching the question of ’representatives’ of these classes

of mathematical objects.

This is of special interest in these areas of mathematics since both the existence

or non-existence of such universal elements have significant mathematical

consequences. Establishing such existential statements meets certain

(mathematical) challenges, to be detailed throughout the text, so it happens

that in certain case, we can hope to find universal elements (families) only for

restricted classes of objects.

Historically, the configuration of the universality problem is connected to the

development of the notion of a universal domain in the twentieth century, in such

diverse fields as linear orders (Hausdorff in [82]), topology (Urysohn in [220]),

algebraic geometry (Weil in [225]) and logic (Fräıssé in [64], Jónsson in [96] and

[98], and, therefore, with the more general notion of extension. As we will show

throughout the text, there is no unique methodology in addressing this issue, but

its analysis invites further interrogations in both mathematics and philosophy.

It is not the purpose of this text to settle the nature of knowledge, not even of

the presumably more restrictive term of mathematical knowledge. It is neither
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the purpose of this text to say what is the nature of philosophy, mathematics or

the philosophy of mathematics. But no discussion can take place in a conceptual

void, so I will start by making some distinctions that are necessary for an analysis

of the universality problem in mathematics, specifically set theory and model

theory. I have taken into account these two areas of mathematics because of

certain similarities and common context in approaching this topic. There are

some consequences following from these choices. Firstly, it uses their methods.

Secondly, and after its description and analysis, it will hopefully become more

clear how the universality problem is simultaneously determining the framework

of the analysis.

The creation and development of set theory, starting in the last quarter of the 19th

century, determined a precise configuration of the notion of structure and classes

of structures (to the extent that Bourbaki got to proclaim that ”[S]tructures are

the weapons of the mathematician”). So it was only natural in this context to

consider the concept of a universal structure for a class of structures and analysing

its existence in different areas of mathematics.

Universality is inextricably linked to some mathematical notions, like that of a

model or structure. As such, we will extend our analysis to them and to their

meanings. It is connected with the idea of a universal domain in the theory of

linear orders, model theory, topology or algebraic topology. It is also related to

the part-whole relation, as the last is transposed into the context of set theory,

within the mathematics of infinity. But the relation involved by universality is

not determined in terms of size. Part - whole has new meanings here, so there is

another consequence with regard to the way we understand mathematical objects.

The gradual configuration of the universality problem will underline some of its

basic characteristics, first and foremost that of being a mathematical object of

a specific kind, linked to the concept of method. Its nature expresses forms of

generalisation and abstractisation, terms that will be examined in connection to

notions such as re-conceptualisation and model extension.
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But first, the universality problem is involved in the creation of mathematical

knowledge, so I will start by delimiting a general conceptual framework to be

used in establishing the nature of such knowledge. That survey will further lead

us to epistemic distinctions related to the area of philosophy. The first chapter

will describe the general framework of mathematical knowledge. This last notion

will be determined in connection to the specific fields of set theory and model

theory. That will require that we focus on specific aspects belonging to these

theories and, in particular, the methods and types of poof employed in these

contexts, with a focus on set theory, and their limits.

Universality problem is an open problem in both set theory and model theory.

In model theory, classification theory in particular, it is used as a test problem.

In set theory, is is fundamentally connected to combinatorics. And if we combine

that with the fact that the concepts of set and the methods used in set theory

are general and abstract enough that can be potentially applied to any field of

mathematical inquiry, that the use of the axioms of set theory offers the possibility

of showing the similarity, in the arguments, of various types of mathematical

reasoning, this problem engenders new aspects to consider, including its role as

a methodological tool.

There are philosophers of mathematics who minimise the value of

mathematicians’ judgements with regard to mathematical practice. I am aware

that we could use Frege’s distinction between judgement (Urteil) and

(judgeable) content (beurteilbarer Inhalt) to leave them aside and avoid any

form of psychologism1. But a focus on mathematical practice acknowledges the

fact that mathematics is done by human beings, emphasising the necessity of

taking into account the mathematicians’ judgements, all the while being aware

of the epistemological difficulties involved by such a positioning between

subjectivity and objectivity. The objectivity of a mathematician’s judgement

related to their practice is sanctioned by a specific context. Consequently, I

maintain that the informed opinion a mathematician has about their

1Content is true or false, leading to the logical notion of truth-value
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mathematical practice constitutes a valuable aspect to consider when striving to

achieve an objective conceptual analysis of what mathematics or mathematical

practice represent. As such, I will take them into consideration whenever they

are necessary and available.

This thesis is divided into four chapters (chapters number 3, 4, 5 and 6). The third

and the sixth are mainly philosophical in substance, while the fourth and the fifth

have a mathematical character. Such an operational division does not minimise

the role of chapters 4 and 5 and their fundamental role for the comprehension of

the thesis as a whole. The third chapter offers a general conceptual framework

for the discussion, while the sixth one points to some philosophical distinctions

determined by a specific mathematical practice and, in particular, the search for

results regarding the universality problem.

Chapter 3 starts by fixing the idea of mathematical knowledge and making

some conceptual distinctions, not with the purpose of offering a definitive answer,

but rather to offer a general context in which mathematics can be seen as part of

and in connection with general epistemic endeavours. I mention several ways in

which mathematical knowledge could manifest itself. These forms are connected

with the mathematical problem evaluated in this text: the universality problem.

Given that many interrogations concerning mathematics and mathematical

knowledge are fundamentally philosophical, I was interested to see how exactly

can philosophy be involved in analysing the constitution of mathematical

knowledge through mathematical practice, and what role could it have for

mathematics in general, and the universality problem in particular. So I took

into consideration a general distinction among the following: the philosophical

approach to mathematics; the philosophical beliefs of one mathematician or

another; and mathematical practice. In order to emphasise some relevant

aspects, I discussed several positions, coming both from mathematicians and

philosophers. This last methodological point is one that I have used on several
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occasions throughout the text. I question some of the traditional approaches

regarding the philosophy of mathematics and the roles of set theory in general,

and I point several reasons which make set theory an interesting context for

discussions, all the while mentioning various opinions in this regard. Its

representational role in mathematics (different mathematical objects can be

represented as sets) together with the methods it developed makes it particular

interesting to interrogating the notion of mathematical object, with different

topics in set theory offering further distinctions. And I will reprise this aspect

in the sixth chapter.

Given that mathematical knowledge is not just juxtaposition of theorems, I took

into account the role of proof and I analysed some approaches in this regard,

including the limits of formal proof. Although proof does not constitute the only

source of explanation (and therefore knowledge) in mathematics, it offers valuable

insights when considered in a more global explanatory activity. For this reason,

I also examined some aspects related to method, which were further developed

in chapters 4 and 6. I maintain that there are different ways of approaching the

notion of method and, in this chapter, I focus on discussing the axiomatisation

method in the context of set theory and pointing to the fact that despite different

limitations, it is epistemologically ampliative, particularly if we take into account

the consistency results and independence results offered by forcing.

Through their objects (models, universes) and methods, set theory and model

theory invite us to consider the idea of extension. Universality is also defined in

terms of homogeneous saturation and, in model theory, saturation represents a

generalisation of algebraic closure. I also mention some other examples,

including the monster model or the concept of non-standard model, and I

discuss some aspects related to asbtractisation in model theory. I analyse the

notion of extension in relation to that of generalisation and idealisation in

mathematics, and I also refer to extension in the sense of expansion, starting

from Gödel’s idea that no formal system can exhaustively describe the whole

mathematical universe. Extension can also be considered as a process of
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reconceptualisation and, in this regard, I examine Manders’ view.

I also analyse the idea of universe in set theory, a notion that involves certain

distinctions, starting with the one between ’internal’ and ’external’ (or the

metatheoretical universe of ZFC). It further involves one between semantic and

syntactic. Universality will make its ’appearance’ when trying to establish the

order among the models of a class. I draw a connection between the role of

different universes in set theory (and model theory) and some philosophical

notions introduced by Plato. Finally, and in connection to the idea of extension

as reconceptualisation and interpretability, I mention the possibility, proposed

by some mathematicians, of regarding the universe as an infinite oriented graph

(Krivine) or translating the Zermelo-Fraenkel axioms into graph-theoretic

language (Nash-Williams). The extension of the set theoretic universe also

involves the introduction of large cardinal axioms, used to measure the

consistency strength of various set theoretic hypotheses and forming a linearly

ordered hierarchy, with the inaccessible cardinals at the bottom. I examine

some views regarding their role in set theory and the way they are used in the

philosophy of mathematics (Steel, Feferman, Maddy, Shelah).

The fourth chapter contains an introduction to the problem of universality

in set theory and in connection to model theory. We start by offering the general

mathematical framework, in the form of basic definitions that will be further

used throughout the text. Although universal objects can be found in several

mathematical contexts (category theory, for example), we use set theory as a

general framework because of its flexibility, axiomatic framework, and specific

tools.

According to a general definition, a universal model of size κ of a theory T is

a model in which any other model of T of cardinality κ embeds elementarily.

We further extend and define the terms of the definition (to include the universal

family and the universality spectrum), offer examples, and refer to different forms
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of universality results. For instance, a weak form of universality implies that

there is a universal model of cardinality κ > λ, a model of a theory T , but not

belonging to the collection of models of T of cardinality λ, into which every model

of cardinality λ is elementary embedded. A proof for a first universality result

goes back to Cantor: we say today that Q is the only countable linear order,

up to isomorphism, which contains any other countable linear order, and every

isomorphism between two finite subsets extends to an automorphism of Q.

Universality (determining the universality spectrum for a theory) but also

saturation (given that a universal model can also be defined model-theoretically

as a saturated homogeneous model), and other mathematical phenomena are

characterised by a rich interaction between set theory and model theory. Many

approaches to universality (including non-universality theorems), which I

mention, have taken into consideration the connection between various results

in model theory and set theory. Consequently, the next section establishes the

relation between set theory and model theory around the problem of

universality. Universality in model theory is sensitive to results in set theory,

specifically to extensions of its systems of axioms or combinatorial statements.

Using model theoretic properties, the existence of a universal model is ensured

in certain cases. In set theory, the results are determined and complicated by

cardinal arithmetic and (infinite) combinatorics. I consider Baldwin’s reference

to a paradigmatic shift in two phases taking place in model theory (the first

from a study of logics to the study of theories, the second brought forward by

Shelah’s introduction of classification theory), and I connect it to the

universality problem, specifically in the third section of the chapter.

So we continue by offering an overview of the problem of universality in model

theory, in particular classification theory, and ways to tackle it. The focus is on

first order theories. We start by examining Fräıssé’s and Jónsson’s results, who

approached the construction of universal domains from a purely semantic or

algebraic point of view. Morley and Vaught determined a fundamental shift by

replacing the substructure notion by elementary submodel and developing the
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central notion of saturated model ; and then Shelah generalized even further.

After introducing some definitions, we analyse in more detail some

model-theoretic notions related to universality: structure, type, forking,

definable sets, saturated models, homogeneity and stability. Saturation is a

stronger property than universality. Universality represents an algebraic

property describing a class of models, the embedding relation between models.

Saturation refers to one model, describing the relation between M and the types

over its subsets. Furthermore, when approaching saturation and universality,

there is a difference between countable models and uncountable ones. Using the

distinctions operated by the stability theory, theories have universal models in

the cardinals where they are stable. But when a theory is unstable, one cannot

say what happens when GCH does not hold. That being said, simple theories

(unstable theories without the tree property, which is a weaker property than

the strict order property) represent an interesting object for the study of

universality, given that they are no more complicated than random graphs. We

continue with an introduction to the use of classification theory in the approach

to the universality problem. Very loosely speaking, classification theory involves

organising classes of mathematical objects using a notion of equivalence by

invariants. Classification theory generates general frameworks for comparing

theories by providing dividing lines which depend on some test problems.

Shelah first used the number of non-isomorphic models, and he is currently

working on using the universality spectrum as a test problem. Baldwin

emphasises the fact that Shelah’s classification project also involves new

problems and questions in the philosophy of mathematical practice.

The last section of this chapter represents an introduction to the universality

problem in set theory and presents several methods used in this area to offers

solutions. A theory can have universal models in some cardinals and not others,

so the universality spectrum of a theory depends on cardinal arithmetic.

Furthermore, there are differences between universes satisfying GCH and those

without it. And in connection to the classification project, if some theories have
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universal models in the same cardinals, it may mean that they are somehow

related. Although in some cases cardinal arithmetic can guarantee the existence

of a universal model (CH, for instance, implies that every first order theory has

a universal (saturated) model of cardinality ℵ1), cardinal arithmetic is usually a

fundamental aspect to consider. That being said, the first result which showed

universal structures might exist despite the cardinal arithmetic was again a

result by Shelah, who proved that it is consistent with ¬CH that there is a

universal total order. Given the role of set theory in the configuration of the

universality problem, we describe and analyse some of the instruments in

dealing with the uncountable sets, concepts, techniques and methods that were

used in set theory to find solutions to this problem. Some point to the existence

of universal models in different contexts. Others show that a certain theory

does not have a small universal family at a certain cardinal (club guessing

methods). But they all refer to GCH-like assumptions: firstly, when we assume

it; secondly, there are results where CH is violated, and then we analyse the

possibility of the existence of universal models in forcing extensions. We discuss

some notions and techniques related to the concept of limit and we start by

acknowledging a distinction among different types of limit made by Tao. The

ultraproduct construction offers the possibility of constructing new

mathematical structures out of familiar ones. The Fräıssé limit represents a

construction of a universal homogeneous countable relational structure from the

class K of its finite substructures that satisfy certain properties. The

Ehrenfeucht-Fräıssé games are used to gauge the similarities between structures

and to prove when two models are equivalent.

The set theoretic combinatorics represents a complex and rich area of study and

results, including extensions of Ramsey’s theorem, especially partition calculus,

transfinite trees and graphs, Martin’s axiom, combinatorics of the continuum,

singular cardinal combinatorics, PFA theory-related results, Todorčevič’s theory

of minimal walks etc. The methods can be found in a large array of universality-

related results. Generally speaking, infinitary combinatorics can be used to model
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and understand processes involving infinitely many steps (and their nature), while

also being aware of the distinction among results connected to different types

of cardinals (regular, singular and their successors). I continue by discussing

guessing sequences, forcing and some techniques developed by Shelah in the PCF

theory.

In the fifth chapter , we will define several terms, state some universality

results that apply to all first order structures, give a context for the results of

this thesis and give the said results. In the first section, we will give an account

of the basic concepts and the definitions for the types of structures that will

be used throughout the chapter. The notion of embedding captures the idea of

relation between structures. The second chapter provides a general context for

this notion together with definitions for the types of embeddings that will be used

in this chapter for graphs and ordered structures. The third section contains some

well-known universality results. There are more studies regarding the existence

of universal models for first order theories. In the fourth section, we will focus

on graphs. We start by establishing a context and mentioning some well-known

results.

Furthermore, I will discuss the possibility of translating one type of structure into

another (linear orders and graphs) in order to preserve the embedding related to

the universality property. It also contains the following result, for whose proof

we will use category theory notions (also presented).

Result. There is a faithful functor F from the category L of linear orders to the

category G of graphs that preserves model theoretic-related universality results

(classes of objects having universal models in exactly the same cardinals, and

also having the same universality spectrum).

F can be considered as the functor from L to its essential image in G, denoted

by E .

Section 5.5. is structured as a survey of universality results concerning trees.
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Trees constitute combinatorial objects and have a central role in set theory.

They can also be considered as a very natural generalisation of ordinals, given

that they can be defined as partial orders on an ordinal. They express certain

difficulties and complexities connected to set theory in general and the problem

of universality in particular, and the solutions involving them (the existence or

non-existence of a universal family of trees or a universal tree, in the context of

this text) determined the creation and development of valuable proofs and

techniques. The universality of trees is connected to the universality of linear

orders, but it also seems to present more challenges. Furthermore, this problem

is interesting in the case of those classes of trees that do not have an unbounded

branch, given that an unbounded branch would automatically give a universal

object. We structure this survey by taking into consideration several aspects

that are involved in the search for and results concerning universal trees, all the

while mentioning relevant known results and their proofs. We also offer some

other proofs to already known results. We start by remarking the distinction

between well-founded and non-well-founded when applied to trees, and then we

describe the types of embeddings used when looking for this kind of universal

objects. We continue by describing different types of trees (Aronszajn, Souslin,

special, non-special, Canary), ways of constructing them, and existence results.

We then show how different proofs and techniques are related to universality

results, including the σ operation, forcing.

We give some proofs regarding the existence of some types of trees and their

types of embedding (Q-embeddable, R-embeddable). We also prove some results

connected to non-special trees: non-special Aronszajn trees, and the non-special

trees constructed from a bi-stationary set. Put together, they show that there

is no universal element in the class T (A) of bi-stationary trees, with A a bi-

stationary subset of ω1.

The σ operator offers the possibility of proving both existence and non-existence

results. The tree σQ is universal for all normal trees having strictly increasing

embeddings into the reals. If we assume CH, the σ function forbids the existence
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of a universal family of size ≤ ω1 for Tω1 .

We then show that there is no embedding between an ℵ2-Souslin tree and a

non-special wide ℵ2 tree T with no cofinal branches.

Using the notion of ascent path, we prove that the class of non-special ℵ2-Souslin

tree with an ω-ascent path has a maximal complexity number, 2ℵ2 = ℵ3.

In the sixth chapter , we will show how the examination of various results

regarding the universality problem in set theory and model theory offer new

perspectives regarding method, mathematical object, the semantic/syntactic and

the abstract/concrete distinctions.

Generally speaking, a mathematical theory can be described either internally or

syntactically through axioms and theorems or externally or semantically,

through its models. But results in model theory and classification theory or the

method of forcing in set theory merge both a semantic and syntactic

components. And it’s the same case with the universality problem. Saturation

refers to one model, whereas starting with the work of Fráıssé and then Jónsson

in the 1950’s, universal domains are constructed in a semantic way. In the

mathematical practice there might be a preference for the semantic or the

syntactic, but that is related to individual choices. That being said,

combinatorics plays an important role in set theory and it represents a semantic

approach. Logical equivalence is a syntactic notion, while equiconsistency (the

use of large cardinals, so stronger axioms than ZFC) is a semantic one. The

latter might be more informative from an epistemological point of view. But

they all offer mathematical knowledge. It should be noted though that the

notion of consistency was for Skolem not a syntactic but a semantic one,

referring to the existence of a structure satisfying the axioms.

I continue by mentioning Cellucci’s take on the mathematical object as

hypothesis and present some further suggestions determined by the

characteristics of set theory, model theory and results connected to the
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universality problem. Although not all mathematical object are sets, set theory

offers the possibility of a homogeneous context to represent objects of the same

type. As such, a mathematical object will be described as a set together with a

certain structure on it. So I further maintain that the versatile nature of sets

and the concepts and the methods used in their analysis can further offer the

possibility of conceiving mathematical objects in general as heuristic devices. In

the context of set theory and its methods of proof (particularly forcing),

mathematical objects can also be analysed in relation to their names. But

although it represents a philosophical question, the relation between names and

objects has a specific meaning in set theory. And this last aspect questions

again the configuration of a relation between mathematics and philosophy.

The analytic method in the philosophy of mathematics, which Cellucci is

advancing, revolves around the idea of plausibility, not truth. Mathematical

objects in such a view are considered to be hypotheses, which means that there

will be no immediately justified premisses from which all knowledge is deduced.

So there is no rejection of the infinite regress argument. I analyse this approach,

while also including an account of Platos’s view (from which it started). I think

that the idea of mathematical object as hypothesis is an interesting one, but

there are some limitations in Cellucci’s view, first and foremost the fact that

there are fundamental distinctions between mathematics and philosophy. Given

that any a priori epistemological ideas represent a limitative approach in the

process of understanding mathematical processes, I suggest we take into

consideration different contexts, methods, and the mathematical practice in

approaching a mathematical problem. The idea that I suggest is that the

connection between mathematical objects and the world is not abstraction and

idealisation, but interrogation and orientation.

I continue by making some remarks concerning the abstract-concrete distinction.

I start by making a distinction between an external and an internal notion of

abstractisation when dealing with mathematical objects. Such a distinction does

not reflect the philosophical practice, but the mathematical one. I examine some
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views and give some examples connected to the universality problem.

I return to the idea of method, but in a way that could connect the meanings

exposed in the previous chapters, encompassing the idea of an epistemic context

for mathematical developments, a heuristic instrument, and as an object of study

in itself. As such, I start by pointing the role of the infinite in establishing

this general idea of method. First, it is not always possible to apply the same

mathematical rules and intuition involved in the finite realm to the transfinite

one. Secondly, the infinite as method is connected to set theory as mathematics

of the infinite and its organising principles, expressed in the axioms. Regarding

universality, it represents a test problem in model theory and classification theory

and, as such, provides a context for establishing connections across different areas

of mathematics, but also becoming a methodological instrument and a form of

interrogation of method. Various results regarding universality show how it is

inextricably connected to combinatorics in set theory. A common characteristic

of the combinatorial principles involved is that they are independent of the usual

system of axioms in set theory, and, as a result, they are particularly useful

in proving non-existence. All in all, the analysis of universality determined the

development of other central notions in model theory, like saturated models,

homogeneous models and, eventually, non-forking.

Returning to the connection between mathematical knowledge or mathematics

as a whole and philosophy, I entertain the possibility of taking them as different

responses (maybe connected) to a more general human interrogation or

interrogations. Consequently, I point to an idea of order. It is not a

mathematical element, but it is an idea that mathematicians, as human beings,

might take into consideration when referring to vague concepts such as

’intuition’ or even the ’truth’ expressed by a result. Some have pointed out that

it constitutes a cultural phenomenon. Nonetheless, the idea of ’order’ can be

found ’behind’ several mathematical endeavours. I discuss further aspects

connected to the role of proof in mathematical knowledge, and in connection to

that as well, I consider the idea of order as a unifying conceptual space.



2

Introduction et Sommaire

Le problème d’universalité dans la théorie des ensembles et la théorie des

modèles aborde la question de l’existence d’un élément universel ou d’une

famille d’éléments dans certaines classes d’objets, tels que les ordres linéaires,

les graphes ou les arbres. Dans une certaine mesure, il représente une manière

d’aborder la question des ’représentants’ de ces classes d’objets mathématiques.

Ceci est d’un intérêt particulier dans ces domaines des mathématiques puisque

l’existence ou la non-existence de tels éléments universels ont des conséquences

mathématiques importantes. L’établissement de tels énoncés existentiels

rencontre certains défis (mathématiques), à détailler tout au long du texte, si

bien que dans certains cas, on ne peut espérer trouver des éléments ou familles

universels que pour des classes restreintes d’objets.

Historiquement, la configuration du problème de l’universalité est liée au

développement de la notion de domaine universel au vingtième siècle, dans des

domaines aussi divers que les ordres linéaires (Hausdorff dans [82]), la topologie

(Urysohn dans [220]), la géométrie algébrique (Weil dans [225]) et la logique

(Fräıssé dans citeF54, Jónsson dans [96] et [98], et donc avec la notion plus

générale d’extension. Comme nous le montrerons tout au long du texte, il n’y a

pas de méthodologie unique pour aborder cette question, mais son analyse

invite à de nouvelles interrogations en mathématiques et en philosophie.

Ce n’est pas le but de ce texte de fixer la nature de la connaissance, pas même
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des termes supposément plus restrictifs tel que savoir ou connaissance

mathématique. Ce n’est pas non plus le but de ce texte de dire quelle est la

nature de la philosophie, des mathématiques ou de la philosophie des

mathématiques. Mais aucune discussion ne peut avoir lieu dans un vide

conceptuel, donc je commencerai par faire quelques distinctions qui sont

nécessaires pour une analyse du problème de l’universalité en mathématiques,

en particulier dans la théorie des ensembles et la théorie des modèles. J’ai pris

en compte ces deux domaines des mathématiques en raison de certaines

similitudes et d’un contexte commun dans l’approche de ce sujet. Certaines

conséquences découlent de ces choix. Tout d’abord, le problème de l’universalité

utilise leurs méthodes. Dans un deuxième temps, et après sa description et son

analyse, il deviendra, espérons-le, plus clair comment le problème de

l’universalité détermine simultanément le cadre de l’analyse. La création et le

développement de la théorie des ensembles, à partir du dernier quart du XIXe

siècle, ont déterminé une configuration précise de la notion de structure et de

classes de structures (au point que Bourbaki a proclamé que ”les structures sont

les armes du mathématicien”). Il était donc naturel dans ce contexte de

considérer le concept de structure universelle pour une classe de structures et

d’analyser son existence en différents domaines des mathématiques.

L’universalité est donc inextricablement liée à certaines notions mathématiques,

comme celle de modèle ou de structure. À ce titre, nous allons étendre notre

analyse pour les englober et dégager leur signification. Elle est liée à l’idée d’un

domaine universel dans la théorie des ordres linéaires, la théorie des modèles, la

topologie ou la topologie algébrique. Elle envoie aussi à la relation partie-tout, la

façon dont ette dernière est transposé dans le cadre de la théorie des ensembles,

au sein des mathématiques de l’infini. Mais le rapport qu’implique l’universalité

n’est pas déterminé en termes de taille. La partie - le tout a ici de nouvelles

significations, il y a donc une autre conséquence en ce qui concerne la façon dont

nous comprenons les objets mathématiques.

La configuration progressive du problème d’universalité soulignera certaines de ses
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caractéristiques fondamentales, en premier lieu celle d’être un objet mathématique

d’un genre spécifique, et lié aussi au concept de méthode. Sa nature exprime des

formes de généralisation et d’abstraction, termes qui seront examinés en relation

avec des notions telles que la re-conceptualisation et l’extension du modèle.

Mais d’abord, le problème de l’universalité est impliqué dans la création de la

connaissance mathématique, donc je commencerai par délimiter un cadre

conceptuel général à utiliser pour établir la nature de ce type de connaissance.

Cette enquête nous conduira plus loin aux distinctions épistémiques liées au

domaine de la philosophie. Le premier chapitre décrira le cadre général de

connaissance mathématique. Cette dernière notion sera déterminée en lien avec

les domaines spécifiques de la théorie des ensembles et la théorie des modèles.

Cela nécessitera que nous nous concentrions sur des aspects spécifiques

appartenant à ces théories et, en particulier, les méthodes et les types de

démonstration employées dans ces contextes, avec un accent sur la théorie des

ensembles, et leurs limites.

Le problème d’universalité est un problème ouvert à la fois dans la théorie des

ensembles et la théorie des modèles. Dans la théorie des modèles, dans la

théorie de la classification (classification theory) en particulier, il est utilisé

comme problème test (test problem). Dans la théorie des ensembles, il est

fondamentalement lié à la combinatoire. Et si nous combinons cela avec le fait

que les concepts d’ensemble et les méthodes utilisées dans la théorie des

ensembles sont suffisamment généraux et abstraits pour pouvoir être

potentiellement appliqués à n’importe quel domaine de la recherche

mathématique, que l’utilisation des axiomes de la théorie des ensembles offre la

possibilité de montrer la similitude, dans les arguments, de divers types de

raisonnement mathématique, ce problème engendre de nouveaux aspects à

considérer, y compris son rôle d’outil méthodologique.

Il y a des philosophes des mathématiques qui minimisent la valeur des

jugements des mathématiciens à l’égard de la pratique mathématique. Je suis
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consciente qu’on pourrait utiliser la distinction de Frege entre jugement (Urteil)

et contenu (jugeable) (beurteilbarer Inhalt) pour les laisser de côté et éviter

toute forme de psychologisme1. Mais si on prend la pratique mathématique

comme centre d’attention, on reconnâıt le fait que les mathématiques sont faites

par des êtres humains, soulignant la nécessité de prendre en compte les

jugements des mathématiciens, tout en étant conscient des difficultés

épistémologiques qu’implique un tel positionnement entre subjectivité et

objectivité. L’objectivité du jugement d’un mathématicien lié à sa pratique est

sanctionnée par un contexte spécifique. Par conséquent, je maintiens que

l’opinion informée qu’un mathématicien a sur sa pratique mathématique

constitue un aspect précieux à considérer lorsqu’on s’efforce de parvenir à une

analyse conceptuelle objective de ce que les mathématiques ou la pratique

mathématique représentent. À ce titre, je les prendrai en considération chaque

fois qu’elles seront nécessaires et disponibles.

Ce travail est divisé en quatre chapitres (chapitres numéros 3, 4, 5 et 6). Le

troisième et le sixième sont principalement de nature philosophique, tandis que

le quatrième et le cinquième ont un caractère mathématique. Un tel découpage

opérationnel ne minimise pas le rôle des chapitres 4 et 5 et leur rôle

fondamental pour la compréhension de la thèse dans son ensemble. Le troisième

chapitre propose un cadre conceptuel général pour la discussion, tandis que le

sixième indique certaines distinctions philosophiques déterminées par une

pratique mathématique spécifique, en particulier la recherche de résultats

concernant le problème de l’universalité.

Le troisième chapitre commence par fixer l’idée de connaissance

mathématique et par faire quelques distinctions conceptuelles, non pas dans le

but d’offrir une réponse définitive, mais plutôt de constituer un contexte général

dans lequel les mathématiques peuvent être considérées comme faisant partie et

en relation avec des démarches épistémiques générales. Je mentionne plusieurs

1Le contenu est vrai ou faux, conduisant à la notion logique de valeur de vérité
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façons dont la connaissance mathématique pourrait se manifester. Ces formes

sont liées au problème mathématique éxaminé dans ce texte : le problème de

l’universalité.

Étant donné que de nombreuses interrogations concernant les mathématiques et

le savoir mathématique sont fondamentalement philosophiques, j’étais intéressée

de voir comment exactement la philosophie peut être impliquée dans l’analyse

de la constitution du savoir mathématique à travers la pratique mathématique,

et quel rôle pourrait-elle avoir pour les mathématiques en général, et le

problème de l’universalité en particulier. J’ai donc pris en considération une

distinction générale qu’on pourrait faire parmi les aspects suivants : une

approche philosophique des mathématiques ; les croyances philosophiques d’un

mathématicien ou d’un autre ; et la pratique mathématique. Afin de mettre

l’accent sur certains aspects pertinents, j’ai discuté plusieurs positions,

provenant à la fois de mathématiciens et de philosophes. Ce dernier point

méthodologique est celui que j’ai utilisé à plusieurs reprises tout au long du

texte.

Je remets en question certaines des approches traditionnelles concernant la

philosophie des mathématiques et les rôles de la théorie des ensembles en

général, et j’indique plusieurs raisons qui font de la théorie des ensembles un

contexte intéressant pour les discussions, tout en mentionnant diverses opinions

à cet égard. Son rôle représentationnel en mathématiques (différents objets

mathématiques peuvent être représentés comme des ensembles) ainsi que les

méthodes qu’il a développées le rendent particulièrement intéressant pour

interroger la notion d’objet mathématique, avec différents sujets en théorie des

ensembles offrant des distinctions supplémentaires. Et je reprendrai cet aspect

dans le sixième chapitre.

Étant donné que les connaissances mathématiques ne sont pas seulement une

juxtaposition de théorèmes, j’ai pris en compte le rôle de la preuve et j’analyse

certaines approches à cet égard, notamment les limites de la preuve formelle.
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Bien que la preuve ne constitue pas la seule source d’explication (et donc de

connaissance) en mathématiques, elle offre des informations précieuses lorsqu’elle

est considérée dans une activité explicative plus globale. Pour cette raison, j’ai

également examiné certains aspects liés à la méthode, qui ont été détaillés dans

les chapitres 4 et 6. Je soutiens qu’il y a différentes manières d’aborder la notion

de méthode et, dans ce chapitre, je me concentre sur la discussion de la méthode

d’axiomatisation dans le contexte de la théorie des ensembles et sur le fait que,

malgré différentes limitations, elle est épistémologiquement ampliative, surtout si

on tient compte des résultats de cohérence et les résultats d’indépendance offerts

par la méthode de forcing.

Par leurs objets (modèles, univers) et leurs méthodes, la théorie des ensembles

et la théorie des modèles nous invitent à considérer l’idée d’extension.

L’universalité est également définie en termes de saturation homogène et, dans

la théorie des modèles, la saturation représente une généralisation de la clôture

algébrique. Je mentionne également quelques autres exemples, le monster model,

par exemple, ou le concept de modèle non-standard, et j’aborde certains aspects

liés à l’abstraction dans la théorie des modèles. J’analyse la notion d’extension

par rapport à celle de généralisation et d’idéalisation en mathématiques, et je

me réfère également à l’extension au sens d’expansion, en partant de l’idée de

Gödel qu’aucun système formel ne peut décrire de manière exhaustive tout

l’univers mathématique. L’extension peut aussi être considérée comme un

processus de reconceptualisation et, à cet égard, j’examine le point de vue de

Manders.

J’analyse également l’idée de univers dans la théorie des ensembles, une notion

qui implique certaines distinctions, à commencer par celle entre ’interne’ et

’externe’ (ou l’univers métathéorique de ZFC). Une autre implique l’aspect

sémantique et celui syntaxique. L’universalité fera son ’apparition’ en essayant

d’établir l’ordre entre les modèles d’une classe. J’établie une connexion entre le

rôle des différents univers dans la théorie des ensembles (et la théorie des

modèles) et certaines notions philosophiques introduites par Platon. Enfin, et en
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lien avec l’idée d’extension comme reconceptualisation et interprétabilité, je

mentionne la possibilité, proposée par certains mathématiciens, de considérer

l’univers comme un graphe orienté infini (Krivine), ou de traduire les axiomes

de Zermelo-Fraenkel dans le langage de la théorie des graphes (Nash-Williams).

L’extension de l’univers de la théorie des ensembles implique également

l’introduction dex axiomes des grands cardinaux, utilisés pour mesurer la force

de cohérence de diverses hypothèses de la théorie des ensembles, et tout en

formant une hiérarchie ordonnée linéairement, avec les cardinaux inaccessibles

en bas. J’examine quelques points de vue concernant leur rôle dans la théorie

des ensembles et la manière dont ils sont utilisés dans la philosophie des

mathématiques (Steel, Feferman, Maddy, Shelah).

Le quatrième chapitre contient une introduction au problème de

l’universalité dans la théorie des ensembles et en relation avec la théorie des

modèles. Nous commençons par proposer le cadre mathématique général, sous

la forme de définitions de base qui seront ensuite utilisées tout au long du texte.

Bien que les objets universels puissent être trouvés dans plusieurs contextes

mathématiques (théorie des catégories, par exemple), nous utilisons la théorie

des ensembles comme cadre général en raison de sa flexibilité, de son cadre

axiomatique et de ses outils spécifiques.

Selon une définition générale, un modèle universel de cardinalité κ d’une théorie

T est un modèle dans lequel tout autre modèle de T de cardinalité κ se plonge

élémentairement. Nous étendons et développons les termes de la définition

(pour inclure la famille universelle et le spectre d’universalité), proposons des

exemples et nous nous référons à différentes formes de résultats d’universalité.

Par exemple, une forme d’universalité faible implique qu’il existe un modèle

universel de cardinalité κ > λ, un modèle d’une théorie T , mais n’appartenant

pas à la classe des modèles de T de cardinalité λ, dans laquelle chaque modèle

de cardinalité λ est élémentairement intégré. Une preuve d’un premier résultat

d’universalité remonte à Cantor : on dit aujourd’hui que Q est le seul ordre
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linéaire dénombrable, à isomorphisme près, qui contient tout autre ordre

linéaire dénombrable, et tout isomorphisme entre deux sous-ensembles finis se

prolonge en un automorphisme de Q.

L’universalité (détermination du spectre d’universalité d’une théorie) mais aussi

la saturation (étant donné qu’un modèle universel peut aussi être défini

modèle-théoriquement comme un modèle homogène saturé), et d’autres

phénomènes mathématiques sont caractérisés par une interaction riche entre la

théorie des ensembles et la théorie des modèles. De nombreuses approches de

l’universalité (y compris les théorèmes de non-universalité), que je mentionne,

ont pris en considération le lien entre divers résultats de la théorie des modèles

et de la théorie des ensembles. Par conséquent, la section suivante vise à établir

la relation entre la théorie des ensembles et la théorie des modèles autour du

problème de l’universalité. L’universalité dans la théorie des modèles est sensible

aux résultats de la théorie des ensembles, en particulier aux extensions de ses

systèmes d’axiomes ou d’énoncés combinatoires. En utilisant des propriétés de

la théorie des modèles, l’existence d’un modèle universel est assurée dans

certains cas. Dans la théorie des ensembles, les résultats sont déterminés et

compliqués par l’arithmétique cardinale et la combinatoire (infinie). Je

considère la référence que Baldwin a fait à propos d’un changement de

paradigme en deux phases ayant lieu dans la théorie des modèles (la première à

partir d’une étude des logiques à l’étude des théories, la seconde apportée par

l’introduction par Shelah de la théorie de la classification), et je la relie au

problème de l’universalité, spécifiquement dans la troisième section du chapitre.

Nous continuons donc en offrant un aperçu du problème de l’universalité dans

la théorie des modèles, en particulier la théorie de la classification, et les moyens

de l’aborder. L’accent est mis sur les théories du premier ordre. Nous

commençons par examiner les résultats de Fräıssé et Jónsson, qui ont abordé la

construction de domaines universels d’un point de vue purement sémantique ou

algébrique. Morley et Vaught ont déterminé un changement fondamental en

remplaçant la notion de sous-structure par celui d’un sous-modèle élémentaire
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et en développant la notion centrale dans la théorie des modèles de modèle

saturé ; et puis Shelah a généralisé encore plus loin. Après avoir introduit

quelques définitions, nous analysons plus en détail certaines notions de la

théorie des modèles liées à l’universalité : structure, type, forking, ensembles

définissables, modèles saturés, homogénéité et stabilité. La saturation est une

propriété plus forte que l’universalité. L’universalité (ou universalité homogène)

représente une propriété algébrique décrivant une classe de modèles, la relation

de plongement entre modèles. La saturation fait référence à un modèle,

décrivant la relation entre M et les types sur ses sous-ensembles. De plus, quand

on approche la saturation et l’universalité, on doit faire la différence entre les

modèles dénombrables et les modèles indénombrables. En utilisant les

distinctions opérées par la théorie de la stabilité, les théories ont des modèles

universels dans les cardinaux où elles sont stables. Mais quand une théorie est

instable, on ne peut pas dire ce qui se passe quand HGC ne tient pas. Cela dit,

les théories simples (théories instables sans la propriété d’arbre, qui est une

propriété plus faible que la propriété d’ordre strict) représentent un objet

intéressant pour l’étude de l’universalité, étant donné qu’elles ne sont pas plus

compliquées que les graphes aléatoires. Nous continuons avec une introduction à

l’utilisation de la théorie de la classification dans l’approche du problème de

l’universalité. Au sens large, la théorie de la classification consiste à organiser

des classes d’objets mathématiques en utilisant une notion d’équivalence par

invariants. La théorie de la classification génère des cadres généraux pour

comparer les théories en fournissant des lignes de division (dividing lines) qui

dépendent de certains problèmes-test (test problems). Shelah a d’abord utilisé le

nombre de modèles non isomorphes, et il travaille actuellement sur l’utilisation

du spectre d’universalité comme problème-test. Baldwin souligne le fait que le

projet de classification de Shelah, à côté des résultats mathématiques, implique

également de nouveaux problèmes et questions dans la philosophie de la

pratique mathématique.

La dernière section de ce chapitre représente une introduction au problème
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d’universalité dans la théorie des ensembles et présente plusieurs méthodes

utilisées dans ce domaine pour proposer des solutions. Une théorie peut avoir

des modèles universels dans certains cardinaux et pas en d’autres, de sorte que

le spectre d’universalité d’une théorie dépend de l’arithmétique cardinale. De

plus, il existe des différences entre les univers satisfaisant HGC et ceux qui ne le

satisfont pas. Et en ce qui concerne le projet de classification, si certaines

théories ont des modèles universels dans les mêmes cardinaux, cela peut signifier

qu’elles sont en quelque sorte connectées. Bien que dans certains cas

l’arithmétique cardinale puisse garantir l’existence d’un modèle universel (HC,

par exemple, implique que chaque théorie du premier ordre a un modèle

universel (saturé) de cardinalité ℵ1), l’arithmétique cardinale est généralement

un aspect fondamental à considérer. Cela étant dit, le premier résultat qui a

montré que des structures universelles pouvaient exister malgré l’arithmétique

cardinale était à nouveau un résultat de Shelah, qui a prouvé qu’il est consistant

avec ¬HC qu’il existe un ordre total universel. Étant donné le rôle de la théorie

des ensembles dans la configuration du problème de l’universalité, nous

décrivons et analysons certains de ses instruments pour traiter les ensembles

non dénombrable, concepts, techniques et méthodes qui ont été utilisés dans la

théorie des ensembles pour trouver des solutions à ce problème. Certains sont

employés pour pouver l’existence de modèles universels dans différents

contextes. D’autres montrent qu’une certaine théorie n’a pas de famille

universelle restreinte à un certain cardinal (club guessing guessing methods).

Mais ils se réfèrent tous à des hypothèses de type HGC : premièrement, lorsque

nous l’assumons ; deuxièmement, il y a des résultats où HC est violée ; puis nous

analysons la possibilité de l’existence de modèles universels dans les extensions

de forcing. Nous abordons ensuite certaines notions et techniques liées au

concept de limite et nous commençons par évoquer une distinction entre

différents types de limite faite par Tao. La construction de l’ultraproduit offre la

possibilité de construire de nouvelles structures mathématiques à partir de

structures familières. La limite Fräıssé représente une construction d’une

structure relationnelle dénombrable homogène universelle à partir de la classe K
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de ses sous-structures finies qui satisfont certaines propriétés. Les jeux

Ehrenfeucht-Fräıssé sont utilisés pour évaluer les similitudes entre les structures

et pour prouver quand deux modèles sont équivalents.

La combinatoire de la théorie des ensembles représente un domaine d’étude et des

résultats complexes et riches, comprenant des extensions du théorème de Ramsey,

en particulier le calcul des partitions, les arbres et graphes transfinis, l’axiome de

Martin, la combinatoire du continuum, la combinatoire des cardinaux singuliers,

les résultats liés à la théorie PFA, la théorie de Todorčevič’s de minimal walks,

etc. Les méthodes peuvent être trouvées dans un large éventail de résultats liés à

l’universalité. D’une manière générale, la combinatoire infinitaire peut être utilisée

pour modéliser et comprendre des processus impliquant une infinité d’étapes, tout

en tenant compte de la distinction entre les résultats liés à différents types de

cardinaux (réguliers, singuliers et leurs successeurs. Je continue avec l’analyse en

discutant club guessing sequences, la méthode de forcing et certaines techniques

développées par Shelah dans la théorie PCF.

Dans le cinquième chapitre , nous définirons plusieurs termes, énoncerons

quelques résultats d’universalité qui s’appliquent à toutes les structures du

premier ordre, présentons un contexte aux résultats de cette thèse et donnerons

lesdits résultats. Dans la première section, nous rendrons compte des concepts

de base et des définitions des types de structures qui seront utilisées tout au

long du chapitre. La notion du plongement capture l’idée de relation entre les

structures. Le deuxième chapitre fournit un contexte général pour cette notion

ainsi que des définitions pour les types de plongements qui seront utilisés dans

ce chapitre pour les graphes et les structures ordonnées. La troisième section

contient quelques résultats d’universalité bien connus. Il y a plus d’études

concernant l’existence de modèles universels pour les théories du premier ordre.

Dans la quatrième section, nous nous concentrerons sur les graphes. Nous

commençons par établir un contexte et mentionner quelques résultats bien

connus.
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On continue par discuter la possibilité de traduire un type de structure dans un

autre (ordres linéaires et graphes) afin de préserver le plongement (ou les

plonngements) utilisé(s) pour obtenir des résultats d’universalité. Il contient

également le résultat suivant, pour la preuve duquel nous utiliserons les notions

de la théorie des catégories (également présentées).

Result. Il existe un foncteur fidèle F de la catégorie L des ordres linéaires à la

catégorie G des graphes qui préserve les résultats d’universalité liés à la théorie

des modèles (classes d’objets ayant modèles universels dans exactement les mêmes

cardinaux, et ayant également le même spectre d’universalité).

F peut être considéré comme le foncteur de L vers son image essentielle dans G,

notée E .

Section 5.5. est structurée comme une enquête sur des résultats d’universalité

concernant les arbres. Les arbres constituent des objets combinatoires et ont un

rôle central dans la théorie des ensembles. Ils peuvent également être considérés

comme une généralisation très naturelle des ordinaux, étant donné qu’ils

peuvent être définis comme des ordres partiels sur un ordinal. Ils expriment

certaines difficultés et complexités liées à la théorie des ensembles en général et

au problème de l’universalité en particulier, et les solutions les impliquant

(l’existence ou l’inexistence d’un famille universelle d’arbres ou un arbre

universel, dans le contexte de ce texte) a déterminé la création et le

développement des méthodes de démonstration et des techniques de grande

valeur. L’universalité des arbres est liée à l’universalité d’ordres linéaires, mais

elle semble également présenter plus de défis. De plus, ce problème est

intéressant dans le cas des classes d’arbres qui n’ont pas de branche cofinale,

étant donné qu’une telle branche donnerait automatiquement un objet

universel. Nous structurons cette enquête en prenant en considération plusieurs

aspects qui interviennent dans la recherche et les résultats concernant les arbres

universels, tout en mentionnant des résultats connus et leurs preuves. Nous

commençons par remarquer la distinction entre bien-fondé et non-fondé
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lorsqu’elle est appliquée aux arbres, puis nous décrivons les types de

plongements utilisés lors de la recherche de ce type d’objets universels. Nous

continuons en décrivant différents types d’arbres (Aronszajn, Souslin, spéciaux,

non spéciaux, Canary), les manières de les construire et les résultats d’existence.

Nous montrons ensuite comment différentes preuves et techniques sont liées aux

résultats d’universalité, y compris l’opération σ, le forcing.

On présente quelques preuves concernant l’existence de certains types d’arbres

et leurs types du plongement (plongement dans Q, plongement dans R). Nous

prouvons également des résultats liés aux arbres non spéciaux : les arbres

d’Aronszajn non spéciaux, et les arbres non spéciaux construits à partir d’un

ensemble bi-stationnaire. Ensembles, ils montrent qu’il n’y a pas d’élément

universel dans la classe T (A) des arbres bi-stationnaires, avec A un

sous-ensemble bi-stationnaire de ω1.

L’opérateur σ offre la possibilité de prouver à la fois des résultats d’existence et de

non-existence. L’arbre σQ est universel pour tous les arbres normaux ayant des

plongements strictement croissants dans les réels. Si on suppose CH, la fonction

σ interdit l’existence d’une famille universelle de taille ≤ ω1 pour Tω1 .

Nous montrons qu’il n’y a pas de plongement entre un arbre ℵ2-Souslin et un

arbre ℵ2 − T large, non-spécial et sans branches cofinales.

En utilisant la notion de ascent path, nous prouvons que la classe des arbres

Souslin non-speciaux, ayant cardinalit ℵ2 et un ascent path de longueur ω a un

nombre de complexité maximal : 2ℵ2 = ℵ3.

Dans le sixième chapitre , je montre comment l’evaluation de divers

résultats concernant le problème de l’universalité dans la theorie des ensembles

et dans la théorie des modèles offre de nouvelles perspectives concernant la

notion de méthode, d’objet mathématique, ou à propos des distinctions

sémantique/syntaxique et abstrait/concret.
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D’une manière générale, une théorie mathématique peut être décrite soit de

manière interne ou syntaxique à travers des axiomes et des théorèmes, soit de

manière externe ou sémantiquement, à travers ses modèles. Mais des résultats

dans la théorie des modèles et dans la théorie de la classification, ou la méthode

de forcing dans la théorie des ensembles combinent à la fois des composants

sémantiques et syntaxiques. Et c’est le même cas avec le problème de

l’universalité. La saturation renvoie à un modèle, alors qu’à partir des travaux

de Fráıssé puis de Jónsson dans les années 1950, les domaines universels sont

construits de manière sémantique. Dans la pratique mathématique, on peut y

avoir une préférence pour la sémantique ou la syntaxe, mais cela est lié à des

choix individuels. Cela dit, la combinatoire joue un rôle important dans la

théorie des ensembles et représente une approche sémantique. L’équivalence

logique est une notion syntaxique, tandis que l’équicohérence (l’utilisation de

grands cardinaux, donc des axiomes plus forts que ZFC) est une notion

sémantique. La dernière pourrait être plus informative d’un point de vue

épistémologique. Mais ils offrent tous des connaissances mathématiques. Il faut

cependant noter que la notion de cohérence n’était pas pour Skolem une notion

syntaxique mais sémantique, renvoyant à l’existence d’une structure satisfaisant

les axiomes.

Je continue en mentionnant l’opinion de Cellucci sur l’objet mathématique en

tant qu’hypothèse et je présente quelques autres suggestions déterminées par les

caractéristiques de la théorie des ensembles, de la théorie des modèles et des

résultats liés au problème de l’universalité. Bien que tous les objets

mathématiques ne soient pas des ensembles, la théorie des ensembles offre la

possibilité d’un contexte homogène pour représenter des objets du même type.

En tant que tel, un objet mathématique sera décrit comme un ensemble avec

une certaine structure sur celui-ci. Je soutiens donc plus loin que la nature

souple des ensembles et des concepts et méthodes utilisés dans leur analyse

peuvent en outre offrir la possibilité de concevoir des objets mathématiques en

général comme des dispositifs heuristiques. Dans le cadre de la théorie des
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ensembles et de ses méthodes de preuve (en particulier le forcing), les objets

mathématiques peuvent également être analysés par rapport à leurs noms. Mais

bien qu’il s’agisse d’une question philosophique, la relation entre les noms et les

objets a un sens spécifique dans la théorie des ensembles. Et ce dernier aspect

interroge à nouveau la configuration d’un rapport entre mathématiques et

philosophie.

La méthode analytique dans la philosophie des mathématiques, que Cellucci

avance, tourne autour de l’idée de plausibilité, pas de vérité. Les objets

mathématiques dans une telle vue sont considérés comme des hypothèses, ce qui

signifie qu’il n’y aura pas de prémisses immédiatement justifiées à partir

desquelles toute connaissance est déduite. Il n’y a donc pas de rejet de

l’argument de la régression infinie. J’analyse cette approche, tout en incluant un

compte rendu du point de vue de Platon (qui est à l’origine de cette ideé). Je

pense que la notion d’objet mathématique comme hypothèse est intéressante,

mais il y a certaines limites dans la conception de Cellucci, en premier lieu le

fait qu’il existe des distinctions fondamentales entre les mathématiques et la

philosophie. Étant donné que toute idée épistémologique a priori représente une

approche limitative dans le processus de compréhension des processus

mathématiques, je suggère que nous prenions en considération différents

contextes, méthodes et pratiques mathématiques pour aborder un problème

mathématique. L’idée que je propose est que le lien entre les objest

mathématiques et le monde n’est pas abstraction et idéalisation, mais

interrogation et orientation.

Je continue en faisant quelques remarques concernant la distinction

abstrait-concret. Je commence par faire un découpage entre une notion externe

et une notion interne d’abstraction lorsqu’il s’agit d’objets mathématiques. Une

telle séparation ne reflète pas la pratique philosophique, mais la pratique

mathématique. J’examine quelques points de vue et donne quelques exemples

liés au problème de l’universalité.
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Je reviens à l’idée de méthode, mais d’une manière qui pourrait relier les

significations exposées dans les chapitres précédents, englobant l’idée d’un

contexte épistémique des développements mathématiques, d’instrument

heuristique et d’objet d’étude en soi. Ainsi, je commence par souligner le rôle de

l’infini dans l’établissement de cette idée générale de méthode. Premièrement, il

n’est pas toujours possible d’appliquer les mêmes règles mathématiques et

intuitions impliquées dans le domaine fini au domaine transfini. Deuxièmemen,

l’infini comme méthode se rattache à la théorie des ensembles comme

mathématiques de l’infini et ses principes organisateurs, exprimés dans les

axiomes. En ce qui concerne l’universalité, elle représente un problème-test dans

la théorie des modèles et dans la théorie de la classification et, en tant que telle,

fournit un contexte pour établir des liens entre différents domaines des

mathématiques, mais devient également un instrument méthodologique et une

forme d’interrogation de la méthode. Divers résultats concernant l’universalité

montrent comment elle est inextricablement liée à la combinatoire dans la

théorie des ensembles. Une caractéristique commune des principes

combinatoires impliqués est qu’ils sont indépendants du système habituel

d’axiomes de la théorie des ensembles et, par conséquent, ils sont

particulièrement utiles pour prouver l’inexistence. D’une manière générale,

l’analyse de l’universalité a déterminé le développement d’autres notions

centrales dans la théorie des modèles, comme les modèles saturés, les modèles

homogènes et, éventuellement, le non-forking.

Revenant sur le lien entre la connaissance mathématique ou l’ensemble des

mathématiques et la philosophie, j’entrevois la possibilité de les prendre comme

des réponses différentes (peut-être liées) à une ou des interrogations humaines

plus générales. Par conséquent, je propose l’idée d’ordre. Ce n’est pas un

élément mathématique, mais c’est une idée que les mathématiciens, en tant

qu’êtres humains, pourraient prendre en considération lorsqu’ils se réfèrent à

des concepts vagues tels que ’intuition’ ou même la ’vérité’ exprimée par un

résultat. Certains ont souligné qu’il s’agissait d’un phénomène culturel.
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Néanmoins, l’idée d’ordre se trouve ’derrière’ plusieurs démarches

mathématiques. Je discute d’autres aspects liés au rôle de la preuve pour le

savoir ou la connaissance mathématique et, en relation avec cela également, je

considère l’idée d’ordre comme un espace conceptuel unificateur.



3

Mathematical knowledge

Synopsis

The chapter is divided into three parts. In the first section, we

approach the idea of mathematical knowledge and focus on the field

of set theory. In the second part, we analyse some aspects regarding

the relation between proof and mathematical knowledge. The third

section fixes the notion of mathematical knowledge by considering

the idea of conceptual and mathematical extension mostly within

the framework of set theory but also model theory.

”Bohr’s remark reminded me of Robert’s comment, during our
walk near Lake Starnberg, that atoms were not things. For although
Bohr believed that he knew a great many details about the inner
structure of atoms, he did not look upon electrons in the atomic shell
as ”things”, in any case not as things in the sense of classical physics,
which worked with such concepts as position, velocity, energy and
extension. I therefore asked him: ”If the inner structure of the atom
is as closed to descriptive accounts as you say, if we really lack a
language for dealing with it, how can we ever hope to understand
atoms?” Bohr hesitated for a moment, and then he said: ”I think we
may yet be able to do so. But in the process we may have to learn
what the word ’understanding’ really means.” (Heisenberg, [83], p.
41)

I mention some aspects related to mathematical knowledge and understanding,

although I do not seek to find definitive answers in identifying the appropriate

support or conditions for a claim to mathematical knowledge.

My approach in connecting mathematics and philosophy is based on the fact, also

mentioned by Ewald, that ”it is a common characteristic of the various attempts
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to integrate the whole of mathematics into a coherent whole - whether we think

of Plato, of Descartes, or of Leibnitz, of arithmetization, or of the logistics of

the nineteenth century - that they have all been made in connection with a

philosophical system, more or less wide in scope; always starting from a priori

views concerning the relations of mathematics with the twofold universe of the

external world and the world of thought”([60], pp. 1266-7). My purpose in this

chapter, to be continued in the fourth one, is to mention some aspects regarding

these relation, and, given the subject, it cannot be other than limited in scope.

There are various elements that fall under the general term of mathematical

knowledge, such as theorems, proofs, evaluation of correctness, and even

hypotheses. I added this last factor because although hypotheses can be proved

to be wrong, they are never arbitrary, there are always some contextual and

structural constraints, mathematical ones, that determine their formulation.

Avigad maintains that given the central role of proof in mathematics - a theorem

is to be considered true if is has a proof -, its clarification translates to the same

status in the philosophy of mathematics. Mathematics, he continues, contains

more than evaluations of correctness though: for instance, ”we seem to feel that

there is a difference between knowing that a mathematical claim is true, and

understanding why such a claim is true. Similarly, we may be able to convince

ourselves that a proof is correct by checking each inference carefully, and yet still

feel as though we do not fully understand it”. As such, ”there is a gap between

knowledge and understanding”, made ”pointedly clear by the fact that one often

finds dozens of published proofs of a theorem in the literature, all of which are

deemed important contributions, even after the first one has been accepted as

correct. Later proofs do not add to our knowledge that the resulting theorem is

correct, but they somehow augment our understanding. Our task is to make sense

of this type of contribution” ([5], p. 319). For him, a theory of mathematical

understanding should be a theory of mathematical abilities.

The fact that different proofs improve our mathematical understanding is clearly
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true, but it doesn’t necessarily mean that the existence of different proofs point

to a perceived insufficiency of the original one. The discovery of other proofs may

involve a focus on certain aspects of the problem, they may be more ’elegant’,

they may establish relations to other areas of mathematics (or even introduce

new sub-areas), conceive new methods etc. Overall, the effects could be identified

in the creation of new relations within the mathematical landscape, (probably)

revealing new patterns here.

But given the philosophical difficulties in definitively establishing the distinctions

between knowledge and understanding, and the fact that it is not the purpose of

this text to do that, I will use these two notions interchangeably, with their

different connotations to be established in one context or another.

3.1 Conceptual framework - perspectives on the

philosophy of mathematics

Do we need a theory of mathematical knowledge? What is then mathematical

knowledge? And how is philosophy involved? Do we need to go outside

mathematics to understand the universality problem?

Against the foundationalist view, I subscribe to the idea that knowledge ”is not

an edifice built up according to a plan fixed beforehand, but the plan develops as

knowledge grows”([20], p. 37), that such a knowledge can indefinitely establish

new ’floors’, build new edifices and connected them. A system of knowledge

is closed by definition, and although helpful through its own limitations, one

could probably remember that ”[P]hilosophers are despots who have no armies

to command, so they subject the world to their tyranny by locking it up in a

system of thought” ([157], p. 291).

It might be helpful to start with the traditional conceptual and procedural

distinction summed up as knowing that, knowing why and knowing how. Of
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course philosophy does not offer a definitive view on such aspects, but the

philosophical interrogations regarding such matters do determine conceptual

distinctions, directions of interrogations and clarifications that make them

fundamental for the human knowledge in general and when picked up in

different sciences and mathematics, in particular.

It could therefore be helpful to acknowledge another distinction, more local this

time, involving

� the philosophical approach to mathematics,

� the philosophical beliefs of one mathematician or another, and

� mathematical practice.

Mathematical practice is purely mathematical, the philosophy of mathematics

strives to be an objective process, (at its best, it could be a self-interrogation),

whereas the philosophical beliefs of one mathematician or another open the

doors to other areas of knowledge. In 1979, R. Hersh wrote that ”[B]y

”philosophy of mathematics” I mean the working philosophy of the professional

mathematician, the philosophical attitude toward his work that is assumed by

the researcher, teacher, or user of mathematics” ([85], p. 31). That would

reduce the philosophy of mathematics to psychology, sociology, or history and

indeed, many mathematicians assume that the philosophy of mathematics is

just the philosophy of mathematicians.

I think that up to a point Gowers is right when he states the following, although

he is not always quite clear regarding the distinction between the philosophy

of mathematics and the philosophical beliefs of one mathematician or another:

”Suppose a paper were published tomorrow that gave a new and very compelling

argument for some position in the philosophy of mathematics, and that, most

unusually, the argument caused many philosophers to abandon their old beliefs

and embrace a whole new -ism. What would be the effect on mathematics? I

contend that there would be almost none, that the development would go virtually
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unnoticed. And basically, the reason is that the questions considered fundamental

by philosophers are the strange, external ones that seem to make no difference

to the real, internal business of doing mathematics. ”([75], p. 198).

He considers his view as being naturalist, while also maintaining that there are

”philosophical, or at least quasi-philosophical, considerations” (such as

induction) that ”do have an effect on the practice of mathematics” ([75], p.

199). Mathematicians’ ”outward behaviour” with regard to mathematics, he

continues, is not influenced by their beliefs, whether they are Platonists or

fictionalists.

Such a statement is not entirely correct if we take into account the history of

mathematics. For instance, until the 19th century, the mathematicians would

adhere to Aristotle’s distinction between the actual and the potential infinite. It

would be probably safer to assume that the last aspect involves psychological,

sociological and philosophical aspects that, for the moment at least, are hard to

unify into a definitive answer. He basically rests his view on a certain

presupposition that philosophers have on the idea of truth in mathematics,

particularly the ones identifying truth and provability. In that statement, he is

ignoring the fact that such an approach represents one philosophical theory, not

necessarily espoused by all philosophers. An alternative to the view that the

aim of mathematics is truth is that the aim of mathematics is plausibility (see

[20].

He does leave the door open to new approaches though when admitting that there

might be an ”important philosophical project”: ”the question of which informal

arguments we find convincing and why” ([75], p. 196). On the other hand,

he does favour a formalist approach: firstly because ”[W]hen mathematicians

discuss unsolved problems, what they are doing is not so much trying to uncover

the truth as trying to find proofs”; and secondly because ”the formalist way of

looking at mathematics has beneficial pedagogical consequences” ([75], p. 199).

The role of philosophy in approaching mathematics is a sensitive one, given that
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a first encounter between the two has epistemological connotations. There is

no definitive answer in this regard (how could it be possible?), but tackling the

idea of knowledge and, in particular, mathematical knowledge, made possible the

configuration of precious clarifications and delimitations, both for mathematics

and philosophy.

Cellucci, for instance, is right when he considers that philosophy ”may expose

the inadequacy of some basic mathematical concepts”; that it ”may provide an

analysis of some basic mathematical concepts”(e.g. Turing’s definition of effective

calculability); or that it ”may help to formulate new rules of discovery” (e.g. the

principle of induction, attributed by Aristotle to Socrates 1) ([20], p. 236).

What he is proposing is a reconfiguration of the philosophy of mathematics based

on the idea of the analytic method, which will show that the aim of mathematics

is plausibility and not truth, and that intuition has no role in mathematics. He

maintains that a ”genuine philosophy of mathematics” should offer answers to

questions such as ’What is the nature of mathematical knowledge?’, ’What is the

role of mathematical knowledge in human life?’, ’How is mathematical knowledge

acquired?’. They all constitute typical philosophical questions, but the philosophy

of mathematical could contribute to the ”advancement of mathematics by further

developing the analytic method. Even Frege acknowledges that ”a development

of method, too, furthers science. Bacon, after all, thought it better to invent a

means by which everything could easily be discovered than to discover particular

truths, and all steps of scientific progress in recent times have had their origin in

an improvement of method” (Frege 1967, 6).” ([20], p. 239).

For a recent account regarding plausibility, see Toffoli ([30]). She focuses her

analysis on the individual mathematical justification, showing that ”the main

function of mathematical justification is to guarantee that the mathematical

community can correct the errors that invariably arise from our fallible

1”For there are two things that may be fairly ascribed to Socrates - inductive arguments and
universal definition, both of which are concerned with a starting-point of scientific knowledge”
([4] M 4, 1078 b 27-30)
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practices” (p. 823). To that end, she offers a new definition of proof and

introduces the related notion of simil-proof, allowing her to offer a non-factive

account of justification. Although I agree with her that the existence of social

norms for mathematical justification does not entail the idea of a

’socially-constructed’ mathematics or any ontology of mathematics, there is

always a certain peril when trying to propose some ideal norms regulating

”regulating human mathematical practice”.

I agree with Cellucci that philosophy could approach mathematics through the

concept of method and I will expose further bellow the reasons in this regard,

but first, I would like to point out some aspects to be considered.

3.1.1 Reluctance to fit mathematical knowledge into a theory of

mathematical knowledge

There was a tendency to define the philosophy of mathematics from a

foundationalist perspective, regardless of the ’school of thought’ (logicism and

neo-logicism, formalism and neo-formalism or intuitionism and

neo-intuitionism).

To consider that the main directions of research is either the ’ontological

question’ - regarding the existence and nature of mathematical objects - or the

’epistemological question’ - focusing on the nature and justification of the

mathematical statements -, is reductionist and limiting, both for philosophy and

mathematics. First, it involves a translation of philosophical topics into a new

context: mathematics. But it also involved a certain interpretation the other

way around (see [177]). Although it doesn’t imply that each area of knowledge

shouldn’t be aware of the actual practice of the other. An example, concerning

the ontological questions ’What is a number?’ or ’What is a set?’, they are not

relevant to the mathematical practice, as so many mathematicians have

emphasized. But even Frege, so opposed to any ’psychologist’ approach, states

that it is ”a scandal that our science should be so unclear about the first and
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foremost among its objects” (Frege 1960, xiv).

For the other direction, when mathematical results are employed to support a

philosophical tradition, we could mention Putnam’s use of what would become

known as the model-theoretic argument against metaphysical realism ([165]), but

also Quine. Many of the most successful theories in various natural sciences are

mathematically expressed. But Quine ([167]) might be too reductionist when

maintaining that our best theories are our best scientific theories. A theory

is connected to a larger context: the general human knowledge (whatever that

might be taken to mean) or even a certain community of scholars. But it also

has meanings, consequences, we can talk about its fruitfulness, all of these being

aspects that are difficult to quantify, given that we would have to take into

account such parameters as time (the entire human history) or space. Plato’s

work on different topics, for example, has had an impact on the general human

knowledge for more than 2300 years and in different ways. In the end, sciences

and mathematics are made by human beings, adhering to cultural norms and

values.

So yes, the best theory or account regarding our physical reality will be

scientific, or rather a pot pourri of scientific theories and facts pertaining to

different sciences: physics, chemistry, biology, mathematics, etc. And they

might represent our currently best account of what physically exists, a better

understanding, but not necessarily of what we know or how we know it.

Given its foundational status, many of the problems belonging to the

philosophy of mathematics are connected to set theory and the problems

involved by the transfinite hierarchy. By applying Quine’s naturalism to his

philosophy of mathematics, Putnam ([166]) expressed his own ontological

commitment: since mathematical theories are inherent to the most successful

scientific theories, and experience globally confirms these scientific theories, it

also empirically conforms the mathematical theories involved. Hence Putnam’s

mathematical ontology. But of course, given that the theories encompassing the
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infinite are less likely to be used in scientific theories, there is not as strong a

Platonism as Gödel’s Platonism.

Not all ’naturalistically’-inclined philosophers of mathematics adopt a realistic

view regarding sets (see [132], for example). Maddy does not fully adhere to

Quine’s naturalistic stance. Mathematics could be considered a science in itself

and the ontological commitments should be rather connected to the mathematical

practice and its methods. Focusing on set theory ([133]), she is emphasising its

unifying role of ”bringing all mathematical structures together in a single arena

and codifying the fundamental assumptions of mathematical proof” (p. 133).

The axioms are justified as long as they facilitate this role and, as such, they

need no further philosophical justification.

Feferman ([61]) imposes a predicativist framework and limitations in his

approach to mathematics, which means that he might leave some areas outside

(as not acceptable from a predicativist point of view), like the transfinite set

theory. A more moderate view is expressed by Steel, for instance, who share

”the Naturalist’s reluctance to trim mathematics in order to make it fit some

theory of mathematical knowledge. Nevertheless, - he continues - a solution to

the Continuum Problem may need some accompanying analysis of what it is to

be a solution to the Continuum Problem, and in this way, Philosophy may have

a more active role to play at the foundations of mathematics than Maddy

envisions.” ([62], p. 433)

Generally speaking, the subject matter of mathematics consists of mathematical

objects. Their descriptions are determined by different areas of mathematics.

Their nature and their justification is nonetheless philosophical and only

necessary to the degree that different members of the mathematical community

consider it so for the development of a particular topic. On these lines, I also

subscribe to the view that a proper philosophical account of mathematics

should be grounded in the actual practice of mathematicians, that mathematics

should not be made to fit already made philosophical theories, with results
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made to somehow adjust to already presumed perspectives, and less likely to

determine and redefine the field of interrogations. But that might require a

better reconfiguration of the role of philosophy in mathematics and vice-versa,

an enormous task that is not the subject of this text.

But in emphasising the nature of mathematical knowledge, there is another

aspect that I would like to mention regarding the connection between

philosophy and mathematics, the fact that in the end, such a connection proves

its value through the a posteriori insights and justification related to the

mathematical practice. Mathematical results became subjects of human

understanding. They are further connected, in one form or another, with human

knowledge. At some point, in this very large context, it would be connected to

some philosophical distinctions, which, at their turn, will determine new and

various interrogations and investigations, including new mathematical inquiries.

As Hersh points out, ”the philosophy of mathematics as practised in many articles

and books is a thing unto itself, hardly connected either to living mathematics or

to general philosophy. But how can it be claimed that the nature of mathematics

is unrelated to the general question of human knowledge?” ([86], 68).

Thurston, an accomplished mathematician, emphasises as well the psychological

and the social dimensions of the mathematical thinking, the fact that

mathematics evolves by organically integrating these aspects: ”as mathematics

advances, we incorporate it into our thinking. As our thinking becomes more

sophisticated, we generate new mathematical concepts and new mathematical

structures: the subject matter of mathematics changes to reflect how we think”

([211], p. 162). So when mathematicians construct new and better ways of

thinking, they should also be aware that people are not doing mathematics only

for its own sake, that they are also driven by considerations related to a social

setting, like status and economics.

That being said, Shelah points to another aspect related to the mathematical

practice. He rejects the extreme formalist view reducing mathematics to a
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manipulation of symbols and offering an equal value to all set theories, and

adopts a strong Platonism of sorts: ”under axioms and logical rules, it seems

that Mathematics is absolute. Plato’s kind of argument according to which

Mathematics is an idea which we discover will always be controversial, but to

questions such as: is a given solution to a mathematical problem the right one,

the answer is clear cut. True, we can have only evidence and not an absolute

proof of the existence of Mathematics outside of man, because we only act in a

human reality” ([107], p. 3).

3.1.2 How? and the relation to the universality problem

In this context, the thread I want to follow is the analysis of the continuous

transformation and expansion of mathematical knowledge through methods of

proof and inquiry. In particular, I would like to focus attention on the universality

problem as a way of exemplifying the process of mathematical knowledge.

There is no plan a priori fixed determining the continuous expanding process

characterising mathematics and mathematical knowledge. The existence of

axioms, particularly set theoretic axioms, offers a strong framework constructed

according to requirements determined by the mathematical practice 2. But

their hypothetical nature leaves open the possibility of new developments, new

relations within the widening field of mathematics. Invoking Pascal, and

changing ’numbers’ with ’sets (which shouldn’t be considered too

far-fetched)’”[N]umbers imitate space, which is of such a different nature”.

To that end, there are three main points I intend to consider:

1. The concept of mathematical object.

2. The notion of method.

3. Change and reconceptualisation in mathematics.

2For the axioms of set theory see the classic papers of Maddy, [131], [131].
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Object This transformation or evolution is fundamentally connected to the

specific practice of mathematics and the nature of its ’objects’ or notions. They

are distilled, abstract notions emphasising patterns and mediating analogies

among them. The result are abstract theories allowing a large spectrum in the

form and generality of proofs. That being said, there are two registers of

abstraction or abstractisation that I will emphasise while approaching the

universality problem.

Method As such, a theory becomes a method in itself. The concept of

infinity can be conceived of as a method for a radical change of perspective in

mathematics, it implies conceptual jumps (Gödel’s term - the first infinite, the

power set, I would add the diagonal argument) and the constitution of certain

’orders’. It determines a change with regard to different determinations, or

levels of determination.

According to Dehornoy, one can ”use infinity, and its specific tools, as a melting

pot where previously hidden properties appear without this indicating any link

between these properties and the framework that reveals them”, such that set

theory can be seen as ”a catalyst”, or even ”a photographic film, which reveals a

phenomenon but has no connection with it” ([32], p. 387). It is at this point that

”set theory brings its main contribution at the very moment when it disappears

as a proof tool” (p. 389).

I am not referring here to the axiomatic method. Although the axiomatic

exposition is fundamental for mathematics to express its facts, given that the

latter are not subject to experimental verification, and it represents ”one of the

great achievements of our culture”, it is only a method. And ”[W]hereas the

facts of mathematics, once discovered, will never change, the method by which

these facts are verified has changed many times in the past, and it would be

foolhardy not to expect that it will change again at some future date” ([177], p.

166).
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Change Change and reconceptualisation are determined and understood in

relation to two elements: (i) different conceptual settings, such as set theory or

model theory; and (ii) structural distinctions pertaining to these settings and

related to the mathematical practice, the notion of model extension, for instance.

It should also be emphasised that change (in connection to mathematics) is not

just an accumulation of facts, an increase in rigour or precision is another of the

main ways mathematics changes. Change in this context means turning points:

radical shifts but also gradual development, although, in this last case, we will

need a certain period of time to appreciate the whole significance of a result. In

the end, ”a mathematician who solves a problem cannot avoid facing up to the

historicity of the problem. Mathematics is nothing if not a historical subject par

excellence” ([177], p. 174).

This multifaceted concept of mathematical change offers new insights into the

meaning of mathematics, new questions regarding its internal changes. A problem

becomes like a map that we are creating while moving among these turning points.

How do we map change then? The most obvious way is that we get new results

regarding a certain problem, sometimes not even a final solution. Sometimes, we

can change the original context of a problem and translate the problem to another

one. It also happens that mathematical statements receive different proofs and,

sometimes, these different proofs involve methods and strategies that give way

to new approaches, even new areas of study. Often, new mathematics appear

from revisiting existing results and proofs, I would say in accordance with a very

poetic principle:

”We shall not cease from exploration

And the end of all our exploring

Will be to arrive where we started

And know the place for the first time.

Through the unknown, remembered gate

When the last of earth left to discover

Is that which was the beginning;
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At the source of the longest river

The voice of the hidden waterfall

And the children in the apple-tree

Not known, because not looked for

But heard, half-heard, in the stillness

Between two waves of the sea.”

(T.S. Eliot, from ”Little Gidding”, Four Quartets).
Furthermore, the result becomes more general, an original problem becomes the

special case of something more general. There are different ways of generalisation

in mathematics, specific to different fields, but some of them involve weakening

the hypotheses (so strengthening the conclusions), identifying specific properties,

go to higher dimensions and use several variables, proving a more abstract result

etc.

These developments are accompanied by a process of abstraction. As underlined

by P. Mancosu, ”Abstraction is of course ”said in many ways” ([143], p. 1), but

the meaning which is relevant to my investigation is not, as in his case, connected

to the abstraction principles in neo-logicism. I am referring here to abstraction in

the sense of degree of formalisation, to the discovery of a more general theorem or

result such that all other particular and possibly interesting cases would follow,

without the need to prove each one separately. Furthermore, such a situation

would enable to acknowledge connections that otherwise might not be visible

(even between different areas). ”The processes of abstraction and generalization

are therefore very important as a means of making sense of the huge mass of raw

data (that is, proofs of individual theorems) and enabling at least some of it to

be passed on” ([74]).

Reconceptualisation

As emphasised by Shelah, when explaining Cantor’s discoveries in set theory, we

meet an old solution, ”very ancient and simple. We know that primitive peoples

do not have large numbers, certainly not beyond 40. So how do they trade? Very
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simple: they trade one for one. Two sets of sheep are equivalent if there is a one to

one correspondence between them ...” ([107], p. 6). This seemingly trivial aspect

points to an essential trait of mathematical practice: whatever the impetus, one

wants to understand a problem in depth. And the consequences of such inquiries

and investigations might prove to be fundamental and surprising: the pursuit

of Fermat’s conjecture, for instance, determined developments in many areas of

mathematics and, although a problem in number theory, the solution was found

due to explorations in other mathematical fields. Along this text, I will follow

the same movement with regard to results in set theory and model theory.

The aspect of reconceptualisation is fundamentally connected with the notion

of a context, of a particular setting. Paraphrasing Feynman, when you ask why

something happens, you have to be in a framework that allows something to be

true. There is a great variety of set theoretic contexts one can choose from in

dealing with a certain problem, and not in a trivial and artificial way. Different

models or universes in set theory offer different frameworks of analysis. This

evolving aspect represents a part of the method. And actually, ”[P]assing from

the study of a unique structure formed by the true [or pure] sets to that of

abstract models of ZF is a Copernican revolution. From a practical point of

view, this passage to a multiplicity of worlds enables the consideration of algebraic

operations on the models: products of models, submodels, extension of models,

surgery on the models, ..., which are all unthinkable without the notion of an

abstract model” ([33], p. 353).

The choice and understanding of one particular setting represents an essential

aspect of mathematical knowledge. One could even go as far as to maintain

that ”the recognition of mathematical settings, as features distinct from both

mathematical structures and the systems which instantiate those structures,

allows one to classify most of understandable misunderstandings in

mathematics, and also to solve the identity problem” ([79], p. 1).

Reconceptualisation is closely connected to the notion of extension, and I will
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analyse the two in a subsection bellow. And if all these points of view are valid,

it means that each of the different conceptual settings in analysing the

universality problem (even when no solutions were found yet) could or will offer

a different perspective on the same phenomenon/phenomena. They all catch

different changes that are taking place in the way mathematics is done and

mathematical knowledge is acquired.

Interpretability Connected to the notion of reconceptualisation is the

process of interpretability. For any first order theory T , a model of T is a set

equipped with functions and relations satisfying the appropriate axioms. A

model of ZFC, for example, is a set M equipped with a binary relation

satisfying etc. All mathematical objects can be represented as sets and, as such,

every model of set theory (a structure satisfying the axioms of set theory) must

include its own versions of all these objects, a complete rendition of the

mathematical ’world’, the world according to that model. Fundamental results

(in model theory, for instance) show that given two signatures and provided

that they are finite, every structure can be presented under a single binary

relation. In particular, any structure in a countable language can be interpreted

in a graph (see [90], [146]).

The possibility of interpreting any theory T in ZFC, in the sense that all the

notions of T receive set-theoretic descriptions and, as such, make all the theorems

of T provable in set theory points to a fundamental aspect: one doesn’t need to

’understand’ these notions, one just need to know how to ’operate’ with sets. It

doesn’t even require a philosophical understanding of sets. Furthermore, through

its interpretation, the theory T ’gets access’ to the set theoretic proof apparatus,

in particular to the independence proofs (consistency and forcing).

For example, we can represent the natural numbers N in an universe of set theory.

That means that we will construct a number system behaving mathematically

like the natural numbers, having the order and arithmetic. That being said,



Chapter 3: Mathematical knowledge 56

we are not saying that we are constructing the ’real’ or the ’actual’ natural

numbers but objects having the same mathematical properties. We will take

0 as the empty set ∅, 1 for {0}, 2 for {0, 1}, succ(x) for x ∪ {x}, and N for

{n : n is a natural number}. As a result, 0, 1, 2, ..., n and N are symbols or names

for some sets. There will also be theorems showing that ∈ behaves on N exactly

like the usual ordering < on the natural numbers, and, in practice, people often

use < for ∈ when writing about the natural numbers. The relation symbols ≤, >,

and ≥ will also be used in their usual sense.

3.1.3 Set theory

Both Manders and Thurston (among others) downplay the role of set theory or

the foundational programs, with the last going as far as maintaining that the

foundations ”[O]n the most fundamental level, the foundations of mathematics

are much shakier than the mathematics that we do”, with most mathematicians

adhering ”to foundational principles that are known to be polite fictions. For

example, it is a theorem that there does not exist any way to ever actually

construct or even define a well-ordering of the real numbers. There is considerable

evidence (but no proof) that we can get away with these polite fictions without

being caught out, but that doesn’t make them right. Set theorists construct many

alternate and mutually contradictory ’mathematical universes” such that if one

is consistent, the others are too. This leaves very little confidence that one or the

other is the right choice or the natural choice. Gödel’s incompleteness theorem

implies that there can be no formal system that is consistent, yet powerful enough

to serve as a basis for all of the mathematics that we do ([211], pp. 170-171).

What he seems to ignore is that these constructions of universes are based on

Gödel’s work, it is mathematics. The completeness theorem shows that any

consistent theory has a set-sized model (this includes ZFC). ZFC cannot prove

that there is a set model of ZFC, since ZFC cannot prove Con(ZFC), but it is

possible to form proper-class-sized models of ZFC from a given proper-class-sized
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model of ZFC, e.g., the inner model or thr constructible universe L. Gödel’s

completeness theorem tells us that if a first-order theory T is consistent, then

there is a set model for it. Moreover, if T is a theory over a countable language,

then the downward Löwenhein-Skolem theorem tells us that T has a countable

model. If T is a set theory, then there is a distinction between the universe the

model lives in and the universe inside the model.

Furthermore, these universes do not have an ontological existence, as a strong

Platonist would argue. The language of set theory consists of the ∈ symbol, and

people are studying consequences of the axioms, not real universes, despite a

certain naturalised language. Thurston is denying here value to a mathematical

practice he didn’t choose and he is also contradicting some of his remarks

mentioned above, like the fact that the reliability of mathematics comes from

mathematicians thinking carefully and critically about mathematical ideas,

which is precisely what the mathematicians working in the foundational areas of

mathematics are doing. A subjective assessment with regard to the value and

quality of less known areas of mathematics does not fall under the valid ideas he

otherwise espouses.

Manders maintains that the universality characterising the foundational role of

set theory (or of other foundational approaches/schemes) ”obscures” ([144], p.

202), since ”[A]ll present and future mathematics is supposed to fit in”, and

even more, they ”obscures the special role of fundamental structures

(conceptual settings) and fundamental constructions for mathematical

knowledge” ([144], p. 200). One reason is the universality of the language: ”if

everything is expressible in a language, no special properties of things expressed

follow from mere expressibility” ([144], p. 200). Furthermore, unlike a more

successful approach in model theory (where one uses the minimal language to

formalise and display the ”relevant underlying structure” of an object), set

theoretic definability by itself does not demarcate the ”relationships between

(set theoretically definable) conceptual settings which constitute successful

reconceptualisations, say p-adic completion, from the infinitely many completely
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uninteresting ones” ([144], p. 200). He does recognise though that ”important

special features can be displayed by recognisable syntactic features of set

theoretic definitions rather than by set theoretic definability itself. For example,

quantifier complexity of set theoretic definitions very effectively displays

absoluteness features, as in the context of KPU and admissible languages, or of

Schoenfeld absoluteness.” Nonetheless, he maintains that ”it is an entirely clear

empirical fact that the special features of the fundamental structures and

reconceptualisations of traditional mathematics, the features which would figure

in an explanation of the leading role of these structures and reconceptualisations

in enabling us to grasp and know, cannot be discerned from commonly

recognised syntactic features of set theoretic definitions” ([144], p. 200)

His understanding of the framework offered by set theory or the role of model

theory does not correspond to the way mathematicians engaged in both

endeavours address the situation. Shelah, for instance, maintains that if one is

interested in general results, then we have to use a set-theoretic framework:

although ”by now we know well how to generate ’generalized nonsense’ which

grinds water and tells us nothing new, many times a general framework shows

you that isolated claims are parts of general phenomena (...) That is, if you

want to know something about ALL structures of some kind (all groups, all

manifolds, etc.), then you need to be able to deal with infinite unions or infinite

products of sets, which are inherently set-theoretical concepts. Moreover, even

if your main interest is in, say, finitely generated groups, you will be drawn into

more general ones, e.g., taking some compactification or using infinite products”

([195], pp. 205-6).

Another criticism Manders brings to set theory and logical foundations is its

assumed Platonism, the fact that the set theoretic universe is assumed to exists

and to incorporate timelessly all relationships and settings, an aspect that would

deny the possibility of reconceptualisations and new relationships ([144], p. 200).

He refers to Plato, who maintained that since geometrical objects exist timelessly,

geometric construction is impossible. At best, they are subjectively new, for
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human knowers?” ([144], p. 200)

I thinks that such an assessment is reductionist and uninformed. The

”commonplace mathematical realism” is a very ambiguous notion, even in a

pure philosophical context. Mathematicians do not adopt a philosophical

framework according to which they conduct their mathematics. They may have

personal preferences and philosophical values, but that represents another

epistemic register. Conceptual innovation in mathematics characterises even the

work of those mathematicians subscribing to a particular ontological stance

with regard to the status of mathematical objects.

A traditional role for set theory was to provide a foundation by which, as

mentioned above, every mathematical object could be represented as a set.

Gödel’s incompleteness theorems emphasised the limits of this foundational

role, but that limitation characterises any axiomatic system. It made possible

though the study of various extensions of the set theoretic axiomatisation. In

light of more recent applications of set theory to other areas of mathematics

(particularly in algebra and topology), P. Dehornoy points to a third role of set

theory, i.e. ”to crystallize some intuitions for which other frameworks would

have been to rigid, and to elaborate them with the helps of its specific tools,

including strong axioms.” ([32], p. 379). The set theoretical hypothesis used

will appear only as technical auxiliaries. He likens this use of set theory with

that of theoretical physics, e.g. the Feynman integral (”a formalism that is not

rationally founded, but turn out to be extremely fruitful” p. 388) ”which gives

heuristic intuitions that have to be rigorously justified afterwards” ([32], p.

380).

An example he used showed how a very strong axiom in set theory - the axiom of

self-similar rank - had consequences for a purely algebraic property, before being

eliminated by the construction of an alternative proof. In other words, one can

”use infinity, and its specific tools”, a reason for which he refers to set theory ”as

a melting pot where previously hidden properties appear without this indicating
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any link between these properties and the framework that reveals them” ([32],

p. 387). It is already known that infinity can be used as a logical principle to

establish certain properties of finite objects, which could otherwise have remained

inaccessible (e.g. [160]). The heuristic role of set theory was emphasised by

others as well, including Feferman. And, returning again to Dehornoy, ”[T]he

introduction of higher order infinities (...) can be likened to the introduction of

an additional proof principle” ([32], p. 387) : ”what is crucial now is no longer

the truth of the axiom, but rather its potential richness and its proving power.

And, from this viewpoint, the stronger the axiom is, and therefore the closer the

contradiction, the more powerful it is likely to be in terms of applications” ([32],

p. 388).

Furthermore, sets are useful in metamathematics as well, in proving statements,

generally speaking, not about mathematical objects but about the process of

mathematical reasoning itself. It is the consequence of using a very simple

language with a small vocabulary and not too complex grammar, into which

one can interpret all mathematical arguments.

3.2 Proof and method

3.2.1 Proof

If the purpose of mathematics is understanding, then the existence of different

proofs constitute a consequence and a way in which such a process is manifesting

itself within mathematics. In other words, one way of making sense of it is by

looking at different directions in solving a problem, the different proofs for the

same problems and the methods used, like forcing. In connection to the idea of

mathematical knowledge, a proof represents a way of assuring and/or offering

mathematical knowledge. As such, mathematical knowledge is not the result of

a juxtaposition of theorems.
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There is a distinction in the philosophical literature between explanatory proofs

and non-explanatory proofs (see Steiner, [208], [207]). Introducing the concept

of ’characterising property’ to replace the more ambiguous ones of ’essence’ or

’nature’ of an entity, Steiner describes an explanatory proof as the one depending

on this concept and being able to generalise it ([208], passim).

The distinction has its roots in another distinction, made by Aristotle in

Posterior Analytics (A.13), although Steiner is not necessarily relying on that,

between demonstrations ”of the fact” (ὅτι, lit. ”the that”) and demonstrations

”of the reasoned fact” (διὁτι, lit. ”the why”, ”because of which”). The

opposition between proofs ”that convince but do not explain and proofs that in

addition to providing the required conviction that the result is true also show

why it is true” ([142]) could be place in a long philosophical tradition (see for

instance [138], [140]). The ’explanatory proofs’ would provide ’the why’, while

the ’non-explanatory’ ones would provide ’the that’. Steiner’s absolute

distinction was questioned by others (Resnik and Kushner, Hafner and

Mancosu).

In the same context, many philosophers of mathematics refer to pure and

impure methods in mathematics (see for instance [34], [35]). Describing a

mathematical problem as the set of mathematical resources including

definitions, axioms and inferences such that any change in them would

determined a change in the content of the problem, Detlefson and Arana call a

solution to the problem topically pure if it uses only the resources that

determine the topic of the problem ([35]). The epistemic benefit of a pure

solution is that it is stable, unlike the impure one. From their point of view, an

impure solution to a number theory problem (determining whether there are

infinitely many primes) would be one using topological resources (due to

Furstenberg). The relation between explanatoriness and purity has been

emphasized and analysed by Skow ([203]) and Lange ([120]).

I subscribe to the importance of a conceptual analysis with regard to proof,



Chapter 3: Mathematical knowledge 62

although, and pointed out by Mancosu, proof would not be the only source of

explanation (and therefore knowledge) in mathematics if one is considering a

more global case of explanatory activity, extended to an entire disciple ([141]).

Kitcher also points to rigorisation and systematisation as sources of explanation

and mathematical understanding ([105]), and even unification as a model for

explanation in mathematics and sciences ([106]). But we should not forget that

these kind of distinctions are philosophical, and the conclusions based on their

analysis and the mathematical practice to which they are connected belong to

the field of philosophy. The question remains, of course, how to determine the

relation between mathematics, in particular mathematical practice, and

philosophy. I find it problematic then when the aim of the philosophy of

mathematics, ”broadly construed” is considered to be ”to understand

mathematics, and potentially engage with how mathematics should be done”

([80], p. 1114). A priori epistemological ideas represent a limitative approach in

the process of understanding mathematical processes.

Using the aforementioned distinctions but also others in creating a context to

analyse mathematical practice involved studies focused on pointing

epistemological inadequacies in connection to some idealised and often artificial

criteria. Of course there will always be constrains in introducing new

mathematical concepts and principles, but they should be mathematical

constrains, not philosophical ones. That does not negate the importance of

individual abilities - reason, imagination, intuition - in doing mathematics:

mathematics in done by human beings (as well).

Manders maintains that although proof theory does not lead to wrong or

unjustified conclusions about knowledge, proofs are not sufficient for

comprehension, for which reason we should ”reject the traditional assumption of

deductive omnipotence in epistemology of mathematics: that the ideal cognitive

agent should count as in intellectual possession of all propositions deducible

from any proposition she possesses. Deductive omnipotence would have us

suppose results known even if only provable by ”impenetrable and tedious
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computation” ([144], p. 199). Furthermore, he writes that ”[C]onceptual

unification, understandability, clarity, even length of proofs, fall outside the

narrow justificational concern of foundational epistemology”, and then he adds

that the ”process of establishing deductive relations is subsidiary to the larger

goal of rendering understandable” ([145], p. 562)

Firstly, it is doubtful that foundational approaches are not interested in

’conceptual unification’, ’understandability’ or ’clarity’. Secondly, he does

distinguish a proof aspect (the length of proof) that he considers overlooked,

and which could be more conducive to knowledge than other aspects, so proof

has methodological value. I agree that attributing conceptual omnipotence to

the (ideal) cognitive agent imposes certain constrains regarding the possibility

of mathematical knowledge, but I do not subscribe in his downplaying the

importance of proof. That does not make cognitive agents ”deductively

omnipotent”. On the contrary, it could offer new conditions for

reconceptualisations. A proof could be a new argument and also innovative in

the techniques that it might employ, it could open new directions of analysis

and even research.

He further maintains that proof theoretic analysis of single theories, including

their comparison, or even the ”set theoretic description of relations between

structures” cannot constitute premises for understanding the role played by

reconceptualisations in approaching mathematical knowledge. But he does

stress that such a role could be played by the model theoretic models ([144], p.

202). Such reductions are misleading at best, given that he also emphasized the

importance of a ”finer-grained individuation of theories ([144], p. 201).

3.2.2 Method

I will take method in its more general meaning, encompassing the idea of an

epistemic context for mathematical developments, a heuristic instrument, and

also as an object of study in itself. It involves mathematical definitions, theorems
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and complex developments, and it is expressed in various forms. An example to be

discussed under the first meaning of this notion is the axiomatic method. Among

others, Cellucci points to its limitations and argues for the analytic method as an

alternative. Forcing represents another way to approach the concept of method in

its heuristic form. This approach will be further developed in the fourth chapter.

Furthermore, method could be conceived of as a kind of conceptual and epistemic

unification, a feature that will be further developed in chapter six. But I claim

that these various aspects of the notion of methods, as context, instrument, and

as object of study are connected to the process of mathematical knowledge or

understanding.

Given the role in supplying mathematical knowledge, and unlike Cellucci, I

maintain that even deduction, characteristic of the axiomatic method, could be

epistemologically ampliative. That last aspect comes from a certain advantage

that set theory has over other fields of mathematics, considering that when a

direct proof is not possible, it presents methods that could show that a proof

(including a refutation) might be impossible. As such, we can distinguish

between what is decidable and what is not. Shelah wrote though that even after

forcing was developed, it seemed better to prove that something follows from

GCH than just proving it is consistent”, with statement of these kind being

called ”semi-axioms. Of course, the extent to which we consider a statement a

semi-axiom is open to opinion and may change in time. I give statements in

cardinal arithmetic a high score in this respect. Note that a semi-axiom may be

(consistent with ZFC and) very atypical (= the family of universes satisfying it

is ”negligible”) but still very interesting, since for some sets of problems it gives

a nice coherent picture” ([195], p. 210).

The axiomatic method - limitations

That being said, there are some crucial limits to the axiomatic method. Skolem

and Gödel had already shown limitations to Hilbert’s idea that mathematical
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structures can be understood through their axiomatisation. Shelah also isolated

instability phenomena in certain first-order theories, but he also introduced some

techniques built on geometric and algebraic notions in order to approach the

understanding of models of first-order theories. Universality represents a test

problem in this regard. The stability of a theory is connected to its types, sets

of formulas describing a generalised notions of elements. Intuitively, a theory is

stable if the spaces of types in different cardinalities are not too big. But models

containing an infinite linear order have too many types to be stable.

Furthermore, as emphasised by Rota, although the axiomatic exposition is

fundamental for mathematics to express its facts, given that the latter are not

subject to experimental verification, and it represents ”one of the great

achievements of our culture”, it is only a method. And, what is more,

”[W]hereas the facts of mathematics, once discovered, will never change, the

method by which these facts are verified has changed many times in the past,

and it would be foolhardy not to expect that it will change again at some future

date” ([177], p. 166). As a result, one shouldn’t confuse the content of

mathematics with the way it is presented, with axiomatisation included in the

presentation category. Confusing mathematics with the axiomatic method for

its presentation is as preposterous as confusing the music of Johann Sebastian

Bach with the techniques for counterpoint in the Baroque age” ([177], p. 171).

Such a confusion can be found, he considers, among the ”mathematising

philosophers”, the ones trying to imitate mathematics in dealing with

philosophical topics, and who mistakenly believe that mathematicians use the

axiomatic method to solve and prove theorems.

Furthermore, Baldwin points to the questions raised by classification theory

regarding the nature of axiomatisation: ”the study of arbitrary theories in

model theory reflects the view of axioms not as ’self-evident’ or even

’well-established’ fundamental principles but as tools for organising

mathematics” ([7], p. 365). Shelah’s classification project is taking this aspect

to a higher level of generalisation and abstraction given that it is providing
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general schemes for comparing theories. Consequently, one could ask question

criteria used for evaluation the axiom system, for instance. But in the same

time, ”[W]hat are the connections among the justificatory and explanatory

functions of axioms? For example, are there criteria for choosing among

first-order, second-order, or infinitary logic? In what sense is second-order logic

simply a natural avatar for set theory (Väänänen, 2012)? What principles

underlie the development of a taxonomy of mathematics (or at least formal

theories)?” (Ibid., p. 365).

Cellucci emphasises the role of the analytic method of demonstration.

Demonstration has a heuristic role and the analytic method lead to the analytic

notion of demonstration, which ”consists, first, in a non-deductive derivation of

a hypothesis from a problem, and possibly other data, where the hypothesis is a

sufficient condition for the solution of the problem and is probable; then, in a

non-deductive derivation of another hypothesis from this hypothesis, and

possibly other data, where this other hypothesis is a sufficient condition for the

solution of the problem posed by the former hypothesis and is plausible; and so

on, ad infinitum. The goal of demonstration is to discover hypotheses that are

sufficient conditions for the solution of a problem and are plausible” ([18], pp.

34-5). A hypothesis will always guide the observation, experiment and

data-finding, as a conduit to interpretation and understanding. Unlike the

axiomatic notion of proof, which is ”only a sort of super spell checker that is

intended to validate a mathematical statement relative to basic axioms - and,

by Gödel’s incompleteness theorems, fail even to do that” ([18], pp. 35), the

analytic option represents a basic tool for acquiring mathematical knowledge.

In this text, I will also maintain the role of the universality problem as a type

(that will be gradually configured along the development of the text) of hypothesis

that guides. Such an approach is connected to the fact that universality is still

an open problem in both set theory and model theory.
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Proof and independence results

A further aspect related to the limits of the axiomatisation method involves

independence phenomena in set theory. There is a difference between consistency

results and independence results offered by forcing. The consistency (strength)

proofs offers more than independence, given that some of them require large

cardinals. Forcing, on the other hand, is used to show that one cannot prove a

theorem. It is more ’fluid’ in its uses, even when large cardinals are used. Of

course, one can also use inner models to show that large cardinals are necessary

and to get equiconsisteny results.

Gödel’s results from 1938 ([78]) and 1939 constitute the first part of the

(independency) solution of the continuum hypothesis (CH). By using what is

now called an inner model of set theory (in relation to the typical set theory

model V ), he showed that both the axiom of choice and the CH hold in this

model. After this relative consistency proof, Cohen offered in 1963 ([25]) the

second half of the solution, introducing the forcing method and what is now

considered to be an outer model of V, the forcing extension V [G], obtained by

adjoining a V-generic filter G over a partial order P ∈ V .

Writing about Cohen’s result, Church made the following remarks: ”[T]he

feeling that there is an absolute realm of sets, somehow determined in spite of

the non-existence of a complete axiomatic characterization, receives more of a

blow from the solution (better, the unsolving) of the continuum problem than

from the famous Gödel incompleteness theorems. It is not a question of realism

(miscalled ”Platonism”) versus either conceptualism or nominalism, but if one

chooses realism, whether there can be a ”genetic” realism without axiomatic

specification. The Gödel-Cohen results and subsequent extensions of them have

the consequence that there is not one set theory but many, with the difference

arising in connection with a problem which intuition still seems to tell us must

”really” have only one true solution” ([24], p. 18).
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Although he mentioned that he prefers proofs in ZFC to independence results,

Shelah was for a long time keen to find additional methods of independence in

addition to forcing and large cardinals and consistency strengths methods or

prove the uniqueness of such methods, according to one of his ”dreams” exposed

in [195]. To that end, he developed dividing lines in model theory. His aim

though is to find those proofs and techniques that offer a (or the most) general

method. Hence his interest, with all complex and fundamental developments

that come from that, for forcing. The forcing framework ”in its strong form tell

us, in essence, that all universes are equally valid, and hence we should, in fact,

be interested in extreme universes. ... But in the moderate sense, this position

is quite complementary to the ZFC position: One approach gives the negative

results for the other, so being really interested in one forces you to have some

interest in the other” ([196], p. 3). Furthermore, it also ”works for us like a sieve:

when we have a myriad of problems in some directions and we have tried to prove

independence (and many times this results in discarding most of them), we are

left with strong candidates for theorems of ZFC ([195], p. 219).

So forcing involves the notion of extension, in the form of transitive models. But

generally speaking, the major obstacle to forcing for various mathematicians is

probably the Platonic character attached to the set-theoretic framework.

Nonetheless, one should not forget that the language of set theory is made up of

a single relation, ∈, and that different forcing techniques evolve around a

complex formal apparatus and not in describing some real universes of sets.

Limits of formal proof In the same context, there are also discussions

regarding the limits of formal proofs as embodying the general idea of a

mathematical proof.

As pointed out by Wilf, ”[I]n many branches of pure mathematics it can be

surprisingly hard to recognize when a question has, in fact, been answered. A

clearcut proof of a theorem or the discovery of a counterexample leaves no
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doubt in the reader’s mind that a solution has been found. But when an

”explicit solution” to a problem is given, it may happen that more work is

needed to evaluate that ”solution,” in a particular case, than exhaustively to

examine all of the possibilities directly from the original formulation of the

problem. In such a situation, other things being equal, we may justifiably

question whether the problem has in fact been solved” ([228], p. 289). He uses

the case of combinatorics.

As with many other aspects then in the mathematical practice, one must be aware

of the context. Otherwise, one might be in danger of creating sterile generalisation

or even, when aspects external to the actual mathematical practice are involved,

wrong ones.

Rav emphasises the distinction between proof as ”a conceptual proof of

customary mathematical discourse, having an irreducible semantic content” and

”derivation, which is a syntactic object of some formal system” ([171], p. 11), in

other words, between a formal and informal model of proof. He maintains that

the informal (conceptual) proofs present some features that are not captured by

the model of the formal, derivative ones. The first is the semantic content

defining the conceptual, informal proof. Although ordinary mathematical proofs

(the informal ones) employ deductive reasoning, they cannot ”be rendered

intelligible by attending only to their deductive components” ([171], p. 12). So

they can be used ”to display the mathematical machinery for solving problems

and to justify that a proposed solution to a problem is indeed a solution” (Ibid.,

p. 13). They determine the development of new mathematical tools, methods,

other concepts. As such, they have greater epistemological significance, they are

”the bearers of mathematical knowledge”, while theorems being ”in a sense just

tags, labels for proofs, summaries of information, headlines of news, editorial

devices”: ”[T]he whole arsenal of mathematical methodologies, concepts,

strategies and techniques for solving problems, the establishment of

interconnections between theories, the systematisation of results - the entire

mathematical know-how is embedded in proofs” (Ibid., p. 20).
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3.3 Extension

”Tant qu’on a de nouveaux elements a introduire, on doit
craindre d’avoir a recommencer tout son travail; or il n’arrivera
jamais qu’on n’ait plus de nouveaux elements a introduire (...)
Imaginons au contraire qu’on veuille classer les points de l’espace et
que l’on distingue ceux qui peuvent être définis en un nombre fini de
mots et ceux qui ne le peuvent pas. Parmi les phrases possibles, il y
en aura qui feront allusion à la collection tout entière, c’est-à-dire à
l’espace, ou à des parties de l’espace. Quand nous introduirons de
nouveaux points dans l’espace, ces phrases changeront de sens, elles
ne définiront plus le même point; ou bien elles perdront toute espèce
de sens; ou encore elles acquerront un sens alors qu’elles n’en avaient
pas auparavant. Et alors des points qui n’étaient pas définissables
deviendront susceptibles d’être définis; d’autres qui l’étaient
cesseront de l’ètre. Ils devront passer d’une catégorie dans une
autre” ”. (Poincaré, when dealing with infinite sets, [162], pp.
463-464))

The idea of extension is present when we point out the fact that first-order logic

was gradually developed as a powerful language for expressing formal

mathematics. In the context of this text, determined by the notion of

universality, extension is closely related to the part-whole distinction transposed

in the context of the mathematics of infinity (in particular set theory), i.e.

set-subset, model-submodel, but we can also refer to the extension of the

different (formal) systems, for instance. By the Löwenhein-Skolem theorems, if

a first-order theory has an infinite model, then it has a model of every infinite

cardinality, so the theory cannot determine the size of its models. We can

therefore distinguish among different types of contextual change and the

epistemological consequences of these movements/shifts. Examples of methods

for producing such extensions include forcing, large cardinal axioms, the

concept of limit, forking.

3.3.1 Generalisation

Generally speaking, the extensions of different formal systems (like the number

systems) respond to the necessity of accounting for a greater variety of problems

and phenomena. So if we want to find solutions to equations in higher degrees,

to do trigonometry or take algorithms, for instance, we need irrational numbers.
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An extension of the rational number system to a larger field will be represented

by the real numbers. These elementary examples represent a certain idealisation.

In Gödel’s view, ”[W]ithout idealizations nothing remains: there would be no

mathematics at all, except the part about small numbers. It is arbitrary to

stop anywhere along the path of more and more idealizations. We move from

intuitionistic to classical mathematics and then to set theory, with decreasing

certainty. The increasing degree of uncertainty begins [at the region] between

classical mathematics and set theory. Only as mathematics is developed more

and more, the overall certainty goes up. The relative degrees remain the same”

([224] 7.1.11). A cessation to this process of idealisation represents an act of

arbitrariness: ”We idealize the integers (a) to the possibility of an infinite totality,

and (b) with omissions. In this way we get a new concretely intuitive idea, and

then one goes on. There is no doubt in the mind that this idealization - to

any extent whatsoever - is at the bottom of classical mathematics. This is even

true of Brouwer. Frege and Russell tried to replace this idealization by simpler

(logical) idealizations, which, however, are destroyed by the paradoxes. What

this idealization - realization of a possibility - means is that we conceive and

realize the possibility of a mind which can do it. We recognize possibilities in our

minds in the same way as we see objects with our senses” ([224], 7.1.19, p. 220).

This idealisation implies that there is a change in the nature and the role of the

mathematical objects. The real numbers, for instance, will not be used directly,

or not only, for the purpose of measurement; we need them if we want to

mathematically describe the world and theoretically reason about it. Although

rejecting set theory, Thurston is therefore right when he writes that ”as

mathematics advances, we incorporate it into our thinking. As our thinking

becomes more sophisticated, we generate new mathematical concepts and new

mathematical structures: the subject matter of mathematics changes to reflect

how we think” ([211], p. 162). But we can go deeper or, as it is, generalise our

epistemic stance, given that ”for a general theory to give interesting results

when specialized to older contexts is strong evidence of its being deep (though
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certainly not a necessary condition)” ([195], p. 205). According to Shelah’s

Generality Thesis, ”If you would like to have general results, you have to use a

set-theoretic framework” ([195], p. 205). So if one wants to find results about

”ALL structures of some kind (all groups, all manifolds, etc.), then you need to

be able to deal with infinite unions or infinite products of sets, which are

inherently set-theoretical concepts. Moreover, even if your main interest is in,

say, finitely generated groups, you will be drawn into more general ones, e.g.,

taking some compactification or using infinite products” (Ibid., pp.205-206).

3.3.2 Extension - as expansion

By Gödel’s second incompleteness theorem, no formal system can exhaustively

describe the whole mathematical universe. In other words, it legitimises the use

of different extensions of the ZF axiomatisation. ”In this perspective, the point

is no longer to actually prove the properties, but rather to calibrate them in a

scale of increasingly strong logical axioms ”([32], p. 379).

Given two signatures σ1 and σ2, with σ1 ⊆ σ2, and a σ2-structure S2, if we delete

the symbols not in σ1 without deleting any element of S2, we get the reduct of

S2 to σ1, i.e., S1. S2 is the expansion of S1 to σ2. If an expansion adds new

symbols but no new elements, an extension adds new elements without adding

new symbols.

To the question of ’How far should one go?’, Shelah offers the following suggestion:

”The best framework, the best foundation, is the one that governs you least; that

is you do not notice its restrictions (except when really necessary, like arriving

at a contradiction). ... Would you object to such a proof? Or would you stop at

the power set P(N) of N? First, it seems to me unnatural not to have P(P(N)),

and second you will not gain much; e.g., the problems of cardinal arithmetic

are replaced by relatives even if you consider only cardinalities of sets of reals

(on pcf theory ...; also definable sets may give such phenomena).... There is a

natural scale of theories, some stronger than ZFC (large cardinals), some weaker
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(e.g., PA = Peano Arithmetic...). PA already tells us that the universe is infinite,

but PA ’stops’ after we have all the natural numbers. ZFC goes beyond the

natural numbers; in ZFC we can distinguish different infinite cardinalities such

as ’countable’ and ’uncountable’, and we can show that there are infinitely many

cardinalities, uncountably many, etc. But there are also set theories stronger

than ZFC, which are as high above ZFC as ZFC is above PA, and even higher.

... Even if you feel ZFC assumes too much or too little (and you do not work

artificially), you will end up somewhere along this scale, going from PA to the

large cardinals” ([195], p. 206).

So if we don’t have a proof of contradiction of one theory or a statement is

undecidable there, we can move along the scale of theories. Oftentimes, important

information implicit or connected to one theory, but also structure, becomes

visible when we pass to an extension. In a general and less restrictive (in the

sense of axioms and rules) theory, many aspects become more transparent. For

example, one could get a deeper understanding of the class of countable models

of a first order theory by ’passing’ or looking to κ-saturated models of T of

cardinality > κ. One could also look to prove that an ’external’ property P (T )

(λ) of a first order theory T does not depend on λ by proving it equivalent to an

’internal’ syntactical property (the syntactic/semantic aspects will be analysed

below). Other logics will bring some light on the elementary case but also on

some uncountable models. From models with sufficient large cardinals we can

construct models with determinacy or inner-model-theoretic fine structure and

vice versa. And while we have relative consistency results and equiconsistencies

and even mutual interpretations, we will have no nontrivial bi-interpretations.

3.3.3 Domain extension as reconceptualisation (Manders)

As emphasised by Manders, theoretical understanding represents the primary

intellectual goal of mathematical activity. He considers that the epistemological

tradition concerning the philosophy of mathematics is centred on problems of
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reliability, on the question of legitimacy of the non-logical axioms in

foundational studies, or in equating mathematics with a juxtaposition of

theorems. Understandability is a global feature associated primarily with entire

conceptual settings and with what he calls reconceptualisation relations between

conceptual settings. He takes a conceptual setting to be a structure or a theory.

The purpose of this last aspect is the comprehensibility of the original setting,

but, incidentaly, it also facilitates proofs of theorems, thus pointing out to its

success ([144], p. 195). Given that he refers to ”a broad pre-theoretical notion

such as mathematical understanding”, which could be treated philosophically,

he considers adequate to present some important paradigm cases, all the while

being aware that the reconceptualisation methods have their limitations and

there is not a definitive ”good way to decide how many cases make a method”

([144], p. 203).

Overall, he is quite vague with regard to the notion of understanding, and the

examples he provides are not enough to lessen the ambiguity he is aware of, but

try to dismiss, by mentioning that ”understandability is not something essentially

non-propositional, the relationships involved are essentially ’logical’, in a broad

sense ”([144], p. 197). Discussing the relationship between conceptual settings, he

introduces the notion of accessibility properties, endowed with an explanatory role

and able to offer metamathematical evidence ”having finite or surveyable sets of

axioms, effective decidability (now refined in terms of computational complexity)

of theories; model completeness and elimination of quantifiers.”([144], p. 204).

He also makes a distinction between context internal shifts and context changing,

with model completion being an exemplification of the latter, and he maintains

that domain extensions ”unify concepts, in a technical sense which covers the

widely cited advantages of simplification and clarity” ([145], p. 554)

He gives different examples of interaction. The simplification constructions

include interpretation of one theory into another and model completion. The

so-called local-global method for analysing a structure ”uses a homogeneous

family of simplification constructions to decompose a problem” ([144], p. 207)
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with each simplification determining a structure or a theory that contains

information about one aspect of the original problem. There are local-global

methods in commutative algebra ([144], pp. 207-9), valuation-theoretic criteria

in algebraic geometry, local-global methods with respect to completions or

others in formally real fields ([144], p. 209).

This is a valid approach, but I think that a weakness of this view is that it is

ignoring some historical aspects. As Gowers rightly emphasizes, ”mathematics

carries its history with it” ([73], p. ix). A more appropriate stance, one that

would incorporate the historical aspect, could be Thurston’s idea that the

question is not ”How do mathematicians prove theorems?”, ”not even ’How do

mathematicians make progress in mathematics?’”, but rather ”as a more

explicit (and leading) form of the question, I prefer ’How do mathematicians

advance human understanding of mathematics?’”, given that ”what they really

want is usually not some collection of ”answers” - what they want is

understanding” ([211], pp. 161-2). But to go further, Manders seems to ignore,

and again in connection to some objective measure related to historical reasons,

that ”having a good test problem is usually crucial to the advance of

mathematics” ([196], p. 8). It is true that reliability ”is a necessary feature of

knowledge” (194), but if it is the main issue in the theory of knowledge, it leads

to ”a badly distorted theory of knowledge ([144], p 194). And Thurston is on

the same line: ”The reliability of mathematics ”does not primarily come from

mathematicians formally checking formal arguments; it comes from

mathematicians thinking carefully and critically about mathematical ideas”

([211], p. 170).

Manders’ model extension does not represent context-internal inferences, it has

a syntactic meaning: it involves the passage from one formalisation to another,

from one theory to another, and it is achieved in the model-completed setting.

Set theory is insufficient from his point of view. Domain extensions, he

continues, do ”not start a completely new intellectual enterprise, abandoning

one subject in favor of a new one ... even moving from Euclidean to hyperbolic
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geometry. Rather, a domain-extension move brings an existing intellectual

enterprise forward, realizing general formal conditions, which allow a more

systematic understanding of the previous theoretical setting”. ([145], p. 561)

Furthermore, an epistemological consequence of domain extensions is that they

”are truth-destroying, not deductive, truth-preserving inferences” ([145], p.

561). Although he gives some examples, such a statement cannot be

maintained, as examples from model theory itself could testify.

3.3.4 Examples - Conceptual extensions in set theory and model

theory

Universality is also defined in terms of homogeneous saturation and, in model

theory, saturation represents a generalisation of algebraic closure.

Saturation represents a central notion in model theory. Information that is

only implicit in a structure can be made manifest by taking a saturated

extension of the theory. Countable saturation is a completeness property,

analogous to metric completeness. Loosely speaking, a saturated model realises

as many complete types (i.e. a consistent sets of equations) as possible. A

structure is ℵ1-saturated, for example, if every countable type has a solution.

The idea of types over sets can be found to have some roots in the notion of

generic point, that is, the notion of a generic point a over a variety X defined

over a field K. From a model theoretic point of view, a generic point a of X is a

point in the extension field of K: if K ′ represents the algebraic closure of K, a

is a realisation in an elementary extension of K ′ of a non-forking extension of

the types that contains the formula X.

Saturation can be generalised to any cardinal κ: a structure M is κ-saturated if

any set of formulas (a type) using < κ parameters that is finitely realisable in M

is also realised in M . A complete theory T has a saturated model of cardinality

κ in two cases: either when κ = κ<κ ≥ |D(T )|, where D(T) is the set of all



Chapter 3: Mathematical knowledge 77

complete types in finitely many variables over the empty set, or T is stable in κ.

In conformity with results in model theory, the countable saturated models are

universal, but the converse does not hold: a universal model is saturated if it is

homogeneous. In homogeneous models, partial elementary maps are just

restrictions of automorphisms. Saturation is therefore a stronger property than

universality. A countable model is saturated if and only if is universal and

homogeneous.

Universal domains - Monster model Another way to approach

abstractisation in model theory is the monster model, C = CT , a saturated

enough model of T , or κ-saturated for a κ larger than all parameters or cardinal

connected to T . All models of T are ≺ C and all its submodels have sizes less

than the saturation number of C. Furthermore, given that this monster model is

closed under all the normal theoretic operations means there is a context

specific aspect of its universality.

The notion of a universal domain originated in A. Weil’s Foundations of Algebraic

Geometry (first published in 1946), but was introduced in its modern form in

model theory as the monster model by S. Shelah in 1978 ([197]). Weil’s notion

of a universal domain is, in model theoretic terms, an ℵ1-saturated model of the

theory of algebraically closed fields. As pointed out by Baldwin, the notion of a

universal domain/monster model contains two paradigmatic shifts expressed in

the work of Shelah: ”[F]or a fixed characteristic p he moves from an arbitrary

field to an algebraically closed field (context changing). Then he requires the

algebraically closed field to have infinite dimension (context internal) so it will

contain any possible solution to a system of polynomial equations over (a finite

extension of) the prime field” ([6], p. 124).

Linear orders There are also a number of interesting extensions regarding the

theory of linear orders. For example, we could add the sentence ∀x∀y(x < y →
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∃z(x < z ∧ z < y)) to get the theory of dense linear orders, or we could instead

add the sentence ∀x∃y(x < y ∧ ∀z(x < z → (z = y ∨ y < z))) to get the theory

of linear orders where every element has a unique successor. We could also add

sentences that either assert or deny the existence of a minimum or maximum

element.

Non-standard model Non-standard models of mathematics, such as the non-

standard model of the natural numbers, N⋆, enjoy the property of countable

saturation. Nonstandard elements are a certain kind of numbers that extend

the scope of the standard model to models that are larger, but still satisfy the

axioms of the standard structure. A non-standard model may include the infinite

integers. As emphasised by Tao, ”while we identify standard objects x with their

nonstandard counterparts limn→α x, we do not identify standard spaces with their

nonstandard counterparts ∗X =
∏

n→αX; in particular, we do not view standard

groups as examples of nonstandard groups (except in the finite case), nor do we

view standard fields as examples of nonstandard fields, etc. Instead, one can view

the nonstandard space ∗X as a ’completion’ of the standard space X, analogous

to metric completion” ([210]).

Non-standard models were introduced by Skolem, in a series of papers from 1922

to 1934, for set theory and Peano arithmetic, although today they are less used in

the first case. When it is used in set theory, it is usually applied not to countable

models, but to models whose ordinals are not well-ordered ([69], p. 4). In the first

case, he considered he found an anti-realist approach to uncountable sets, also due

to what is now known as Skolem paradox (and which is not, actually, a paradox);

uncountability is a property that a member of the model might have ’inside’

some countable structure, not ’absolutely’, in the ’real universe’. Uncountability

is a model-dependent, ’non-absolute’ property. He then introduced them for

Peano arithmetic, but in this case, as Gaifman puts it, ”he saw evidence for

the impossibility of capturing the intended interpretation by purely deductive

methods.... The standard model of natural numbers is the best candidate for an
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intended interpretation that cannot be captured by a deductive system”. ([69],

p. 1).

There are various fascinating results regarding the non-standard models of the

Peano arithmetic. H. Friedman, for instance ([67]), showed that every countable

nonstandard model of arithmetic is isomorphic to a proper initial segment of

itself. The elements of every countable saturated model are linearly ordered. The

model has an initial segment isomorphic to the standard natural numbers, which

is followed by additional element. Its order type is ω + (ω∗) · η, i.e., the natural

numbers followed by densely many copies of the integers. But the operations

for these models are much more complicated: the arithmetical structure of these

models is much more complex than the structure of the rationals. Kirby and

Paris use the structure of nonstandard models of arithmetic and combinatorial

techniques to prove and improve purely number-theoretic statements(e.g., [104]).

By the compactenss theorem, there are countable nonstandard models of the

Peano arithemtic (or indeed of any set of arithmetic statements). The models

constructed by the ultraproduct method are uncountable. We can approach both

the standard and the non-standard models externally by placing them in a larger

universe, a model of ZFC. Strictly speaking, this other universe belongs to the

metatheory. But that does not impede us in adding large cardinal axioms and/or

other constructions on these structures.

Abstractisation in model theory

Given a set of first order laws (that is, they can be written as first order

formulas), we can pick a class K of structures satisfying these laws. Two

structures M and N are elementarily equivalent if M and N have the same

signature and satisfy the same laws. This is an equivalence relation, and all its

equivalence classes are the first-order complete classes. But such a division into

first-order complete classes ”need not correspond to any natural mathematical

division between the structures”([89], p. 212), although it does so in a few cases,
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such as the class of algebraically closed fields, whose complete components are

the classes of algebraically closed fields with fixed characteristic.

The division of every first-order class K into a disjoint union of first-order

classes represents the first step in the model-theoretic classification of the class

K. Tarski studied classification up to elementary equivalence. In his

classification program, Shelah took structures that are already elementarily

equivalent and classified them up to isomorphism. Due to its high degree of

abstraction and levels of formalisation, classification theory represents an

extraordinary instrument to investigate specific areas of mathematics and a

systematic way of establish and examine relations between fields. But Shelah

continued to obtain further generalisations in [186] and [185], and created a

more abstract framework for classification theory, a context to study non

elementary classes. As such, he introduced the notion of Abstract Elementary

Classes (AECs) in his overall program of clarification and unification, a class of

structures with a strong substructure relation satisfying variants of the axioms

Jónsson’s introduced in the 1950’s. Jónsson’s work ([97], [98]) had already

influenced Morley and Vaught and their introduction of saturated models in

their fundamental paper from 1962 ([155]). Among other things, this last paper

has extended the syntactic aspect, from realising formulas to realising types,

but in connection with the semantic aspect (see [6]).

But as emphasised by Grossberg, the context of AECs is much more general than

that of homogeneous model theory, model theory for Lω0,ω or even the framework

of submodels of a given structure. For stable AEC with amalgamation, the

analogue of saturation are limit models ([182], [202], [222]).

3.3.5 Universe, universes in set theory

The standard universe embeds into the non-standard universe and they both

exist inside a ’larger’, ’external’ universe, i.e., the metatheoretical universe of

ZFC. This aspect allows us to study mathematical objects/structures on different
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levels: internal and external, but in this last case, from two points of view. The

internal level corresponds to the syntactical aspect. The external one implies a

distinction between the relation to other models (like the embedding between the

standard models into the non-standard one) and the connection (and the possible

determinations) to the ZFC universe. Universality will make its ’appearance’

when trying to establish the order among the models of a class.

Roughly speaking, a universe (U) of set theory is a structure provided with a

binary relation ∈ - the membership relation - satisfying the axioms of set theory.

Strictly speaking, the membership relation is established between the elements of

the collection U (sets) and not between the sets and U3. The set theoretic axioms

express the properties of the binary relation.

If M is a countable elementary model, it cannot refer to things outside it. But

if we situate ourselves in the model M , and A ∈M , the model ’knows’ about A,

i.e. we get certain information, facts about the objects in M of different kinds:

� Any finite subset of M is a member of M .

� Any countable member of M is a subset of M .

� If A ∈ M , A ⊆ ω1 and δ ∈ A is a limit ordinal, then A is a stationary set
in ω1, and as such, is uncountable. This is a fact used in many fundamental
results in set theory.

� Not every set of M must necessarily be a subset of M . This is another fact
of crucial importance in set theory.

The existence of an ambient universe, the metauniverse mentioned above, does

not pose any conceptual problems. In fact, we can even talk formally and

informally about universes or set theories. As pointed out by Shelah, ”Cantor

understood set theory quite well and understood the Continuum Problem

without sticking to a formalization. Alternatively, we may work within a ”bare

bones set theory”, just enough to formalize first order theories, proofs, and, say,

having the completeness theorem. We may well agree we are in a universe

which is set theory and discuss it without a priori having a common agreement

on all its properties” ([195]), p. (214).

3Although we do intuitively say that a set X belongs U.
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Among other things, the existence of different set theoretic universes, in addition

to certain strong methods (such as forcing), offers an advantage of set theory over

many other fields of mathematics due to the fact that one can show that a proof

or its refutation may be impossible. This aspect offers the basis for new and

valuable conceptualisations, results or new methods. One can thus find what is

decidable, for instance, and maybe find new patterns in detecting new problems

and questions.

The ’space’ of the metatheoretic universe, the level of discourse, represents a

condition of possibility, an ambient framework where every structure or order

one imposes represents an in between, an interval space.

Philebus The process of determining regions of structure might find a

possible analogy in the way Plato refers to the circumscribing of domains in

Philebus. Plato considers that there are couples of relatives, like ’more or less’,

which describe the multiple aspects of the apeiron (24a3). As such, these

couples have at least one purpose, that of circumscribing a domain. The apeiron

is not reduced to extension, quantity or a material cause (as Aristotle

wrongfully maintains). For Plato in Philebus (but also in Republic 438b,

Statesman 28434-5, and the Sophist 255c12-13), the relatives or the relative

contraries (’more and less’) which characterizes the apeiron are opposed to the

things themselves, to the limit (peras).

In this capacity, they imply a logical transformation visible in a discursive one: in

one of the example, the change in modality from a ”higher” or ”lower” pitch to a

”high” or ”low” pitch. But, as A.G. Wersinger emphasizes, the couple high - low

cannot be substituted for the large - small one or the cold - warm one: ”there is

’something’ which allows the distinction in the apeiron of various domains. This

’something’, translated in the passage from the comparative and relative form to

the absolute form of opposites, must be understood. Or, the musical example

shows that this passage is tightly correlated to a particular device, the interval
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(diastema)” ([227], p. 351). The essence of the mechanism of the limit is to

suspend the conflicts between opposites and to operate substitutions.

Wersinger artfully emphasizes the fact that the act of substituting the apeiron

by the limit must be conceived of as if it would be accomplished in the same

place, hence the reference ”their own territory” (tès hauton chôras). So the idea

is to describe the element which has the role of ’residence’ for both the apeiron

and the quantitative limit, that is, the interval. The answer is determined by

the consideration of the progressions offered in Timaeus: the geometric

progression (analogia), corresponding to summetria in Philebus, and the

arithmetic and harmonic progressions, corresponding in Philebus to the notion

of sumphônia. In other words, ’filling’ the interval means understanding the fact

that the mix is an operation of division: ”to fill (plérôun) does not mean to fill

a void, but to divide an interval” ([227], p. 352). In the circumstances, the

knowledgeable one is the one who is able to learn the number of the intervals,

their determination and character, in other words, distinguish the modes of

harmony (Philebus,17c-d). To fill the interval means to produce a measure

(meson), therefore only the mode of division is different. One can think of

measure here as a transfinite number with certain properties.

The mixture (mikton) assures something common for the things to be mixed,

the lien of the division. What is different is the way of division, of producing

limits or units, difference determined by the different kinds of progressions

(arithmetic, geometric, harmonic). Passing from one mode to another

emphasizes the insufficiency of the previous one: at a certain moment, the mode

of unity reveals itself insufficient, leaving an epistemological hole which is not

void in an absolute way, but full of the medium which proved to be insufficient

([226], p. 261).

Inside the interval, the apeiron becomes a relative limit, that is, a domain, or

a difference which delimits a frontier, offering the solution to the problem of

assimilating the relative opposites to the absolute ones. Just like the chôra, it
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is not a space in the sense of geometrical extension, nor undetermined matter,

nor the great-small dyad in the reading of Aristotle (Physics 209b35-210a2), but

the liminal interval of the mixture, the locus in which the relative opposites

make place to the absolute ones to the end of delimiting a domain in which the

mixture can operate its successive modes” ([226], p. 262). That is why Aristotle

wrongfully identifies the apeiron with chôra.

These ideas could be connected to arrangements of ordinal numbers. Cantor

himself was aware of and pointed out Plato as one of his sources for his

conceptual discoveries (particularly in the Grundlagen, see [16]). Or to put

everything in another, related, mathematical framework, ”my typical universe is

quite interesting (even pluralistic): It has long intervals where GCH holds, but

others in which it is violated badly, many λ’s such that λ+-Souslin trees exist

and many λ’s for which every λ+-Aronszajn is special, and it may have lots of

measurables, with a huge cardinal being a marginal case...”([196], p. 5).

3.3.6 The universe as a graph

I mentioned above the notion of interpretability, but there are some results

that, although connected, emphasise further aspects. One of them is Krivine’s

observation that the universe U can be regarded as an infinite oriented graph

([113], p.8).

Since the elements of the collection U are sets, they could also constitute the base

of a model M , with M in U. Both relations ∈U and ∈M are interpretations of

the binary relation ∈ of the language of set theory (ZF, usually ZFC), but the

interpretation of the binary relation ∈M (∈M⊂ UM ×U M) need not be the same

as the interpretation of ∈U 4. In this last case, both the model M and its binary

relation ∈M⊂ UM ×U M represent a point in the infinite graph U. A submodel of

a model of set theory, viewed as a directed graph, is just an induced subgraph.

4Since (U,∈U) is a model of set theory, we can define operations on sets, such as inclusion,
product, union, intersection etc.
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In [158], Nash-Williams proposes a translation of the Zermelo-Fraenkel axioms

(for set theory) into graph-theoretic language. The notion of set is replaced

with that of vertex and the membership relation ∈ with a relation → between

pairs of vertices, expressed as preneighbourhood. Sets could be thus considered

as the vertices of a digraph in which there is a a directed edge from a vertex/set

x to a vertex/set y if and only if x ∈ y. The set theoretical terminology is

not used any longer to describe the new axiomatically defined system, but it

can still provide less precise ”words and symbols” and serving as a means of

communication. In this ”framework of intuitive set theory”, a digraph D is

”an ordered pair (V (D), E(D)), where V (D) is a class and E(D) is a subclass

of V (D)
∏
V (D), i.e., each element of E(D) is an ordered pair of elements of

V (D)” ([158], p.748). After translating the axioms in the new language, any

digraph ∆ which is ”extensional, infinitive, regulated, powerful and replacing”

(p. 751) is called congregational and is a model of ZF set theory. One could add

the Axiom of Choice, but Nash-William uses that fact that AC is independent

of ZF to show that even independence can be formulated as a theorem of graph

theory (asserting the existence of certain kind of digraphs), therefore in a way

that avoids the concepts of symbolic logic, and, as such, it could even increase

our understanding and provide insight.

And ”[W]hilst it might be arguable that an approach based on symbolic logic

is more rigorous for the foregoing reason, the aim of a graph-theoretic approach

to the proofs of independence theorems etc. would be understandability rather

than rigour: when the arguments have been well understood in graph-theoretic

language, it should be a fairly mechanical operation to translate them into a

form based on symbolic language if that is thought more rigorous” (p. 756).

That being said, this kind of translations (of theorems from one language into

another), ”would presumably have to justify their existence by achieving some

substantial progress in either set theory or graph theory” (757).

In [81], Hamkins adopts a graph theoretic view on the models of set theory

(described as special acyclic digraphs) and uses universal digraph combinatorics
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to prove some embedding results.

3.3.7 New axioms

Large cardinal axioms assert the existence of certain large cardinals that have

strong reflection properties and they provide a strengthening of ZFC. They are

not known to be consistent with the ZFC though and, actually, they cannot be

consistent with the ZFC. An alternative way to define these large cardinals is

via elementary embeddings of the set theoretic universe. These axioms form a

linearly ordered hierarchy, with the inaccessible cardinals at the bottom, and they

are used to measure the consistency strength of various set theoretic hypotheses.

Definition 3.3.1. A cardinal κ is a strong limit cardinal if λ < κ implies 2λ < κ.

A regular strong limit cardinal is called inaccessible.

An important theorem about inaccessible cardinals is the following

Theorem 3.3.2. Let κ be an inaccessible cardinal. Then Vκ, the universe of sets

constructed up to level κ, is a model of ZFC.

In other words, if ZFC could prove that the existence of inaccessibles is consistent,

then ZFC could prove its own consistency, which would be contrary to Gödel’s

Second Incompleteness Theorem.

We have set theoretic principles and they are axiomatised or are embodied in

different systems of axioms, like ZFC. There are others (ZF, NBG, MK, NF),

and there may appear others (which could settles CH inside). The question as

to whether the ZFC axioms embody all the ordinary set theoretic principles is

still open. One can derive from them all the current mathematics. But, as

emphasised by Kunen, ”future generations of mathematicians may come to realize

some ”obviously true” set-theoretic principles which do not follow from ZFC.

Conceivably, CH could be then settled using those principles” ([114], p. 1). So

extension with regard to set theory also involves discussions regarding the ”need”
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for new axioms, specifically, large cardinals. Many (well known) problems in the

more theoretical parts of pure mathematics, such as the Continuum Problem or

Suslin’s Problem, require new axioms for their solution. But there is already a

certain attitude of mistrust towards set theory coming from mathematicians from

other fields.

Steel considers that ”[T]he old self-evidence requirement on axioms is too

subjective, an more importantly, too limiting. (...) The self evidence

requirements would block this kind of progress toward a stronger foundation”

([62], p. 422). ”In extending ZFC, we are attempting to strengthen this

foundation”, i.e., the interpretative power of set theory (p. 423). Maddy uses

the word ’maximize’ in her book Naturalism in Mathematics. So to believe that

there are measurable cardinals is to seek to naturally interpret all mathematical

theories of sets, to the extent that they have natural interpretations, in

extensions of ZFC + ’there is a measurable cardinal’. Many set theorists

consider that V = L is too restrictive with respect to the interpretative power of

the language of set theory and can be translated into any other language of set

theory. It actually ”prevents us from asking as many questions, since we are

then forbidden to ask about the world outside L” ([62], p.423). If we adopt a

measurable cardinal, we have 0# ”and with that, a much clearer view of L than

we get if we are only allowed to look at it ”from inside”. Furthermore, the

proponents of large cardinal axioms emphasise the fact that they seem to decide

all ’natural’ questions in the language of second order arithmetic. And some

metamathematical evidence of this completeness can be found in the fact that

using forcing, no sentence in the language of second order arithmetic can be

shown independent of existence of arbitrarily large Woodin cardinals.

Feferman, adopting an instrumentalist view, maintains that in ”the case of set

theory, it is at the next level (over N) that issues of evidence, vagueness, and

truth arise” ([62], p.410). The axioms of second-order arithmetic would

constitute the right choice for the conception of the structure of ’arbitrary sets

of naturals number’, but the problem is, in his view, that the meaning of
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’arbitrary subset of N’ is vague, resisting distinctions such as the ’truth’ or

’falsity’ of the analytic statements involved. And the same vagueness

characterises the CH as well, since, he maintains, despite being able to ascribe

some evident properties (impredicative comprehension axiom scheme, for

instance) to the notion of ’arbitrary subsets of the set of natural numbers’, we

cannot fix the object. So ”it follows that the conception of the whole of the

cumulative hierarchy, i.e., the transfinitely cumulatively iterated power set

operation, is even more so inherently vague, and that one cannot in general

speak of what is a fact of the matter under that conception ([62], p.405). In a

more ’pragmatic instrumentalist’ approach, he would contend that the necessity

of large axioms represents a philosophical question (hence a large variety of

answer), and from this point of view the answer is definitely affirmative, and as

such, the question has not much to do with the mathematical practice. But I

think that he is right to state that even ”if mathematics doesn’t convincingly

need new axioms, it may need for instrumental and heuristic reasons the work

that has been done and continues to be done in higher set theory ([62], p.408).

On the other hand, Maddy, adhering to a naturalistic point of view, maintains

that mathematical practice, and set-theoretical practice in particular, is not in

need of philosophical justification. ”Justification (...) comes from within (...) in

(...) terms of what means are most effective for meeting the relevant mathematical

ends. Philosophy follows afterwards, as an attempt to understand the practice,

not to justify or to criticize it”, rather, ”it would be more appropriate to ask

whether or not some particular axiom (...) would or would not help this particular

practice (...) meet one or more of its particular goals” ([62], p.408). The example

given, from contemporary set theory, is the assumption of many Woodin cardinals

(Ibid., p. 409). There are ’intrinsic’ and ’extrinsic’ mathematical reasons for

adding an axiom to ZFC, she continues. The first involve terms like ’self-evident’,

’intuitive’, and ’part of the very concept of set’. The ’extrinsic’ reasons refer to

the consequences of such an axiom, and the justification for its adoption resides

with these kind of reasons. But in this context, set theoretic foundations do
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not meet two of the essential expectations of earlier thinkers: provide ontological

explanations and epistemic foundation. If one still adheres to these goals though,

basically ignored by the development of mathematics, the foundational axioms

would be considered absolutely certain, self-evident truths. Furthermore, an

epistemic foundationalist stance could not accept any extrinsic justification. The

’relativism’ of naturalism is expressed in the justification for a given mathematical

method in terms of the goals imposed by the practice involved, but also in taking

no stand in maintaining that certain questions in set theory have a determinate

answer, despite their independence (Ibid., p. 418).

Shelah maintains, against a pure Platonic view, that there are ”many possible

set theories all conforming to ZFC. I do not feel ”a universe of ZFC” is like ”the

Sun”, it is rather like ”a human being” or ”a human being of some fixed

nationality” ([196], p. 211 ). The large cardinal axioms represent ’natural

statements’, ”as their role in finding a quite linear scale of consistency strength

on statements (arising independently of them) shows” ([195], p. 211). But he

rejects the stronger beliefs of the ’Californian school of set theory’ in this

respect. V = L is very helpful for building examples and it offers a coherent

framework for an important group of problems in Abelian group theory. The

analogy of arriving at large cardinals with ZFC is problematic, he argues: ”we

arrive at ZFC by considering natural formations of sets (the set of natural

numbers, taking Cartesian products and power sets); even the first strongly

inaccessible cardinal has no parallel justification. If you go higher up in the

large cardinal hierarchy, the justification for their existence decreases, so large

cardinal axioms are great semi-axioms but not to be accepted as true” ([195], p.

214).

A semi-axiom, from his point of view, must fulfil some conditions, which are, in

fact, contradictory: it must have many consequences, ”preferable that it is

reasonable and ”has positive measure”, and ”it is preferred that it leads to no

contradiction (so lower consistency strength is better)”. For instance, V = L is

preferable to GCH, having more consequences, but the latter is ”more
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reasonable” and still many consequences ([195], p. 214). The large cardinals are

”axioms” only for extremists, their existence is only a ’semi-axiom’ ([196], p.4).

They do represent natural notions and they are indispensable for our

knowledge, more specifically, for the linear order phenomena the imply and

their roles in equiconsistency. But there is a ’hole’ in this program to assure the

linearity of consistency strength for large cardinals, i.e., the supercompact

cardinal. Although widely used in consistency proofs, we do not know how to

prove the consistency of ZFC + ’there is a supercompact cardinal’ from ’low

level statements’([195], p. 215).



4

Universality

Synopsis

This chapter contains an introduction to the the problem of

universality in set theory and in connection to model theory. It

starts by offering the general mathematical framework, in the form

of basic definitions that will be further used throughout the text.

The next section establishes the relation between set theory and

model theory around the problem of universality. We continue by

offering an overview of the problem of universality in model theory

and ways to tackle it. The last section of this chapter represents an

introduction to the universality problem in set theory and presents

several methods used in this area to offer solutions.

4.1 Introduction

Universal objects can be found in several mathematical contexts, and there are

different frameworks in which to develop a theory of universality (category theory,

model theory, set theory), but we use set theory as a framework because it is able

”to crystallize some intuitions for which other frameworks would have been too

rigid, and to elaborate them with the help of its specific tools, including strong

axioms.” ([32], p. 379)
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In category theory, the definition of a universal object also defines a universal

property. And universal properties are central to the way category theory

describes structures considered ’canonical’. As such, a universal object is an

initial object or a terminal object depending on the context. Given that

universal properties define objects uniquely up to a unique isomorphism, one

can prove that two objects are isomorphic by showing that they satisfy the

same universal property. A fundamental lemma (the Yoneda Lemma) implies

that any mathematical object can be characterised by its universal property

([173], p. 62). And this property will express one of the roles played by that

object. For example, the category theoretical proof that the tensor product

commutes with the direct sum of vector spaces uses only the universal

properties of the tensor product and the direct sum constructions in

appropriate categories (or mathematical contexts).

Universality is an open problem in both set theory and model theory. The non-

universality theorems have both set theoretic and model theoretic assumptions,

the first in the form of certain combinatorial statements, to be discussed bellow.

4.2 Preliminaries

|X| is the cardinality of the set X. The relation X ⊆ Y means that X is either a

proper subset of Y or equal to Y . For a function f with domain Df and A ⊂ D

f ↾ A denotes the restriction of f to the set A∩Df . [X]κ is the set of all subsets of

X of cardinality κ. The set [X]≤κ is defined analogously as the set of all subsets

of X of cardinality ≤ κ.

Definition 4.2.1.

If X is a set of ordinals, a limit point of X is an ordinal α such that α = sup(X∩α)

or, equivalently, α = sup(Y ) for some Y ⊂ X. Lim(X) is the set of limit points

of X.
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Definition 4.2.2. Suppose α is a limit ordinal. A subset X ⊂ α is bounded if

sup(X) < α, and unbounded if sup(X) = α.

A subset C ⊂ α is closed if and only if for all limit δ < α, if C ∩ δ is unbounded

in δ, then δ ∈ C.

C is club (or a club subset) if and only if C is closed and unbounded in α.

Definition 4.2.3. If κ is a regular uncountable cardinal, a set C ⊂ κ is a club

subset of κ if C is unbounded in κ and if it contains all its limit points < κ.

A subset S ⊂ κ is stationary if for every club C of κ, S ∩ C ̸= ∅.

Definition 4.2.4. Let α and β be ordinals and a function f : α → β. The

function f maps α cofinally if and only if ran(f) is unbounded in β.

The cofinality of β is the least α such that there is a cofinal map from α into β.

Lemma 4.2.5. For every limit ordinal α, cf(α) is a regular cardinal.

An infinite cardinal ℵα is regular if cf(ωα) = ωα, and it is singular if cf(ωα) < ωα.

4.3 What is an universal object

A classic model theoretic definition stipulates that a model A is said to be

countably universal if and only if A is countable and every countable model

B ≡ A is elementarily embedded in A. We can generalise and say that a

universal model of size κ of a theory T is a model in which any other model of

T of cardinality κ embeds elementarily. This definition differs from that in [21]

(p. 297), which states that a model M is κ-universal if it elementarily embeds

models of a theory T of cardinality < κ. In classical model theory, a model M

of a theory T is κ-universal if and only if every model N of the theory of

cardinality ≤ κ can embed into M . According to this definition, the size of M is

not required to be κ, but it will be all along this text. We will say that M is a

universal model if and only if M is |M |-universal. From the definition definition
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of a κ-universal model, it follows that every model of cardinality ≤ κ embeds

into the universal model of size κ.

We say, for example, that Q is the only countable linear order, up to isomorphism,

which contains any other countable linear order and every isomorphism between

two finite subsets extends to an automorphism of Q. The proof goes back to

Cantor, for whom the extension property is equivalent to saying that the rational

numbers represent the unique countable dense linear order with no endpoints,

and who constructed the automorphism inductively, by interchanging the domain

and the codomain at each step, in what is now called the back-and-forth method.

Urysohn found an analogue of the method for metric spaces (any countable dense

subset of the Urysohn space is countably universal in the class of metric spaces

with almost isometric embedding). And in the 1950’s, Fräıssé approached the

argument in a model theoretic framework.

These aspects could lead to a further distinction, between a weak and a strong

form of universality. As such, a weak form of universality implies that given

a theory T , a collection K of models of cardinality λ of the theory, there is a

universal model (of the theory T ) of cardinality κ, κ > λ, not belonging to the

collection K, into which every model of cardinality λ is elementary embedded.

The strong form corresponds to the definition mentioned above.

Cofinality offers the possibility of more nuanced generalisations. So universality

can also be rephrased in terms of cofinality: it represents the minimal cardinality

of a subcollection of elements (or the dominating family) such that every element

in the given class is smaller or equal to one of the elements in the subcollection.

But although cofinal is the same as unbounded for linearly ordered sets, it is not

the same for partially ordered sets.

Given a class of structures, Kλ, each of size λ, we define its universal family (as

the smallest size of a family of structures of Kλ which embeds the rest. The

minimal cardinality of the universal family is called the universality number of

the class. When the universality number of K is 1, the unique element of the
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universal family is called a a universal model. The universal spectrum for a class

of structures K is the family of cardinals for which K has a universal model.

The universality spectrum of a theory depends on cardinal arithmetic, so the

problem of determining the universal spectrum of a theory could be phrased as:

”under which cardinal arithmetic assumptions can a given theory (class) possess

a universal model in a given cardinality λ?” ([109], p.875). As emphasized by M.

Kojman and S. Shelah in [110], the universal model problem can also be stated as

a question about a partial order: the class K of structures together with a class

of embeddings, such that for two models A,B ∈ K, A ≤ B if there is an allowed

mapping of A into B (p. 57).

Universal objects appear in several mathematical contexts. And there are also

different frameworks in which to develop a theory of universality: category

theory, set theory, model theory. There are many examples in almost all areas

of mathematics. They include: Q, the rational numbers (mentioned above)

considered as a linear order embedding every countable linear order; the

random graph embedding every countable graph; [0, 1]κ containing a closed

copy of every compact space of weight κ. The Cantor set is a universal compact

metrizable space (Alexandroff and Hausdorff). A universal Turing machine

constitutes a universal object, given that it could theoretically and conveniently

simulate any other Turin machine. The Rado graph is a universal countable

graph; the Urysohn universal space is a universal separable metric space; the

Hilbert Cube [0, 1]ω is a universal Polish space. In the case of an injective

homomorphism, we would refer to a subgraph, and every Rado graph contains

every countable graph as a subgraph. But when studying universality in graph

theory, a more interesting result would be to refer to a universal countable

graph containing every countable graph as an induced subgraph.



Chapter 4: Universality 96

4.4 A context - the relation between model theory

and set theory

Universality (determining the universality spectrum for a theory) but also

saturation and other mathematical phenomena are characterised by a rich

interaction between set theory and model theory.

Universality in model theory is sensitive to set theory, extensions of its systems

of axioms, and other set theoretic assumptions taking the form of some

combinatorial statements. According to a classical result from model theory

([21]), if GCH holds, then every countable first order theory admits a universal

model in every uncountable cardinal. Given the definition of the universality

number/spectrum of a theory T mentioned above, it follows that under GCH,

this number for a countable T and an uncountable λ is 1.

Many approaches to universality (including non-universality theorems) have

taken into consideration the connection between various results in model theory

and set theory. The results appearing in the works of Kojman and Shelah

([109]), Kojman ([108]), Shelah ([188], [191], [199]), Džamonja and Shelah ([49],

[50]) involve the thesis of maintaining a relation between the complexity of a

theory and its amenability to the existence of universal models.

Using model theoretic properties, the existence of a universal model is ensured

in the following cases: if it is ω-stable, any theory (complete first order) with an

infinite model will have a universal model in every infinite cardinal, starting with

ℵ0; a superstable theory will have universal models in every cardinality greater

or equal to the continuum; every stable theory has universal models in every

cardinal κ satisfying κℵ0 = κ.

In set theory, the results are determined and complicated by cardinal arithmetic

and (infinite) combinatorics. But it also represents a fundamental context of

analysis. As pointed out by Blass, taking a theory T , ”[T]he simplicity and
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efficiency of ZFC and the fact that T can be interpreted in it (i.e., that all

the concepts of T have set-theoretic definitions which make all the axioms of

T set-theoretically provable) have, as far as I can see, two main uses. One is

philosophical (...) The other is in proofs of consistency and independence. To

show that some problem, say in topology, can’t be decided in current mathematics

means to show it’s independent of T . So you’d want to construct lots of models

of T to get lots of independence results. But models of T are terribly complicated

objects. So instead we construct models of ZFC, which are not so bad, and we

rely on the interpretation to convert them into models of T . And usually we

don’t mention T at all and just identify ZFC with ”current mathematics” via the

interpretation” ([13]).

In [6] Baldwin analyses what he calls a paradigm shift in model theory that,

he maintains, had taken place in two phases and which determines the general

framework for mathematics itself: the first involved a shift from identifying higher

logic with this general framework (or the Russell-Hilbert-Gödel conception) to

a focus on first-order theories with the purpose of studying distinct areas of

mathematics (describing the Robinson-Tarski approach), from a study of logics

to the study of theories, from a focus on one structure to a collection of distinct

or non-isomorphic structures modelling a set of axioms. As a result, one starts

by fixing a vocabulary with a fixed set of symbols relevant to a certain area of

study (a theory) and quantifies over individuals instead of predicate variables of

all arities and orders belonging to a logic. An example is Henkin’s proof of the

completeness theorem, allowing a focus on a particular area of mathematics and

which is formalised in a specific vocabulary.

In 1949, Henkin ([84], containing results from his 1947 dissertation) proves the

completeness theorem (the strong version) by expanding a given vocabulary

only by constants. Gödel had used an extension of the vocabulary by additional

relations, thus moving outside the original context; although quantification is

restricted to individuals, there are still predicate symbols of all orders, so it was

meant as a framework for all mathematics. It is in this context that Robinson
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introduced the concept of model completion [174] and M. Morley [154] showed

that a countable theory is ℵ1-categorical if and only if it is κ-categorical for

every uncountable cardinal κ. Another example is to take the natural numbers,

which represent a structure. But the focus of analysis is now the collection of

non-isomorphic structures satisfying a set of axioms, of algebraically closed

fields for instance. And there can be models of every infinite cardinality.

The second phase mentioned by Baldwin is determined by Shelah’s introduction

of the classification theory with the search for dividing lines among general

families of structures and a stability hierarchy for theories. Many areas of

mathematics could be formalised by first order theories that behave well in the

stability classification. A dividing line is a method or a mathematical technique,

constitutes a choice of classification, and it depends on a test problem. The

stability hierarchy is one test problem, but other candidates include saturation

of ultrapowers and the Keisler order and universality. They all represent ways

of organising the first order theories. A consequence of this is that they could

also provide contexts for establishing connections across different areas of

mathematics (due to the formalisation of different topics). The Keisler order

and the universality spectrum determine a refining of the stability hierarchy

(which contains only a finite number of classes) to infinitely many of them. But

Malliaris and Shelah had showed that there is a maximal number of classes

(2ℵ0) for the Keisler order ([137]).

Shelah also extended (1974) Morley’s categoricity theorem to uncountable

languages by showing that if the language has cardinality κ and a theory is

categorical in some uncountable cardinal ≥ κ, then it is categorical in all

cardinalities greater than κ.

Set theory is fundamental in the development of infinitary model theory, and

the use of dividing lines in this context materialised in the study of abstract

elementary classes, involving a semantic approach to infinitary logic. Shelah’s

research showed a deep connection between model theory and set theory regarding
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certain properties of first-order theories, including the categoricty in power for

infinitary logic. Furthermore, many model theoretic properties and constructions

can be carried out in ZFC by a restriction to theories that behave well in the

stability classification.

According to Pillay, certain developments in model theory - stability theory and

what one might call a ”generalised stability theory” (see Shelah’s generalisation

of stability theory techniques to simple theories) with the ”machinery” of

independence”, dimension theory, orthogonality - offered a certain ”geometric

sensibility” that complements the ”set-theoretic sensibility” and its role in the

foundations of mathematics ([15], p. 184). That had consequences for the set

theoretically more complicated objects of mathematics (ex: locally compact

fields), and ”once their set-theoretic genesis is forgotten, we have access to, via

quantifier-elimination and decidability theorems” (Ibid., p. 186). When working

with a κ-stable theory T , we can eliminate any cardinal exponentiation

assumption.

There are actually two aspects of research in set theory, according to A.

Kechris, and they are often quite interrelated : there is an internal or

foundational aspect, and then there is an external or interactive one. The first

”aims at providing a foundation for a comprehensive and satisfactory theory of

sets” ([15], p. 190), while the second uses set theoretic concepts, methods and

techniques in connection with other areas of mathematics. Mutatis mutandis

(and in the same article), A. Pillay makes the case for the same distinction with

regard to model theory. He mentions homogeneous-universal or saturated

models (initially developed by Morley and Vaught) as a focus point for an

inward-looking approach (Ibid., p. 183), but since the universal objects were

present in set theory from its beginnings, the universality problem represents an

example of the interaction between internal and external perspectives with

significant consequences for all parties involved.

In fact, in its early days, many of the model theory main problems were quite
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set-theoretically, since different questions were dependent on specific models of

set theory (e.g. two-cardinal theorems, generalised omitting types). The

interplay between the two areas can be seen in Morley’s categoricity theorem,

the Ehrenfeucht-Mostowski models, Vaught’s conjecture, Chang’s conjecture,

etc. Nowadays, the connection can be spotted in the study of abstract

elementary classes, for example, and new uses of large cardinals and forcing.

Shelah’s research in model theory, particularly classification theory, is

characterised by deep set-theoretical preoccupations and vice-versa.

Concurrently, model theoretic methods are used to extend models of set theory

while leaving specified sets fixed. Specifically, every countable model µ of ZF

has: (i) an extension leaving every set in µ fixed, and (ii) for each regular

cardinal κ in M , an extension enlarging κ but leaving each cardinal less than a

fixed ([102]).

That being said, there is a certain kind of limitation regarding this connection

between model theory and set theory. Forcing represents an example. Since the

introduction of forcing by Cohen in 1963, there were some attempts to modify

Cohen forcing into a model theoretic framework or construction. Reyes, for

instance, connected forcing with homogeneous universal models using Baire

category approach. He would obtain the notion of infinite forcing, further

developed by Robinson (in 1969-1979). The last also developed finite forcing,

known as model-theoretic forcing (see [129], p. 159). Another limitation

involves a certain reserve on the part of model theorists towards cardinal

arithmetic and the higher levels in the infinity hierarchy.

4.5 Universality and model theory

One can approach the problem from the point of view of model theory, and more

specifically, classification theory, with a focus on first order theories.

Fräıssé ([65]) and Jónsson ([98] and [97]) approached the construction of



Chapter 4: Universality 101

universal domains from a purely semantic or algebraic point of view. A class K

of countably many finite models closed under the natural relations of

amalgamation, joint embedding, and substructure have a countable structure M

which is both ultrahomogeneous and universal. In an ultrahomogeneaous

structure, any two isomorphic finite structures are automorphic in M . A

universal structure is one in which any finite member of K can be embedded in

M . But Jónsson goes beyond the countable realm and analyses κ-universal

structures for arbitrary κ. Furthermore, he described a collection of axioms to

be satisfied by a class of models that guaranteed the existence of a

homogeneous-universal model. The substructure relation constituted an

essential part in this approach. Morley and Vaught ([155] replaced the

substructure notion by elementary submodel and they developed the central

notion of saturated model. Then Shelah ([186], [185]) generalized this approach

in two ways: firstly, by considering the amalgamation property a constraint

rather than a basic theorem (similar to a practice in universal algebra).

Secondly, after making the substructure notion a free variable, he introduced

the notion of abstract elementary class, i.e., a class of structures with a strong

substructre relation satisfying variations of Jónsson’s axioms.

4.5.1 Definitions and proof notions

We will start by introducing some definitions. A signature is a set of constant,

function and relation symbols. We also choose a language L, in which we can

talk about the distinguished functions, relations, and elements, and usually that

is the language of first order logic. The symbol for equality is taken as part of the

language by default and it is interpreted as identity. The cardinality of L, ∥L∥,

is the cardinal ≥ the number of symbols in the signature of L and is the same as

the size of the set of essentially different well-formed formulas in the signature.

Two formulas are not (essentially) different if and only if one comes from the

other by a one-to-one change of variables.
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A structureM in model theory is a triple (L,M, I), where L is the signature, M

is a non-empty set representing the domain of the structure, also written as ∥M∥,

and I is the interpretation of the signature on the domain M . For example, the

language of graphs is L = R where R is a binary relation symbol. We also say

that given a signature, a model for a collection of axioms stated in the first-order

language is a mathematical structure for which the axioms, properly interpreted,

are true: M is a model of T ,M |= T , ifM |= ϕ for all sentences ϕ ∈ T . In other

words, the semantics of the first order logic is defined in a structure.

The axioms could be understood as properties of the relations. A L-theory T is

a set of L-sentences. By T we are referring to a first order theory with infinite

models, usually countable when we situate ourselves in a model-theoretic

framework. Although we focus on first order theories, the properties of models

that we consider - saturated, homogeneous, universal - will be second order.

A class of L-structures K is an elementary class if there is a L-theory T such

that K = {M : M |= T}. Let L1 ⊃ L. If M1 is an L1-structure, then by

ignoring the interpretations of the symbols in L1\L we get an L-structure M.

We call M a reduct of M1 and M1 an expansion of M ([146], ex. 1.4.15).

These last definitions permit the interpretation of (very) complicated structures

in (seemingly) simpler ones. For instance, any structure in a countable language

can be interpreted in a graph (see 5.4.2).

Usually, in model theory, model and structure are used interchangeably, but there

is a distinction. Given the structures of a certain language L, the models are the

ones satisfying a particular theory. In this case, structure is a more general

term, used when the properties/axioms are not completely known or specified. A

concrete graph, for instance, is a model for the axioms of graph theory. Models

for set theory, although essential from many points of view, are another example.

We can take different classes of models, such as: the class of models of a certain

cardinality for a first order theory ordered by elementary embeddings, the class

of models of a given cardinality of an abstract elementary class quasi-ordered by
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the inherited order, the class of models for which we consider another cardinal

invariant, like topological weight. A substructure is said to be proper if its domain

is a proper subset of the domain of the extension, in which case we write M < N .

The relation M ≤ N ↔M < N
∨
M = N defines a partial order.

Type Theories describe structures, but types describe the elements in a

structure. The type is a central model-theoretic notion allowing a deeper

analysis of the models of a theory. The number of types is related to the

number of models of a certain theory T . If T has ’few’ types, for instance, then

the class of models of T contains a smallest model (uniquely defined) that can

be elementarily embedded into any other model in the class. It extends the

notion of a theory to include formulas, in addition to sentences. A type is a

consistent set of sentences, while a complete type is a maximal consistent set of

sentences.

Definition 4.5.1. Let M be an L-structure and A ⊆ M . LA represents the

language obtained by adding to L all a ∈ A as constant symbols. By interpreting

the new symbols, M can be seen as a LA-structure. Let ThA(M) be the set of

all LA-sentences true in M .

Let p be the set of LA-formulas in free variables x1, ...xn. p is an n-type if

p ∪ ThA(M) is satisfiable. p is a complete n-type if for all LA-formulas φ with

free variables either φ ∈ p or ¬φ ∈ p. Dn(A) is the set of all complete types.

Let p be an n-type over A, and ā ∈ M a sequence ā = ⟨a1, ..., an⟩. We say that

ā realises p if M |= φ(ā) for all φ ∈ p. If p is not realised in M , we say that M

omits p.

The type of ā over A (tp(ā)/A) represents a complete description of how ā

relates to the subset A. The complete types represent the building blocks of a

model, and the more types there are for a theory, the more options there are to

construct models for that theory. Not all types we can construct represent

actual elements of a model M , they can be realised in some elementary
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extension of M . Consequently, trying to find the types from M determines

questions such as saturation of models.

Forking - Non-forking

Various proofs in model theory, classification theory specifically, involve the

notions of forking and non-forking. In stability theory and its generalizations,

they are used to make precise the idea of generic extensions involving types and

of independence. Let A be a set o parameters. A formula which forks over a set

of parameters A is considered to be ’non-generic’. If p is a complete type over a

set A, the non-forking extensions of p are those extensions containing the

formula forking over A, and they are the ’generic extensions’ of the type p. In

other words, these extensions of p involve a larger set of parameters that

doesn’t add new constraints to the set of its solutions.

Definition 4.5.2. If tp(ā;B) is not free over A, then ā must satisfy more relations

over B than it does over A.

A type p forks over A if there is a finite conjunction of formulas from p which

forks over A. It follows that if a partial type p does not fork over A then there

is a global type p′ ∈ S(M) extending p that does not fork over A. Intuitively

speaking, the ternary relation involved by non-forking means that A is free from

B relative to C.

With regard to the independence aspect involved by the notion of forking, one

says that the tuples a and b are independent over a set A if tp(a/bA) does not

fork over A. More generally, we say that

Definition 4.5.3. For each type p ∈ S(M) and each N ≻ M , p has a unique

extension p′ to S(N) if every realisation of p′ is independent from N over M .

This distinguished extension is called non-forking (or generic).

The notion of independence offered by non-forking (in the context of first-order
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theories) generalizes to a great extent the notion of linear independence (in the

special case of vector spaces) and algebraic independence (in the case of

algebraically closed fields) (see Van der Waerden ([223]) by allowing one to

study structures with a family of dimensions. It is not a strict generalisation,

given that it is stronger in some ways and weaker in others, but it retains a

crucial characteristic, i.e., the ability to assign a dimension to each member of

certain classes of models. The notion of a non-forking extension of a type was

introduced by Shelah in his classification program ([197]). An essential property

of forking for simple theory is the Kim-Pillay independence theorem), an

example of amalgamation property (3-amalgamation). Non-forking itself is

referred to by Shelah as ’free amalgamation’, with amalgamation playing an

essential role in proofs of consistent existence of universal objects.

Another central question that arises in this context is: how many non-forking

extensions can there be? To make the question more precise, given a complete

first-order theory T , one can associate to it its non-forking spectrum, a function

fT(κ, λ) of cardinals giving the supremum of the possible numbers of types over

a model of cardinality λ that do not fork over a submodel of size κ. The function

is defined as follows: fT(κ, λ) = sup{Snf (M,N)|M ⪯ N ⊨ T, |M | ≤ κ, |N | ≤ λ},

where Snf (A,B) = {p ∈ S1(A)| p does not fork over B}. The choice of 1-types

over n-types is essential since the value may depend on the arity [23].

Given that the stability function of a theory is defined as fT (κ) = sup{S(M)|M ⊨

T, |M | = κ}, the question above can be considered as a generalisation of the

classical question (intensively studied by Keisler and Shelah) of ’how many types

can a theory have over a model?’: in other words: fT(κ, κ) = fT(κ).

Structure

As emphasised by Hodges, in ”a well-behaved class, the larger structures are built

up from the smaller ones by adding pieces of certain fixed types; the structures

are determined up to isomorphism by how many pieces of each type were added
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as they were built up from the smallest structures (...) then one ought not to

keep finding essentially new phenomena as one moves from the small structures

in K to the large ones” ([89], p. 216). In such a class, the constructed structure

is similar to the smaller ones but larger in certain directions.

The classification of finite simple groups is an example. Another classic one

is represented by Hausdorff’s results regarding the countable scattered linear

orderings (in [63]). A linear order is scattered if it does not embed the order type

of the rationals. He shows that such an order can be built from simpler ones

through ordered sums indexed by ordinals. It should be emphasised that the

order in the sum is essential. A corollary is that in a well-structured class K, we

can define an equivalence relation that splits the class into families that might be

distinguished by parameters, such as ”structure B can be reached from structure

A through a chain of intermediate structures in K, by adding or removing pieces”

(Ibid.). This represents an ideal case though, rather an heuristic idea, since we can

always find structure theories that constitute counterexamples to such a process.

Determining each structure from the family and up to isomorphism by a set of

parameters that measure the sizes of certain parts of the structure. And this is

a pattern to be found in several model theories approaches.

Within the framework of model theory, set theory has a particular ’place’ since,

from a set-theoretic point of view, the model of any given theory T is a set-

theoretic structure, i.e., they are the members of a background set theoretic

universe. It is particularly obvious when we consider the theory T to be ZFC

itself. In such a case, we should be aware of the distinction between a model

of ZFC and the background universe in which this model ’resides’, as any other

model of any other formal theory. One usually refers to the ’monster model’ in

the practice of model theory. Working in a monster model assures that all types

over smaller parameter sets are realised. To put it another way, models of a

formal theory are members of a universe of sets which, in turn, can be seen as

being itself a model, of course not of a formal theory, but rather of the informal

set theory that one presupposes when doing mathematics. All mathematical
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objects can be represented as sets and, therefore, every model of ZF should

include its own version of all these objects. Now strictly speaking, no model

of ZF is ever going to be described or constructed within the framework of ZF,

due to essential obstructions. So we will have to maintain a certain degree of

awareness when migrating between a mathematical level, the level of objects and

a metamathematical level making possible the discourse about these objects.

4.5.2 Definable sets

Mathematical logic contains some threads that can be found in different forms

in all its developments: definability, categoricity (starting with the works of  Los

and Morley), stability.

Definition 4.5.4. A theory T is ℵ0-categorical if and only if there are only

finitely many formulas in n free variable up to T -equivalence.

In other words, the countably categorical theories are those theories that are

complete and have few formulas (finitely many in n free variables for each n).

This is equivalent to

Lemma 4.5.5. A σ-structure M having universe |M | is ℵ0-categorical iff for each

n ∈ N, only finitely many subsets of |M |n are σ-definable.

Categoricity is central in Shelah’s development of stability theory and, given

the nature of Shelah’s work, it also interacts with set theory. Zilber analyses

categoricty in connection with the pseudo-analytic structures. Stability, albeit a

central concept in model theory, has some related preceding elements in Banach

space theory, particularly in the work of Grothendieck, Krivine and others.

Väänänen described definability as a ”wormhole that somehow travels through all

of mathematical logic. (...) (its appearances in disguised form sometimes, linking

first order, second and higher order logic, linking model theory, proof theory, set

theory and computability theory, appearing in theorems both classic and cutting
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edge) is an important reminder of what unites logic, beyond and together with

the shifting dynamics of its internal movements and external interactions” ([88],

pp. XIII-XIV).

According to Pillay, understanding a structure means understanding the category

of definable sets: ”[T]here is now a reasonably coherent sense of what it means

to understand a structure: it means understanding the category of definable sets

(including quotients by definable equivalence relations). Generalized stability

theory gives a host of concepts and tools which inform this analysis: dimension

theory (the assignment of meaningful ordinal-valued dimensions to definable sets,

invariant under definable bijection), orthogonality, geometries, definable groups

and homogeneous spaces. As mentioned earlier, the contexts in which such tools

are applicable tend to rule out Gödel undecidability phenomena. Interpretability

is a key (even characteristic) notion, and in a tautological sense the business

of ”pure” model theory becomes the classification of first order theories up to

bi-interpretability ([15]).

Descriptive set theory, or definability theory of the continuum, is the study of

definable (Borel, projective, etc.) sets and functions on Polish spaces. Given that

a structure can be defined as the set with special subsets having names, a first-

order structure is a structure having names for those sets that are definable by a

first-order formula. In general, most subsets belonging to a structure’s universe

are not definable.

Furthermore, in first-order logic we cannot say that two definable subsets have the

same size. We can do that in second-order logic, but in this logic we do not have

compactness, nor the Löwenstein-Skolem theorem, and we cannot provide a set of

rules from which to deduce all truths of second-order logic. Model completeness

reduces the definable relations of a theory to those defined using ∃ formulas, which

are more comprehensible and of lesser complexity. Each definable relation of M

is defined by a formula, and the formula shows how the relation is built up from

simpler relations. Two first order formulas are equivalent if they define the same
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relation. As a consequence, the family of definable relations might not be as rich

as the language used to describe them. Every definable subset is a finite union

of intervals. For example, Tarski’s theorem states that every definable subset of

the reals is a finite union of intervals.

But there is no uniform way of determining the various first order definable

relations on a model M . A few of them point to minimality, while arithmetic

is connected to the existence of many definable subsets. In the case of stable

theories, all complete types are definable. If T is a ω-stable theory, there are

saturated models of T of cardinality κ for each regular cardinal κ.

A theory T is called strongly minimal if every definable set in the model with

parameters is either finite or cofinite. Intuitively speaking, the Morley rank

determines how many infinite collections of pairwise incomparable definable sets

are in a model.

The model M itself can be identified with the subset of its realised types, i.e.

{tp(a/M) : a ∈ M} ⊂ S1(M). It follows that S1(M) is the topological closure

of this set. So one can think of the space of types as as ’compactification of the

model’.

The countably categorical theories are those theories that are complete and have

few formulas (finitely many in n free variables for each n). So a definition of

an ℵ0-categorical theory can also be given in terms of definable sets: for each

n ∈ N, only finitely many submodels of Mn are definable. This definition is

equivalent to another one: there are finitely many formulas in n free variables up

to T -equivalence for each n.

A subset X ⊂ M is type-definable if it is a possibly infinite conjunction of

definable sets. Given A the set of parameters, definability of n-types is related

to the cardinality of Sn(A). If a type p ∈ S(M) is not definable, it has 2 heirs.

Many types imply many models, few types imply few models. Few models

means that the theory admits a structure theory, i.e., it admits a freeness
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relation satisfying the independence axioms and showing this through the

notion of ’definability of types’. If a theory has few types, then every type is

definable. Roughly speaking, if there are few possibilities for a given

phenomenon, then each possibility is definable (Beth theorem). If T is stable,

the number of complete φ-types over A is bounded by the number of definitions

over A. So, for each A, |Sφ(A)| ≤ |A|.

4.5.3 Models and extensions

An end-extension of a model of set theory ⟨M,∈M ⟩ is another model ⟨N,∈N ⟩,

such that the first is an ∈-initial substructure of the second, i.e., M ⊆ N and

∈M=∈N↾ M . The extension model does not add new elements to the original

set: if a ∈N b ∈M , then a ∈M and hence a ∈M b.

Theorem 4.5.6 (Keisler-Morley). Every countable model of ZF has an

elementary end-extension.

The result cannot be generalised to all uncountable models. If κ is the least

inaccessible cardinal, then ⟨Vκ,∈⟩ has no elementary end-extension.

Theorem 4.5.7 (Barwise extension theorem). Every countable model of ZF has

an end-extension to a model of ZFC + V = L.

4.5.4 Saturation

Saturation is a model-theoretic generalisation of algebraic closure and it is defined

in terms of realising types.

Given a theory T , a model M of cardinality κ is κ-saturated if and only if for

very subset A of the universe of M (A ⊆M) of cardinality less than κ (|A| < κ)

and every n ∈ N, every complete n-type p over A is realised in M.

A model M with its universe of cardinality κ is saturated if and only if it is

κ-saturated.
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We could say that the types over a subset A ⊂ M can be realised as orbits of

automorphism in M having fixed A.

Saturated models represent a fundamental model-theoretic notion and structure

theorems almost always start from saturated models and develop outwards. An

example is Morley’s theorem that every uncountable structure in a class K of

models must be saturated. Complete first-order classes also present a (first-order)

property known as elementary amalgamation.

Theorem 4.5.8. Let M and N be L-structures. Let A be a subset of the universe

of M such that there is a partial elementary embedding f : A → N . Then there

is an elementary extension B of M and an elementary embedding g : N → B

such that g(f(a)) = a for all a ∈ A.

As a result, first-order classes present a strong homogeneity and contain many

structures presenting a high degree of saturation.

Lemma 4.5.9. A theory T has a countable saturated model if and only if

(∀n) |Dn(T )| ≤ ℵ0.

Regarding the existence of saturated models, we mention here the following

known theorem, given without proof:

Theorem 4.5.10. A saturated model of cardinality κ exists for a theory of

cardinality < κ when κ = κ<κ.

One can also create saturated models ”by amalgamating together all possible

models, rather in the spirit of Fräıssé’s construction” ([90]).

Mekler pointed out that the question of determining the spectrum of saturated

models in cardinality κ for a complete first order theory T is completely

understood and depends on the stability class of the class K of models and the

cardinal arithmetic in the set theoretic universe. There are two cases for that to

happen:
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� If κ = κ<κ ≥ |D(T )|, where D(T ) is the set of all complete types in finitely

many variables over the empty set.

� If T is stable in κ.

In connection to our discussion from chapter 3, which will be further reprised in

the sixth chapter, Baldwin emphasises that model completion is a

context-changing, whereas a saturated extension represents a context-internal

operation. Saturation is a property of one structure and its complete theory.

”Having fixed a theory which admits quantifier elimination, perhaps by fiat (...),

can we extend the domain of an arbitrary model M to one that solves problems

as fundamental but more complicated than those specified by single

formulas?”([6]). In algebraic geometry, if we search for a ’generic’ solution and

not just a solution to a polynomial equation, we must realise a type over the

parameters of the equation. So if we want to find a model of the same theory -

hence context internal - that meets the aforementioned requirements, we will

have to take into account the notions of universal, homogeneous and saturated

models.

A necessary and sufficient condition for countable saturation is the following

Lemma 4.5.11 ([146], (ex 2.3.12)). A countable model M is countably saturated

if and only if for every finite subset X of M , MX is countably universal.

In a way, saturation imposes a strong constrain on a structure. If two structures

are elementarily equivalent, have the same cardinality and are saturated, then

they are necessarily isomorphic.

The ultrapower construction represents another way of constructing a

saturated model, in addition to amalgamating together all possible models.

Malliaris and Shelah have showed that regular ultrapowers are universal for

models of cardinality not larger than the size of the index set, and thus failures

of saturation come from failures of homogeneity ([136]). Consequently, the

saturation of regular ultrapowers can be analysed using the existence or the
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absence of the internal structure-preserving maps between small subsets of the

ultrapower.

The construction of saturated models for regular cardinals is solved for stable

theories. In the case of limit cardinals, we can use special models. A special

model represents a weaker notion than saturation. The notion of special model

was developed by Morley and Vaught (1962), but also by Chang and Kiesler

(1973) or Hodges (1993) with the aim of using GCH to find saturated models. A

model M of size κ is special if it is the union of an elementary chain ⟨Mλ : λ < κ⟩

such that each Mλ is λ+-saturated. Every saturated model is special and every

special model is universal (see [21]). Special models are useful in providing a

substitute for saturation in the case of limit cardinals.

Homogeneity Another fundamental model-theoretic property is homogeneity.

Definition 4.5.12. Let κ be an infinite cardinal. We say that M |= T is κ-

homogeneous if whenever A ⊂M with |A| < κ, f : A→M is a partial elementary

map, and a ∈M , there is a function g with f ⊆ g such that g : A ∪ {a} →M is

partial elementary. We say that M is homogeneous if it is |M |-homogeneous.

In other words, in homogeneous models, partial elementary maps are just

restrictions of automorphisms. We can also see homogeneity as a weak form of

saturation. The best known examples of strongly universal graphs are also

homogeneous.

Now given all of the above-mentioned notions, we have the following results:

Definition 4.5.13. A model M |= T is κ-universal if for all N |= T with |N | < κ

there is an elementary embedding of N into M . We say that M is universal if it

is |M |+-universal.

Lemma 4.5.14. Let κ ≥ ℵ0. If M is κ-saturated, then M is κ+-universal.

Theorem 4.5.15 ([21]). Let κ ≥ ℵ0. The following are equivalent:
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i) M is κ-saturated.

ii) M is κ-homogeneous and κ+-universal. If κ ≥ ℵ1 i) and ii) are also

equivalent to:

iii) M is κ-homogeneous and κ-universal.

In other words, given a theory T , a model/structure M is saturated if and only if

it universal and homogeneous for the class of models of T with cardinality < |M |

and under the elementary substructure relation. The countable saturated models

are universal, but the converse does not hold: saturation is not a condition for

universality, since one can find a universal model which is not saturated. An

example from [45] is ω + Q, a universal countable linear order which is not a

saturated model). Another example can be found in [21], p. 104.

Saturation is therefore a stronger property than universality. Furthermore,

when approaching saturation and universality, there is a difference between

countable models and uncountable ones. Universality (or homogeneous

saturation) represents an algebraic property describing a class of models, the

embedding relation between models. Saturation refers to one model, describing

the relation between M and the types over its subsets (see [6], pp. 126-7).

Assuming CH, there is a general theorem of model theory asserting that for any

first-order theory which has infinite models, all countably saturated models of

cardinality c are isomorphic. It is a result by Hausdorff. In fact, it represents

a particular case of a more general result, namely, given any first order theory,

all κ-saturated models of cardinality κ are pairwise isomorphic. Haudorff proved

the uniqueness of a prime countably saturated order under CH.

Theorem 4.5.16. Assume CH. Then every two countably saturated linear orders

of cardinality c are isomorphic.

This result is not true without CH: if 2ω ≥ ω2, then both of them are countably

saturated linear orders of cardinality continuum, but are not isomorphic, since
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the latter contains an isomorphic copy of the ordinal ω2.

Assuming GCH, there are universal models in every uncountable cardinals for a

complete first-order theory of countable size; when considering regular cardinals,

the model is saturated, while in the case of singular cardinals, we refer to a special

model, as I mentioned above. Given a cardinal λ, if a first order theory T has

infinite models and |T | ≤ λ, then there is a saturated model in every inaccessible

cardinal µ > λ. Universality still raises questions when GCH fails or we consider

non first-order theories. Regarding the countable models of countable theories,

the essential results were offered by G.L. Cherlin in [22] and Schmerl in [179].

4.5.5 Stability

There is a connection between stable theories and saturated models, with results

proved for regular and singular cardinals κ. That could mean that κ-stable

theories realise few types because they ”have trouble making distinctions among

elements of their models” ([96], p. 18). Stable theories, in a sense, have no

partial order. The theory T is stable if for every A ⊂ M and every p ∈ S(A), p

is definable over A. A definable extension of a type is a distinguished extension

of a type: picking it is a freeness relation. Definable extensions of a type are

free. For stable theories, all complete types are definable. Stable theories permit

the minimum number of types in their models. If T is stable, it is characterised

by the definability of types over all models of T . But there are some unstable

theories which have certain special models over which all types are definable.

In any sufficiently large subset of a model for any stable theory, we can find

large indiscernible sequences, which means that stable theories, in a way, do not

posses ”a certain kind of descriptive power” ([96], p. 2). Indiscernible sequences

are sequences of elements in a model over a set of parameters such that any two

n-tuples satisfy the same formulas. Infinite indiscernible sets are sets of

indiscernibles and they are used to realise types and to ’blow-up’ models. If I is

a set of indiscernibles over a subset A of M , the elements of I cannot be
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distinguished by formulas over A: all the elements of I realise the same strong

types over A. Furthermore, when not realising new types, the cardinalities of

maximal sets of indiscernibles can be used as invariants in classifying models as

bases for models in stable theories. In the case of vector spaces, a structure is

determined by one magnitude or dimension, but models of other theories will

depend on more than one dimension. Indiscernibles are identified with

independent elements in vector spaces, ACF and free algebra. But

independence does not quite guarantee indiscernability. A sequence may be

indiscernible without being independent. Furthermore, there is an independent

set without being a set of indiscernibles. Non-forking preserves indiscernability.

Using the distinctions operated by the stability theory, theories have universal

models in the cardinals where they are stable. But when a theory is unstable, one

cannot say what happens when GCH does not hold. The question of establishing

a connection among different theories regarding the universality spectrum and

the non-existence results is still being developed.

Simple theories

Every unstable theory possesses the strict order property or the independence

property or both ([109]) and any theory with the tree property is unstable. But

simple theories are unstable theories without the tree property, which is a

weaker property than the strict order property. A well-known example of a

simple unstable property is the theory of the random graph. The simple

theories constitute a subclass of the theories without the strict order property

and they include stable theories. Due to a result by Dzamonja and Shelah, no

theory with the oak property is simple ([50]). Moreover, simple theories are

those theories that can code certain set theoretic information, like stationary

sets (rather than generalised dimension). So the models of a simple theory are

from a certain point of view no more complicated than random graphs ([200]).

As shown by Shelah in [191], it is easier for a simple first order theory rather
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than for the theory of linear order to have a universal model in some

cardinalities. He proved that a first order theory with the 4-strong order

property behaves like linear orders concerning existence of universal modes.

4.5.6 Universality and Classification theory

In establishing and developing classification theory, Shelah brought forward a

new set of questions about mathematics, and their implications expanded

beyond model theory. Loosely speaking, classification involves organising classes

of mathematical objects using a notion of equivalence by invariants. The theory

developed from a ”natural problem”, that is, from the study of categoricity in

relation to cardinality. Morley conjectured that except for the obvious

exception (there are ℵ1-categorical theories with infinitely many countable

models), a countable, first order theory should have at least as many models in

κ+ as in κ, for uncountable κ.

Theorem 4.5.17 (Morley’s Categoricity Theorem). Let T be a countable first

order theory. T is categorical in one uncountable power if and only if T is

categorical in all uncountable powers.

Shelah proved Morley’s conjecture by splitting theories into a finite number of

classes and providing for each class a schema of explicitly defined (increasing)

functions. But he extended Morley’s Theorem to uncountable languages, and

the uncountable spectrum of a theory T becomes fundamental in the further

developments. These results proved that there is regularity in the universe: the

property of having the same uncountable spectrum could determine a partition

among complete theories that is natural and that can have other applications as

well. Another aspect emphasized by Shelah’s work was that certain fundamental

properties of first order theories (such as categoricity) are closely connected to

set theory, which was therefore required to provide new techniques in tackling

model theory problems.
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Classification theory generates general frameworks for comparing theories by

providing dividing lines which depend on some test problems: one applies the

method of diving lines to a specific test question, the latter having a wild or a

tame answer for each theory. In Shelah’s words, ”[A]s we view model theory

also as an abstract algebra (i.e., dealing with any T , not just a specific one), we

want to find a general structure theorem for the class of models of T like those

of Steinitz (for algebraically closed fields) and Ulm (for countable torsion

abelian groups). So, ideally, for every model M of T we should be able to find a

set of invariants which is complete, i.e., determines M up to isomorphism. Such

an invariant is the isomorphism type, so we should better restrict ourselves to

more reasonable ones, and the natural candidates are cardinal invariants or

reasonable generalizations of them. For a vector space over Q we need one

cardinal (the dimension); for a vector space over an algebraically closed field,

two cardinals; for a divisible abelian group G, countably many cardinals (...);

and for a structure with countably many one-place relations (i.e. =

distinguished subsets), we need 2ℵ0 cardinals (the cardinality of each Boolean

combination)” ([184], p. 227).

Basically, there are two different levels of classification. Firstly, there is a

structure theory for a class K and it involves classifying its structures.

Secondly, he classifies classes K according to whether they have or not structure

theories. One can usually have a rough intuition about what constitutes a good

structure theory, for instance, the structure theory of finitely abelian groups.

The Main Gap Theorem involves this second level of classification and

represents a dichotomy (the dichotomy theorem is another name for it) between

the theories whose models are classifiable (or controlled) and those which are

wild. In the first case, each model is determined by a system of complex

invariants, i.e., a well-founded tree of countable height and width λ of cardinal

invariants, each at most λ. So any defined class K either has a structure theory

of a certain form or it is too complicated to have one.

A dividing line represents a property such that both it and its negation are
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virtuous, with a property of a theory being virtuous if it has significant

consequences for any theory satisfying it, if it impacts the understanding of the

models of the theory. Finding dividing lines is one of Shelah’s ”dreams” (see

[195]), particularly important, given the connection with set theory: ”Can we

find important dividing lines and develop a theory for combinatorial set theory?

Now Jensen has a different dream (I do not believe that it will materialize). (...)

Considering inner models, we find there are good dividing lines for descriptive

set theory” ( p. 218). Examples of test problems include Morley’s conjecture

and the numbers of models, with few models representing the strongest form of

non-chaos. Two meaningful dividing lines for the classification of unstable

theories are the strict order property and the independence property and their

disjunction is equivalent to unstability ([191]). The strict order property is

stronger than the strong order property. There are test problems that can be

used to study theories with many non-isomorphic models, in particular unstable

theories without the SOP (simple theories, for instance): the existence of

saturated models [188], the Keisler order [181], or the existence of universal

models [109].

As emphasised by Shelah ([200]), good test problems help finding the right

dividing lines. Universality constitutes one of the ways of organising the

collection of first order theories, with the measure of complexity involving a

different ordering for first order theories: complexity for a theory could signify

now fewer universal models. And he offers the following definition:

Definition 4.5.18 (2.6. in [200]). T1 ≤univ T2 if ”λ ∈ univ(T2) ⇒ λ ∈ (T1)”

holds also in every larger ”universe of sets” (i.e. in every forcing extension where

λ ≥ 2ℵ0 , or even λ = λℵ0 holds).

So the universality spectrum problem involves the understanding of the quasi-

order determined by≤univ. The small or low theories will have a large universality

spectrum, while the large or high theories will have small universality spectrum.

’Nicer’ theories have more universals. In the high case, there is also the following
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external definition:

Definition 4.5.19 (2.7. in [200]). K is almost ≤univ-maximal if in every forcing

extension, K has no universal model in λ for any λ = λℵ0 with µ++ = λ < 2µ for

some µ.

If T has the strict order property, i.e., some formula ϕ(x̄n, ȳn) defines in some

M ∈ KT a partial order with infinite chains, then it is almost ≤univ-maximal (by

[109]).

Theorem 4.5.20 (9.4. in [200]). 1) The class of linear orders (and thus

many other T ’s) is almost ≤univ-maximal, (even λ = µ++ < 2µ suffices

and less), that is, it is ≤univ,{λ:(∃µ)(λ=µ++=λℵ0 )}-maximal.

2) Moreover, the StOP (= the strict order property) suffices (StOP means that

some formula φ(x̄n, ȳn) defines a partial order in every model of T, and it

has an infinite chain in some model of T ).

SOPn’s represent approximations to the strict order property, strengthen

instability (the order property) and, despite the sparse evidence, might be

considered possible candidates for dividing lines ([200], p. 287).

Definition 4.5.21 (9.7 in [200]). 1) For n ≥ 3, T has SOPn if there is a

formula φ(x̄n, ȳn) that defines on some model of T a directed graph with

an infinite chain and no cycles of length ≤ n.

2) We write NSOPn for the negation of SOPn. A prototypical class for SOPn

(for n ≥ 3) is the class of directed graphs with no (≤ n)-cycle.

NSOP4 was considered for a long time a good dividing line for universality ([200],

p.317), but, in accordance with [191], SOP4 would be enough for almost ≤univ-

maximality in the theorem above. Furthermore, the results of the theorem hold

for theories having the olive property. The olive property, introduced by Shelah

in [198], represents a sufficient condition for a class to have a universal member
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in λ, but only if λ is ’close to satisfying GCH’, similar to the case of linear orders.

The class of all groups were known to have NSOP4 and SOP3 and more universal

elements, but the olive property is weaker than SOP4, implies SOP3 and very

few universal groups.

So a central idea in [200], and in other work in progress, is that a good dividing line

revolves around a combination of being a tree and the olive property. But such an

approach has to take into consideration several other aspects: the olive property

”seems ad hoc, and it is doubtful that it is a good candidate for a successful

dividing line” [200]. Then any theory with the tree property is unstable and

every unstable theory possesses the strict order property or the independence

propery or both ([109]). By [109], the theory of linear order and, more generally,

theories with the strict order property have universal models in ’few’ cardinals.

The tree property is weaker than the strict order property. But simple theories

are unstable theories without the tree property, so not having this property can

be considered as a weakening of stable ([191]).

As emphasised by Baldwin, classification theory ”raises questions about the

nature of axiomatisation”: ”the study of arbitrary theories in model theory

reflects the view of axioms not as ’self-evident’ or even ’well-established’

fundamental principles but as tools for organising mathematics”. Nonetheless,

”Shelah’s classification project takes this to a higher level of abstraction by

providing general schemes for comparing theories. This raises new problems in

the philosophy of mathematical practice.

� What are criteria for evaluating axiom systems?

� What are the connections among the justificatory and explanatory functions

of axioms? E.g., are there criteria for choosing among first order, second-

order, or infinitary logic? In what sense is second order logic simply a

natural avatar for set theory?

� What principles underlie the development of a taxonomy of mathematics
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(or at least formal theories) such as the ones described here?” ([7], p. 365).

4.6 Universality and set theory

A theory can have universal models in some cardinals and not others. The

complexity of a set of structures is dependent on the set theory and the cardinal

arithmetic one is using. It differs in set-theoretic universes satisfying GCH and

in those without it. And even when one is classifying theories, the criterion is

the family of cardinals where they have universal objects, given a specific

set-theoretic framework and cardinal arithmetic assumptions. So if some

theories have universal models in the same cardinals, it may mean that they are

somehow related. In the circumstances, set theory represent a/the fundamental

condition in approaching the universality problem.

In some cases, cardinal arithmetic can guarantee the existence of a universal

model: CH, for instance, implies that every first order theory has a universal

(saturated) model of cardinality ℵ1. But Shelah’s work shows that the properties

of the models of a theory can vary in an essential way depending on the cardinality

of the model and on the cardinal arithmetic. The largest universality number,

2λ could be obtained by forcing, as seen in [109]. The large part of mathematical

areas use models of cardinality at most the continuum and involve statements

whose truth is independent of the structure’s cardinality. The first result which

showed universal structures might exist despite the cardinal arithmetic was again

a result by Shelah in [180]: it is consistent with ¬CH that there is a universal

total order.

But even in results pointing to the connection between the complexity of a theory

and the existence of universal models, set theoretic elements play a fundamental

role. Džamonja, for instance, shows that for certain theories, such as the theory

of graphs, it is possible to violate the GCH as much as one wishes and still have

a low universality numbers. This aspect implies ”that the ability of having a
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small universal number in ’reasonable’ forcing extensions in which the relevant

instances of GCH are violated is a property of the theory itself, which is not

possessed by all theories” ([45], p. 5). The connection between the complexity

of a theory and amenability to the existence of universal models was explored in

other works as well ([109], [110], [108], [188], [49]).

The role of set theory is particularly fundamental in the configuration of the

universality problem due to a more sophisticated apparatus in dealing with the

uncountable sets, as the complexity of some of the methods, mentioned below,

can testify.

Interpretability In any model of one system of set theoretic axioms one can

define models of other systems of set theoretic axioms and vice versa. We say

that

Definition 4.6.1 (1.3.9 in [146]). An L∞-structure M is interpretable in a L∈-

structure N if there is a definable X ⊆ Mn , a definable equivalence relation E

on X and for each symbol of L∞ we can find definable E-invariant sets on X

such that X/E with the induced structure is isomorphic to M .

Theorem 4.6.2 (5.5.1 in [90]). Let K be a first order language whose signature

consists of the binary relation R, and let L be a first-order language with finite

signature. Then there is a sentence χ of K such that

(a) every model of χ is a graph;

(b) the class of models of χ is bi-interpretable with the class of all L-structures

which have more than one element.

Moreover, both the interpretations in (b) preserve embeddings.

Furthermore, the theory of linear orders ≤ is bi-interpretable with the theory of

strict linear order <, since from any linear order ≤ we can define the

corresponding strict linear order < on the same domain and vice versa. When
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two theories are mutually interpretable they are equiconsistent, given that from

any model of one we can produce a model of the other. The most obvious

example is the fact that any model of ZFC can define models of ZFC + CH

and also ZFC + ¬CH. But there is no bi-interpretation in set theory. In [58],

Eli Enayat proves that distinct theories extending ZF are not bi-interpretable,

and that models of ZF are bi-interpretable only when they are isomorphic.

Universality and proof methods The current results about universality

involve various techniques and methods. Some point to the existence of

universal models in different contexts. Others show that a certain theory does

not have a small universal family at a certain cardinal (club guessing methods).

But they all refer to GCH-like assumptions: firstly, when we assume it; secondly,

there are results where CH is violated, and then we analyse the possibility of the

existence of universal models in forcing extensions (where CH could fail), and

particularly at ℵ1. Jónsson had showed that the classes of structures that satisfy

GCH and six other axioms have universal structures in all uncountable cardinals

([97]). GCH implies that all first order theories T with |T | = κ have universal

models in all uncountable cardinals λ > κ. But things get complicated with the

negation of GCH, with Shelah obtaining many independence results regarding the

existence of universal structures in uncountable cardinalities ([180], [183], [187]).

4.6.1 Limits

”Roughly speaking, - writes T. Tao - one can divide limits into three categories”

([210]: topological and metric limits, categorical limits and logical limits.

Regarding the third kind of limit, ”one starts with a sequence of objects xn or

of spaces Xn, each of which is (a component of) a model for given (first-order)

mathematical language (e.g. if one is working in the language of groups, Xn

might be groups and xn might be elements of these groups). There are several

devices one can use in this regard. One is the ultraproduct construction, which
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Tao analyses as a ’bridge between continuous and discrete analysis’. Another is

the compactness theorem in logic. Still another is the Fräıssé construction. We

start with the first.

The new object limn→α xn or the new space
∏

n→αXn that we create is still

a model of the same language. The limiting object (or space) is ’close’ to the

objects (or spaces) we started of with, in the sense that any assertion that is true

of the new objects is also true for many of the original objects and vice versa.

For instance, if
∏

n→αXn is an abelian group, then the Xn will also be abelian

groups for many n. The importance of this type of limit (the logical one) is that

it represents ”a ’universal’ limiting procedure that can be used to replace most

of ”other types of limits”.

Definition 4.6.3 (Ultraproduct). Let L be a language, I and infinite set, and

U an ultrafilter on I. Suppose that Mi is an L-structure for every i ∈ I. We

define a new structure, M =
∏
Mi/U the ultraproduct of the Mi using the filter

U . Given

X =
∏
Mi =

{
f : I →

⋃
iMi | ∀i ∈ I, f(i) ∈Mi

}
we define the equivalence relation ∼ on X by f ∼ g if and only if {i ∈ I : f(i) =

g(i)} ∈ U .

When we take the product of the same structure, we get the ultrapower.

Definition 4.6.4. Let M be a fixed L-structure and let Mi = M for every i ∈ I.

Let U be a nonprincipal ultrafilter on ω. Let M∗ =
∏
Mi/U . We call M∗ an

ultrapower of M .

The ultraproduct construction in particular, writes Tao, has ”two very useful

properties which make it particularity useful for the purpose of extracting good

continuous limit objects out of a sequence of discrete objects” (Ibid.):  Loś’

theorem and the countable saturation property that ultraproducts

automatically enjoy.
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Theorem 4.6.5 ( Loś’ theorem). Let L be a language, I and infinite set, U an

ultrafilter on I and ∼ an equivalence relation defined as above. Let φ(x1, ..., xn)

be an L-formula. Then

M |= φ(g1/ ∼, ...gn/ ∼) if and only if {i ∈ I : Mi |= φ(g1(i), ..., gn(i))} ∈ U .

Roughly speaking, the theorem asserts that any first-order statement satisfied

by a sequence of objects will be satisfied by their ultralimit and conversely. Or,

we could say that this theorem is continuous with respect to ultralimits. But

the general idea is that the ultraproduct construction offers the possibility of

constructing new mathematical structures out of familiar ones, and  Loś’ theorem

assures that the new model is elementarily equivalent to the original one. It is

also a technique used to construct non-standard models.

Compactness I mentioned above the notion of compactness as one way of

creating generalisation.

Theorem 4.6.6 (Compactness Theorem). A theory T is satisfiable if and only

if every finite subset of T is satisfiable.

It is a very simple (and arguable fundamental) consequence of a corollary to

Gödel’s Completeness Theorem:

Corollary 4.6.7. Let T be an L-theory. T is consistent if and only if T is

satisfiable.

For instance, a linear order is compact if it is compact in the order topology, i.e.

every set has both supremum and infimum, in particular both endpoints exist. We

often call such orders compact lines. A linear order is a linearly ordered continuum

if it is compact and connected in the order topology, i.e., it is compact and dense

as a linear order. Compactness represents a consequence of  Loś’ theorem. And

countable saturation (a property analogous to compactness in topological spaces)

can be used to ensure that the (continuous) objects obtained by the ultraproduct

construction are ’complete’ or ’compact’.
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Theorem 4.6.8. For any countable language L and L-structures Mi, and a free

ultrafilter U on N,

∏
i∈N

Mi/U is countably saturated.

The following theorem shows how ultraproducts can give a different proof of the

Compactness theorem. If T is a finite theory, then it is satisfiable.

Theorem 4.6.9 (Ultraproducts and the Compactness Theorem). Suppose that

T is a infinite theory, finitely satisfiable. Let I = {△ ⊆ T : △ is finite}. Then

(i) For φ ∈ T , let Xφ = {△ ∈ I : φ ∈ △}. Let D = {Y ⊆ I : (∃φ ∈ T ) Xφ ⊂

Y }. Then D is a filter on I.

(ii) For △ ∈ I, let M△ |= △. Let U be an ultrafilter on I with D ⊆ U . Then∏
△∈I

M△/U |= T .

In other words, any class of models that is closed under ultraproducts is also

compact. Ultraproducts are also connected to first-order definability, in the

sense that if a class of L-structures is first-order definable, the it is closed under

ultraproducts. Given that the class of finite L-structures is not closed under

ultraproducts, ’finiteness’ is not first-order definable. Taking ultrapowers of

models determines the Keisler order, which constitutes another test problem in

model theory.

Fräıssé limit

So many times, the limit models offer a new perspective on the original one. A

general way to construct countable limit structures is the Fräıssé construction.

The Fräıssé limits are now studied in different mathematical contexts, like

combinatorics, descriptive set theory, permutation group theory, topological

dynamics (see [130] for further references). The substructure relation is an

integral part in its definition, but since the construction was introduced by
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Fräıssé in 1948 ([65]), it received certain generalisations (e.g., the Hrushovski

construction).

The Fräıssé limit represents a construction of a universal homogeneous countable

relational structure from the class K of its finite substructures that satisfy certain

properties:

� Amalgamation: For every M,N ∈ K that agree on M ∩ N , there is a

structure M∗ ∈ K such that M is a substructure of M∗ and N embeds into

M∗ preserving M ∩N .

� Joint embedding property: For every M,N ∈ K there is N∗ ∈ K such that

M,N embed into N∗.

� The class K is closed under isomorphisms;

� The class K is hereditary: if M is an L-structure, M ∈ K and N is a

substructure of M , then N ∈ K.

Theorem 4.6.10 ([65]). Let Let L be a relational language. If K is a

hereditary class of finite relational structures closed under isomorphism and also

satisfying the amalgamation and joint embedding properties, then there is a

unique countable structure F (K) whose all finite substructures are exactly the

structures in K. Moreover, F (K) is ultrahomogeneous, universal and Th(K)

has a unique countably infinite model, up to isomorphism.

The last aspect means that the generic model obtained, F (K), is ℵ0-categorical

(the language is finite). This type of model construction appears in a variety of

contexts, including linear orders and graphs. The ordered set of rationals (Q)

represents the Fräıssé limit of the class of all finite linear orders, while he random

graph is the Fräıssé limit of the class of all finite graphs.

The Fräıssé limit was reconfigured by Hrushovski to obtain relational structures

and to yield simple unstable structures: the Hrushovski construction generalizes
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the Fräıssé limit by working with a notion of strong substructure, using the ≤

relation rather than ⊆ one.

4.6.2 Ehrenfeucht-Fräıssé games

The Ehrenfeucht-Fräıssé games are used to gauge the similarities between

structures. They were introduced by Ehrenfeucht ([56]), building on work by

Fräıssé ([64]) as a method for proving that two models are equivalent. They are

similar to Scott’s result that countable structures are determined up to

isomorphism by a single infinitary sequence. In its general form, Scott’s

Isomorphism Theorem states that every countable L-structure is described up

to isomorphism by a single Lω1,ω-sentence.

Theorem 4.6.11 (Scott’s Isomorphism Theorem). Let L be a countable language

and A a countable L-structure. Then there is Scott sentence whose countable

models are just the isomorphic copies of A.

It is an approach particularity characteristic to the Helsinki school (see [91],

[221]). Given two models, A and B, there are two players, a non-isomorphism

player (∃) and an isomorphism player (∀), who alternately choose elements from A

and B. Gκ(A,B) denotes the Ehrenfeucht-Fräıssé game of length κ (or κ rounds).

At every round i, let ai be the element chosen from the structure A, and bi be

the element chosen from the structure B. The analogue in this context of Scott

isomorphism theorem is the result that two structures of a given cardinality are

isomorphic if and only if the isomorphism player has a winning strategy.

Proposition 4.6.12. If A and B are countable models, then the player ∀ has a

winning strategy in the game Gω(A,B) if and only if A ∼= B.

If we are ’playing’ the game on ω1, it will have ω1 moves and the isomorphism

player wins if an isomorphism between the chosen substructures has been

constructed. The non-isomorphism player will win the game if the resulting
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mapping ai 7→ bi is a partial isomorphism, and otherwise, ∀ wins. A player wins

if it has a winning strategy. If κ = ω, we have a ranked game.

Definition 4.6.13. Let τ be a winning strategy for ∀ in Gω(A,B). The Scott

rank of A is the smallest α such that if A ≇ B, then for some winning strategy

τ of ∀ in the game, the rank of (A,B, τ) is at most α.

If κ > α, we cannot use ordinals: if at every round of the game ∀ plays its winning

strategy τ , the rank will go down on each move and after a finite number of moves

it will reach its ’victory’. Instead, the winning strategy was introduced in the

form of a tree of all possible sequences of successor length of moves by the non-

isomorphic player ∃ against τ , such that ∃ has not lost the game yet.

As such, the analogue of the Scott height are trees with no uncountable branches,

in the case of tress of cardinality ℵ1, and with no branches of size κ for trees of

height κ (games of lenght κ). If T is a tree, the game GT (A,B) is defined as

follows: at any stage, the non-isomorphism player chooses an element from either

A or B and a node of the tree lying above the nodes already chosen by this player.

The isomorphism player responds with an element of B if the other player had

chosen an element of A, and an element of B in the other case. The resulting

sequences of moves from A and B form a partial isomorphism. The first player

who is unable to move loses.

Similar to Scott height, if A and B are non-isomorphic structures of cardinality

ℵ1, then there is a tree of cardinality at most 2ℵ0 with no uncountable branches

and such that the non-isomorphism player has a winning strategy in the game

(the tree T can be chosen to be minimal). The difference as to the Scott height is

that the choice of the trees depends on the pair of structures (A,B): if we start

by taking a specific structure A, it doesn’t work for all structures B.

Definition 4.6.14. Let A and B be structures of cardinality ℵ1. A tree T is

called a universal non-equivalence tree for A if T has an uncountable branch and

for every non-isomorphic structure B, the non-isomorphic player has a winning

strategy in GT (A,B).
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The difficulty in using trees to analyse similarities of structures is that, unlike the

ordinals, the structure of the trees is not well understood. Furthermore, another

aspect to be considered is that for models of cardinality > κ, the game Gκ(A,B)

need not be determined:

Theorem 4.6.15 ([150]). There are models A and B of cardinality ω3 such that

the game Gω1(A,B) is non-determined. It is consistent relative to the consistency

of a measurable cardinal that Gω1(A,B) is determined for all models of cardinality

≤ ω2. It is consistent relative to the consistency of ZFC that Gω1(A,B) is not

determined for some models of cardinality < ω2.

As emphasised by Hodges ([90], p. 335), the existence of a winning strategy

represents an enforceable property, and this kind of properties have been studied

also under the name of omitting types in model theory or forcing in set theory.

The essence of this method is to break down the overall task into infinitely many

smaller tasks, which can be carried out independently without interfering with

each other.

4.6.3 Amalgamations

As Hodges remarked, ”[A]malgamation theorems (...) tend to spawn offspring of

the following kinds: (i) criteria for a structure to be expandable or extendable

in certain ways, (ii) syntactic criteria for a formula or set of formulas to be

preserved under certain model-theoretic operations (results of this kind are called

preservation theorems), (iii) interpolation theorems” ([90], p. 295).

The amalgamation process is a method to obtain simple structures in a direct

construction from finite (or finitely generated) substructures. It initially

appeared in the works of Ehrenfeught, Fräıssé, and Jónsson. In connection to

syntactic criteria, amalgamation represents a technique for realising many types

simultaneously inside one and the same structure. Furthermore, non-forking,

central element in classification theory, is referred to by Shelah as free
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amalgamation. As a semantic notion, it proved to be of crucial importance in

proofs establishing the existence of universal objects.

4.6.4 Combinatorics

The set theoretic combinatorics represents a complex and rich area of study and

results, including extensions of Ramsey’s theorem, especially partition calculus,

transfinite trees and graphs, Martin’s axiom, combinatorics of the continuum,

singular cardinal combinatorics, PFA theory-related results, Todorčevič’s theory

of minimal walks etc. An informative account of its development and connection

to other areas can be found in [121], a decade by decade account of different

threads, starting with Cantor at a look ”at freedom as shown in the generalization

of notions of largeness, first (...) those used in successive versions of the Regressive

Function Theorem, then in generalizations of the Pigeonhole Principle, and in

applications to partition relations and trees”, then examining ”the winnowing

process mentioned by Cantor that shaped the notion of uncountable tree from

the ramified sets, tables, and suites of Kurepa to the family of ω1-trees classified as

to whether they are special Aronszajn trees, non-special Aronszajn trees, Suslin

trees, or Kurepa trees” (p. 324).

Combinatorics simultaneously points to few restraints in its practice, but it also

determines patterns that complicate structures.

Finer is more

As emphasized by the Soukups, ”[S]olutions to combinatorial problems often

follow the same head-on approach: enumerate certain objectives and then

inductively meet these goals” ([205], p. 1247). And although the techniques

vary from problem to problem, the idea is the same: finding the right

enumeration of infinitely (including uncountably) many objects involves a

recurring feature, that is ”to write our set of objectives χ as a union of smaller
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pieces ⟨χα : α < κ⟩ so that each χα resembles the original structure χ” (Ibid.).

In other words, we use a filtration.

Definition 4.6.16. Let κ be an uncountable cardinal and X a set such that

|X| = κ. A filtration of X is an increasing and continuous sequence ⟨Xi : i < κ⟩

such that Xi ⊆ X, X = ∪iXi and |Xi| < κ.

A key property is that given filtrations Xi and X ′
i, we have Xj = X ′

j for a club set

of j. Although there are certain limitations, the Soukoups rightfully emphasise

the fact that the ”introduction of elementary submodels to solving combinatorial

problems was truly revolutionary. It provided deeper insight and simplified proofs

to otherwise technical results” ([205], p. 1247). Filtrations are used in the proof

of many universality results. They involve a fine structure analysis of the objects

involved.

There are other examples of fine structure analyses and they all determine

fascinating results. I used ’fine’ here in a generic sense.

But there is a specific, technical way in which one uses this notion, i.e., when

referring to the fine structure theory developed by Jensen. He investigated the

growth of constructible hierarchy by examining its behaviour at arbitrary levels

and he introduced the Jensen hierarchy, switching from the hierarchy of Lα’s to a

hierarchy of Jα’s, where Jα+1 is the closure of Jα∪{Jα} under the ”rudimentary”

functions. That was his primary goal, but the ’offshoot’ was the creation of

a complex machinery for this investigation. As Kanamori puts it, a ”pivotal

question became: when does an ordinal α first get ”singularized”, i.e. what is

the least β such that there is in Lβ+1 an unbounded subset of α of smaller order-

type, and what definitional complexity does this set have? One is struck by the

contrast between Jensen’s attention to such local questions as this one, at the

heart of his proof of □κ, and how his analysis could lead to major large-scale

results of manifest significance” ([99], p. 39).

So generally speaking, combinatorial principles, small ’fragments’ of the
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constructible universe L expressed as assertions like diamond (♢), square (□)

etc., have applications in many areas of mathematics, but mostly set theory.

Singular cardinals pose specific problems in set theory, but, as Džamonja writes:

”[I]f the infinite is the limit of the finite, a singular cardinal is a limit of the

successors of regulars, and maybe it is at such limits that the unruly universe of

set theory wishes to express its more tame behaviour. It seems possible that by

investigating finer combinatorics than that expressed by the power set function

we may find combinatorial versions of SCH which are just outright true” ([46],

p. 145).

Combinatorics, both finite and infinite, plays a fundamental role in the

configuration of the universality theory. The finite case include the Szemerédi

Regularity Lemma, Ramsey theory, probabilistic methods. etc. But of essential

importance is infinite combinatorics. Infinite combinatorics involves an

extension of finite combinatorics ideas into the infinite realm. Generally

speaking, infinitary combinatorics can be used to model and therefore to (try

to) understand processes involving infinitely many steps and their nature. And

actually, as emphasised by Kanamori, ”the direct investigation of the transfinite

as extension of number was advanced, gingerly at first, by the emergence of

infinite combinatorics” ([99], p. 17). A common characteristic of the

combinatorial principles involved is that they are independent of the usual

system of axioms in set theory. As a result, they are particularly useful in

proving non-existence results regarding universality.

There are two types of cardinals, regular and singular, but the combinatorics of

regular cardinals largely overpasses the combinatorics of the singular ones. The

infinite combinatorics is related to a cardinal κ and implies an interplay of various

appropriate properties φ(κ) that it has. As emphasised by Dzamonja, ”[O]ne may

think of κ as a parameter here” ([47], p. 164). An example is represented by

the existence of certain objects of size κ, such as a graph or a tree on κ having

certain properties, with the combinatorics of non-special trees (discussed later)
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generalising the usual combinatorics of the uncountable cardinals. We will use

a strengthening to trees of the classical Pressing Down Lemma of ω1: every

regressive mapping on a non-special tree is constant on a non-special subtree.

We can also talk about the combinatorics associated with the cardinal invariants

of the Cichón diagram. Club guessing sequences and their associated filters play

a vital role in singular cardinal combinatorics and other subjects. Other such

properties include the existence of a topological measure, of a measure-theoretic

object of size κ, extensions of Ramsey’s theorem, Martin’s axiom etc.

The most notable combinatorial principal is the General Continuum Hypothesis,

by which every infinite set has the least possible number of subsets. In 1908,

Hausdorff proved, using GCH, that there is a universal linearly ordered set in

every infinite power. A universal linearly ordered set of cardinality ℵα is a linearly

ordered set of cardinality ℵα with the property that every linearly ordered set

of cardinality ℵα embeds into it. Hausdorff uses what is now called a saturation

argument (introduced by Vaught and Morley in the 1950’s), i.e., he counts types

and realises them to obtain saturated order-types. If CH holds, there is a universal

linearly ordered set of cardinality ℵ1. But this fact does not necessarily hold

without the CH. He also showed that there is a universal linearly ordered set of

cardinality κ for every strong limit cardinal κ. A partial converse was proved by

Kojman and Shelah in [109] for an initial segment of the singular cardinals:

Theorem 4.6.17. For every singular cardinal µ below the least fixed point of

second order, if µ is not a strong limit, then a universal linear ordered set of size

µ does not exist.

A fixed point is a cardinal µ = ℵµ, and a fixed point of the second order is a

cardinal µ which is the µth point. One is still to find out if this converse holds

for all cardinals, if it fails at the least point of second order or at a higher point.

Laver uses Nash-Williams’s combinatorial results and show that embeddability

regarding the countable order types is well-quasi-ordered ([123]).
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4.6.5 Guessing sequences

The guessing principles, diamond (♢), square, □ or club (♣), can capture in a

non-trivial way at least λ+ many objects from [λ]λ, in a sequence of length λ.

They can be used to construct various other combinatorial objects. For instance,

we have that ♢ → ¬SH.

Definition 4.6.18. Let S be a stationary set of λ. The sequence C̄ = ⟨Aδ : δ ∈ S⟩

is called a diamond sequence, ♢(S) if for every X ∈ [λ]λ, the set {δ ∈ S : X ∩ δ =

Aδ} is stationary.

The ♢ and □ principles (with variations) were introduced by Jensen in his paper

on the fine-structure theory ([95]), showing that they follow from the assumption

that V = L. The sequence ⟨Aδ⟩δ<ω1 offers types of universal approximations for

the subsets of ω1.

♢ expresses combinatorial constrains on the subsets of ω1: the minimal character

of the constructible universe L and the fact that it contains only a ’strict number’

of sets. It implies the CH. It can be generalised to a cardinal κ, where it implies

the GCH. Shelah proves that for every κ > ℵ0, the converse hold.

We can obtain a weaker principle (♣, introduced by Ostaszewski in 1975) by

replacing the equality in the definition with ⊆, and removing the cardinals

arithmetical assumptions present in ♢.

Definition 4.6.19. Let S be a stationary set of λ. The sequence ⟨Aδ : δ ∈ S⟩

is a ♣(S)-sequence if Aδ ⊆ δ is unbounded, and for every X ∈ [λ]λ, the set

{δ ∈ S : Aδ ⊆ X} is stationary.

♢ implies the CH, but ♣(ω1) is consistent with a large continuum. The principle

was used by Macintyre to prove that no Abelian locally finite group of size ℵ0 is

embeddable in all universal locally finite groups of size ℵ0 ([128]). Komjáth and

Pach use the ♢ principle to prove that there is no universal graph in cardinality

ℵ0 among the graphs that Kω0,ω1 .
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The square principles - □ There are several square principles, with the first

being discovered by Jensen. In the context of the fine structure theory of the

constructible universe L, he proved that □κ holds in L for every uncountable

cardinal κ. He used this principle to prove the existence of an ω2-Souslin tree

in the constructible universe (see [95]). Given that in V = L they hold for all

uncountable cardinals, these principles were used since then as a way to express

various properties for the cardinals in L. The related principle ♢ was used to

construct an ω1-Souslin tree in the same universe (L).

Definition 4.6.20. Let κ be a regular cardinal. A square sequence on κ is a

sequence C̄ = ⟨Cα : α is a limit ordinal in κ+ ⟩ such that

1. Cα is a club subset of α.

2. If β ∈ Lim(Cα), then Cβ = Cα ∩ β.

3. If cf(α) < κ, then |Cα| < κ.

□κ represents the statement that there is a square sequence on κ.

The second condition assures the coherence property. So the square principle on

a cardinal κ refers to the existence of a sequence ⟨Cα⟩ indexed by limit ordinal

in [κ, κ+) such that each Cα is a club of α with order type ≤ κ, and which is also

coherent: if β is a limit point of α, then Cβ = Cα ∩ β.

A generalisation and hierarchy of square principles was provided by Schimmerling

in [59]. There are different forms of square principles and they are relatively easy

to be obtained by forcing.

4.6.6 The PCF theory

Other options involving combinatorial principles could also be found in Shelah’s

work, particularly in his PCF theory ([189]), an acronym for the theory of reduced

products of small sets of regular cardinals. Shelah’s approach was determined by
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problems related to singular cardinal arithmetic. It is a powerful theory that

changed the view on cardinal arithemtic, with Jech maintaining that is more

fundamental than cardinal arithmetic ([93], p. 417).

A set pcf(A) of possible cofinalities defined for every set A of regular cardinals

is the collection of all cofinalities of ultraproducts ΠA/D with ultrafilters D over

A. A surprising result is: if 2ℵn < ℵω for ∀n = 0, 1, 2, ..., (ℵω is a strong limit

cardinal), then 2ℵω < ℵω4 .

Shelah obtained a plethora of combinatorial results and his ZFC combinatorics on

uncountable ordinals was used in many studies regarding embeddability. In [109],

for instance, it was shown that if λ > ℵ1 is regular and λ < 2ℵ0 , then there is no

universal linear ordering in λ. Analogous results were proved for models of first

order theories ([110]) and infinite Abelian groups ([111]), but his independence

results prove them impossible for the class of all graphs ([187]).

On how the problem of the existence of universal objects is connected to the

PCF theory, see [109], [190], [194]. In [108], Kojman uses some of Shelah’s

combinatorics to establish a representation theorem regarding the connection

between the structure of embeddability over a monotone class of infinite graphs

and the relation of set inclusion over subsets of reals of bounded cardinality. As

such, the result shows that the relation of embeddability among the class of

graphs is at least as complicated as the relation of inclusion among the subsets

of reals of cardinality at most λ, and, moreover, that the structure of

embeddability over the class described is not independent with regard the

negations of the GCH. Specifically, the theorem assert that there is a surjective

homomorphism from the former relation onto the latter.

Theorem 4.6.21 (1.8. in [108]). If λ > ℵ1 is regular, then there is a surjective

homomorphism

φ : ⟨Gλ,≤w⟩ −→ ⟨[R]λ,⊆⟩.

A corollary asserts that the structure of embeddability over the class studied is
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dependent on negations of GCH.

The proofs in PCF theory do not depend much on the complex developments of

set theory in the 1960s (forcing, in particular). As such, and as emphasised by

Shelah in the Introduction to [189], Cantor, arising from his grave, would be able

to understand them, or at least the theorems.

Club guessing Club guessing is a weakening of ♢: in this case, only club sets

are guessed. For a comparison of various club guessing principles, see [92].

Definition 4.6.22. Let κ < λ be regular cardinals with κ ≤ µ < λ and S a

stationary subset of λ consisting of points of cofinality κ. A sequence C̄ = ⟨Cδ :

δ ∈ S⟩ is a club guessing sequence iff

1. For every δ ∈ S, the set Cδ is a subset of δ with otp(Cδ) = µ.

2. For every club E of λ there is δ ∈ S such that Cδ ⊆ E.

3. For every α ∈ λ, |{Cδ ∩ α : δ ∈ S&α ∈ (Cδ \ lim(Cδ))}| < λ.

4. sup(Cδ) = λ.

Unlike Jensen’s diamond, non-trivial club guessing sequences exist in ZFC, are

provable in the ZFC. Shelah started his work involving club guessing to prove non-

structure theorems. Gradually, the method was used in different applications in

model theory ([110]). But the variety and the number of results in set theory

using this construction is extraordinary.

A fundamental result in combinatorial set theory is Shelah’s proof of club guessing

for regular cardinals of cardinality > ℵ1 . Club guessing sequences C̄ = ⟨Cδ :

δ ∈ S ⊂ λ⟩ are used in the proof of certain universality results, starting with

[109]. The proof uses invariants of δ along the places in the filtration of a linear

order of cardinality λ that are determined by the club guessing sequence. The

construction is made such that a club E will witness the embedding between the
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linear orders (their filtrations): at any δ ∈ E, the required invariant (defined for

elements Lj in the filtration L̄ = ⟨Lj : j < λ of a linear order L of cardinality λ)

is achieved only if Dδ ⊆ E. In other words, for any two filtrations L and L′ of

any two linear orders, the dependence of the invariant on the filtration is only up

to a club E.

The construction is clearly synthesised in [42] or [50]: ”This simple proof has three

important elements: invariants, construction, and preservation. Specifically, to

each well order we have associated an invariant, namely, its order type, then we

observed that the invariant is preserved in the sense that it can only increase

under embedding, and finally, we have constructed a family of well orders of size

λ where many different values of the invariant are present (namely, the ordinals

in [λ, λ+]), so showing that no single well order of size λ can embed them all”

([42], p. 284).

Another aspect that these studies emphasise is that the use of the club guessing

method establishes connections between a certain PCF statement and the

’desired’ negative universality result (one showing that the universality numbers

has at least a given value), such that the negative universality results hold in

more that just one (specifically) constructed universe.

4.6.7 Forcing

”To prove or to force, this is the question” ([193], p. 1)

Forcing offers another very abstract description of the mathematical process of

creation and, moreover, it ”supplies us with a general method” ([196], p. 3).

Before Cohen’s introduction of this technique, Gödel’s second incompleteness

theorem had already ’legitimised’ the use of different extensions of the ZF

axiomatisation: no formal system can exhaustively describe the whole

mathematical universe. In this context, the point is probably no longer to just

prove some specific properties, but rather to connect them in an increasingly
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expanding Universe.

Independence phenomena in various contexts — that is of mathematical

statements which cannot be settled in a particular mathematical theory —

remain of central importance in set theory. There are two major forms of

independence proofs (or unprovability results): forcing and consistency

strength. In forcing, one starts from models of ZFC and, given a specific

statement φ, proves that both ZFC + φ and ZFC + ¬φ are consistent. So the

consistency strength of ’ZFC’, ’ZFC + φ’ and ’ZFC + ¬φ’ are all equal, unlike

the case using the other context. Furthermore, independence results involving

consistency strength can be obtained over weaker theories than ZFC, like Peano

Arithmetic. Another difference between the two methods is that although a

theorem can be proved in both contexts, forcing gives a definitive answer,

whereas the result obtained by comparing consistency strength may be open for

debate. The latter is due to the different approaches regarding the large

cardinals. That being said, forcing can also start with large cardinals.

Regarding the large numbers of independence result, Shelah remarked that they

help to ”sort out possible theorems – after throwing away all relations which do

not hold, you no longer have a heap of questions which clearly are all independent,

the trash is thrown away and in what remains you find some grains of gold. This

is in general a good justification for independence results; a good place where

this had worked is cardinal arithmetic – before Cohen and Easton, who would

have looked at 2ℵω1?” ([196], p. 7).

A forcing notion P has certain properties that makes it similar to a construction by

recursion. One can construct a generic object by partially ordered approximations

that get bigger and bigger and which are, in the end and due to the way they

were defined, glued together (usually through union) to obtain the generic set

(∪G), the forced object (a linear order, for instance). Such a generic set must

have certain properties, which are assured by the intersection with the dense sets

of the forcing notion. The approximations will fit together in this new object
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because we won’t take the union of the whole forcing notion P but of some filter

G on P. So the approximations will fit together, and the generic object will be

consistent. By requiring G to intersect every dense set in the original model M

prevents us from predicting from within M the construction of, i.e., the result of

gluing together the consistent approximations.

The apparent lack of any control on the construction deepens if we take into

consideration the fact that the P-names, necessary in the construction of the

objects in the extension model are themselves an expansion of the universe, given

that a P-name is a set. The enumeration of the dense sets also takes place

outside M . And yet, as Kunen plastically points out, the people ”living in M

cannot construct a G which is P-generic over M , but they can ”figure out certain

properties of G” and ∪G, and, ”[M]ore generally, they can construct a forcing

language, where a sentence ψ of the forcing language uses the names in MP to

assert something about M [G]” ([114], p. 193).

Forcing is a technique discovered by Cohen ([25]) and subsequently developed

by Solovay and many others for producing ’generic’ sets. It enables the

extension of a universe V of set theory (i.e. a model of ZFC) to another one,

V [G], such that V [G] has the same ordinals as the original universe, most often

has the same cardinals, and satisfies a desired formula φ. The ccc forcing, for

instance, mentioned below, represents a property of forcing that guarantees that

the forcing preserves all cardinals. The weak forcing relation, ⊩∗, refers to a

sentence φ(τ1, ..., τn) formally defined in the metatheory, but intuitively placed

in a forcing language.

Definition 4.6.23. Let M be a countable transitive model of ZFC, φ(x1, ..., xn) a

formula in the language of set theory, and P a partial order in M . Then for p ∈ P

and names τ1, ..., τn ∈ MP , p ⊩∗
P,M φ(τ1, ..., τn) iff ∀G [(G is P generic over M ∧

p ∈ G)→M [G] ⊩ val(τ1, G), ...val(τn, G)].

This definition involves all possible filters G so it is not expressible in M . Hence

the semantic nature: it depends on the interpretation of the forcing relation. The
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purpose of the ⊩∗ is to show, in conjunction with the Main Theorem of Forcing,

that ⊩ is expressible as a relation in M , and, as such, pointing to the syntactic

nature of the forcing definition, i.e., it depends on the syntactic properties of

the formulas. The Main Theorem of Forcing shows that the two independently

defined forcing relations, ⊩∗ and ⊩, are the same:

Theorem 4.6.24 (Main Theorem of Forcing). Let M be a countable transitive

model of ZFC, φ(x1, ..., xn) a formula in the language of set theory, and P a

partial order in M . Then for any p ∈ P and names τ1, ..., τn ∈ MP , we have

p ⊩∗ φ(τ1, ..., τn)←→ (p ⊩ φ(τ1, ..., τn))M .

In iterating forcing, the semantic point of view means that we start with M = M0,

extend it by the filter G0, which is P0-generic over M0 and we obtain µ1 = M [G0].

We then pick a poset P1 ∈ M1 and extend by the filer G1, which is P1-generic

over M1, obtaining M2 = M1[G1], and so on. But given the difficulties related

to a limit stage, like ω, we need to make some further adjustments, which were

found by Solovay and Tennenbaum ([204]): the entire process of constructing

models is controlled in the original model, where, with the help of names, one

defines a forcing notion which encodes all future extensions.

The countable chain condition (ccc) represents a topological property that became

a central concept in forcing.

Definition 4.6.25. A forcing notion P satisfies the countable chain condition

(ccc) if every antichain in P is at most countable.

An iteration of ccc forcing with finite supports is ccc, which means that one

can keep extending the universes (the models of ZFC) and, in the end, we will

still have a model of ZFC in which all ordinals are preserved and cardinals are

preserved. But we formulate in the original model that which is true in that final

universe. Given that we controlled the construction of the models in the original

universe, we will have some knowledge about that model by ensuring that we

have iterated the ccc forcings for as much as possible for them to be formulated
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as MA (Martin’s Axiom):

Definition 4.6.26 (MA(ℵ1)). Whenever P is a non-empty ccc forcing and for

every family D of < 2ω many dense sets in P there is a filter G in P such that

∀D ∈ D(G ∩D ̸= 0).

MA represents a very interesting and useful instrument: it is entirely

combinatorial, and we don’t even need first-order logic in order to use it.

By replacing the countable chain condition with properness, a much weaker

condition, in the statement of MA(ℵ1), we obtain the proper forcing axiom

(PFA).

Definition 4.6.27 (PFA). If P is a proper forcing poset and F is a family of ℵ1

dense subsets of P, then there is a filter G in P which intersects all sets in F .

PFA is a much stronger axiom than MA(ℵ1) and decides many problems that

were left open by MA(ℵ1). As emphasised by Kanamori, Shelah’s variants and

augmentations ”revamped forcing for combinatorics and the continuum with

systemic proofs of new and old results” ([99], p. 55).

In forcing, the different universes have different opinions about different statement

in set theory. But there are some statements that cannot be changes by forcing:

(∀n)2ℵn < ℵω ⇒ 2ℵω < ℵω4 ([189]). And another important aspect is that

although we have a certain proof using forcing, it is not clear which theories

cannot undergo that forcing.

Cohen’s first use of forcing was to generate new reals (i.e. an element of 2ℵ0),

resulting in the consistency of the negation of the Continuum Hypothesis (CH)

from the consistency of ZFC. Because Gödel had previously established the

consistency of the CH with ZFC, the two results combined showed that ZFC

does not settle the CH. And it was discovered quite early that in contrast to the

combinatorics of singular cardinals, the one of the regular cardinals can be

’easily’ manipulated by forcing (the classic examples is Easton’s theorem).
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If GCH is dropped, it becomes harder to construct universal objects, but it

is easier to obtain negative consistency result by adding Cohen subsets to the

universe: if ℵ2 Cohen reals are added, any non-ℵ0-stable countable theory T has

no universal model in ℵ1 ([187]). If κ = κ<κ and µ Cohen subsets of κ are added,

no unstable theory T has a universal model in any χ ∈ (κ, µ) ([148]). And also

see [109].

Much of what is known concerns the successors of regular cardinals, since in

the case of a singular there are fewer forcing constructions available. A solution,

offered by Dzamonja and Shelah in [49] is to prepare a large cardinal κ by iterated

forcing, which preserves its large cardinal character, and only at the end of the

construction force κ to become a singular cardinal. The forcing used in the final

step is the Prikry forcing, such that κ in the final model is still large (it is still a

cardinal fixed point). But other papers make use different methods. In [27], the

authors use a forcing poset defined by Foreman and Woodin (which is a variation

of the Prikry forcing that adds a Prikry sequence κi of inaccessible cardinals

cofinal in κ and, in addition, collapses all but finitely many cardinals between

successive points on the Prikry sequence, such that κ become ℵω). In another

paper ([28]), the final step is characterized by the use of Radin forcing, which

changes the cofinality of κ to uncountable values, like ω1, SCH fails at κ and

uκ+ < 2κ.

Miller’s variant to Laver’s forcing ([151]) has a particular role in understanding

forcing and the continuum. The forcing notion was defined originally as the

partial order of perfect subsets of the real line in which the rationals are dense,

and it was described as an ”intermediate between Sacks perfect set forcing and

Laver forcing”. It is actually equivalent to forcing with infinitely branching trees.

The conditions do not have to branch at every node, but only cofinally many times

(unlike the case of Laver partial order). The new real added in the extension is

of minimal degree.

Forcing can also have an essential role for the classification project in model theory
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when using the universality test problem since, as Shelah remarks, it enables us

to ”prove consistency results that can show that the obtained results are best

possible (and thus really constitute a dividing line among theories)” ([200], p.

279).



5

Universality results

Synopsis

This chapter contains results regarding the universality problem. We

will start by introducing further notations and definitions focusing

on graphs and orders. We will state some universality results that

apply to first order structures and offer a context in which to state

the mathematical result of this thesis. Another section will analyse

the role of embeddings.

The next section will give a brief overview of some universality

results on graph theory and then we will state our own result using

concepts of category theory.

The last section of this chapter represents an overview of results

regarding tree, with a focus on Aronszajn trees.

It is relatively easy to obtain universal objects for a finite class of elements or

models. But the situation changes drastically when we enter the domain of the

infinite. A fundamental aspect of the universality problem is to find what

determines the existence of universal objects. That means that we have to take

into consideration the methods that we use in proving their existence or

nonexistence, the role of the cardinal arithmetic. Or is there a way in which the

nature of a theory determines its universality spectrum (see the classification

theory)?
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5.1 Preliminaries

5.1.1 Graphs

A graph is a pair (X,R) with X a set and R a symmetric and reflexive binary

relation on X.

Definition 5.1.1. A graph is a pair (G,R), with G a set and R a symmetric

and reflexive binary relation on G. The members of the set are called vertices or

nodes, and R will be the edge relation. An edge is a pair of vertices (v1, v2) such

that v1Rv2.

A subgraph of a graph G is a substructure of G.

A path of length n is a sequence of edges {v0, v1}, {v1, v2}...{vn−2, vn−1}. The

path is a cycle if vn = v0.

A directed graph or a digraph is a set together with a symmetric and reflexive

binary relation, called the directed edge relation.

An oriented graph is a directed graph that excludes multi-edges (i.e. there is at

most one directed edge between any two vertices) and cycles.

The graphs used in this text will be irreflexive. When there is no confusion, we

will refer to a graph as G.

5.1.2 Orders

Definition 5.1.2. A partial order is a structure (P,≤) , where P is the universe

(or the underlying set), and ≤P is a relation which is reflexive (∀x(x ≤P x)),

transitive (∀x, y, z(x ≤P y ∧ y ≤P z → x ≤P z)).

(P,≤) is a partial order in the strict sense if and only if it is irreflexive, transitive,

and it also satisfies antisymmetry: ∀x, y[¬(x ≤P y ∧ y ≤P x)]. This will be the
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type of partial order to be considered throughout this text. We will abuse notation

by referring to ’the partial order P ’ or ’<’ instead of (P,≤) if no confusion should

arise in the context. We will often call a partial order a poset.

Definition 5.1.3. A sub-poset (S,<) of a poset (P,≤) is a subset S ⊆ P such

that ≤S=≤P ↾ S. That is, ∀s1, s2 ∈ S(s1 ≤S s2 iff s1 ≤P s2).

We say that two elements x, y in P are incomparable if and only if x ≮ y and

y ≮ x. Two elements x, y in P are incompatible, x ⊥ y, if and only if there is no

r ∈ P such that r > x, y.

Definition 5.1.4. A chain in (P,≤) is a subset of P in which all elements are

pairwise comparable.

Definition 5.1.5. An weak (strong) antichain in (P,≤) is a subset of P in which

all elements are pairwise incomparable (incompatible).

Definition 5.1.6. A linear order or a total order is a partial order such that all

elements are pairwise comparable.

A well-founded partial order is a partial order that has no infinitely decreasing

sequences.

A well-order is a totally ordered well-founded partial order.

According to these definitions, any chain in a well-founded partial order is a

well-order.

Trees

A tree is a special kind of partial order. And although there are many definitions

of trees, the one used in this text fixes a tree as a special type of well-founded

partial order.

Definition 5.1.7. In set theory, a tree (T,<T ) is a set T together with a relation

<T ⊆ T × T such that:
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� <T is a partial ordering of T

� and for any t ∈ T , predT (t) = {s ∈ T | s <T t} is well-ordered.

For t ∈ T , htT (t) = otp(predT (t), <T ).

For an ordinal α, Tα is the set of t ∈ T such that htT (t) = α, and the height of

the tree, ht(T ), is the least α such that Tα = ∅.

Definition 5.1.8. A subtree (X,<T ∩(X × X)) of (T,<T ) under the induced

partial order is a subset X ⊂ T . The height, the width and the level structure of

the subtree might not be retained.

Definition 5.1.9. A subset b of a tree T is a chain or a branch in T if b is linearly

ordered by <T .

A path or a cofinal branch though T is a chain c ⊆ T such that c ∩ lvα(T ) ̸= ∅

for every α < ht(T ). Or we could say that a branch b is cofinal if the set

{htT (t) : t ∈ b} is cofinal in ht(T ).

An antichain is a subset A ⊆ T whose elements are pairwise incomparable

(incompatible).

Incompatibility is a stronger condition than incomparability and it is usually used

in this context in relation to forcing. In a tree, two elements are incomparable

if and only if they are incompatible, i.e. there is no common majorant. We will

often abuse notation and write T instead of (T,<T ).

5.1.3 Model theoretic definitions

In this text, embedding will mean elementarily embedding when we are referring to

a first-order complete theory. Otherwise, the term embedding will be as specified.

If M is embedded into N we write M ≺ N . If M satisfies exactly the same

sentences as N , i.e. they are elementarily equivalent, we write M ≡ N . A
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structure M is homogeneous if any isomorphism between finite substructures of

M can be extended to an automorphism of M .

Definition 5.1.10. ([21]) A theory T has the amalgamation property if for any

three models U,B and C of T and isomorphic embeddings f : C→ U, g : C→ B

there is a model C′ of T and isomorphic embeddings f ′ : U → C′, g′ : B → C′

such that the diagram commutes. The model C′ is said to amalgamate U and B

over C

As pointed out in [112], a class of structures which weakly omit some collection

of finite structures possesses a countable strongly universal homogeneous

member if and only if its finite elements form an amalgamation class. That

means that any two finite elements can be isomorphically embedded in a

common finite extension in the class, and if any two finite elements in the class

have a common substructure, then there is a finite extension of both in the

class. The countable strongly universal homogeneous element is also unique up

to isomorphism. When the finite graphs in the class do not form an

amalgamation class there are several examples to show that universal graphs

may not exist.

Definition 5.1.11. (([21], p. 195) A theory T has the joint embedding property

if for any two models U,B of T there is a model C of T such that both U and B

are isomorphically embeddable in C.

Every complete theory has the joint embedding property. And, as a special case,

it follows that every model complete theory has the amalgamation property ([21]).

Assuming C satisfies the property, there are various complete first order theories

T such that T has a model which embeds every countable member of C. If such

a theory T has a universal model in power κ, then C has a universal element in

power κ.

The notions of homogeneity and universality are algebraic properties related to

the models of a class, whereas saturation is a concept characterizing a single
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structure, the relations of the model to its types over the subsets of the model.

I mentioned above (subsection 4.5.4) the notion of special model. For

completeness, I will mention the following results connected to special models:

Proposition 5.1.12. � Every saturated model is special.

� A model of power κ+ is saturated if and only if it is special.

� If κ is a regular limit cardinal, then a model of power κ is saturated if and

only if it is special.

� If M is special, then every reduct of M is special.

� Assuming GCH, if a theory T has an infinite model, it has a special model

in each power κ > ||L||.

Every saturated model is special, but not all special models are saturated. What

is more, the existence of special models does not require the GCH or inaccessible

models.

5.1.4 Universality

Even if we won’t always refer to first order structures, so we won’t be able to use

first-order model definitions, model and theory will have the same meaning. So

we will say that given a theory T and a class of models K of T , a universal model

in K exists if and only if there exist a structure U such that for all M ∈ K, there

is an embedding f : M → U .

There are positive universality results and negative universality results. The first

state the existence of a universal model or a universal family, while the latter

show under what conditions a universal model cannot exist. Furthermore, there

may not be a universal model for a class of models of a certain cardinality. In

this case, we are referring to the smallest family of sets in the class (the universal

family) able to embed all the other models. This covering number is called the

complexity of the class or the universality number.
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Definition 5.1.13. The complexity C or the complexity number of a class K of

models is the minimal cardinality of a universal family F , such that ∀M ∈ K,

there exists X ∈ F and an embedding f : M → X.

If the complexity of K is 1, we say that it has a universal model.

Given a set theoretic universe, how do we find out the complexity of a class

of models? Given a cardinal κ, let Kκ denote the set of structures with the

underlying set of cardinality κ. We can identify isomorphic structures with their

isomorphic image having a universe of size κ. If the complexity of Kκ is ≤ κ,

then the models in F can be let to form a universal model of size κ: for instance,

we could take a disjoint union of all these models of F of cardinality κ. The

maximal complexity is 2κ, i.e., the maximal cardinality of Kκ. In other words, if

we assume the GCH and Kκ is closed under taking disjoint unions of size κ, then

the complexity number is either 1 or 2κ = κ+.

Without the GCH, the complexity number ranges between κ+ ≤ C < 2κ. If

the cardinality of a universal family belongs to this range, it will have a small

universal family. In connection to the classification theory, mentioned above, and

the use of universality as a test problem to find dividing lines, we get the notion

of the universality spectrum.

Definition 5.1.14. Let V be a set theoretic universe and K a class of structures,

the universality spectrum for K is the family of cardinals κ for which Kκ has a

universal model in κ.

In this framework, if two theories have universal models in the same cardinals,

then the these theories are somehow connected (it is the project of current work

in classification theory to explore how). Notice that whereas the complexity

of a class of models is dependent on the set theory and the cardinal arithmetic,

assuming or not GCH, for instance, the universality spectrum also depends on the

embedding type. Many results mentioned will be model-theoretic in statement

and proof.
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5.2 Embeddings

I mentioned the notion of structure in the sections above. Historically, the

abstract structures, found all over mathematics now, emerged as generalizations

from concrete instances. But it is also a common practice in mathematics to

study how these structures are related to each other. They are usually

connected through functions from the domain - one structure - to the co-domain

- another structure. It is said that these functions preserve some ’structure’,

with ’structure’ referring here to the characteristics determined by the

additional features (relation, topology, etc.) attached to the underlying set. So

structure present in the domain can be found in the co-domain. An example is

the notion of embedding, open to various definitions according of the domain of

study. An endomorphism implies a part having similar structure as the whole,

but some details of the structure may be lost. A self-embedding means that the

part and whole have the same structure. In the case of an automorphism,

although no part is involved, the structure of the whole is ’expressed’ in various

ways on the same whole. Given that the whole is trivially a part of itself, any

automorphism is an embedding and vice-versa. In the case of finite structures,

the notions of self-embedding and automorphism coincide. Furthermore, when a

lot of structure needs to be preserved, the notion of self-embedding and

endomorphism coincide.

Embeddings constitute a natural choice in set theory. An embedding will

display the domain as a substructure of the co-domain, but we will also be able

to ask how the domain embeds into the co-domain. In the case of first-order

structures, we can check if the embedding is elementary, i.e. whether the truth

of every first-order sentence having parameters in the domain is preserved by

the embedding. Every elementary embedding is a strong homomorphism, and

its image is an elementary substructure. In homogeneous models, partial

elementary maps are restrictions of automorphisms. In model theory,

elementary embeddings are of a crucial importance. But they also play an
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important role in set theory. Elementary embeddings whose domain is V (the

universe of set theory) are central in the theory of large cardinals.

Definition 5.2.1. An elementary embedding of a structure M into a structure

N of the same signature σ is a map f : M → N such that for every first-order

σ-formula φ(x1, · · · , xn) and all elements a1, · · · , an of M , M |= ϕ(a1, · · · , an) if

and only if N |= φ(f(a1), · · · , f(an)).

Initial embedding We could also ask whether the domain is embedded

initially in the co-domain. This kind of embedding receives various formulations

in set theory, corresponding to different strengths. In the weakest form, it

means that the image of the embedding is downwards closed under ∈, that is, if

an element x is an element in the image and the co-domain satisfies that y ∈ x,

then y is also in the image. This kind of embeddings is trivial for well-founded

structures. It is a fact following from the Mostowski Collapse Lemma.

Specifically, if f : M → N is an initial embedding between well-founded

extensional structures, then M and N are isomorphic to transitive sets M ′ and

N ′, respectively, with the inherited ∈-structure, and f is induced by the

inclusion function of M ′ into N ′. As a result, the interesting cases are offered by

the non-standard models, but this subject is not part of the purpose of this text.

Consequently, the nature of embedding represents an essential aspect when

studying the structure of a class of models. For ordered structures (linear orders

and partial orders), the embeddings could be constructed as injective maps that

preserve order. But there are alternative definitions, to be used later, in which

embedding will refer to non-injective functions.

As pointed out by M. Kojman and S. Shelah ([109, p. 2]), if we are dealing with

the class of models of a first-order theory T , then ’embedding’ should be

understood as ’elementary embedding’ when T is complete, and ’universal’ is

considered with respect to elementary embeddings; whereas when T is not

complete, as in the case of the theory of linear orders, the theory of graphs or
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the theory of Boolean algebras, ’embedding’ is an ordinary embedding, a

one-to-one function that preserves all relations and operations, with ’universal’

considered with respect to ordinary embeddings. The distinction is necessary

since there are theories for which universal models in the sense of an ordinary

embedding can exist, but universal models in the sense of an elementary

embedding do not. The elementary embeddings involve a restrictive class of

graphs, which preserve all first-order properties; the isomorphisms are

elementary maps, bijective ’ordinary’ embeddings.

It should be emphasized that embedding is not the same as inclusion. The

inclusion map is a topological embedding. The embedding is given by some

injective and structure preserving map f : X → Y . The structure preserving

depends on the kind of mathematical structure of which X and Y are instances.

Several different embeddings are possible between X and Y . In many cases,

there is a standard/canonical one and in such cases, it is common to identify

the domain X with its image, f(X), contained in Y such that f(X) ⊆ Y .

Embeddings for graphs

Definition 5.2.2 (Embeddings for graphs). Given two graphs G1 and G2, f :

G1 → G2 is a weak embedding (or just embedding) for graphs if it is an injective

function which preserves edges, i.e., if (g1, g2) is an edge in G1, then (f(g1), f(g2))

is an edge in G2. A strong embedding for graphs is one which also preserves non-

edges (such that there is no edge relation between two vertices), that is, G1 is

embedded in G2 as an induced graph.

There are some results that show that if the continuum has a regular value,

embeddability among graphs at a regular uncountable cardinal κ is indifferent to

the size of the continuum. Such a behaviour is in contrast to the embeddability

of linear orders, which cannot have a universal at a regular cardinal κ > ℵ1 below

the continuum ([109]). A singular 2ℵ0 affects the structure of embeddability in a
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broad spectrum of classes of infinite graphs below the continuum. If cf 2ℵ0 = ℵ1,

meaning that the continuum is singular if CH does not hold, there is no universal

graph (in the class of all graphs) in all uncountable κ < 2ℵ0 .

In [187], Shelah proves the consistency of the existence of a universal graph of

cardinality λ, with arbitrary κ and λ such that κ = κ<κ < λ = cf(λ) < 2κ.

Mekler [148] generalised Shelah’s result to a broader collection of classes of

relational structures to show the consistency of non-existence of universal

elements in uncountable κ below a regular continuum is easy (see [109],

Appendix).

In [81] J.D. Hamkins proves that every countable model of set theory ⟨M,∈M

⟩, including every well-founded model, is isomorphic to a submodel of its own

constructible universe ⟨LM ,∈M ⟩ by means of an embedding j : M → LM . It

follows that the countable models (of set theory) are linearly pre-ordered by

embeddability: for any two such models, one of them is isomorphic to an induced

subgraph of the other (= then either M is isomorphic to a submodel of N or

conversely). The countable well-founded models are ordered by embeddability

in accordance to the heights of their ordinals (the shorter model embeds into

every taller model), so this pre-well-ordered embeddability has order type ω1 + 1

(or there are ω1 + 1 many bi-embeddability classes). Two models with the same

ordinals are said to be bi-embeddable.

Furthermore, the proof shows that ⟨LM ,∈M ⟩ contains a submodel that is a

universal acyclic digraph of rank OrdM, so every model M of set theory is

universal for all countable well-founded (acyclic) binary relations of rank at

most OrdM; and every ill-founded model of set theory is universal for all

countable acyclic binary relations. So actually, every nonstandard model of set

theory is universal for all countable acyclic digraphs.
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Embeddings for ordered sets

Definition 5.2.3 (Embeddings for ordered sets). A weak embedding (or just

embedding) for ordered sets is an injective function that preserves order, i.e., if

(M,<M ) and (N,<N ) are ordered sets and f : M → N is an embedding, then

∀m1,m2 ∈ M(m1 <M m2), we have f(m1) <N f(m2). A strong embedding is

one which also preserves incomparability, that is, for M and N as above, if m1

and m2 are incomparable, then f(m1) and f(m2) are incomparable.

If P is a partially ordered set, we say that S is P -embeddable if there is a strictly

increasing mapping f : S → P . The function f need not be 1-1.

Proposition 5.2.4. (3.1. Tod) Let (L,≤L) be a linearly ordered set. Then

d(L,≤L) = min{κ|(L,≤L) is embeddable into (P(κ),⊆)}

Proof. d(L,≤L) ≤ d(D ∪ L,⊆) ≤ κ.

In the case of partial orders, such as trees, we may also require that

incomparability is preserved, dealing therefore with the notion of strong

embedding.

Other options involving combinatorial principles could also be found in Shelah’s

work, particularly in his PCF theory ([189]). A stronger type of embedding,

determining a specific type of universality results with regards to a certain kind

of well-founded partial orders, involves a club guessing method used by Shelah and

Kojman ([109]), and later generalised by Kojman ([108]). Kojman, for instance,

finds a surjective homomorphism between certain subsets of P(ω0) (subsets of

reals of bounded cardinality) ordered by the subset relation, on one hand, and

the structure of enbeddability over well-founded partial orders (the monotone

class of infinite graphs), on the other. These embeddings preserve both rank and

order and is particularly useful in studying trees, as Väänäen and Todorčević

show in [219]).
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So embeddability also employs combinatorics, but a common characteristic of the

combinatorial principles involved is that they are independent of the usual system

of axioms in set theory, with infinite combinatorics being used in connection to

non-existence results regarding universality.

5.3 General universality results - First order and non-

first-order theories

There are more studies regarding the existence of universal models for first order

theories (i.e. elementary classes of all models of such theory), and they use model-

theoretic properties that guarantee the existence of universal models. Without

these model-theoretic assumptions, it is hard to show that a first order theory

has a universal model (for discussions see [188]).

If GCH holds, there is a universal model of a theory T of cardinality λ for every

κ > |T |. For a model of T of cardinality κ, if 2<κ = κ > |T |, then there is a

universal model of T of cardinality κ. CH implies that any complete first order

theory has a saturated and, therefore universal model of cardinality ℵ1.

Stability Another property implying the existence of universal models is

stability.

Definition 5.3.1. A complete theory T is ω-stable if for every set A of cardinality

ℵ0, the set of complete types over A has cardinality ℵ0.

Let κ an infinite cardinal. A complete theory T in a countable language is κ-

stable if whenever M |= T,A ⊆ M , and |A| = κ, then |SM
n (A)| = κ ([146], p.

135).

M is κ-stable if Th(M) is κ-stable.

What is more,
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Theorem 5.3.2 (see [197] and [146]). If a theory is ω-stable, then it is κ-stable

for all infinite cardinals κ.

Since the stability of a theory shows that it does not have too many types, it is

used in classification theory as a condition in dividing the complete theories into

those whose models can be classified and those whose models are too complicated

to classify.

According to Morley and Vaught ([155]), under GCH (κ = κ<κ), every theory has

a universal model in every uncountable cardinal. But we can obtain arbitrarily

large saturated and therefore universal models without assuming the GCH.

We start with the following theorem by Shelah:

Theorem 5.3.3 ([197], Th. 3.12.). If T is λ-stable then T has a λ-saturated

model of power λ.

According to the model-theoretic definitions of saturation and universality, every

saturated model is universal. So it follows that a κ-stable theory has a universal

model of power κ.

Then taking into account the definition of stability in term of types, we can

construct a saturated elementary extension for every model of a stable theory.

These results can be found in [197], ch.III. In the following, we show how to

construct a saturated elementary extension for a model M0 of cardinality κ. The

idea is to realise all types over it in a bigger model, and repeat the process κ+

times.

Proposition 5.3.4. If T is a κ-stable theory and M0 |= T with |M0| = κ, then

there is a saturated elementary extension M |= T of M0 with |M | = κ.

Proof. We take an elementary chain of models (Mα : α < κ), with |Mα| = κ,

Mα ≺Mα+1, and such that:

� M0 |= T and |M0| = κ.
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� If α is a limit ordinal, we have Mα = ∪β<αMβ.

� If p ∈ SMα
1 (Mα), then p is realised in Mα+1.

Given that T is stable, if |Mα| = κ, then |SMα
1 | = κ. So we can find models

Mα ≺ Mα+1 such that |SMα
1 | = κ and Mα+1 realises all the types from SMα

1 .

Now let M = ∪Mα. Since M represents the union of κ models of cardinality κ,

it also has cardinality κ.

We need to show that is saturated. Let A ⊂ M with |A| < κ. Given that κ

is regular, there is α < κ such that A ⊆ Mα. If there is a type p ∈ SM
1 (A),

then there is a type q ∈ SM
1 (Mα) and SM

1 (Mα) = SMα
1 (Mα) with p ⊆ q. But

the type p is realised in Mα+1, therefore p is realised in M . It follows that M is

saturated.

For the proof regarding saturated models of singular cardinality for ω-stable

theories see [197], ch.III.

Given the results mentioned above, we can also obtain the following results:

Proposition 5.3.5. If a complete first-order theory T is ω-stable and has an

infinite model, it has an universal model in every cardinal, including ℵ0.

Proof. It follows from the Th.5.3.3. and the Pr. 5.3.4. above and the definitions

of saturation and universality.

Other corollaries that we state without proof (see [200]), are the following

Proposition 5.3.6. If a theory T is superstable and has an infinite model, it will

have universal models in every cardinality ≥ 2ℵ0.

Proposition 5.3.7. If a theory T is stable, it has universal models in every

cardinal κ satisfying κℵ0 = κ.

Mekler characterized the class of theories for which it is consistent to have a

universal model at ℵ1 < 2ℵ0 . He showed in [148], continuing [183], that it is
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consistent with ¬CH that every universal theory of relational structures with

the joint embedding property and amalgamation for P−(3)-diagrams and only

finitely many isomorphism types at every finite power, has a universal model at

ℵ1. In [109], M. Kojman and S. Shelah show that there can be a universal linear

order at a regular cardinal κ only if κ = κ<κ or if κ = µ+ and 2<µ ⩽ κ, and

they prove in ZFC several non-existence theorems for universal linear orders in

regular cardinals. They find a covering lemma which shows, as one corollary,

that if 2ℵ0 = ℵω1 , then there are no universal models for non-ω-stable theories

in every regular κ below the continuum. The problem becomes harder when κ is

a singular cardinal. But they prove non-existence theorems for universal linear

orders in singular cardinals. For example, if κ is not a strong limit and is not a

fix point of the ℵ function, then there is no universal linear order in κ. If GCH

is removed, Kojman and Shelah [109] have an example of a countable theory

which has a universal model of size ℵ1 exactly when CH holds. So every theory

that doesn’t have an uncountable D(T ) 1 has a universal model at ℵ1 < 2ℵ0 (cf.

[109]). Kojman and Shelah show that a theory T with |D(T )| = ℵ0 (which is

even ℵ0-categorical) has a universal model in ℵ1 if and only if CH holds.

As pointed out in [49], there are ”many natural theories which are not first order”,

approached from ”the point of view of abstract elementary classes” (introduced

by Shelah in ), ”and in a more specialized form earlier by Bjarni Jónsson” (see

[21]). Given such a class K and λ a cardinal, the family of elements of K with

size λ will be denoted by Kλ.

In [188] S. Shelah introduced the notion of an approximation family and studied

elementary classes with a ”simple”/”workable” (in [49]) λ-approximation family.

If λ is an uncountable cardinal satisfying λ = λ<λ, it is consistent that every

abstract elementary class K with a ”workable” λ-approximation family has an

element of size λ++, i.e. Kλ+ . Kap can be seen a forcing notion whose generic

gives an element of Kλ+ .

1D(T) is the set of all complete n-types over the empty set, n < ω. If it is uncountable, it
has size 2ℵ0 . Every type in D(T) must be realized in a universal model
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5.4 Universal graph

A graph might be the simplest but simultaneously it is one of the most useful

notions in mathematics. In a general sense, the question is whether or not a

class of graphs has a universal element in an infinite cardinal, that is, one that

contains any other element of that cardinality as a subgraph. The existence

of a universal graph on a fixed cardinal κ in various contexts represents another

example of infinite combinatorics, another combinatorial question. As emphasised

by Džamonja, when studied in connection with graphs, it seems that (a) ”singular

cardinals are more manageable than the regular ones and (b) in some models

obtained from large cardinals the successors of singular cardinals actually behave

quite close to how they do in L” ([46], p. 139), even when the cardinal arithmetic

is changed dramatically.

5.4.1 Results

So given a cardinal κ, what is the smallest size of a family of graphs of size κ

which embeds every graph of size κ as an induced subgraph?

With GCH In ZFC, there is a unique (up to isomorphism) graph of size ℵ0,

known as the Rado graph (and also the random graph or the Erdös-Rényi graph).

Although this graph was discovered independently by several mathematicians,

starting from Ackerman, the universality properties were proved by Rado in [168]

and [169]. This graph has the property that for every finite graph Gn and every

vertex v of Gn, every strong embedding of G \ v into G can be extended to a

strong embedding of Gn into G. As a result, G strongly embeds all countable

graphs. When κ = κ<κ, by a similar proof as in the case of a saturated model,

one can obtain a special model, which is also universal. By fixing ⟨κi : i < cf(κ)⟩

a sequence of regular cardinals which is cofinal in κ, one can build a graph G

which is the union of an increasing sequence of induced subgraphs Gi, where Gi

is a saturated graph on κi, and argue by repeated application of saturation that
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G is universal ([27, p. 541]).

From the existence of saturated and special models in first-order theory,

mentioned above, a universal graph exists at every infinite cardinal κ:

λ < κ ⇒ κλ = κ means that there is a saturated and therefore universal graph

of size κ. This holds even if 2κ
+

is large. It is also known that if κ is regular,

then it is consistent to have a jointly universal family on κ+ of size κ++, while

2κ
+

is arbitrarily large (cf. [49]). So it follows that if κ is singular and GCH

holds, then uκ = 1.

In [112], the authors show that every countable graph G is strongly universal

in the class of graphs which weakly omit the same finite graphs as G, with the

best known examples of strongly universal graphs being also homogeneous (i.e.

saturated). But there are several classes of graphs without saturated graphs but

universal graphs:

Theorem 5.4.1. Let s ∈ N. Then

1. The class of graphs omitting all odd circuits of length at most 2s+1 contains

a countable strongly universal element [Th. 1.3.].

2. There is a strongly universal members of any infinite cardinality in

2.1. in the class of graphs omitting paths of length s [Th. 1.12.]

2.2. in the class of graphs omitting all circuits [a cycle with unrepeated

vertices] of length at least s [Th. 1.14].

Their technique in constructing universal graphs was to show that the class of

graphs intended to be constructed are reducts to the language of graphs of a class

of structures in a larger language (one defined by additional relations), where

universal objects are proved to exist. Referring to uncountable cardinals κ, they

observe that the question of whether a strongly universal graph of cardinality κ

exists or not is more a model-theoretical question than a graph-theoretical one

([112], p. 160). As such, if K is a class of graphs (so models of a first-order
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theory), a necessary condition for K to have universal elements is to have the

joint embedding property, i.e., that any two elements of K be isomorphically

embedded into a common element. In the classes of graphs omitting paths of

length s and classes of graphs omitting all circuits of at least s, every graph has

an ω-stable theory, and therefore the classes allow universal graphs for cardinals

⩾ to the continuum.

Without GCH But the removal of the GCH condition involves a more difficult

context to find universal graphs and gives way to various results. Different classes

behave differently. When GCH fails sufficiently, for some classes of graphs there

are no universal objects ([108], [191]), while for others there can exist consistently

a small family of the class that acts jointly as a universal object for the class at

the given cardinality ([188], [49]).

In [183], Shelah proves that by adding ℵ2 Cohen reals to a model of CH, there is

no universal graph of size ℵ1. In such a model, there can be 2ℵ1 subsets of ℵ1 each

of power ℵ1, with finite intersection of any two of them. The universality number

for a family F in this model has the greatest value, namely, 2ℵ1 . He proves that

there is a universal graph of power ℵ1 < 2ℵ0 = 2ℵ1 = ℵ2. Furthermore, for

any κ = κ<κ, 2κ can be arbitrary large, and there is a universal graph in every

λ ∈ [κ, 2κ).

If GCH fails (κ < κ<κ), one can make a distinction between theories that for

many cardinals have the largest possible universality number in a cardinal κ

whenever GCH fails, and those for which it is possible to construct a model in

which GCH fails, but the theory has a small universality number at the desired

cardinality ([50]).

All in all, if GCH is dropped, it becomes harder to construct universal objects,

but it is easy to obtain negative consistency result by adding Cohen subsets to

the universe: if ℵ2 Cohen reals are added, any non-ℵ0-stable countable theory T

has no universal model in ℵ1 ([187]). If κ = κ<κ and µ Cohen subsets of κ are
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added, no unstable theory T has a universal model in any χ ∈ (κ, µ) ([148]). Also

see [109].

Singular cardinals When dealing with the more difficult case of a singular

cardinal, Džamonja and Shelah introduced in [48] a new approach: they started

with a supercompact cardinal κ, added functions through a preparatory iteration

that would become embeddings into a family of jointly universal graphs after the

Prikry forcing - while preserving some of the character of κ -, and only at the

end apply Prikry forcing to change the cofinality of κ and make it singular. This

way, one can produce models where κ is a singular strong limit of cofinality ω,

2κ is arbitrarily large and uκ+ ⩽ κ++. The positive consistency result regarding

the existence of a small family of such graphs that act jointly as universal for the

graphs of the same size shows that there are κ++ universal graphs of size κ+ for

the successor of a strong limit singular of cofinality ℵ0 with 2κ
+
> κ++ (assuming

the consistency of the existence of a supercompact cardinal).

In [27] the authors are considering a successor cardinal κ and 2κ > κ+, and they

prove that

Theorem 5.4.2 (Th. 6.1.). It is consistent from large cardinals that ℵω is strong

limit, 2ℵω = 2ℵω+1 = ℵω+3, and there is a family of size ℵω+2 of graphs on ℵω+1

which is jointly universal for all such graphs

They use a forcing poset defined by Foreman and Woodin, which is a variation of

the Prikry forcing that adds a Prikry sequence κi of inaccessible cardinals cofinal

in κ and, in addition, collapses all but finitely many cardinals between successive

points on the Prikry sequence, s.t. κ become ℵω) by which κ becomes ℵω.

In another paper ([28]), the final step is characterized by the use of Radin forcing

which changes the cofinality of κ to uncountable values, like ω1, SCH fails at κ

and uκ+ < 2κ.

Shelah ([187]) proved that there is a positive consistency result concerning the
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existence of a universal graph at the successor of singular cardinal that is not a

strong limit: a universal graph at λ exists if there is a κ s.t. κ = κ<κ < λ =

cfλ < 2κ = cf(2κ).

Other graphs But there are independence results for other classes of graphs as

well. In [187], Shelah shows that in the same model in which there is no universal

graph of cardinality ℵ1, if ℵ2 Cohen reals are added to the universe, there is no

universal triangle-free graph of cardinality ℵ1. Mekler ([148]) has extended this

result to other classes of structures. In [49], the authors give a precise criterion

for a class to be amenable to the theorem about consistency of the existence of

a small family of models in Kλ+ that are universal for Kλ+ . Among the classes

satisfying this criterion are the classes of triangle-free graphs under embeddings

(as shown in [188]) or the elementary class of models of any simple theory, as

shown in [191].

5.4.2 A universality result involving linear orders and graphs

I will discuss here the possibility of translating one type of structure into another

in order to preserve the embedding related to the universality property. The

structures considered to this end are the linear orders and the graphs. And

since neither the theory of linear orders nor the theory of graphs are complete

theories, ’embedding’ should first of all be understood as ordinary embedding (not

elementary embedding), namely an injective (one to one) function that preserves

all relations and operations. To this end, and considering the assumption that

”the assignment of a mathematical object of one type to mathematical objects

of another type is functorial” ([173, p. 15]), we will use category theory notions:

expressing and building the problem in this context will offer new insights into

it, allowing the conclusion to follow smoothly.

It should be emphasized that the model theoretic notion of universality used

in proving that classes of objects have universal models in exactly the same
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cardinals or having the same universality spectrum differs from the notion of

universality used in category theory. In category theory, the universality property

from ’universal object’ characterizes the object up to isomorphism.

Universality, pcf theory and linear orders M. Kojman and S. Shelah [109]

reduced the existence of a universal linear order in cardinality κ to the existence

of a universal model for any theory possessing the strict order property. There

can be a universal linear order at a regular cardinal λ only if λ = λ<λ or if

λ = µ+ and 2<µ ⩽ λ. They show that the non-existence theorems they prove

for linear orders also hold for a large collections of theories: the theories of linear

orders, partial orders, Boolean algebras, lattices, ordered fields, ordered groups,

number theory, p-adic rings. Consequently, an important element that should

be taken into consideration is that the universal spectrum of the theory of linear

orders is dependent on the axiomatisation of set theory that we choose to adopt

and represents an example of the set theoretic independence phenomena. Under

GCH, every first order theory (including the class of linear orders) in a countable

language has a universal model in all uncountable cardinals.

The relation between the structures

A fundamental question that we need to approach is if we can translate one type of

structure into another in order to preserve certain embedding-related properties,

specifically how universality results for linear orders are related to universality

results for graphs. We start by emphasizing the fact that any linear ordering can

be coded up into a graph, ”[A]ctually this method allows us to code up any kind

of structure of finite or countable signature as a graph. (We have two layers of

coding: structure into graph, then graph into bipartite graph.) So our bipartite

graphs in K have the maximum possible amount of complication in them ([89],

215).
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Interpretation as graph As I mentioned above, the definition of a structure

permits the interpretation of ’complicated’ structures in simpler ones. For

instance, any structure in a countable language can be interpreted in a graph.

Let L = {R}, where R is a binary relation. It is possible to describe a L-theory

T of graphs such that every model of T is GA for a unique linear order A ([146],

pp. 25-27 Passim). Since any structure in a countable language can be

interpreted in a graph, one can use model theory to show how to describe a

L-theory T of graphs such that every model of T corresponds to the graph GA

for a unique linear order A described by L = {R} ([146], pp. 25-27): if (A,<) is

a linear order, then GA |= T . If we can interpret linear orders into every model

of T means that, in fact, (A,<) 7→ GA is a bijection between linear orders and

models of T.

We will start by defining a structure as a category with the appropriate

embeddings as its morphisms. Then we will show how an interpretation

between theories corresponds to a functor. A functor consists of a mapping on

objects and a mapping on morphisms that preserves all of the structure of a

category, namely composition, identities, domains and co-domains. But since

not every functor corresponds to an interpretation between theories, some

conditions are to be specified on the functor, such that it preserve the relevant

structure. It must be shown how it works on the objects of a category and how

it works on the morphisms.

Difference between the theory of order and the theory of graphs

regarding universality This functorial approach to the connection between

the linear orders and graphs must take into consideration the differences

between the behaviour of these two structures. For example, as emphasized in

[109], ”While the proof of the consistency of having a universal graph in

ℵ2 < 2ℵ0 generalizes the proof for the case ℵ1 < 2ℵ0 , the consistency of universal

linear order is true for the former case and is false for the latter” ([109], p. 3).
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Definitions

Category:

Definition 5.4.3. A category C consists of: 1. A collection of objects Ob(C)

denoted by A, B, C,...

2. A collection of arrows (also called morphisms) Mor(C) denoted by f, g, h,...

3. A rule assigning to each f ∈ Mor(C) two objects domf and codf , its domain

and codomain.

4. For each pair (f, g) of morphisms with codf = domg we have a composite

morphism gf : domf → codg subject to the axiom h(gf) = (hg)f whenever gf

and hg are defined.

5. For each object A we have an identity morphism 1A : A → A, subject to the

axioms 1Bf = f = f1A for all f : A→ B.

Functor

Definition 5.4.4. Let C and D be two categories. A functor F : C → D consists

of:

1. A mapping A 7→ FA : Ob(C)→ Ob(D)

2. A mapping f 7→ Ff : Mor(C)→Mor(D)

such that domFf = F (domf), codFf = F (codf),F (1A) = 1FA, and F (gf) =

(Fg)(Ff) whenever gf is defined in C.

Essential image

Definition 5.4.5. The full subcategory of a category C′ is the category consisting

of some of the objects of C′, but all of the morphisms the pairs of these objects.
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The essential image of a functor F : C → C′ is the full subcategory of C′ consisting

of objects c′ ∈ C′ that are isomorphic to F (c) for some c ∈ C′.

The category of linear orders:

Definition 5.4.6. For a signature σ = <, with ’<’ a binary relation, let L be the

category whose objects are σ-structures that model the theory of linear orders,

having as morphisms linear order embeddings, that is injective order-preserving

maps between structures.

The category of graphs

Definition 5.4.7. Let G be the category of graphs. The objects are simple graphs

(undirected graphs containing no loops or multiple edges), each one defined by a

set of vertices V and a binary, symmetric relation R, such that for every vertices

v, v′ ∈ V , there is and edge {v, v′} between v and v′ iff (v, v′) ∈ R and v ̸= v′.

The morphisms will be embeddings: a morphism f : (V,R) → (V ′, R′) is an

injection f : V ↪→ V ′ such that for each (v, v′) ∈ V × V (or {v, v′} ∈
(
V
2

)
), we

have {v, v′} ∈ R if and only if {f(v), f(v′)} ∈ R′.

Or we could say that morphisms will be embeddings f : (V,R) → (V ′, R′) with

the property that f : (V,R) ⊆ f : (V ′, R′). In other words, a morphism in the

category of graphs is an isomorphism from (V,R) onto an induced subgraph of

(V ′, R′).

Concrete categories: Both L and G represent categories since embeddings

are closed under composition. Furthermore, we are dealing here with concrete

categories. In a concrete category the objects have underlying sets whose

morphisms are functions between these underlying sets, structure-preserving

morphisms. The embeddings, in each case, represent a subset of the set of all

functions between the underlying sets used in defining the objects. We will be

dealing with weak embeddings.
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Embeddings and functors: There is no single meaning of embedding in

category theory, but the notion can be described in terms of properties of

morphisms.

In a category: The notion of monomorphism is the generalization to arbitrary

categories of the notion of injective map of sets. But many monomorphisms are

not embeddings. They are in the category Set, where being a monomorphism

is sufficient for being an injective function, but not in Ord, for example, where

monomorphisms are injective monotone functions, but not embeddings. The

embedding required by the concept of universality spectrum does not translate

into requiring that the function on the objects O of a category C to U - a universal

object in O - be monic, i.e a monomorphism. For example, a monomorphism

of a graph is a subgraph, while a universal graph should contain other graphs

as induced subgraphs. Consequently, one of the requirements in describing the

embeddings in our case is to require that there be an embedding A→ U for every

object of A.

Furthermore, we will ask it to be an initial morphism: if g is a function from

the underlying set of an object C to the underlying set of object A, and if its

composition with f is a morphism f ◦ g : C → B, then g itself is a morphism.

Therefore, an embedding between two objects A and B in a concrete category is

a morphism f : A→ B, which is an injective function from the underlying set of

A to the underlying set of B and it is also an initial morphism. The composition

of two embeddings is always an embedding itself.

Between categories:

Definition 5.4.8. A functor F is faithful (respectively full) if for any two objects

c1, c2 ∈ C, the map Hom(c1, c2)→ Hom(F (c1),F (c2)) is injective (respectively,

surjective).

An embedding can be defined as a functor that is injective with respect to
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morphisms. In other words, a functor is an embedding if and only if it is

faithful and injective on objects. As emphasised by Riehl, ”Fullness and

faithfulness are local conditions; a global condition, by contrast, applies

”everywhere”. A faithful functor need not be injective on morphisms; neither

must a full functor be surjective on morphisms. A faithful functor that is

injective on objects is called an embedding and identifies the domain category as

a subcategory of the codomain; in this case, faithfulness implies that the functor

is (globally) injective on arrows. A full and faithful functor, called fully faithfull

for short, that is injective-on-objects defines a full embedding of the domain

category into the codomain category. The domain then defines a full

subcategory of the codomain” ([173], p. 31). So given two categories C and C′, a

faithful functor doesn’t need to be injective on objects or morphisms, for which

reason the range of a full and faithful functor is not necessarily isomorphic to

C′, and two morphisms from C with different domains and codomains may map

to the same morphism in C′. The same applies to a full functor. But a fully

faithful functor is necessarily injective on objects up to isomorphism.

In other words, a faithful functor (respectively a full functor) is a functor that is

injective (respectively surjective) when restricted to each set of morphisms that

have a given source and target. And then the induced maps Fc1,c2 are injective

for all objects c1, c2 in C. But when we require the faithful functor to be injective

on the hom-sets between every pair of objects in the target category, we end up

with a functor injective on morphisms. A functor that is injective on morphisms

is automatically faithful and is also injective on objects, but the contrary need

not hold.

Further requirement: Furthermore, in order to insure that the translation

of one type of structure into another preserves the embedding related to the

universality property, we need a stronger version of a functor to act as arrows,

one that involves a universal morphism. Even if f is an embedding in the concrete

category L, it doesn’t follow that F (f) is an embedding in the concrete category



Chapter 5: Universality results 174

G, not even if they were equivalent under the functor F . What we need is a

functor that has an inverse, even though that inverse does not have to be defined

on the whole codomain. In other words, we need the notion of initial morphism.

Initial morphism:

Definition 5.4.9. Suppose F is a functor F : C → C′.

Let X be an object of C′. An initial morphism is an initial object in the category

(X ↓ F ) of morphisms from X to F . In other words, it consists of a pair (A, ϕ),

where A is an object of C and ϕ : X → F (A) is a morphism in C′, such that the

following universal property is satisfied:

whenever Y is an object of C and f : X → F (Y ) is a morphism in C′, then there

exists a unique morphism g : A→ Y , such that the following diagram commutes:

X F (A)

F (Y )

ϕ

f
F (g)

Result:

Theorem 5.4.10. There is a faithful functor F from the category L of linear

orders to the category G of graphs that preserves model theoretic-related

universality results (classes of objects having universal models in exactly the

same cardinals, and also having the same universality spectrum).

F can be considered as the functor from L to its essential image in G, denoted

by E.

Proof. We will define the functor F : L → G.

The functor between categories must preserve the size of the objects and the

morphisms (embeddings here), in other words, it has to map objects to objects
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and morphisms to morphisms preserving identity morphism and composition of

morphisms.

Firstly, and in accordance with results in model theory mentioned above (see

[146, pp. 25-27]), linear orders can be interpreted into graphs.

The elements of a linear order (A,<A) are the vertices in a graph GA. Given a

linear order (A,<A), the graph GA will have vertices A and an edge

{F (a),F (a′)} ∈ R whenever a <A a
′.

We have then a functor F : Ob(L)→ Ob(G) preserving the size of the objects.

We have to show now that F preserves identity and composition. Although L

and G have different collections of objects, we are dealing here with concrete

categories, therefore the morphisms will constitute a subset of the class of all

functions between the underlying sets of the objects of the two categories.

Each linear order (A,<A) is a relation RA ⊆ A × A. A morphism in L is a

function f : (A,<A) → (B,<B), such that for any (a, a′) ∈ A × A, if a <A a′,

then f(a) < f(a′).

In other words, an embedding (A,<A) ↪→ (B,<B) is an isomorphism from (A,<A

) to an elementary substructure of B,<B). Or, we can say that there is a dotted

arrow making the following diagram of sets commute:

RA A×A

RB B ×B

f×f

Since RB → B × B is a monomorphism, there cannot be two different dotted

arrows making the above diagram commute. An embedding in G is a graph

isomorphism from an object G to an induced subgraph of object G′.

The following diagram will show that the image of the function f will act on the

graphs the same way it acts on linear orders. Let f : (A,<A) → (B,<B) be an
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embedding in L. We have the following commutative diagram:

(A,<A) (B,<B)

(F (A),F (<A)) (F (B),F (<B))

f

F F

f

If (v, v′) is an edge in F (A,<A) (orGA), then (f(v), f(v′)) is an edge in F (B,<B)

(or GB).

But f is an embedding, so f(v) <B f(v′), which further corresponds to and edge

(f(v), f(v′) for F (B,<B).

F was thus defined on objects and morphisms and showed to preserve the size

of the underlying sets (not the size of the class of objects - we would have then

isomorphism), identity and composition.

It follows that every graph morphism (A,<A) ↪→ (B,<B) is in the image of

MorF : MorL(A,<A),(B,<B) →MorG(GA, GB)

In other words, every graph morphism between GA and GB comes from a linear

morphism between (A,<A) and (B,<B). It is also clear that it is not a surjective

function on the objects: not every graph is in the image of F .

The image of F

Given a linear order (A,<A), we have the graph GA = F (A,<A), with vertices

A and an edge (a, a′) whenever a <A a
′.

Given that every function f : A → B has an image I(A) ⊆ B, we could also

construct an image functor I : G → L. To be more specific, I is a functor from E

to G.

The image of an object G of G is a binary relation R ⊆ V ×V , and not necessarily

a linear order, although we can generate one for each G under I: its elements are
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V, the vertices of G. Since graphs morphisms send paths to paths, I preserves

the morphisms, and identity is obvious. I sends GA back to (A,<A). (A,<A) =

I(F (A,<A)) is therefore in the image of I.

Furthermore,

I ◦F = I(F (A,<A)) = I(GA) = (A,<A) = 1L.

The functor I is faithful, that is it shows how to recover a morphism f : (V,R)→

(V ′, R′) in the domain of I given (V,R), (V ′, R′) and I(f). F ◦ I is also the

identity functor: a graph is turned into a linear order and then back into a

graph. In other words, when a linear order is turned into a graph and then back

into a linear order, it returns unchanged. And when a linear order morphism is

turned into a graph morphism and then back into a linear order morphism, it

remains unchanged.

F and I preserve the size of the objects and the embedding characteristic of the

two categories.

Now we have to show how the objects of the two categories embed into their

images under functor composition.

Universal model We have to show that L → I(F (L)) is faithful. Suppose

that there is a universal model U in L. We have to show that F (U) is universal

in G. For any object G in G, I(G) is an object in L, so I(G) ↪→ U . Since F

preserves embeddings, we have G ↪→ F (I(G)) ↪→ F (U).

Conclusion It was showed that F and I are faithful, and we also have I ◦F =

1L. It follows that F is fully faithful, or an embedding. Consequently, if there

is a universal order, then there is a universal graph. However, the existence of a

universal graph does not guarantee the existence of a universal order.
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The conclusion shows that it is easier to have a universal graph than a

universal order. As shown by M. Kojman and S. Shelah in [109], if there is no

universal linear order in a cardinal λ, then there is no universal model in λ for

any countable theory possessing the strict order property. Furthermore, the

proof of the consistency of having a universal graph in ℵ2 < 2ℵ0 generalizes the

proof for the case ℵ1 < 2ℵ0 , but the consistency of universal linear order is true

for the former case and is false for the latter.

5.5 Trees

5.5.1 Introduction

Trees occupy a central place in set theory, given that ”[M]any problems in

combinatorial set theory can be formulated as problems about trees” ([94], p.

113). Or, according to Devlin,

Lemma 5.5.1 (L. 7.2.2. in [39]). Every set can be pictured by a tree.

This result uses graph-theoretic terminology (in which a tree is defined as a

graph such that for every node N there is a unique path starting from the top

node and terminating at N), and it is also the case that such representations

are not unique, presenting different or nonisomorphic trees, but it still points to

interesting connections.

Like many combinatorial objects or properties, trees present a ’hidden depth’.

As such, we could say that they represent the expression of certain difficulties

and complexities connected to set theory in general and the problem of

universality in particular. Consequently, the existence or non-existence of a

universal family of trees or a universal tree emphasises the importance of the

proofs and the techniques such results involve. Trees are partial orders where

the set of predecessors to every element is well-ordered. A partial order satisfies

all the requirements of a total order, with the exception of the trichotomy



Chapter 5: Universality results 179

requirement. They are used in partition calculus and large cardinals. Trees can

be considered as a very natural generalisation of ordinals, given that they can

be defined as partial orders on an ordinal.

A trivial example is any ordinal δ with the usual order, with ht(δ) = δ and

htδ(α) = α. Another example is the complete I-ary tree of height δ: T =α

I = ∪{αI : α < δ}. A tree of size ℵ1 with no uncountable branches could be

understood as a way of coding all ω1-sequences of infinite subsets of ω. By CH,

2<ω1 has cardinality ℵ1. Many κ-trees are isomorphic to a subtree of the full tree

(<κκ,⊂).

The investigation of the structure of T , besides trying to find the kind of chains

and antichains that T has, the kind of hierarchies that can be isolated or the

particular classes that it encompasses, it also involves the issue of the existence

of a universal object. The universality of trees is connected to the universality

of linear orders, but it also seems to present more challenges. The problem is

interesting in the case of those classes of trees that do not have an unbounded

branch, given that an unbounded branch would automatically give a universal

object. But the structure of these classes is not completely understood and it

became clear that ZFC alone is not sufficient for deciding statements about these

trees. This chapter will focus on the class T of trees of size and height ω1 with

no uncountable branches. The framework for analysing them is determined by

cardinal arithmetic and the nature of embeddability.

Well-founded - non-well-founded

We cannot formulate well-foundedness in first-order logic, but every well-founded

partial order can also be extended to a well-order with the same universe ([65]),

which implies that every universal well-order is a universal well-founded partial

order.

M. Džamonja and K. Thompson show in [52] that well-founded partial orders
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have universal models in exactly the same cardinalities as the ordinals: for every

λ ≥ ℵ1, there are λ+ many well orders jointly universal for the well-founded

partial orders of size λ, meaning that the universality spectrum for both the

well-founded partial orders and the ordinals is the set of finite cardinals.

So when approaching trees, we could also make a distinction between well-founded

models - when we are dealing with countable ones - and the non-well-founded case,

when the models are uncountable.

Any two well-founded trees are comparable by order-preserving embeddability,

and there is a family of ω1 countable well-founded trees such that each one of

them is order-preservingly mappable to another member of the family. According

to a result due to Mekler and Väänänen ([147]), the same problem in the case

of non-well-founded case is undecidable in ZFC+CH. There are non-comparable

trees in the non well-founded case and the order structure in such class of such

trees is complex.

The tree order itself though, <T , is well-founded, and this aspect is used when

doing induction and recursion on T .

Further definitions

Before going further, we will introduce some further definitions.

Definition 5.5.2. A wide Aronszajn tree is a tree of height and size κ with no

restrictions on the cardinality of the levels.

We will use T for the class of wide Aronszajn trees, and A for the class of κ-

Aronszajn trees.

Definition 5.5.3. A subset X of a tree T is unbounded in T if and only if the

set of levels to which the elements of X belong {h(x) : x ∈ X} is an unbounded

set in the height of the tree T , h(T ).

Definition 5.5.4. A subset X of an ω1-tree is called stationary (respectively a
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club) if and only if the set of levels to which the elements of X belong, {h(x) :

x ∈ X}, is stationary (club, respectively) in ω1.

Definition 5.5.5. Let S ⊆ ω1 be a stationary subset. A regressive function (or

a pressing-down function) is a function f : S → ω1 such that (∀α ∈ S)f(α) < α.

Theorem 5.5.6. (Pressing Down Lemma - Neumar’s Theorem) Let S be a

stationary subset of an uncountable, regular cardinal κ and f : S → κ a

regressive function. Then there is a β ∈ κ and a S′ ∈ [S]κ such that

(∀α ∈ S′)f(α) < β ([S]κ = {X ⊆ S : |X| = κ}). = For every regressive function

f : X → κ, there is some α < κ such that f−1(α) is unbounded below κ.

In a stronger form, due to Fodor, S′ can be chosen to be a stationary set.

Theorem 5.5.7 (Pressing Down Lemma (Fodor)). Let S ⊆ κ be stationary and

f : S → κ a regressive function. Then there is a stationary set S′ ⊆ S on

which the function f is constant, i.e., there is some α ∈ κ such that f−1(α) is

stationary.

Among the subsets of a tree, we can find a subtree or a branch.

5.5.2 Types of embeddings

For ordered structures, the embeddings constitute injective maps that preserve

order. Both the linear order embeddings and the partial order embeddings are

one-to-one functions that preserve order. In the case of partial orders, such as

trees, we may also require that incomparability is preserved, dealing therefore

with a notion of strong embedding. A weak embedding doesn’t have to be one-to-

one.

There are various ways of approaching the ordering of trees. Let T and T ′ be

trees in a family of trees. Firstly, T ≤ T ′ if there is a an order-preserving function

f : T → T ′ satisfying x <T y implies f(x) <T ′ f(y)). The strict ordering T < T ′

holds if T ≤ T ′ and T ′ ≰ T ; T ≡ T ′ if T ≤ T ′ and T ′ ≤ T . Such a function,
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also called reduction, need not be injective or surjective, but any reduction of

T to T ′ has the property that htT ′(x) ≥ htT (x). A weak embedding from one

tree to another is one which preserves levels, htT1(x) = htT2(f(x)) for all x ∈ T1:

the functions f map branches of T into branches of T . This kind of strict order-

preserving function also measures how non-isomorphic the trees/models are. And

we could also use the weak embeddings to quasi-order the classes T and A.

The ordering (quasi-ordering) of trees arises naturally in infinitary model theory,

particularly in the investigation of Ehrenfeucht-Fräıssé games (see [91]) and was

also used to study non-well-founded inductive definitions ([221], for example).

Trees of size ℵ0 with no uncountable branches can be used in infinitary model

theory as clocks of generalised Ehrenfeucht-Fräıssé games. In such cases, the

ordering of trees can be defined in terms of a comparison game G(T, T ′) with

two players ∃ and ∀. The first player ∀ starts and moves an element of T ′,

while the second one, ∃, responds with an element of T . The game goes on

with ∀ playing elements of T ′ and ∃ playing elements of T , both in a strictly

ascending order. The first player unable to move loses. In other words, T ≤

T ′ means that a game clocked by T is less complicated than a game clocked

by T ′. Hyttinen and Väänänen ([91]) used trees with no uncountable branches

as invariants of uncountable models in the same way as ordinals (which, as I

mentioned before, can be considered trees with no infinite branches) are used as

invariants of countable models and they established the following lemma:

Lemma 5.5.8 (Hyttinen and Väänänen). 1. T ′ ⩽ T iff ∃ wins G(T, T ′).

2. T ≪ T ′ iff ∀ wins G(T, T ′).

Other forms of reduction include the injective reduction used by Mekler and

Väänänen in [147], or the homomorphic reduction ⪯, which is an injective

reduction function satisfying x ≤T y ⇐⇒ f(x) ≤T ′ f(y).

There are then reductions which have the property of preserving the ’distance’

between nodes, which is another way of conceiving trees in T as subtrees of
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ω1>ω1, and denoting by △(x, y) the first ordinal α where x(α) ̸= y(α). In [43],

Džamonja and Väänänen study the reductions that preserve the value of △(x, y),

with ’preserving △’ meaning that it corresponds to isometries of ω1-metric spaces

(Th.04).

A stronger type of embedding, determining a specific type of universality results

with regards to a certain kind of well-founded partial orders, involves a club

guessing method used by Shelah and Kojman ([109]), and later generalised by

Kojman ([108]). By this method, Kojman finds a surjective homomorphism

between certain subsets of P(ω0) (subsets of reals of bounded cardinality)

ordered by the subset relation, on one hand, and the structure of enbeddability

over well-founded partial orders (the monotone class of infinite graphs), on the

other. These embeddings preserve both rank and order and is particularly

useful in studying trees, as Väänäen and Todorčević show in [219]).

5.5.3 Types of trees

Aronszajn trees

It cannot be proved that an uncountable tree T (|T | ≥ ω1) has an uncountable

branch. But it is possible to construct an uncountable tree with countable levels

and with no uncountable branch, i.e., an Aronszajn tree.

Definition 5.5.9. A κ-tree is a tree of cardinality κ in which each level has

cardinality < κ. If, additionally, such a tree has no chains (branches) of

cardinality κ, then we refer to a κ-Aronzajn tree. For κ = ω1, we simply refer to

an Aronszajn tree.

Such a tree also presents normality properties: it is a rooted ω1-tree such that all

nodes on the same limit level have different sets of predecessors, every element

of the tree has successors on all higher levels, and every non-maximal element

has infinitely many immediate successors. We also say that all these properties
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describe a full well pruned Hausdorff ω1-tree. Throughout this text, by tree we

will generally mean normal tree; that is, each node of limit rank is determined by

its set of predecessors, and every node has successors of arbitrarily high countable

rank. It should also be pointed out that an ω1-tree T whose levels are only finite

does have an ω1-branch, a consequence of König’s lemma,

Theorem 5.5.10 (König’s lemma). A finitely branching tree is infinite if and

only if it has an infinite path.

The generalisation of König’s theorem for κ = ℵ1 is false, as the existence of

an Aronszajn tree testifies: there is an ℵ1-tree without cofinal branches. But a

generalisation of the König’s theorem, due to Kurepa, is still possible. A κ-Kurepa

tree is a κ-tree with at least κ+ maximal branches or paths.

A cardinal κ for which no κ-Aronszajn tree exists is said to have the tree property

(TP).

Definition 5.5.11. Let κ be a regular uncountable cardinal. κ has the tree

property if every tree of height κ with levels of cardinality < κ has a branch of

cardinality κ.

The tree property is a combinatorial assertion having certain characteristics: it is

a compactness principle, it is related to the behaviour of the continuous function,

it it sensitive to forcing, and it is difficult to prove that it belongs to two adjacent

cardinals. We can find the tree property at κ = ω. No singular cardinal has the

tree property, but it should also be emphasized that this property doesn’t hold

for all regular cardinals in general.

That being said, there are κ-trees that are not Aronszajn. An example is the

ordinal κ itself, having exactly one branch of cardinality κ (or maximal chain of

cardinality κ or a path). Another example is the tree of binary sequences of κ,

T = {s ∈<κ 2 : |α ∈ dom(s) : s(α) = 1| < ω}, having κ maximal branches.

Strengthenings of the notion of Aronszajn tree include the Souslin tree and the
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special Aronszajn tree. A Souslin tree is an ω1-Aronszajn tree with no uncountable

antichain. We can generalise these notions to arbitrary cardinals κ.

Definition 5.5.12. For any infinite cardinal κ, a κ-Souslin tree is a tree T such

that |T | = κ and every chain and every antichain of T has cardinality < κ.

By König’s Lemma, there are no ℵ0-Aronszajn trees. The existence of an

Aronszajn tree is an essential property of the first uncountable cardinal: there is

always an Aronszajn tree. In ZFC, there is always an Aronszajn tree (i.e. an

ω1-Aronszajn tree). But the existence of a Suslin ω1-tree is independent of ZFC.

Every κ-Suslin tree is a κ-Aronszajn tree. Without ZFC, there need not be a

ω2-Aronszajn tree. The existence of such a tree is consistent but independent of

ZFC + 2ω = ω2 (Mitchell 1972).

We can also build special Aronszajn trees using Todorčević’s method of walk on

the ordinals ([217]), but we will not focus on this method here.

Construction of an Aronszajn tree. Special trees

CH implies that there are many different Aronszajn trees.

The definition of special Aronszajn tree has several equivalent variants and the

literature also contains generalisations of the definition of a special Aronszajn

tree.

The type of embedding is a way of approaching this aspect. We will start with

the distinction Q-embeddable - R-embeddable.

Definition 5.5.13. If P is a partially ordered set, we say that T is P -embeddable

if there is a strictly increasing mapping f : T → P . A tree T is called R-

embeddable if and only if there is f : T → R such that x <T y → f(x) < f(y).

Q-embeddability is defined similarly.

As emphasised by Abraham, the construction of an Aronszajn tree involves a
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tension between compactness at ω0 and incompactness at ω1, the fact that the

König’s Lemma (any tree with infinitely many finite levels has an infinite branch),

essentially about ω, cannot be applied to ω1.

The existence of ω1 trees with countable levels and without ω1 branches represents

a classical result due to Aronszajn (but published by Kurepa ([117]. Such a tree

is constructed together with an order embedding of the tree into the rationals

(the reason for being a special tree). So the construction of an Aronszajn tree is

connected to the notion of special tree.

If we construct an ℵ1-tree using sequences of rationals (as it was done originally),

the tree T will be Q-embeddable. When we say that a special Aronszajn trees is

Q − embeddable, we do not require f to be injective, so it is not an embedding

in the usual sense.

The members of the initial Aronszajn tree are strictly increasing finite and

countable bounded sequences of rational numbers, the ordering is sequence

extension, and the tree is built by recursion on the levels. In the construction, a

special attention is paid at the limit level, conceived as the set theoretic union.

An uncountable branch, i.e., a linearly ordered subset in an Aronszajn tree

would meet level Tα for every countable ordinal α, so we would get an

uncountable strictly increasing sequence of rationals, contrary to the fact that

rationals are a countable set. Consequently, the Aronszajn tree constructed

from ascending sequences of rationals does not consist of all sequences of

rational numbers, since in that case, the tree would already be uncountable at

level ω, so we have to make a selection among the sequences. The tree is

constructed by recursion: we construct the αth level Tα (consisting of all

α-sequences of rationals) after having constructed the subtree T ↾ α and in

accordance to certain rules. At each limit stage, and for each q ∈ Q, we pick

inductively one sequence bounded by q to extend, by adding q as the maximal

element. The function sending each such sequence to its supremum is a

specializing function. The Q-embeddable Aronszajn tree we obtain is a special
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Aronszajn tree of cardinality < 2ℵ0 , with no uncountable branch.

The process of specialising can thus be seen as a way to use the countability of

Q to make the tree more thin given the levels of size continuum.

Baumgartner showed that if ZFC is consistent, then so is ZFC + ’Every Aronszajn

tree is Q-embeddable’ ([11]). But whether or not every Aronszajn tree is Q-

embeddable is a question which cannot be decided under ZFC.

One can make trees special by forcing. For instance, if T is an ℵ1-Aronszajn

tree, there exists a ccc forcing PT that adds a specialising function for the tree

T . Baumgartner, Malitz and Reinhardt showed that MA + ¬CH implies that

all tree are special ([8]). Laver and Shelah ([124]) extended their result to κ+,

for κ regular, relative to/starting with a weakly compact cardinal bigger than κ.

Golshani and Hayut ([72]) managed to force ’all κ-Aronsazajn trees are special’

at many successors of regular cardinals.

From the definitions above, we could state the following facts:

Fact 1. A special κ+-Aronszajn tree is a κ+ Aronszajn tree.

Fact 2. A κ+ Souslin tree is a non-special κ+ Aronszajn tree.

Fact 3. A special κ+-Aronszajn tree remains special after cardinal preserving

forcing.

That being said, having no uncountable chains is necessary but not sufficient

for being Q-embeddable. There are trees with uncountable chains that are not

Q-embeddable. σQ is an example and such trees have cardinality 2ℵ0 . So σQ is

not the union of countable many antichains (Kurepa). We could also construct

κ-trees without cofinal branches which are not Q-embeddable and which have

cardinality 2ℵ0 by using bi-stationary sets (more on that below).

Baumgartner ([10]) extends the usual definition of special by introducing a

function f : T → ω, such that ∀s, t, u ∈ T , if s < t, u and f(s) = f(t) = f(u),

then t and u are comparable (p. 41). It follows that
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Definition 5.5.14. A tree T is special (in the usual sense) if the condition above

holds and it has no uncountable branch.

In this context, he proves the following theorem:

Theorem 5.5.15 (8.1.). If T is special then there are at most ℵ1 uncountable

branches through T .

Antichains

We can also approach the notion of a special Aronszajn tree using the notion of

an antichain. An antichain of T is a pairwise incomparable (or incompatible in

a stronger sense, usually used in forcing) subset of T . For any partially ordered

set P (not necessarily a tree) there is a strictly increasing function f : P → Q if

and only if P is the union of countably many antichains.

An Aronszajn tree is special if it is the union of a countable collection of

antichains. It is clear that a special Aronszajn tree cannot be Souslin, as it is

impossible for an uncountable tree to be a union of countably many antichains

all of which are countable. But as we will show bellow, an ω1-tree could be an

almost-Souslin tree if and only if it has no stationary antichain.

Before going further, it should be pointed out that the existence of an uncountable

chain in T is related to the existence of an uncountable antichain, due to the fact

that every node has two incompatible extensions at the next level: if bα is an

uncountable chain, i.e. a sequence ⟨aα : α < ω1⟩, and the height of each element

in the chain h(aα) = ζα for an increasing sequence of ordinals ζα : α < ω1, we

could choose an element xα ̸= aα+1 of height ζα+1 such that aα < xα. All the

elements xα, ⟨xα : α < ω1⟩ , would constitute an uncountable antichain.

Theorem 5.5.16. Let (P,<P ) be a partial order. There is an equivalence between

the following two statements:

(i) There is an order homomorphism between P and Q, f : P → Q, such that
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s <P t =⇒ f(s) < f(t).

(ii) If An, n < ω, is an antichain, P is a union of countably many antichains,

P = ∪
n<ω

An.

Kurepa had already proved ([118], Th.1, p. 172) the equivalence for all partial

orders (P,<P ), although the distinction between special and non-special trees

was considered for a while only in relation to Aronszajn trees.

Consequently, we could say that a tree T is special if any of the following

equivalent conditions hold: (i) T is the union of countably many antichains; (ii)

there is a function f : T → ω which is injective on chains; (iii) there is an

increasing monotone function f : T → Q on the chains of T .

We can generalise to any κ regular.

Lemma 5.5.17. Let X be a partially ordered set (X,<). X is the union of at

most κ many antichains if and only if there is an embedding f : X → κ such that

if x < y, then f(x) ̸= f(y), for every x, y ∈ X.

Again, the function f is not required to be one-to-one.

Lemma 5.5.18. Let κ be a regular cardinal and assume κ<κ = κ. We say

that a κ+ Aronszajn tree is special if and only if any of the following equivalent

conditions hold: (i) there is an embedding f : T → κ such that if x < y, then

f(x) ̸= f(y), for every x, y ∈ X. (ii) T is the union of κ-many antichains.

Equivalently, a tree T ⊆<κ 2 for κ = λ+ is special if and only if there is a function

f : T → λ such that for any path c ⊆ T, f ↾ c is injective.

Non-stationary

A generalisation of the definition of special trees of successor height κ+ defined

as the union of κ many antichains was offered by Todorčević. This approach uses
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the theory of stationary sets and its distinctions. A starting point is Neumar’s

theorem: for every regressive function f : X → κ, there is some α < κ such that

f−1(α) is unbounded below κ.

Definition 5.5.19 ([213]). Let κ be an uncountable, regular cardinal, and T a

tree of height κ and X ⊆ κ.

1. X is non-stationary in T if there exists a regressive mapping f : T ↾ X → T

such that for every t ∈ T , f−1(t) (that is the complete f -preimage of t), is

the union of (< κ)-many antichains in T .

2. T (X) is special if and only if X is non-stationary in T i.e. f−1(t) is a special

subtree of T , for every t ∈ T .

In other words, if X is nonstationary, then T ↾ X is a union of |X| antichains. So

if a tree is special, then all of its subtrees are special and therefore nonstationary.

Consequently, if T is a tree of cardinality κ+, then every κ-special subtree of T

is a nonstationary subtree.

Proposition 5.5.20. Let κ be a regular uncountable cardinal and S a stationary

set. If S is non-stationary in T , then T is special and therefore it has no cofinal

branches.

Existence

Wide κ-Aronszajn trees exist for any κ. To obtain one, we could take a disjoint

union of ordinals < κ.

If GCH holds, then for every regular cardinal κ there is a κ+ Aronszajn tree (a

result usually ascribed to Specker, [206], but he attributes it to Sikorski): we just

imitate the construction of Aronszajn trees on ℵ1 and find a κ+ Aronszajn tree.

Proof. κ = κ<κ implies that κ is regular. But it is also equivalent to the GCH.

Let κ be ℵ1. If CH holds, then ℵℵ0
1 = ℵ1. So it follows that there is an ℵ2
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Aronszajn tree.

Another proof for the existence of an ℵ2 Aronszajn tree, for which we take into

consideration hints from [115], would go as follows:

Proposition 5.5.21. CH implies that there is an ω2-Aronszajn tree.

Proof. We will also imitate the construction of an (ω1) Aronszajn tree, but we

will replace ω1 by ω2 and, in accordance with [214], Q with a densely ordered

set, Q∗, such that every non-trivial interval of Q∗ contains an ordinal < ω2:

Q∗ = {g ∈ ωω1 : {n < ω : g(n) ̸= 0} is finite}. As a set, the tree T (Hausdorff

or normal) is the ordinal ω2. Each node has ℵ1 immediate successors. The levels

are constructed as follows: L0 = {0}, and for 0 < α < ω2, Lα is uncountable.

Tγ = ∪α<γα.

We will build the tree T as a sequence of functions ⟨fα : α < ω2⟩, such that, in

the end, T = ∪α<α2{t ∈ Lα(T ) : t = fα}.

By recursion on α < ω2, we choose the functions fα ∈ Lα(T ) such that:

1. fα : α→ ℵ1 is one-to-one.

2. ω1 \ ran(fα) is uncountable.

3. For β < α < ω2, fα ↾ β = fβ. fβ and fα ↾ β differ only on countably many

places.

fω1 is the identity function. The induction step from α to α + 1 does not pose

any problems. Given fα, fα+1 = fα ∪ {(α, i)} for some i ∈ ω1 \ ran(fα).

For λ a limit ordinal, we need to make a distinction between limit ordinals with

cofinality ω and the ones having cofinality ω1.

Assume λ is a limit ordinal and we have fα for α < λ. We choose α0 < α1 < ...,

such that sup{αi : i < ω1} = λ. Then we choose ti ∈ Lαi(T ) such that t0 =
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fα0 , ti+1 = fαi+1 and ti+1 ↾ αi = ti. Let t = ∪iti. Then t : λ→ ω1 is a one-to-one

function, so t ∈ Lλ(T ).

But when we want to construct an ω2-Aronszajn tree, the cardinality of the nodes

on level Lα(T ), {t ∈ Lα(T ) : t = fα} is 2ℵ0 , not ℵ1. As such, the construction

works only if we assume CH.

The problem appear at the limit ordinals with countable cofinality, in the case

where ω1 \ ∪i(ran(fα)) is countable. So we will take A = ω1 × ω1, gα : ω1 → ω1,

and finally ran(fα) ⊆ {(δ, γ) : γ < gα(δ)} for some gα : ω1 → ω1.

So it will follow that under CH, fα ↾ β : β ≤ α < ω2 (ordered by inclusion) is an

ω2-Aronszajn tree.

GCH represents a sufficient condition for the existence of κ+ Aronszajn trees for

regular κ. GCH is needed to exclude singular cardinals κ in the construction at

limit stages λ: the number of all λ branches in T (λ) is κcf(λ), so we must assume

κ<κ = κ. As a consequence, if we look for a model of the universe without ω2

Aronszajn tree, we would need to assume ¬CH.

Although GCH implies that there are κ-Aronszajn trees whenever κ is the

successor of a regular cardinal, there are some (set-theoretic) difficulties

involved when we are considering the successor of a singular cardinal. Jensen

(mentioned in [95]) has shown that all such cardinals have κ-Aronszajn trees

and even κ-Souslin trees if V = L. Magidor and Shelah ([135]) proved that

there are no κ+-Aronszajn trees if κ is singular and the strongly compact

cardinals are unbounded below κ. A cardinal κ is strongly compact if and only

if every κ-complete filter can be extended to a κ-complete ultrafilter; is a lot

larger than a weakly compact cardinal, and its existence is (relatively)

consistent with the GCH. But there is always a κ-Aronszajn tree when κ is the

least strongly inaccessible cardinal ([115], ex. III.6.33).

Under CH, there are also many isomorphism types of Aronszajn trees. According
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to a result by Gaifman and Specker ([70]), there are 2ℵ1 non-isomorphic Aronszajn

trees. Also assuming κλ = κ, there are 2κ
+

non-isomorphic normal Aronszajn

κ+-trees ([70]). The number of isomorphism types of normal Aronszajn trees is

2ℵ1 .

The Souslin Hypothesis (SH) asserts that there are no Souslin trees. Jech and

Tennenbaum proved the consistency of ZFC with the negation of SH.

Theorem 5.5.22. The existence of Q-embeddability of Aronszajn trees implies

SH.

Proof. Let T be a Q-embeddable Souslin tree. Then T can be written as the

reunion of countable many antichains T = ∪{Tq : q ∈ Q} with Tq = {t ∈ T :

f(t) = q}. Since |T | = ℵ1, it follows that some Tq is uncountable and since a

Souslin tree has no uncountable antichains, we get a contradiction.

Since ¬SH is consistent, so is the negation of the existence of a special Aronszajn

tree and, therefore of a Q-embeddable/special ω1 tree.

The construction can be generalised to any κ. And every branch can be coded

as a subset of κ.

In other words, the statement that all Aronszajn trees are Q-embeddable, and

therefore R-embeddable, represents a strong form of SH (’there are no Souslin

trees’).

There are a few more aspects to consider in relation to the embeddability of trees.

Due to a result by Baumgartner, we know that

Theorem 5.5.23. If ZFC is consistent, then so is ′ZFC + Every Aronszajn tree

is Q-embeddable.

If T is an ω1 tree, we can define a R-embeddable Aronszajn trees in relation to

Q-embeddable Aronszajn trees in accordance to [11]:
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Proposition 5.5.24. Let T be an ω1 tree. T is R-embeddable if and only if

T =
⋃

α<ω1

Tα+1 is Q-embeddable.

Proof. Since T =
⋃

α<ω1

Tα+1 is Q-embeddable it follows that T =
⋃

n<ω
TAn , where

An is an antichain. But {α+ 1 : α < ω1} is a stationary set in ω1, so some An is

stationary. It follows that T ↾ S is Q-embeddable.

We can generalise this result to any κ regular to describe Rκ-embeddable

Aronszajn trees using the notion of Qκ-embeddable Aronszajn trees:

Theorem 5.5.25. Assume κ<κ = κ. Let T an κ+ tree. T is Rκ-embeddable if

and only if T ∗ =
⋃

α<κ+

Tα+1 is Qκ-embeddable.

We could also describe the specialising function as a function from a subtree T (α)

(of height Tα+1) of T , for every ordinal α, into ω, such that the pre-image of {q}

(for every q ∈ Q) is an antichain in T (α). T (α) is both the set ∪β<αT (β) and the

tree on this set determined by the inclusion order (which is the ordering of T).

Since the ordering is inclusion, we are only concerned with which sequences each

Tα will contain. The definition is by recursion on the levels. That is, we define

Tα from
⋃

β<α

Tβ.

According to another result of Baumgartner from [11],

Proposition 5.5.26. If T is R-embeddable, then T is Aronszajn and every

uncountable subset of T contains an uncountable antichain.

It follows that no Souslin tree is R-embeddable.

So given the definition of R or Q-embeddability, an Aronszajn tree T is called

non-Souslin (or non-Souslin in a strong sense) if every uncountable subset of T

contains an uncountable antichain. But the converse is not true, in accordance

to a result by Baumgartner :

Theorem 5.5.27 ([11]). Assume V = L. Then there is an Aronszajn tree which

is R-embeddable but not Q-embeddable.
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It means that R-embeddable but not Q-embeddable Aronszajn trees cannot be

constructed in ZFC. It also means that if the axiom of constructibility is assumed,

there is a Souslin tree. In other words, there are non-Souslin-trees which are not

R-embeddable. The statement is equivalent with the fact that if we assume

♢∗, then there is a R-embeddable Aronszajn tree with no stationary antichains,

a result due to Todorčević. Furthermore, by the Pressing Down Lemma, if the

levels at which the nodes of a special subtree of T form a stationary set, then there

is a stationary antichain (by the Pressing Down Lemma). An ω1-Suslin tree has

no uncountable antichain, and hence no stationary antichain, while every special

ω1-Aronszajn tree has a stationary antichain.

Devlin ([36]) uses a weaker assumption than V = L, i.e. ♢, which follows from

V = L (see Jensen), and proves

Theorem 5.5.28. Assume ♢. Then there are 2ℵ1 non-isomorphic Aronszajn

trees R-embeddable but not Q-embeddable.

Forcings that add ♢ show how to generalise to any cardinal κ regular. According

to a theorem of Beaudoin ([12]), we can generalise to any cardinal κ regular the

fact that there are R-embeddable κ Aronszajn trees that are not special and do

not contain a Souslin substree of cardinality κ+.

Theorem 5.5.29 (Th. 1.10.). Assume κ is a regular cardinal ≥ ω1, κ
<κ = κ

and ♢(Eκ+

κ ). Then there is a normal κ+-Aronszajn tree T which has no special

κ-Aronszajn nor κ-Suslin subtrees of size κ+.

Solovay and Tennenbaum have proved that it is consistent to assume there is

no Souslin tree. Shelah found ways to specialise trees that are still incompatible

with the property of Souslin trees, and thus he showed that Souslin’s Hypothesis

does not imply every Aronszajn tree is special. He found forcings that specialise

Aronszajn trees in a weak sense, with iteration preserving at least one non-special

Aronszajn tree (see chapter IX of [192]). So we could take the following tree

Definition 5.5.30. An ω1 tree T is an almost-Souslin tree if and only if it has
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no stationary antichain.

Every Souslin tree is an almost-Souslin tree.

Square principles

Both the square principles and Aronszajn trees represent combinatorial

principles manifesting incompactness. A κ-Aronszajn tree is an incompleteness

phenomenon because it does not have an unbounded branch. □ represents a

combinatorial principle exemplifying incompactness by asserting the existence

of a cohering sequence of ’short’ club sets, but such that no (’longer’) club set

threads or coheres with all of them. A generalization of this principle is due to

Schimmerling ([59]). Jensen showed ([95]) that in V = L, the square principles

hold for all uncountable cardinals. And in fact, there are also results

establishing connections between square principles and Aronszajn trees. We will

start with some definitions.

Definition 5.5.31 (□κ). Let κ be a regular cardinal. A square sequence, □κ on

κ is a sequence ⟨Cα : α is a limit ordinal in κ+ ⟩ such that

1. Cα is a club subset of α.

2. If β ∈ Lim(Cα), then Cβ = Cα ∩ β.

3. If cf(α) < κ, then |Cα| < κ.

Definition 5.5.32 (□∗
κ). Let κ be a regular cardinal. A weak square sequence,

□∗
κ on κ is a sequence ⟨C̄α : α is a limit ordinal in κ+ ⟩, such that

1. For all α < κ+, Cα is a set of club subsets in α with 0 < |Cα| < κ).

2. For all α < β < κ+, α and β limit ordinals, and all C ∈ Cβ, if α ∈ acc(C) ,

the C ∩ α ∈ Cα.

3. For all α < κ+ and all C ∈ Cα, otp(C) ≤ κ.
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Todorčević introduces a weakening of □κ by replacing the order type restriction

with the anti-thread aspect. So we get a sequence □(κ) of clubs of α, endowed

with the coherence property of a □-sequence, but which is not trivialised by a

club of κ:

Definition 5.5.33 (general form). Let κ be a regular, uncountable cardinal

and λ > 1 another cardinal. A sequence □(κ,< λ) is a sequence

⟨C̄α : α is a limit ordinal in κ ⟩ such that

1. For all α < κ, Cα is a set of club subsets in α with 0 < |Cα| < λ).

2. For all α < β < κ, α and β limit ordinals, and all C ∈ Cβ, if α ∈ acc(C) ,

then C ∩ α ∈ Cα.

3. There is no club D ⊆ κ such that for all α ∈ acc(D), D ∩ α ∈ Cα.

The first result connecting square principles to trees belongs to Jensen.

Theorem 5.5.34 ([95]). There is a special κ+-Aronszajn tree if and only if □∗
κ

holds.

Further results by Solovay, Gregory and Shelah show that if κ is uncountable, then

GCH +□κ imply the existence of a κ+ Souslin tree. In [217], Todorčević proved

that if κ is a regular, uncountable cardinal, then □κ,<κ implies the existence of a

κ-Aronszajn tree. Consequently, these results show that we don’t need the GCH

assumption when constructing a κ+-Aronszajn tree, but we need it if we want

to construct a Souslin tree (for κ ≥ ℵ1). For regular cardinal κ, □∗
κ follows from

GCH and the consistency of ZFC + ¬□κ is equivalent to that of ’ZFC + There

is a Mahlo cardinal’ ([95]).

Non-special trees

Laver had shown in ZFC that there is a tree of power 2ℵ0 embeddable in the

reals but not in the rationals, and such that each uncountable subset contains an
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uncountable antichain (a proof can be found in [11], mentioned in [8]). According

to [8], Galvin found a tree of power 2ℵ0 that cannot be embedded into the reals.

It follows that there are non-special Aronszajn trees. So non-special Aronszajn

trees have cardinality ≥ 2ℵ0 .

While working on trees in his approach to the Souslin Hypothesis, Kurepa

considered their width, the cardinality of its levels ([117]), with a special focus

on Aronszajn trees. So the distinction between special and non-special was not

the defining characterisation of Aronszajn trees, although it was generally

considered since then mainly in connection to Aronszajn trees. Being an

Aronszajn tree involved a condition on the width of the trees, the cardinality of

the levels. In 1935, Kurepa credits N. Aronszajn with showing that Aronszajn

trees exist in ZFC (Theorem 6 in [117]). But he also proves the existence of a

non-special tree with no uncountable branch, namely wQ (with its variant σ)

([116]), i.e., the collection of all well-ordered subsets of Q ordered by

end-extension and so wQ = c. So in trying to understand the class of trees of

height ω1 without uncountable branches, we cannot ignore the methodological

distinction between special and non-special trees, in addition to aspects related

to their width or the size of their levels. The distinction is related to the notion

of forcing as well since the countability of the levels is essential in some forcing

posets.

Given that for any infinite cardinal κ, a tree T is a κ-special tree if it can be

written as a union of ≤ κ many antichains, otherwise T is a non-special κ tree,

it follows that a non-special tree cannot embed weakly into a special one. But

then there is also the option of specialising a tree in a weak sense and follow the

consequences regarding universality.

In [192], Shelah proves that Souslin’s Hypothesis (SH) does not imply that every

Aronszajn tree is special by investigating weak notions of ’special Aronszajn tree’

that are still incompatible with a tree being Souslin: S-special or special on a

stationary set S, but also S-r-special and S-st-special. All types mean that every
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uncountable subset contains an uncountable antichain. These forcing notions

”specialize” Aronszajn trees in a weak sense, and they can be iterated while

still preserving at least one non-special Aronszajn tree. The concept of (T ∗, S)-

preserving, for instance (Definition 4.5), represents the property of forcing notions

that ensures the tree T ∗ never gets fully specialized.

The work of Todorčević represents another important contribution to the study

of trees and, in particular, non-special trees, as many results mentioned here

testify.

We can show now that a non-special Aronszajn tree cannot be embedded into a

special one:

Theorem 5.5.35. A non-special Aronszajn tree cannot be embedded into a special

one.

Proof. Assume κ<κ = κ.

Since T is special, there is an embedding s : T → Q preserving the strict order:

whenever x < y, then f(x) < f(y).

Let T ′ be a non-special tree and T a special one. Suppose there is a weak

embedding f : T ′ → T such that for all x, y ∈ T ′, x <T ′ y ⇒ f(x) <T f(y). A

weak embedding is one that preserves levels, namely htT ′(x) < htT (f(x)), for all

x ∈ T ′.

So there would be a function f : κ+ → κ s.t. f ◦ s embeds T’ in Qκ.

Trees constructed from bi-stationary sets

The various definitions of a special tree mentioned above show that the non-

existence of a cofinal branch for a special tree of regular cardinality cannot be

destroyed by forcing, in the outer transitive models of a universe V we start with.

But there are also tree without cofinal branches, non-special ones, that could also
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maintain this last property in an absolute way.

A bi-stationary set can be used to construct a tree A(T ) of height ω1 of ascending

and closed (bounded by a least element in ω1) sequences of elements of A, partially

ordered by inclusion: s ≤ t if s is an initial part of t. T (A) trees were first studied

by Todorčević in [213]. They represent a class of non-special trees that, when CH

is assumed and they are part of T , they are incomparable with the Aronszajn

trees (see [219]). We will start with some facts about stationary and bi-stationary

sets.

Fact 4. According to a result due to Ulam for successor ordinals and Solovay

for the general case, if κ is a regular uncountable cardinal and S a stationary

subset of κ, there is a family F of pairwise disjoint stationary subsets of κ, each

contained in S, such that |F| = κ. In other words, every stationary subset of κ

is the disjoint union of κ stationary subsets.

It follows that there are 2κ many distinct stationary sets in κ.

Given a stationary set S, its complement is co-stationary. A stationary and co-

stationary set is called bi-stationary. They are non-Borel subsets of ω1 and their

existence, under the AC, was proved by Rudin in [178].

Theorem 5.5.36. There is a subset S ⊆ ω1 such that neither S nor ω1 \ S

contains a club set.

In other words,

Fact 5. If A is a bi-stationary set in κ, then there is no continuous map from a

club of κ onto a cofinal subset of A.

There are ω1 disjoint stationary subsets of ω1 and therefore 2ω1 bi-stationary

subsets: for every α ̸= β and bi-stationary subsets Aα and Aβ, Aα \ Aβ is bi-

stationary.

Fact 6. Although S and its complement do not contain a club, each one of them

intersects every club. If S doesn’t, then ω1 \A would contain a club. It goes the



Chapter 5: Universality results 201

same for the complement.

We generalise now to a cardinal κ.

Lemma 5.5.37. Let S and T be bi-stationary subsets of κ, with S ̸= T . Then

there is no continuous map from S onto a cofinal subset of T and the class of all

such sets has cardinality 2κ.

Proof. Suppose there is a continuous map from S onto a cofinal subset of T .

Then T is stationary, and being a cofinal subset, |f(S)| = κ. It follows that S \T

is not stationary. But that would contradict the bi-stationarity of T .

In accordance with Solovay’s theorem, every stationary subset of κ is the disjoint

union of κ stationary subsets. For every α ̸= β, α, β < κ, we have |{Sα : α <

κ}| = |{Tα : α < κ}|, where Sα ̸= Sβ, Tα ̸= Tβ, and Sα ̸= Tα.

Each bi-stationary subset X ⊂ κ contains two disjoint members of the collection

of κ stationary sets, such that U(X) =
⋃
{Sα : α ∈ X} ∪

⋃
{S′

α : α ∈ κ \X}.

If X and Y are distinct subsets of κ, U(X) \U(Y ) contains a stationary set of κ.

So we have 2κ bi-stationary sets Xα of κ, such that Xα \ Xβ is bi-stationary

whenever α ̸= β.

The trees T (A) constructed from a bi-stationary set A have the following

characteristics. Every element t ∈ T (A) is a closed, bounded, countable set of

ordinals, representing initial segments of the stationary set A. It follows that

the width of the tree is 2ℵ0 . Firstly, we show that

Lemma 5.5.38. T (A) is a tree of height ω1 with no uncountable branches.

Proof. A stationary set of ω1 has closed subsets of all order types < ω1. It follows

that T (A) is a tree of height ω1.

If T were the tree constructed starting from a stationary set, it would contain an

uncountable branch. The tree T (A) is bi-stationary, so the existence of a club
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in A, implied by an uncountable branch in T (A), would lead to a contradiction

with the co-stationarity of A. It follows that T (A) is a tree of height 2ℵ0 (= ω1

under CH) with no uncountable branches.

Secondly, we prove that T (A) is non-special using some elements from Todorčević

([214]):

Lemma 5.5.39. T (A) is not special.

Proof. Every countable increasing sequence in ω1 is bounded and has a supremum

belonging to ω1: if ⟨αn : n ∈ N⟩ is any sequence of ordinals < ω1, αω :=
⋃
n∈N

αn is

a countable ordinal and therefore < ω1; so αn < αω + 1 < ω1, ∀n ∈ N.

We also know that every stationary set of ω1 has closed subsets of all order types

< ω1. So T (A) will be the set of all countable subsets, closed in ω1, ordered by

end extension, and having no uncountable chains. T (A) has cardinality 2ℵ0 , so

given an uncountable subset S of T (A), we could take a linear ordering on it,

⟨S,≺⟩, as order isomorphic with a set of reals. So ⟨S,≺⟩ is separable, that is, it

has no end points and every infinite interval is dense.

Its nodes are sequences of countable ordinals and the ≺ also induces a linear

ordering of each node.

Let D be the set of all maximal chains or branches of T (A), ordered as follows.

Let s = min(b1−b2) and t = min(b2−b1). Using the ≺ ordering, we take b1 ◁ b2

iff max(s) ≺ max(t).

The set D is then a linearly ordered continuum, but it is not separable. Given

that the tree T (A) has no uncountable chains, D has no uncountable well-ordered

subsets. Furthermore, for every α < ω1 (the tree T (A) has length ω1), let bα be

the closure of {b ∈ D : ot(b) ≤ α}. Given that each chain is countable, the closure

is a nowhere dense set. D is then the reunion of ω1 nowhere dense sets.

Proposition 5.5.40. There is a class of 2κ pairwise incomparable non-special
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Aronszajn trees. There is a class of 2ω1 pairwise incomparable non-special

Aronszajn trees.

Proof. We simply apply the result above to the trees T(A) constructed from a

bi-stationary set A.

Let A be a bi-stationary set of κ and T (A) the class of trees constructed from

the bi-stationary sets of κ: {T (S)α : α < 2κ}.

There are κ disjoint stationary subsets of ω1.

For the case of ω1 and a subset S a bi-stationary set of ω1, T(A) represents the

tree constructed from S, and T (S) the class of these trees, {T (A)α : α < 2ω1}.

It follows that there are 2ω1 bi-stationary subsets Sα of ω1 such that Sα Sβ is

bi-stationary whenever α ̸= β.

Theorem 5.5.41. There is no universal element in the class of T (A) trees.

Proof. It follows immediately from the results above.

Remark. Since it doesn’t have an uncountable branch, the tree T (A) is

embeddable in the reals: an R-embedded uncountable branch would determine

an uncountable well-ordered subset of the reals. It follows that it does not

contain a Souslin tree. But it is not special either.

Forcing with T (A) Forcing with T (A) is equivalent to the forcing to shooting

a club through the stationary A. This forcing does not collapse ω1 and T (A)

is not special. The elements of T (A) as a forcing notion constitute the set of

all countable closed in ω1 subsets of A ordered by end extension. Since it is a

σ-closed forcing notion, it doesn’t add reals, so the tree preserves its height, ω1.

Furthermore, since P doesn’t add reals, T (A) will be evaluated as T (A) in V P,

therefore still σ-closed and non-special. The tree will remains non-special in every

forcing extension obtained by non adding reals. Such an aspect has an important
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consequence. We know that it is consistent with CH that the wide Aronszajn

trees which can be embedded into an ω1 tree are special. But the T (A) trees are

wide Aronszajn trees which cannot be embedded into ω1 trees under ZFC.

Theorem 5.5.42. Let T (A) be a bi-stationary tree and T ∈ T . There is no

embedding between T (A) and T .

Proof. We point again the fact that the T (A) trees are in the class T only if

CH is assumed. We also know that if a tree is special, then all its subtrees are

special. Furthermore, the forcing to specialise the T tree adds many |T |-many

reals. Suppose that there is an embedding between T (A) and T . Forcing to

specialise the tree T will also specialise the tree T (A), a contradiction.

Other results include Todorčević (81, 84), Hyttinen and Väänänen (using

Ehrenfeught Fraisee games) and Todorčević and Väänänen. For instance:

Proposition 5.5.43 (Pr. 39. in [219]). Let ⩽ denote a week embedding between

two trees. If A ⊆ ω1 is bi-stationary and T is Aronszajn, then T (A) ⩽̸ T and

T ⩽̸ T (A).

Mekler and Shelah ([149]) have proved that the existence of a universal tree for

the class of T (A) - the canary tree (see below) - is independent of ZFC +GCH

and assuming ♢. Todorčević and Väänänen improve this result using a stronger

form of ♢, ♢+(
∏1

1) (a
∏1

1-reflecting sequence).

Canary trees In [149], Mekler and Shelah introduce the notion of a canary

tree, a tree of cardinality continuum with no uncountable branch, which gains an

uncountable branch in any extension of the universe in which no reals are added,

but whenever a stationary set is destroyed. They prove the following

Theorem 5.5.44. The existence of a canary tree is independent of ZFC+GCH.

The way to destroy a stationary co-stationary subset A of ω1 is to force a club

through its complement using as conditions in the partial order P closed subsets
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of the complement, ordered by end-extension ([9]). The forcing P will add an

uncountable branch, which will be a club contained in A, but it will add no reals.

And in any forcing extension in which no new reals are added and ℵ1 \ A is

non-stationary, A will contain an uncountable branch.

An immediate consequence is that under CH, specifically, 2ℵ0 = 2ℵ1 , there is

a Canary tree. And if we take the tree of all closed bounded subsets of a bi-

stationary set A, T(A), we can construct a Canary tree which almost contain the

union of all trees T(A) (Theorem 1 in [149]).

In [147], Mekler and Väänänen improve on Theorem 1 in [149] and show, using

Ehrenfeucht-Fräıssé games, that if T is a Canary tree, then T (A) ≤ T for all

bi-stationary subset A ⊆ ω1.

Theorem 5.5.45 (Th. 23.). Suppose T is a Canary tree and T (A) the tree

constructed from any bi-stationary set A ⊆ ω1. Then T (A) ≤ T .

In other words, T is a Canary tree if and only if for every bi-stationary set A

there is an order preserving function from T(A) to T. If MA+¬CH hold, then all

Aronszajn trees are special, but T(A) for stationary A is never special (according

to Theorem), so no Canary tree can exist under these conditions.

Forcing and special trees

Many significant results mentioned above imply a connection between embedding,

finding universal trees and specialisation. Any Aronszajn tree can be forced to be

special and the specialising forcing is ccc and absolute (consisting of finite partial

specialising functions). It follows that this forcing remains ccc in any extension

in which T remains Aronszajn. The connection between forcing and special trees

was first investigated in [8]. The ω1-closed forcing poset used to add a specialising

function with finite approximations is ccc and therefore MA+¬CH implies that

all trees of height ℵ1 with no uncountable branches and cardinality < 2ℵ0 are

special. This poset adds reals. So under MA(ℵ1), there is no Souslin trees and,
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still more, every Aronszajn tree is special.

A Souslin tree is ccc and can be used as a forcing poset, PT . For any ω1 tree

T , PT is the forcing whose conditions are finite partial functions f : T → Q s.t.

if t, s ∈ dom(f) and t <T s, then f(t) < f(s) (in Q, the rational ordering). A

Souslin poset is ccc, but the product of two Souslin posets is not ccc since the

set of pairs of immediate successors of each node in the tree gives an uncountable

antichain.

Forcings of the form PT can collapse cardinals. If T is special, forcing with T

collapses ω1: given any cofinal branch b in the extension and any specialising

function f , the restriction f ↾ b : b → ω would be an injection of a set of size

(ω1)
V into ω0: the branch has size ωV

1 and will contain at most one node from

each of the countable number of antichains witnessing that T is special. In other

words, a special Aronszajn tree must remain Aronszajn in any ω1-preserving

forcing extensions, including ccc extension. Furthermore, this kind of forcing

adds |T |-many reals. The generic specialising function is a Cohen real. So one

could ask if there is a similar poset for specialising trees that does not add reals

so that these results could be studied in the CH context.

Of course, ccc is a desirable property for a forcing notion to have, given that

the forcing will preserve cardinals and cofinalities. But forcing may also require

iteration and, in that case, one needs to use finite supports in order to preserve

the property. Properness (and the Proper Forcing Axiom, PFA) introduced by

Shelah, represents a more general property and it does not collapse ℵ1. In addition

to that, if the forcing notion also has the ℵ2-chain condition, all cardinals are

preserved. In [192], Shelah uses stationary sets to define his forcing notion: a

partial order P is proper if it preserves stationary subsets of λω0 for all uncountable

cardinals λ. Another equivalent definition uses elementary substructures of Hλ

([192], p. 102).

In [192], Shelah introduced new proper forcing techniques for specialising an

Aronszajn tree, including one that did not add reals, and others that would
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specialise an Aronszajn tree on a stationary set, but not on the rest of the tree.

He was thus able to build a model with no Souslin trees and without making

all Aronszajn trees specials. Among other things, PFA implies that any two

Aronszajn trees are club-isomorphic. MA is consistent with arbitrarily large

values for the continuum, but according to a result by Todorčević and Velickovic,

PFA implies that the continuum must be ℵ2.

Another generalisation of ccc forcings but also of the Proper Forcing Axiom (PFA)

is MM, Martin’s maximum, introduced by Foreman, Magidor and Shelah in 1988.

Similar to PFA, it replaces the class of posets with ccc in MA by larger classes

of posets, the ones preserving stationary subsets (of ω1). Both are very strong

forcing axioms, having large cardinal strength, i.e. relative to the existence of a

supercompact cardinal (proofs in [38] and [134], respectively).

The ccc poset works irrespective of the widths of the tree being specialised,

whereas the countability of the levels is essential in the posets used by Jensen

and Shelah. These aspects could determine new approaches to Aronszajn trees

without the condition of countable levels.

Theorem 5.5.46 (Todorčević). There is in ZFC an Aronszajn tree T of width

continuum that cannot be specialised without adding reals.

5.5.4 Universal tree - results

Let Tω1 be the class of trees of cardinality ω1 with no uncountable branches. This

class contains a great variety of trees (Aronszajn trees, special Aronszajn trees,

non-special Aronszajn trees, Souslin trees, etc.). We consider this class under

weak embeddings, i.e., functions that preserve the strict order, and which are not

necessarily 1-1 (although they are 1-1 on branches). If we are working in a model

with CH, we have ℵ1 = 2ℵ0 , and then we can also consider trees of cardinality

2ℵ0 with no uncountable branches.

If κ is a singular cardinal, then there is a κ-tree without cofinal or unbounded



Chapter 5: Universality results 208

branches. A consequence is that singular cardinals do not have the tree property.

So the nontrivial case is when κ is a regular cardinal. The class of Aronszajn

trees is not a first order theory since we cannot express the non-existence of an

unbounded branch in first order theory, so under CH we cannot apply model

theory results in tackling the universality problem for these objects.

We should start by pointing up the fact that the existence of a model in which CH

holds and there is a universal Aronszajn tree (or a wide Aronszajn tree) under

CH is still an open problem. But under CH, we know that there is no universal

wide Aronszajn tree (σ operator). From [206], we know that if GCH holds then

for every regular κ there exists an Aronszajn κ+-tree. It is also consistent with

GCH and embeddings on a club many levels that there is a universal Aronszajn

tree ([1]). Recall that to say that a sentence φ (like ’Any two Aronszajn trees are

isomorphic on a club’) is consistent with ZFC means that ’if ZFC is consistent,

then ZFC +φ is consistent’.

However, things get complicated in the absence of GCH. Furthermore, since

many statements about Aronszajn trees are independent of ZFC, we need

additional axioms which, as Tatch Moore emphasizes ([153]), fit into two

classes: enumeration principles and forcing axioms, with both categories coming

as progressively stronger lists. The first one comprises consequences of V = L

and enable the construction of objects with second order properties (Souslin

trees, for instance) by diagonalisation of length ω1: CH, ♢, ♢+. The latter, such

as MA(ℵ1), PFA and PFA(κ), are generally used ”to limit diagonalisation

constructions of length ω1 to those which can be carried out in ZFC” ([153])

and they ”can be viewed as postulating forms of
∑

1-absoluteness between V

and its generic extensions” ([153], p. 4).

And another general aspect to emphasise is that there are less results about the

class (T ,≤) of trees of size and length ω1 with no uncountable branch then the

class (A,≤) of Aronszajn trees.



Chapter 5: Universality results 209

The σ operator

The σ-function or operation for partially ordered sets was introduced by Kurepa

([117]). His general result using this definition is the following:

Theorem 5.5.47. For any structure (X,R) where X is a set with one binary

relation R, then σX does not embed into X.

Proof. Suppose there is an embedding e : σX → X. But σX is defined as the

collection of all sequences f : On → X, with f(α) = e(f ↾ α). Given that the

embedding preserves the relations, the function f is well-defined for all ordinals,

and therefore f ∈ σX. But the range of the function would form a proper class,

and we would then get a contradiction with X being a set.

A straightforward corollary, which doesn’t need a proof, is the following:

Corollary 5.5.48. For any partial order P , σP is not P -embeddable.

Kurepa proves ([116]) the existence of a non-special tree with no uncountable

branch, namely wQ, with its variant σ, i.e., the collection of all bounded, well-

ordered subsets of Q, ordered by end-extension and so wQ = c.

For completeness, we will also show that

Lemma 5.5.49. σP can also be a tree.

Proof. Suppose P is a tree whose elements pi ∈ P and for i < j < i∗, we have

pi <P pj . The elements of σP are sequences p = ⟨pi : i < i∗⟩ ordered by inclusion:

p̄ ≤σP p̄′ if and only if p̄ ⊂ p̄′. Suppose σP isn’t a tree and suppose there is a

strictly decreasing chain ⟨p̄i : i < ω⟩ in σP . Let li be the length of each p̄i. But

then ⟨li : i < ω⟩ would constitute a strictly decreasing sequence of ordinals, which

is a contradiction.

Another corollary, when applying this operator to trees is that σQ is not the
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union of countably many antichains. Given all of the above, we can state as

obvious the following

Proposition 5.5.50. The tree σQ is universal for all normal trees having strictly

increasing embeddings into the reals. We could also write T < σT .

Corollary 5.5.51. There is no weak embedding f : σ(T ) → T : if T has no

uncountable branch, neither is σT , but the cardinality of σT is 2ℵ0, while the

cardinality of T is ω1.

On one hand, the σ-function or operation represents an obstacle for the existence

of a universal family for the class of all trees with no uncountable branches,

T (κ). When the universal family is a set, we can apply this operator to its

supremum and obtain a tree which contradicts the universality of the family. As

a consequence, and one with various manifestations since Kurepa’s publication

of his result, is that the examination of the universality problem is restricted to

various classes of trees.

Proposition 5.5.52. Assume CH and let Tω1 be the class of trees of cardinality

ω1 with no uncountable branches. The σ function forbids the existence of a

universal family of size ≤ ω1 for Tω1.

Proof. The class Tω1 is closed under the σ-function. The two kinds of trees

have different cardinalities, but if CH holds, they are all in the same class, Tω1 .

So it follows immediately from the last corollary above that the class T , and

consequently A, have no universal element.

That being said, it is not always easy to find the right structure on the set σA

to produce a counterexample to universality.

Hyttinen and Väänänen ([91]) used the σT operator to define a stronger ordering

of trees, a relation which is well-founded:

T ≪ T ′ iff σT ⩽ T ′
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Proving T ≪ T ′ gives you directly T ′ ⩽̸ T . They use Ehrenfeucht-Fräıssé games.

But the σ function could also be conceived as a way of producing trees and, as

emphasised by Todorčević, the σT is a tree which contains a lot of information

about T . For instance, σQ =def σ((Q, <)) is an example of a Hausdorff tree, a

tree where different nodes of a limit level have different sets of predecessors.

Theorem 5.5.53 (Th.8. in [219]). The tree σQ is a universal object in the class

of R-embeddable Hausdorff trees of cardinality ≤ 2ω.

So it is used both in the search for counterexamples to universality in different

classes of structures and in finding universal elements.

Various results

Jensen proved that CH is consistent with SH. SH implies that there are no

Souslin trees. Consistently, CH holds and all Aronszajn-trees are special

Jensen’s argument was built on an elaborate ccc forcing, a completely new

iteration technique.

Another proof of this result was offered Shelah, using countable support iteration

of proper posets. He strengthened this result by showing that there is a universal

Aronszajn tree for all the club-isomorphic Aronszajn trees. Such a universal

Aronszajn tree is special. He showed that it is consistent with CH (GCH actually)

that every two Aronszajn trees contain subtrees which are isomorphic on a club

(they are considered ’near’ or, equivalently, some tree is embeddable on a club

set into both of them) ([1]).

Gaifman and Specker had showed that there are 2ℵ1 non-isomorphic Aronszajn

tree ([70]). But every two of these non-isomorphic trees are isomorphic on a club,

i.e., there is a club C ⊆ ω1 such that the restriction to the levels in C gives two

isomorphic trees. And these are the only kind of isomorphic Aronszajn trees that

we can.
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Definition 5.5.54. A tree T1 is embeddable on a club into T2 if and only if there

is a club C ⊆ ω1 such that there is an embedding of T1 ↾ C into T2 ↾ C.

Theorem 5.5.55. Assume PFA. Then every two Aronszajn trees are

club-isomoprhic.

In chapter IX in [192], Shelah shows that SH does not imply that every Aronszajn

tree is special. But if the Aronszajn tree is S-special or special on a stationary

set S (there is a monotonic increasing function f from ∪Tα to the rationals, i.e.,

x < y =⇒ f(x) < f(y)) or under other forms of specialisation on a stationary set

that Shelah introduces in this chapter (S-r-special and S-st-special), then T is a

special Aronszajn trees and not Souslin, since every uncountable subset of these

tree contains an uncountable antichain. Furthermore, if all Aronszajn trees are

S-special (under other forms of specialisation on a stationary set - S-r-special and

S-st-special) for some given unbounded subset of ω1, then all of them are in fact

special.

In [1], Avraham proves the consistency of ’CH + There exists a Souslin tree +

There exists a special Aronszajn tree which is universal among all the Aronszajn

trees which do not contain a Souslin tree’ (§ 4). In such a model, the disjunction

is strict: there is a Souslin tree and every Aronszajn tree either contains a Souslin

tree or is a special Aronszajn tree (and a tree Q−embeddable on a club is a special

tree). Also in this model, there are ℵ1 many Souslin trees up to a club.

In [40] Devlin and Shelah had showed that there is a weak form of diamond,

equivalent to 2ℵ0 < 2ℵ1 , partially substituting ♢, and following from the CH.

Using this principle, Abraham and Shelah show in [1] that there are 2ℵ1 Aronszajn

trees not pairwise embeddable, and none of them embeddable on a club into the

other. Furthermore, the only embedding of each tree into itself is the identity:

for every club C ⊆ ω1, the only embedding of T |C into C|T is the identity, i.e.

T |C is rigid (and, therefore, the tree T is really rigid). This result represents a

sufficient condition to construct two non-club-isomorphic Aronszajn trees.



Chapter 5: Universality results 213

According to another result from the same paper ([1]), MA + ¬CH does not

imply that any two Aronszajn trees are isomorphic on a club. But for κ regular

≥ ℵ2 and κ≤κ = κ, it is consistent with MA+ 2ℵ0 = κ that every two Aronszajn

trees are isomorphic on a club. The proof for 2ℵ0 = ℵ2 uses proper forcing, while

the one for κ > ℵ2 involves generic reals (see [1]).

A consistency result, due to Mekler and Väänänen in [147], establishes the

following:

Theorem 5.5.56 (15). Assume CH. Let κ be a regular cardinal with ℵ2 ≤ κ ≤

2ℵ0. There is a forcing notion that preserve cardinals, cofinalities, and 2λ for all

λ and has a set U of trees in Tω1 such that

(1) U has cardinality κ.

(2) If A ⊂ Tω1 has cardinality < κ, then there is some S ∈ U such that T ≤1 S

holds for all T ∈ A.

Corollary 5.5.57 (16). Assume CH. Let κ be a regular cardinal with ℵ2 ≤ κ ≤

2ℵ0. There is a forcing extension that preserves cardinals, cofinalities, and 2λ for

all λ and satisfies U(κ) and B(κ).

U(κ) stands for the assumption that there is a universal family of size κ for Tω,

while B(κ) states that every subset of Tω of size < κ is bounded in Tω. U is

a universal family of trees. ≤1 stands for injective reduction between trees, so

the result shows that both the universality number of (T ,≤) and the universality

number of (T ,≤1) - or (A,≤) - are κ. This theorem offers a model ”in which some

subset of Tω1 of cardinality ℵ2 is universal, hence unbounded, and another model

in which every subset of Tω1 of cardinality ≤ ℵ2 is bounded” ([147], p.1059).

Another way of viewing this result is we are also introducing a cardinal invariant,

the minimal size of a subfamily of structures F which does not embeds into any

member of the family: if Sκ represents the set of structures having size κ and the

complexity number c(Sκ) > 1, then b(Sκ) =: {min|F| : F ⊆ Sκ(¬∃X ∈ Sκ)(∀f ∈
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F) there is an embedding g : f → X}. Mekler and Väänänen’s result show that

b(Tℵ1) and c(Tℵ1) are both κ.

Another result, found by Džamonja and Väänänen in [43], involves the failure of

CH, the presence of a club guessing at ω1, and the use of weak embeddings that

satisfy a strengthening of the Lipschitz condition (△-preserving: △T1 (x, y) =△T2

(f(x), f(y), for two trees T1, T2):

Theorem 5.5.58. Suppose that

(a) there is a ladder system C̄ = ⟨cδ : δ < ω1⟩ which guesses clubs, i.e. satisfies

that for any club E ⊂ ω1 there are stationarily many δ s.t. cδ ⊂ E,

(b) ℵ0 < 2ℵ1

Then no family of size < 2ℵ1 of trees of size ℵ0, even if we allow uncountable

branches, can ≤-embed all members of T in a way that preserves △.

In [44], M. Džamonja and J. Väänänen extended Scott’s analysis of countable

models to chain models of size κ, with κ a singular cardinal with countable

cofinality in particular, and discovered that the relevant clocks of these games

are κ-trees (or bounded κ-Trees). As M. Džamonja points out in [46], these κ-

trees ”have properties that make them similar to ordinals” (p. 3), due to a natural

notion of rank. A clock is the rank attached to each pair (A,B) of non-isomorphic

models, an ordinal α < ω1 as the Scott watershed S(A,B). Trees of size ℵ0 with

no uncountable branches appear in infinitary model theory as clocks of generalised

EF games (they give rise to first countable ω1-metric spaces). Using this notion,

they can show that the universality number of κ-trees (bounded κ-trees) under

reduction is κ+, and that within each rank in [1, κ+), the universality number is

ω0. If κ is a regular cardinal, in particular κ = ℵ0, the universality number for

κ-trees (bounded κ-Trees) under reduction cannot be computed in ZFC, and the

consistency of this number being equal to 1 for κ = ℵ0 is not known.

In [217], Todorčević develops the concept of coherent trees, which are Aronszajn
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trees obtained from ordinal walks, and he shows that coherent trees are totally

ordered by ≤. In [216], he defines the class of Lipschitz trees as those trees on

which every weak embedding (so level-preserving) from an uncountable subset of

T has an uncountable Lipschitz restriction. The Lipschitz condition on a weak

embedding f stipulates the following: △T1 (x, y) ≥△T2 (f(x), f(y)). Furthermore,

considering embeddings between Aronszajn trees into Lipschitz ones, Todorčević

([216]) proves that assuming BPFAℵ1 (the bounded proper forcing axiom for

partial orders of cardinality ℵ1), there is no universal element in (A,≤).

Theorem 5.5.59. 1 The class C of Lipschitz trees is not well-quasi-ordered

under ≤.

2 There is a family of size 2ℵ1 of pairwise incomparable Aronszajn trees in

the order ≤ [Theorem 3.4.].

3 Assuming the bounded proper forcing axiom for partial orders of cardinality

ℵ1 (BPFAℵ1), the class C of Lipschitz trees form a chain which is coinitial

and cofinal in (A,≤) and it has neither a maximum nor minimum element.

[Corollary 7.6].

Corollary 5.5.60. Assuming BPFAℵ1, there is no universal element in (A,≤).

Furthermore, he proves the following:

Theorem 5.5.61 ([216] Th.7.3.). Assume MA(ω1).

� All coherent trees are Lipschitz trees.

� Every Aronszajn tree embeds into a coherent tree.

� There is no universal element in (A,≤).

In [51], Džamonja and Shelah offer a solution to a previous open problem (due to

an error in [147]) and show (among other things) that under MA + ¬CH there

is no universal wide Aronszajn tree. It is a result that can be obtained using

Todorčević’s methods as well. They introduce a new specialising function for the
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forcing, one that is specialising the pair of trees simultaneously. The proof of ccc,

although uses the Baumgatner, Malitz, Reinhardt Lemma, is more complicated.

They first show that there is no universal Aronszajn tree. They continue by

proving that every wide Aronsjan tree weakly embeds into an Aronsjan tree, in

other words, under MA+ ¬CH, the class A is cofinal in the class T :

Theorem 5.5.62 (4.1). For any tree T ∈ A, there is a ccc forcing which adds a

tree in A not weakly embeddable into T. In particular, under the assumption of

MA(ω1) there is no Aronszajn tree universal under weak embeddings.

Theorem 5.5.63 (5.1). For every tree T ∈ T , there is a ccc forcing which adds

a tree in A into which T weakly embeds. In particular, under the assumption of

MA(ω1) the class A is cofinal in the class (T,≤).

Putting the above results together, they obtain:

Theorem 5.5.64 (6.1). Under MA(ω1), there is no wide Aronszajn tree

universal under weak embeddings.

From [206], we know that if GCH holds, then for every regular κ there exists an

Aronszajn κ+-tree. However, not much is known in the absence of GCH and even

assuming GCH, not much is known about TP for successors of singular cardinals

(singular cardinals do not have the TP). Kurepa’s result that a κ+-trees exist for

every κ is false.

Some difficulties in finding universal trees

The results mentioned so far show a close relation between universality and the

notion of a special tree. But one of these difficulties involves the fact that one

cannot improve the results obtained at ℵ1 to ℵ2 for several reasons.

When trying to apply some of the methods used in the case of ω1 trees, the

specialisation function receives a central role. As I mentioned before, it witnesses

the fact that a tree T has no unbounded or cofinal branches, since that would
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determine an injective function from a set of size κ+ to κ. When T is special,

it remains Aronszajn in any larger model of ZFC in which κ+ is a cardinal.

Baumgartner, Malitz and Reinhardt showed that MA + ¬CH implies that all

tree are special. But the analogue of their lemma, used in proving that a forcing

notion is ccc, is not true for ℵ2-Aronszajn trees. From MA and ¬CH (ℵ1 < 2ℵ0)

it follows that every ℵ1 tree (having cardinality ℵ1) with countable chains and Q-

embeddable is consistent. The same is true for Aronszajn trees. In other words,

according to the BMR Theorem ([8]), under MA + ¬CH, all Aronszajn trees

are special. But this theorem is not true for ℵ2 Aronszajn trees. We also know

that PFA implies that there are no ω2-Aronszajn trees. PFA also implies that

MA+ 2ℵ0 = ℵ2.

We already saw that if GCH holds, then there is an ℵ2 Aronszajn tree. An

Aronszajn-tree exists in ZFC, but for the ℵ2 case, we have different consistency

results and we need to assume a large cardinal axiom, in particular, a weakly

compact cardinal. There are many definitions of such a cardinal, offering different

perspectives adjusted to various contexts (of problems and proof methods).

Definition 5.5.65 ([94], Lemma 9.26). κ is weakly compact if and only if it is

inaccessible and has the tree property.

A cardinal κ has the tree property if every tree of height κ with every level having

< κ elements has a branch of length κ. As a consequence, the κ Aronszajn-tree

represents a counterexample to the tree property at κ.

Assuming a large cardinal axiom, Cummings and Foreman ([29]) proved that it

is consistent that no ℵn A trees exist for any finite n other than 1.

Mitchell showed that the inexistence of a ω2 Aronszajn-tree is equivalent to the

consistency of the existence of a weakly compact cardinal ([152] and also Silver).

If κ is an inaccesible cardinal, the Mitchell forcing poset adds κ Cohen reals

(subsets of ω), it preserves ω1, and collapses all cardinals between ω1 and κ, such

that κ becomes ω2 and the poset forces that 2ω = κ. This was a poset that was
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extensively used and received several variations since it was introduced in 1972.

Baumgartner gave a simpler proof using proper forcing.

To resume the last paragraphs, if κ is weakly compact, then there are no κ

Aronszajn trees. Conversely, if κ is inaccessible and there are no κ Aronszajn-

trees, then κ is weakly compact. In other words, one can force both a model in

which there are no ℵ2 Aronszajn-trees and if κ is regular and there are no κ+

Aronszajn-trees, then κ+ is weakly compact in L.

On the other hand, by a result due to Laver and Shelah ([124]), one can force

a model in which CH holds and all ℵ2 Aronszajn trees are special. But in this

model, constructed starting with a weakly compact cardinal, 2ℵ1 > ℵ2 and it can

be arbitrarily large.

Theorem 5.5.66 ([124]). Con(ZFC + there is a weakly compact cardinal) implies

Con(ZFC + 2ℵ0 = ℵ1 + SHℵ2).

If we want to construct an ℵ2-Aronszajn tree, the levels have size c = 2ℵ0 , not

ℵ1, so the construction works if CH holds, but not in ZFC. In fact, according to

Mitchell’s result that we mentioned before, we can force a model in which CH

fails, c = ℵ2 and ω2 is a weakly compact cardinal in L.

5.5.5 Ascent path

The concept of an ascent path was discovered by Laver while analysing the

possibility of a model in which all ℵ2-Aronszajn trees are special (see [124]).

The subject was also examined by Devlin, Todorčević, Shelah, Stanley,

Cummings, Brodsky, Rinot, Torres Pérez and Lücke. It could be said that it

generalises the concept of cofinal branch, it can be used in the absence of GCH,

and it is preserved in all cardinal-preserving forcings.

Definition 5.5.67. Let κ be a regular cardinal. A κ+- Aronszajn tree T has an

ω ascent path if there is a sequence ⟨xα : α < κ+⟩ of pairwise disjoint sets such

that
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1. For all α < κ+, xα is a function from ω to Tα.

2. If α < β < κ, then (∃n ∈ ω∀m ≥ n)xαm < xβm.

Laver shows that an ℵ2-Aronszajn tree with an ascent path is not special.

Baumgartner constructs such a tree from a □ℵ1-sequence (see [37]), specifically,

he shows that if ♢ω2 and □ℵ1 hold for a stationary set E ⊆ ℵ2, then one can

construct an ℵ2-Souslin tree with an ω-ascent path. The construction is a

variation on Jensen’s construction of an ℵ2-Souslin tree from the same

hypotheses.

Baumgartner also showed that an ω1-tree T has a cofinal branch if and only if it

contains an ascent path of finite width ([10]). In combination with other results,

the use of this notion has non-trivial consequences when one considers paths of

width λ ≥ ω for trees of height κ, with κ > λ+.

An ω ascent path is not a cofinal branch per se, given that, according to definition,

an Aronszajn tree does not have a cofinal branch. But its existence prevents the

tree from being special.

Generalisations come in different ways. Shelah and Stanley, for instance, working

on results by Laver and Todorčević, constructs Aronszajn trees with ascent paths,

and describe, among other things, the connection between the existence of ascent

paths and specialisation:

Theorem 5.5.68 ([201]). If κ is uncountable, then □κ implies that there is a

nonspecial κ+- Aronszajn tree.

Theorem 5.5.69 ([201]). If λ is an uncountable cardinal, κ = λ+, and κ is not

weakly compact in L, there is a κ-ascent path, with κ ̸= cf(λ), then there is a

non-special κ- Aronszajn tree.

Starting from a proof of Todorčević for an ℵ2-Aronszajn tree (to proposition 2.3.

in [218]), Lücke generalises to:
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Lemma 5.5.70 (Lemma 1.6., [126]). Let κ < λ be cardinals such that λ is not a

successor of a cardinal of cofinality ≤ κ, Sλ
>κ be the set of all limit ordinals < λ

with cofinality > κ, and S a stationary set S ⊆ Sλ
>κ. If S is non-stationary with

respect to T , then there is no ascent path of width κ through T .

As emphasised by Lücke (as a corollary and in accordance to lemma 3 in [201]),

trees containing ascent paths are non-special in a absolute way: they remain as

such in any forcing extension satisfying the conditions on the cardinals, i.e., κ

and κ+ remain cardinlas and cf(λ) ̸= cf(κ). He also shows that the converse of

the implication also holds under certain cardinal arithmetic assumptions: if there

is no ascent path of width κ through T , then T is special in a forcing extension

in which the conditions on the cardinals hold. That is because the ascent paths

are closely related to maximal antichains in the partial order that specialises a

tree of height an uncountable regular cardinal.

5.5.6 Non-special trees again

Before going any further, there are some remarks that we would like to highlight.

A Souslin tree is a more ’sensitive’ object than an Aronszajn tree. Recall that a

tree T is κ-Souslin if and only if it is a κ-Aronszajn trees and has no antichain

of size κ. So a special κ+ tree is a κ+-Aronszajn tree, while a κ+-Souslin tree is

a non-special κ+-Aronszajn tree. Special κ-trees are interesting given that they

are branchless in an absolute way: they retain this property in any outer model

in which κ is preserved. On the other hand, a κ-Soulsin tree can be considered

a forcing poset which adds no bounded subset to κ, but adds a cofinal branch in

T ; in other words, a tree T is a κ-Souslin tree if the partial order induced by T

satisfies κ-cc.

On one hand, Souslin trees and the SH (’there are no Souslin trees’) represent

central objects of study in set theory. SH is independent of ZF, but one can

construct an ℵ1 Souslin tree in the constructible universe with the help of the
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diamond principle; Jensen formulated ♢ in view of an earlier direct proof that

there are no Souslin trees in L. But ’MA +¬CH implies that SH is true. The proof

for ¬SH in L can be generalised to larger cardinals as well. Using a combination

of certain versions of ♢ and □ in L, one can find a κ-Souslin tree for every regular,

non-weakly compact κ.

In [95], Jensen proved that the existence of an ℵ2-Souslin tree follows from each

of the hypotheses CH + ♢(Eℵ2
ℵ1

) and □ω1 + ♢(Eℵ2
ℵ0

) (given m < n < ω, Sn
m =

{α < ℵn : cf(α) = ℵm}).

If κ is weakly compact, then there are no κ-Aronszajn trees (κ has the TP), so

SH trivially holds in this case. Generalising the proofs regarding SH’s consistency

to larger cardinals is rather difficult. Gregory ([76]) shows that ℵ2 (’CH + 2ℵ1 =

ℵ2 + □ω1 ’ imply ¬SH(ℵ2)). Combining this result with a theorem by Jensen

according to which if □κ is false, then κ+ is Mahlo in L, he shows that the

consistency strength of ’CH + 2ℵ1 = ℵ2 + SH(ℵ2)’ is at least that of a Mahlo

cardinal, a result that can be generalised to ’κω = κ+ 2κ = κ+ + SH(κ+)’, then

κ+ is Mahlo in L.

Under CH, a Souslin tree can also be constructed if ♢(S2
1) (S2

1 represents the set

{α < ℵ2 : cf(α) = ℵ1}) also holds. The tree is countably closed:2 the antichains

are guessed and solved at stages having cofinality ℵ1, and the the cofinal branches

are completed at stages with cofinality ω.

In [152], Mitchell (with results from Silver as well) shows that from the consistency

of a weakly compact follows that there are no ℵ2-Aronszajn tree, a statement

implying ¬CH. SH(ℵ2) - there are no ℵ2-Souslin trees - is a weaker statement

than this one.

There are different ways of constructing non-special ℵ2 trees using ascent paths.

For instance, in [37], Devlin mentions a proof by Baumgartner (theorem 4), a

2A poset P is κ-closed if every increasing sequence of length κ or shorter in P has an upper
bound. If P is countably closed and we work in ZFC, there are no new ω-sequences of elements
of V in V [G]. In particular, P adds no new reals.
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variation of Jensen’s construction mentioned above and using the same

hypotheses, which shows that given a stationary set E ⊆ ℵ2 and ♢ω2(E) and

□ω1(E) hold, one can construct an ℵ2-Souslin tree with an ω-ascent path. In

the context of that paper, such a tree, T ∗ (⟨T ∗, <∗⟩), of cardinality ω2 if we

assume CH, represents the reduced ω-power by a (non-principal) uniform filter

on ω of an ω2-tree T . T ∗ represents an extension of T and is σ-closed3.

Cummings constructs a countably closed ℵ2-Souslin tree with an ω-ascent path,

but he needs stronger assumptions than the ones mentioned above regarding the

construction of a ℵ2-Souslin tree, i.e., CH and a stronger combinatorial principle

([26]).

Furthermore, Shelah mentions that an earlier form of the solution to the problem

referred to a ”somewhat weaker” form involving non-special λ+-wide trees instead

of non-special λ+-Aronszajn trees. As such, we can reformulate the theorem

above as:

Theorem 5.5.71. Let T be a κ+-tree with a κ-ascent path, with κ ̸= cf(λ), and

κ is not weakly compact in L. Then T is not special.

Remark. Let Ta(ℵ2) be the class of trees of cardinality and height ℵ2 with no

branches of length ℵ2, but having an ω-ascent path. Given the above results,

we can distinguish among different types of non-special trees in Ta(ℵ2): wide ℵ2-

trees, ℵ2-Souslin, non-Souslin ℵ2-Aronszajn trees. Shelah refers to a non-special

κ-Aronszajn trees (the third type) as ”a poor man’s” κ-Souslin tree ([201], p.

888). In the terminology of [192] (chapter IX), the non-stationary trees that

Shelah is constructing are λ+-S-st-special trees, which are λ+-Aronszajn trees.

Also note that in the second case, there are different ways of constructing ℵ2-

Souslin.

Furthermore, in [126], Lücke generalises the construction of Souslin trees

containing ascending paths of small width, using a square principle introduced

3Whenever α < ω2 is a limit level of countable cofinality, and b is a branch of length α of
T ↾ α, there is an element of level Tα which extends b.
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by Baumgartner in unpublished work, □B
κ , with B a subset of κ+ and

Sκ+

κ ⊆ B ⊆ Lim. This sequence can be added by < κ-directed closed forcings

that preserve the regularity of κ+.

Theorem 5.5.72 (Th. 5.8.). Let κ be an uncountable regular cardinal that

satisfies 2κ = κ+ and 2κ
+

= κ++. If there is a □B
κ+-sequence, then there is a

κ++-Souslin tree that contains a κ-ascent path.

The next question is then: what are the relations among these types of non-

special trees? Is there a universal element or a universal family in the case of

ℵ2-non-special trees without a cofinal branch? Of course, the question can be

generalised to a cardinal κ and to non-special trees in general. Finding universal

non-special trees, including Souslin trees, is an interesting topic in itself, able to

shed light on different, related aspects.

For a first result, we consider a non-special wide ℵ2 tree T with no cofinal branches

and an ℵ2-Souslin tree. We show the following:

Theorem 5.5.73. Assume V=L and ♢(S), with S ⊆ E = {α < ℵ2 : cf(α) =

ℵ1}. Let T be a wide ℵ2-tree with no cofinal branch, and R an ℵ2-Souslin tree.

Then there is no embedding f : R→ T .

Proof. Suppose there is such embedding. Let S′ = E \S. So S′ is stationary. We

enumerate S′ as ⟨γα : α < ℵ2⟩.

R has cardinality ℵ2, so for each α < ℵ2 there is some element tα in R such that

ht(f(tα)) > α.

Let S′′ = {α ∈ S′ : γα = α}. S′′ is in the intersection of S′ with a club, so it is

stationary.

We define a regressive function h : S′′ → ℵ2 by h(α) = tα(α). It follows that it is

constant on a stationary set X ⊆ S′′.

Let δ, ϵ ∈ X. Then tδ(δ) = tϵ(ϵ). It follows that there is no embedding that
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would extend both tδ and tϵ. As such, {tα : α ∈ X} is an antichain of size ℵ2 in

R, a contradiction with R being an ℵ2-Souslin tree.

We will now show that under GCH, the class of non-special ℵ2-Souslin tree with

an ω-ascent path has a maximal complexity number, 2ℵ2 = ω3. We will use the

fact that the class Sa(ℵ2) of such trees is closed under taking disjoint unions of

size ℵ2.

Theorem 5.5.74. The class of non-special ℵ2-Souslin trees with an ω-ascent

path has a universal family of cardinality 2ℵ2 = ℵ3.

Proof. We will show that there is an ω3-Souslin tree with an ω1-ascent path

in V[G,H]. As I mentioned above, there are different ways in the literature to

construct non-special ℵ2-Souslin tree with an ω-ascent path, but we will use the

general approach offered by Lücke (op.cit.). For completeness, we will also give

a full definition of a □B
κ+-sequence.

Definition 5.5.75. Let κ be a regular cardinal and B is a subset of κ+ with

Sκ+

κ ⊆ B ⊆ Lim. A □B
κ+-sequence is a sequence ⟨Cα : α ∈ T ⟩ where

1. T is a set of limit ordinals < κ+.

2. {α < κ+ : cf(α) = κ} ⊆ T .

3. For all α ∈ T , Cα is a club subset of α with o.t.(Cα) ≤ κ.

4. If α ∈ T and β ∈ lim(Cα), then β ∈ T and Cβ = Cα ∩ β.

Such a sequence, unlike □κ-sequences, can be added by < κ-directed closed

forcings that preserve the regularity of κ+.

Lemma 5.5.76 ([3], Fact 2.7.). Let κ be regular. Then there exists a forcing

poset P such that

1. P is κ-directed closed.
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2. P is strategically closed for the game of length κ+ 1.

3. ⊩P ”□B
κ+ holds”.

Lücke observes that by modifying the sequence and taking B to be a fat stationary

subset of κ+, we obtain a sequence that avoids a stationary subset of a given

stationary set.

Definition 5.5.77. A subset F of a regular cardinal κ is fat if and only if every

club C of κ and every ordinal α < κ, F ∩ C contains a closed copy of α+ 1.

Friedman ([68]) had shown that every stationary subset of ω1 is fat and that it

can be partitioned into ω1 many pairwise disjoint fat subsets. For ω2, Martin’s

Maximum (MM) implies the existence of ℵ2-many pairwise disjoint fat subsets

of ℵ2. Furthermore, according to a theorem in Larson ([122]), forcing with a

ω1-directed partial order P preserves MM.

Let P = Col(ω3, 2
ω2) and G the generic set. Let Q̇ be the name for the forcing

poset due to Baumgartner in the lemma above, with H the generic set. For ω2,

and in accordance with theorem 5.6.6., Q̇ ⊩ □B
ℵ1

, i.e., a non-special ω2-Souslin

tree that contains an ω-ascent path. P∗ Q̇ is ω2-directed closed, so it follows (see

[126] and [122]) that PFA holds in V[G,H], which implies that 2ω1 = ω2 holds in

V[G,H].

Given that Q̇G is (ω2 + 1)-strategically closed in V[G], we have (2ω2)V [G,H] =

(2ω2)V [G] = ω
V [G]
3 = ω

V [G,H]
3 .

We also get a □B
κ+-sequence in V[G,H], and again according to theorem 5.5.6.,

we have an ω3-Souslin tree with an ω1-ascent path in V[G,H].



6

Aspects

Synopsis

This chapter contains some concluding remarks related to the notion

of mathematical knowledge in the context provided by the

universality problem. The context of such remarks is determined by

the two distinctions - syntactic/semantic, abstract/concrete - and

the meaning of mathematical object and method. I will finish by

connecting them into an idea of method.

As a problem in set theory and model theory, universality is defined in these

contexts and uses the structural and methodological instruments offered by

them, but it simultaneously determines the framework of the analysis through it

specificity as a mathematical object and, given that, functioning as a

methodological tool. I will underline some aspects connected to the way

universality can be considered as a way of interrogation and orientation in

asking the right questions.

6.1 Syntactic - Semantics

Generally speaking, a mathematical theory can be described either internally or

syntactically through axioms and theorems or externally or semantically, through

its models. Gödel had connected the two approaches through his completeness
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theorems. The semantic method involves a ’passage’ among the different models

of a theory. It is used to establish negative results, unprovability results, but

not only. Starting with a model of ZFC, we can construct a sub-model satisfying

the CH (the constructible universe) and an extension (a forcing extension) which

satisfy ¬CH.

That leads us to forcing, but also to results in classification theory, since, as

emphasised by Džamonja, ”[L]ike some other great theorems in mathematics

(such as the Main Gap Theorem) the Main Theorem of Forcing states that a

semantic and a seemingly unrelated syntactic notion agree. In the latter case

these are the forcing and the weak forcing relations” ([54], p. 57).

In its role in set theory and model theory, universality merges both a semantic and

a syntactic component. It connects. Universality, or homogeneous universality,

represents an algebraic property describing a class of models, the embedding

relation between models. Saturation, on the other hand, refers to one model,

describing the relation between a model M and the types over its subsets (see

[6], pp. 126-7). This last aspect points to a shift in model theory, from realising

formulas to realising types, and this represents a syntactic aspect.

On the other hand, starting with the work of Fráıssé and then Jónsson in the

1950’s (op.cit), universal domains are constructed in a semantic way. Given a

theory T and the class of its models, K, a semantic approach considers only

structures or models, ignoring even the background universe. Model theory

evolved as an interplay between the syntactical aspect, i.e., what is there and

what happens inside of a theory T , and the semantic one, that is, what can be

said about K, the class of models of T . For example, we say that a first-order

logic sentence is preserved by submodels (which is a semantic property) if and

only of it is equivalent to a universal sentence (a syntactic property).

Furthermore, I mentioned above the role of definable sets. At a very basic level,

one could say that model theory is fundamentally concerned with the semantics

of first order formulas, that is, models’ definable sets.
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But is there a tension between syntax and semantics? There are tendencies in the

practice of set theory that could point to a preference for the syntactical or the

semantical aspect. Shelah admitted that he is not too keen to the ”syntactical

flavor of the problems” ([196], p. 6), an approach characterising ”the determinacy

school” (the proponents of the determinacy axiom), but that he acknowledges the

role of large cardinal axioms in the forcing framework.

In set theory, inner models are subclasses, so L is a proper class in V , a

definable object that can be written as a syntactic formula. That is the reason

for which inner models can be sometimes treated as definable classes. That

being said, many of the consequences of the fine structure are not syntactical,

like the diamond and the square principles. But on the other hand, these

principles are not to draw the combinatorial consequences of L?

’Combinatorial’ basically means semantical. In practice, there is a mix of these

aspects and a question of personal preferences. ”For Jensen, fine structure is

the main point, diamonds and squares are side benefits, probably good mainly

for proving to the heretics the value of the theory. Personally, I prefer to get

these consequences without the fine structure, but I do not greatly appreciate

the search for alternative, ”pure”, proofs. The question is: when we want to

go further, which approach will be preferable? Of course, you will need the fine

structure for syntactical statements”, writes Shelah ([196], p. 6).

In set theory, logical equivalence is a syntactical notion, while equiconsistency is

a semantical one. The latter might be more informative from an epistemological

point of view. It involves the use of large cardinal axioms (so stronger axioms

than ZFC) and, by definition, there is a sentence expressing the existence of a

large cardinal that logically implies another sentence and a model where this

sentence is true.

It should be noted though that the notion of consistency was for Skolem not a

syntactic but a semantic one, referring to the existence of a structure satisfying

the axioms. He thus distinguishes, as emphasised by Gaifman ([69]), between
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”completely formalized mathematics”, amounting to the study of structures

satisfying the axioms, and ”ordinary mathematical practice”, presumably a

study of what we might call today ’the intended interpretation’. And, actually,

starting with a paper by Skolem from 1934, ”About the impossibility of

characterizing the number sequence by means of a finite or an infinite countable

number of statements involving only numeric variables”, Gaifman observes some

very important aspects: consistency became fundamental to allowing formalised

mathematics to serve as a mediator between different foundational endeavours,

”about what the intended interpretation should be. A can doubt the truth,

plausibility, or factual meaningfulness of an axiom adopted by B, but, as long as

it is consistent, A can make sense of what B is doing by regarding it as an

investigation into the common properties of the structures that satisfy the

axioms. This is possible as long as the completely formalized theory is

consistent; if it is not, then those who presuppose it are not investigating

anything” ([69], p. 3). But that happened to a certain price in the case of

mathematical practice: ”for this very reason it does not fully capture the view

that underlies ordinary mathematical practice - in as much as the practice

implies a particular structure that constitutes the subject matter of the inquiry,

”what it is all about”. If set theory is about some domain that includes

uncountable sets, then any countable structure that satisfies the formalized

theory must count as an unintended model. From the point of view of those

who subscribe to the intended interpretation, the existence of such nonstandard

models counts as a failure of the formal system to capture the semantics fully”

(Ibid.). Skolem’s original construction of a non-standard model of arithmetic

(not a consequence of the Lowenheim-Skolem theorem) anticipates the

formation of an ultrapower. Complete saturation (a property of ultraproducts,

for instance) is similar to that of compactness in the case of topological spaces,

for which reason it is used to ensure that continuous objects (like the

ultraproducts) enjoy ’completeness’ or ’compactness’.

The Completeness Theorem says that every type can be realised in an elementary
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extension, and an elementary embedding between models preserves the truth

values of each first-order formula

Lemma 6.1.1. Let A ⊂M . TA(M) = TA(N)⇒ SM
n (A) = SN

n (A).

So together with the method of forcing, large cardinal axioms open new

possibilities as to the discoveries that incompleteness made possible in

mathematics. And they were and still are both used in the presentation on

different results connected to the universality problem.

6.2 Mathematical object

”For all modern mathematicians agree with Plato and Aristotle - writes Peirce -

that mathematics deals exclusively with hypothetical states of things, and asserts

no matter of fact whatever; and further that it is thus alone that the necessity

of its conclusions is to be explained” ([161], CP 4.232). It is quite a definitive

statement, not entirely true but helpful in approaching the subject, specifically, in

considering the idea of a mathematical object as hypothesis. To this end, I will

mention Cellucci’s take on the mathematical object as hypothesis and present

some further suggestions. The mathematical objects considered in this text were

connected to set theory and model theory. Given what I have said so far, I will

show in this section how set theory, model theory, and the universality problem

in particular could offer new approaches to the notion of mathematical object.

Before going further, I would like to introduce some clarifications regarding the

notion of mathematical object. The idea of mathematical objects as concepts can

be found in the works of Bolzano (in his early mathematical writings and in [14],

Frege (in [66]), or Dedekind (in [31]) 1. I am taking object here in the very general

sense of what the area of mathematics (pure and applied) is focusing on. It is not

my intention to fully investigate the nature of mathematical object, but given

that no discussion can take place in a conceptual void and also for the purposes

1I would like to express my gratitude for the remarks made by prof. Hourya Benis-Sinaceur
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of this text, I take mathematical object to refer to the concept(s) and notion(s)

that constitute the focus of mathematicians. Referring to mathematical concepts

as objects does not necessarily involve any ontological commitment.

In this text, though, and as I will show bellow, the notion of mathematical object

could be described in a relational way (in the context of and determined by

the characteristics of set theory) and it also includes the concept of method.

For a more detailed discussion regarding the latter, see the subsection bellow.

Consequently, such a general approach regarding the notion of mathematical

object includes various approaches to it: as method or heuristic device and as

hypotheses (in line with Celluci’s interpretation). It is also my view that even

though a philosophical justification for a mathematical object is possible, it is

not necessary for the mathematical practice.

The immediate intuition and the mathematical practice show that not all

mathematical object are sets, but set theory does offer the possibility of a

homogeneous context with objects of the same type. On his take on Von

Neumann’s definition of ordinals, P. Dehornoy calls these objects ”pure sets”,

”sets that are also sets of sets, sets of sets of sets”, which ”if they exist, are

closed under all set theoretic operations (...): reunion, intersection,(...). On the

other hand, it is not a priori obvious that such sets exist. As a matter of fact,

there must be at least one, that is the empty set ∅: for lack of existence, all its

elements, elements of elements, etc., are sets and even pure sets. Gradually, one

deduces that there is an infinity of pure examples” ([33], p. 33)

The concept of set points to the idea of considering a mathematical object as a

kind of relation. In the mathematical practice, one is not analysing a set as a

set, but a determined set, as an ordinal or as a cardinal, for instance (and in the

most simple terms). Consequently, when defining a new mathematical object,

we specify the object together with a mathematical structure on it, which takes

the form of a certain relationship among the elements of the set. As such, every

mathematical object can be represented by or as sets. Moreover, after Gödel, we
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cannot explicitly build a model of ZF in ZF, but given the consistency of ZF, there

are different models that we can consider. Furthermore, since all mathematical

objects can be represented as sets, every model of ZF will include its own version

of all these objects. So a further consequence, and a very fruitful one, is that

there are different perspectives in approaching the same mathematical object.

When introduced by Cantor, sets were accompanied by a certain philosophical

justification, which was also developed ever since, but that is not necessary for

the mathematical practice. Even Cantor started with problems related to Fourier

series: given that the majority of functions are not continuous, the problem

was to classify functions in a natural way. And that process finally led to the

introduction transfinite numbers. Set theory brought clarity to the concept of

infinity, but it also emphasises (in its current developments) how complicated the

infinite is and the continuous tasks of trying to describe it. One of the difficulties

connected to the notion of infinity comes from the self-similarity phenomena

that it entails. An example is a theorem of Friedman from the 1970’s regarding

the phenomenon of self-similarity in the theory of non-standard foundational

structures: every countable non-standard structure of the Peano Arithmetic (the

conventional theory of arithmetic) has a proper self-embedding. But he also

proved this for a fragment of ZF. Self-similar objects preserves this attribute when

considered on various scales. So a framework for the study of such objects are the

strong axioms of infinity, the large cardinals. That being said, the development of

forcing permits us to separate objects (appearing in the forcing extension) from

their names (objects belonging to the original model). Consequently, set theory

offers large variety of (mathematical) objects.

This versatile nature of sets and the concepts and the methods used in their

analysis offer the possibility of conceiving mathematical objects in general as

heuristic devices. Such an approach is similar to Cellucci’s and his view of

mathematical objects as hypotheses. The purpose is knowledge, mathematical

knowledge and the discovery of methods to acquire such knowledge. It is

superfluous therefore to apply to them the same analysis as the one we can find
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in philosophy and ask about the nature of their existence, for instance, or try to

justify already obtained knowledge by providing a foundation for it (in

accordance with a foundationalist view). Mathematical knowledge could

constitute an object of study in different philosophical approaches, but only as

far as it offers new approaches to the process of interrogation.

As mentioned above, the analytic method in the philosophy of mathematics,

which Cellucci is advancing, revolves around the idea of plausibility, not truth.

This philosophical approach could analyse and expose inadequacies of some basic

mathematical concepts and even formulate rules of discovery ([20], p. 235). The

mathematical objects in such a view are considered to be hypotheses, which means

that there will be no immediately justified premisses from which all knowledge is

deduced. So there is no rejection of the infinite regress argument. The assumption

of immediately justified knowledge, from which all knowledge is deduced from

was basically founded on the rejection of the infinite regress argument. But if

”the hypotheses are plausible, then there will be knowledge, albeit provisional

knowledge always in need of further consideration, since new data may always

emerge”; there ”would be no knowledge only if the premisses, or hypotheses,

occurring in the infinite series were arbitrary. But they need not be arbitrary. As

in the analytic method, they must be plausible, namely the arguments for them

must be stronger than the arguments against them, on the basis of the existing

knowledge”([20], p.33).

Such an approach is not without benefits. Is it definitively reasonable to think

that all discoveries in mathematics start with a system of axioms from which one

deduces all possible consequences? Although trying to describe the entire edifice

of proof (in all its aspects), logic accepts that its methods are incomplete: any

reasonably strong system of logic cannot prove its own consistency. Set theory

too is incomplete. The paradoxes pointed out the inability to formulate arbitrary

mathematical objects as sets. But this incompleteness let open a conceptual

landscape that makes discovery possible. Mathematicians respond in a unique

way to mathematical problems. They formulate hypothesis, make conjectures,
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try different proofs etc.

Given his extraordinary work in set theory and model theory and directly

connected to the universality problem, I would like to point to a description

that Kanamori makes of Shelah’s work and his approach to mathematics: ”In

set theory - writes Kanamori - Shelah was initially stimulated by specific

problems. He typically makes a direct, frontal attack, bringing to bear

extraordinary powers of concentration, a remarkable ability for sustained effort,

an enormous arsenal of accumulated techniques, and a fine, quick memory.

When he is successful on the larger problems, it is often as if a resilient,

broad-based edifice has been erected, the traditional serial constraints loosened

in favor of a wide, fluid flow of ideas, and the final result almost incidental to

the larger structure. What has been achieved is more than a just succinctly

stated theorem but rather the erection of a whole network of robust arguments.

...his insistence that his edifices be regarded as autonomous conceptual

constructions. Their life is to be captured in the most general forms, and this

entails the introduction of many parameters. Often, the network of arguments

is articulated by complicated combinatorial principles and transient hypotheses,

and the forward directions of the flow are rendered as elaborate transfinite

inductions carrying along many side conditions. The ostensible goal of the

construction, that succinctly stated result that is to encapsulate it, is often lost

in a swirl of conclusions” ([99], pp. 53-54) [emphasis added].

Some problems may be more complex and difficult than others, but they represent

a continuously evolving object. That means that their solution is not their end:

such a solution can be generalised, can offer insights into other problems, can

open new lines of research etc. The polished form of a proof makes it expressible

to the community of mathematicians, but it does not tell its entire history, parts

of which are only to come in a future time, through interpretation, generalisation,

or reconceptualisation. That again points to the limits of axiomatisation and the

possibility of describing the mathematical practice in a more heuristic way, using

hypotheses.
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The case of universality (and many others in set theory or even model theory)

showed the limits of traditional approaches towards mathematical objects and

proofs, in dealing with infinity. It determined the creation and development of

new methods, new concepts and arguments, and shaped theories. Such a state

of things is particularly obvious in the infinite combinatorics, but also in the

complex apparatus represented by forcing. It can also be located in classification

theory, which, by itself, raises questions about the nature of axiomatisation.

Objects and names The extraordinary complexity of the set theoretic

concepts, terms, elaborate syntax etc. is based on the language of ZFC, made

up of a single binary relation, ∈, to which we add the first-order logic

connectives. We have, of course, the tendency to consider set theoretic symbols

such as ∅ and ω, ℵ0, ℵ1 etc. as proper names, similar to others. We might

think that ℵ1, for instance, refers to a unique set. But this set might be

different in different models, in other words, the interpretation of the symbol

’ℵ1’ is model-relative. When the interpretation of a name or a symbol is not

model-relative, it’s called absolute. Examples include the ’∅’, which always

picks out the same set. In every model of ZFC, ∅ is the unique set that contains

no elements. And when a name is not absolute, we need to make the distinction

between the name itself as a syntactic object and the set to which it refers to in

a certain model of ZFC. That is the reason why one uses the notation ℵM1 when

considering the description the name ’ℵ1’ gets in the model M.

These aspects are related to complex developments in set theory, specifically

forcing. In forcing, we restrict ourselves to transitive models. Being an ordinal (a

transitive set of transitive sets 2) is absolute to transitive models. In other words,

being an ordinal is a △0 property. This result is based on the Von Neumann’s

definition of ordinals and the Foundation axiom. One of the most important

absoluteness results (given its further uses) is the following theorem. But first,

we will introduce a definition:

2More formally: for any term t, ’t is an ordinal” is an abbreviation for (t is transitive)
∧(∀x) ∈ t(x is transitive).
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Definition 6.2.1. If M |= ZFC is transitive and R ∈ M is a binary relation,

then M |= R is well-founded if and only if R is well-founded.

Theorem 6.2.2. Well-foundedness is absolute for transitive models of ZFC.

We should point out that well-foundedness is not absolute for transitive sets

without specifying what axioms they satisfy, given that we could find a transitive

set X with a binary relation R ∈ X such that X |= R is well-founded, but R

is not. A function F : Ord → Ord2 is △1-definable, therefore it is absolute to

transitive models of set theory. If X is a set of ordinals, f(X) represents a set

of pairs of ordinals and can be thought of as a relation on a set of ordinals. So

we can just take sets of ordinals and then we can refer to functions, relations

etc. Furthermore, given that such a set X can be identified by the isomorphism

class of graphs connected to the membership relation below X, we could always

recover X if we have enough sets of ordinals.

’ω’ is a name for the first countable ordinal and it is absolute across these models.

In any transitive model of ZFC, ω is the set N of natural numbers, also matching

the description ’the intersection of all inductive sets’ (the sets containing the

ordinal 0 and closed under the successor function). ’ω1’ describes the smallest

uncountable ordinal and, in ZFC, it coincide with ’ℵ1’. Although it represents

the first uncountable cardinal, there might be models of ZFC, countable models,

that make it countable. We took ℵ1 as an example because it does have certain

unique characteristics in set theory, and many of the results mentioned in the

previous chapters corroborate this statement. Different transitive models may

pick different sets for ω1 or ℵ1, but they will ’believe’ that they have chosen the

smallest uncountable ordinal and the smallest uncountable cardinal, respectably.

Another non-absolute notion is the ordinal ω2, the name for the first ordinal for

which there’s no injection into ω1. The set ωM
2 depends on the choice of the model

M . In a countable model (like the ones we use in forcing), ωM
2 is countable. And

another example of a non-absolute name, one that is central in many applications

in set theory, is ’P (ω)’, describing ’the set of all subsets of ω’. In forcing, we have
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Definition 6.2.3. A set is a P -name if its elements are of the form (τ, p), where

τ is a P -name and p ∈ P . V P is the class of P -names.

Using the well-foundedness of ∈, the definition is recursive, each P -name τ is

defined using the elements of τ of lower rank.

Garti ([71]) considers the relationship between mathematical objects and their

names an ”important philosophical issue”, and forcing theory enabling ”us to

separate objects from their names in an accurate way” (p. 28)3. Although the

relationship between mathematical objects and their names does constitute an

important issue in philosophy, it is not necessarily the case with regard to the

mathematical theory of forcing. There are many difficulties involves in forcing,

but they are connected to the nature of the method, not with ambiguities related

to the use of mathematical objects. The question involves again the validity

and the limits of borrowing methods from one area and using them in another.

Understanding the nature and the use of names in forcing doesn’t imply a theory

of naming applicable to the entire field of mathematics, but it is connected to this

particular method. A name in the ground model M for an element in the forcing

extension M [G] will tell us how the element was constructed from the generic

filter G. Such a name, a P-name (with P the forcing notion), is a relation, a set

defined by transfinite recursion, and the collection of P-name is a proper class if

P ̸= 0. In iterated forcing, for instance, the forcing notion consists of sequences of

elements and each coordinate corresponds ”to a name for an element of a forcing

notion, not in V but in some extension of it intermediate between V and V [G]”

([53], p. 20).

Furthermore, regarding the way I used the notion of mathematical object in

this text, in also follows that when focusing on the relation between

mathematical object and method and taking into account the notion of

reconceptualisation mentioned above (a process leading to mathematical

knowledge and understanding, like interpretation or generalisation), the

3In this particular article, it is used to offer a new perspective on the self-referential
component connected with Yablo’s paradox.
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relationship between names and objects does not have to be considered (in the

case of mathematical practice) as a relationship between names and concepts.

The account of mathematical objects as hypotheses, tentatively introduced to

solve mathematical problems should not be confused with fictionalism,

underlines Celluci, the view that mathematical objects are as characters in

fiction. A mathematical object is the hypothesis that a certain condition is

satisfiable. For example, an even number x is the hypothesis that the condition

x = 2y is satisfiable for some integer y. If, in the course of reasoning, the

condition turns out to be satisfiable, we say that the object ’exists’, if it turns

out to be unsatisfiable, we say that it ’does not exist’. Thus, speaking of

’existence’ is just a metaphor. That the condition turns out to be unsatisfiable

typically occurs in proofs by reductio ad absurdum. There is no more to

mathematical existence than the fact that mathematical objects are hypotheses

tentatively introduced to solve mathematical problems. Such hypotheses are in

turn a problem to be solved, it will be solved by introducing other hypotheses,

and so on. Thus solving a mathematical problem is a potentially infinite task

(see [20], [17]).

The view that mathematical objects are hypotheses is related to Plato’s view,

expressed through his dialectical method, that ”students of geometry,

calculation, and the like” hypothesize both mathematical objects and their

properties: they ”hypothesize the odd and the even, the various figures, the

three kinds of angles, and other things akin to these in each of their

investigations, as if they knew them. They make these their hypotheses and

don’t think it necessary to give any account of them, either to themselves or to

others, as if they were clear to everyone. And going from these first principles

through the remaining steps, they arrive in full agreement” (Plato, Republic, VI

510 c2-d1). And for the properties of mathematical objects: ”when you must

give an account of your hypothesis itself you will proceed in the same way: you

will assume another hypothesis, the one which seems to you best of the higher

ones until you come to something acceptable, but you will not jumble the two
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as the debaters do by discussing the hypothesis and its consequences at the

same time, if you wish to discover any truth” (Plato, Phaedo, 101 d4-e3).

Epistêmê here is the ability to know what is real as it is (Republic 477b). But

that which is as it is involves the Ideas/the Forms, they constitute the hightest

form of knowledge and ’inhabit’ the intelligible domain (noêton). In the analogy

of the divided line (Republic 509d–511e), the noêton is subdivided into domains

accessible by diánoia (deductive reasoning), specific to mathematics, and noēsis

(understanding, also referred to as intellectual intuition). So the intelligible

forms do constitute objects of mathematical téchnai (calculations and

geometry), being different from the actual drawings of the geometrical shapes,

which belong to the visible world. The ”square itself”, for instance, is still some

kind of image, albeit of thought, ”clear and (...) valued as such”. But for the

mathematical sciences, hypotheses are first principles, so the geometers proceed

from hypotheses ”not travelling up to a first principle, since it cannot reach

beyond its hypotheses”. As a result, the deductive and logical mathematical

epistêmê is an ”intermediate between opinion and understanding” (511b-511d),

needing further justification. Both noêsis and diánoia the reason (lógos) makes

use of hypotheses, but while the mathematical knowledge assumes them as first

principles while moving towards final conclusions, in the case of noêsis, the

lógos examines all hypotheses through dialectic (philosophy), ”does not consider

these hypotheses as first principles but truly as hypotheses - but as stepping

stones to take off from, enabling it to reach the unhypothetical first principle of

everything” (511b 3-6). Then given that for the mathematical sciences

hypotheses are first principles, they never go back to ”a genuine first principle

(...) even though, given such a principle, they are intelligible” (511d 1-3).

Through mathematics then, and in accordance to Plato’s distinctions, we can

only state more and more hypotheses, get better and better approximations,

but never fully understanding them. So in Plato’s view, the method of

philosophy and the reasoning of mathematics are similar up to a point, both

having an integral connection to the intelligibles.
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Cellucci identifies his analytic method to Platos’s method of reasoning from

hypothesis, but the distinctions above point to some differences between

mathematics and philosophy, which should be taken into account. The analytic

method in philosophy is not the same as the analytic method in mathematics.

There is not just one method in mathematics, and even the same problem, as is

the case with the universality problem, is open to several of them. It’s precisely

the field of different perspectives in tackling the problem, therefore the

possibility of discovering various hypotheses, that could offer a proof of its

epistemically ampliative character. In other words, the possibility of

approaching should be shaped by the mathematical context and practice.

Again, adhering to any a priori established recipe for doing or approaching

mathematics would be imitative to the heuristic value itself brought forward by

considering mathematical objects as hypotheses.

Cellucci responds to the potentially infinite regress in solving a problem through

the analytic method and the impossibility of knowledge that such an approach

would entail by highlighting the fact that the lack of absolute justification for a

hypothesis does not mean that there is no knowledge: that would happen only

if the hypotheses were arbitrary, but that is not the case, since they must be

plausible. The knowledge they entail is thus fallible, i.e., it may lead to error.

Furthermore, new data may always emerge ”with which the hypotheses on which

knowledge is based may turn out to be incompatible ([19], p. 64). Given that

the focus of the analytic method is plausibility and not truth, ”no solution to a

mathematical problem is final, every solution is revisable” (Ibid., p. 246).

There might be some difficulties in this approach. For instance, one can find

revisions and developments, conceptual changes, different and new

interpretations, but once accepted as correct (even if that requires a certain

period of time), a mathematical result is definitive. I am taking into account

here the particular case of set theory and the existence of independence results:

we could find universes in which a certain result holds and other(s) in which it

doesn’t. In a way, we could say that there is just one solution manifested in
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different correct proofs. And some of these proofs point to new problems, open

new interrogations, problems and solutions.

And it is the same case of the set theoretical framework and its proof methods,

obvious in tackling the universality problem that show how a mathematical

problem might have various sides, lead in different, sometimes seemingly

opposite directions, each of which might suggest different hypotheses, different

solutions, and even new relations or links to other problems, maybe even from

another field. A consequence is that the connection between mathematical

objects and the world is not abstraction and idealisation, but interrogation and

orientation. It is about the proofs it entails and the new techniques it

determines. The fact that universality represents a test problem in model

theory testifies in that regard. The fundamental connection to combinatorics in

set theory strengthens these aspects.

In set theory, one usually looks at sets with no other internal structure other

than the membership relation. There is some additional structure in the context

of PCF: the product structure and the equivalence structure arising from the

filter that is used. As mentioned before, a structure is a set equipped with a

collection of functions, relations, and elements, interpreted in an appropriate

language. From a certain point of view, a mathematical structure represents a

notion of analogy on a very abstract level, enabling structure theorems. And in

this context, a universal model of T of size κ, a model in which any other model

of T of cardinality κ embeds elementarily, represents, to use a notion from [215],

a critical object, but which is not ”almost always some canonical” member of a

class S ”simple to describe and visualise” (p. 43)4.

A consequence is that the relation between models involved by universality is not

determined in terms of size. The part - whole correlation has new meanings here,

described in term of embeddings and orderings. And that represents another

consequence related to the way we understand mathematical objects. Given a

4The original quote goes as follows: ”Critical objects are almost always some canonical
members of S simple to describe and visualize”.
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classK of models, for instance, expressing some ’well-behaved’ theory, one doesn’t

find new properties moving at a certain cardinality once a universal model had

been found there: a structure will be just like the others having the same size,

but ’larger’ in certain directions.

As I have shown above, there are different ways of approaching the universality

problem, not only with respect to the area of mathematics involved, but also

with regard to the methods and techniques used in proofs. The idea of

extension involved by universality represents a certain kind of idealisation. This

idealisation involves a certain form of abstraction, one that does not ’carry’

with it the same conceptual distinctions and categories used in the finite realm.

Such an idealisation implies a shift in the nature and the role of mathematical

objects. Accordingly, it would also imply a change in the mathematical

knowledge. Such an epistemic reconfiguration could be incorporated into our

general ’knowledge’, makes the thinking even more sophisticated, and returns

again into a mathematical landscape determining new mathematical inquiries.

Mathematical objects are therefore always connected to a basic mathematical

activity: they are part of a specific process. This process usually involves a

transformation, a function in the most general sense, of a given object into

another, sometimes of a quite different kind. It can be a transformation having

a numerical aspect (like taking the square root), a non-numerical one, it can be

translated into the language of sets etc. Universality refers to the way models

are interpreted (to be described in different contexts) into another. In other

words, any kind of generalisation should be context sensitive.

A universal object (within the framework in this text) sheds light on the objects

it embeds. It is similar to various kinds of limit models and, in fact, it can be

constructed as such, as the Fräıssé limit of the ultrapower construction testifies.

The process itself constitutes a mathematical object. Consequently, the different

levels and registers implied by the concept of mathematical object can only be

meaningfully distinguished in the context of mathematical practice.
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6.3 Abstract - Concrete

Mathematics defines concepts and combines them into mathematical structures

(not the model theoretic notion here) and patterns described by mathematical

concepts. Of course that these new patterns described by mathematics are more

and more abstract and general. But that represents an external assessment to

the mathematical practice. The abstract character of mathematical objects in

general represents just one register of abstractisation. It is the one we could find

in one of Bourkaki’s statements, that ”mathematics appears” as ”a storehouse of

abstract forms - the mathematical structures; and it so happens - without our

knowing why - that certain aspects of empirical reality fit themselves into these

forms, as if through a kind of pre-adaptation” (Bourbaki 1950, 231). One may ask

why ”some of the most intricate theories in mathematics become an indispensable

tool to the modem physicist”, but ”fortunately for us, the mathematician does

not feel called upon to answer such questions” (Bourbaki 1949, 2).

Another level of abstractisation is internal to the practice and methods of set

theory and model theory. The idea of such a distinction, particularly the second

aspect, is determined by the fact that the process of generalisation and the idea

of abstraction are determined by the necessities of mathematical practice. I will

return to this aspect shortly.

Within the mathematical discourse, the distinction between abstract and concrete

might not take the same meaning as when one is positioning oneself in the context

of the philosophy of mathematics. In the philosophy of mathematics (or in the

philosophy of logic) we can talk about the abstraction principles in neo-logicism

or the abstract nature of a mathematical object, one of the possible views with

regard the nature of mathematical objects. It is not the purpose of this text to

establish the relation of mathematical objects to the world, all these three notions

being too ambiguous to obtain a definitive account.

I tend to think that Cellucci’s view with regard to the nature of mathematical
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objects is plausible in the context of mathematical practice: mathematical

objects are not obtained by abstraction from sensible things, or by idealization

from our operations of collecting objects, but hypotheses we make to solve

mathematical problems, several of which have an extra-mathematical origin. He

presents many arguments against abstraction from sensible things. One of the

arguments describing the relation of mathematical objects to the world as being

obtained by idealization from certain operations of collecting objects belongs to

Kitcher ([105], p. 12). One of the main problems with respect to such a view is

that it points to an ideal subject. I think that statements asserting the

existence or non-existence of a relation between mathematical objects and the

world, that they might be obtained by abstraction from sensible things, or by

idealization from our operations of collecting objects is ambiguous, unfruitful,

and problematic, and not only from the point of view of mathematical practice.

In the circumstances, Kant is right when he writes that ”abstraction is only the

negative condition under which universal representations can be generated”

([100], p. 593). Through it, ”nothing is produced, but rather left out” (Ibid., p.

487). In fact, ”abstraction does not add anything”, but ”rather cuts off

everything that does not belong to the concept” (Ibid., p. 351). As hypotheses,

mathematical objects are obtained through rules determined by mathematical

practice, they represent ”a viewpoint” guiding the mathematical observation.

Accordingly, they cannot be arbitrary, they are context related. As Hilbert

emphasised, ”the formation of concepts in mathematics is constantly guided by

thought and experience, so that mathematics, on the whole, is a non-arbitrary

construction” ([87], p. 5) [emphasis added].

In the case of universality, it is not only about the problem of finding a maximal

element, but also about the consequences determined by the existence or

non-existence of such element(s). In model theory, it enables the classification

of theories, with consequences for mathematics as a whole. Another crucial

challenge involving universality (mostly connected to set theory, but in this case

with model theory as well) is about identifying a core in the problem, which is
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combinatorial. As such, it becomes a way of interrogation and of orientation in

asking the right questions.

The second form of abstraction mentioned above is internal to mathematics and,

in particular, to set theory. For instance, Moschovakis abstracted a property

stronger than reduction, the prewellordering property, from the classical analysis

of
∏1

1 sets. Jensen abstracted his result regarding the Souslin-tree to (i) if V = L,

then ♢κ holds for every regular cardinal κ > ω, and (ii) if ♢ω1 holds, then there

is a Souslin-tree. Solovay’s result was abstracted to κ-Kurepa trees in terms of

ineffable cardinals, a new cardinal concept discovered independently by Jensen

and Kunen. Shelah established an abstract classification theories for models.

A form of it (inherently connected to the subject of this text) was concisely

emphasised by Larson in her presentation of infinite combinatorics: ”[T]here

is a tension in mathematics between generalization and description in concrete

terms” ([121], p. 146). The extension of number into the transfinite operated by

Cantor represents an example of a generalization. Concrete structures ”may be

sought through classification schemes, in basis problems, in universal structures,

and especially in the search for and expectation of local uniformity, regions of

simplicity, and inescapable structure”, and this aspect can be ”captured by the

following quote, most often used in connection with Ramsey theory: ”complete

disorder is impossible”” ([121], p. 147). This formulation can be found in T.

Motzkin’s description of Ramsey’s theory: ”[W]hereas the entropy theorems of

probability theory and mathematical physics imply that, in a large universe,

disorder is probable, certain combinatorial theorems imply that complete disorder

is impossible” ([156], p. 244) [emphasis added].

Universality here is an example of concrete structure. Abstraction could take

place here in extension to another domain. It is actually an extension of

familiarity by abstracting to a new domain. It can be achieved through forcing,

for instance, or the methods of introducing new models in model theory.

Abstraction manifests itself in the increased generalisations of the theorems
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that it determines and generates. And a general result means one does not get

lost in having to prove each case separately, while a related consequence is that

it could establish connections among different results and/or different areas of

mathematics, relations that didn’t seem possible before.

It is a process of determining regions of structure. And this process may find a

possible analogy in the way Plato refers to the circumscribing domains in Philebus,

as I mentioned in the first chapter. The insufficiency of some levels of analysis,

of some mathematical objects, methods and solutions, and, in particular, the

landscape of infinities (circumscribing the field of set theory) determines a process

of epistemic unfolding, expressed in the creation of mathematical knowledge.

The use in this text of general and still problematic notions such as knowledge

and understanding was related to the possibility of establishing a bridge between

mathematics and philosophy in connection to the universality problem. It was

not our intention to engage in an analysis of and the current debate regarding the

nature of understanding and how it relates to the concept of truth. In connection

to that, some scholars maintain that a focus on the role of understanding does

not entail a preoccupation with factivity (see Kelp [103], Grimm [77] or Ross

[176]).

Elgin ([57]) maintains that a strictly factive conception of understanding is

empirically inadequate. Other discussions of non-factive approaches to

understanding were offered by Zagzebski ([229]), Potochnik ([164]) or Rancourt

([170]). Others (see [175], for instance) point to some benefits of a strictly

factive theory of understanding (such as explaining the essential role of false

theories and idealisations in science).

Referring to mathematical objects as hypotheses, emphasising the distinction

between mathematics and philosophy, the particular case of set theory with its

different methods and problems (like universality), including the specific

relationship between mathematical objects and their names (mentioned above in

relation to forcing) represent different dimensions of configuring an epistemology
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of mathematics that does not entail an ontology (of mathematics). Plausibility

also makes way for the fallibilism connected to the mathematical justification

(derived from proof), no matter how this aspect is treated by different authors

(see Celluci, Toffoli ([30]), Lakatos [119], Dove [41], and others).

All in all, mathematical objects display a relational character that could offer

them role of hypothesis or even method (with certain contextual distinctions to be

made). Once accepted in the mathematical practice, they could even be endowed

with a factual character, without any ontological commitment, and caught in the

transformational character of mathematical knowledge.

6.4 Method

As Agamben remarks concerning method, ’contrary to common opinion, a

reflection on method usually follows practical application, rather than preceding

it’, being ’articulated only after extensive research’, that also ’[C]ontrary to

public opinion, method shares with logic its inability to separate itself

completely from its context’ ([2], p. 7). What is more, and in accordance with

Foucault archaeological perspective on the human sciences, every inquiry,

including the reflection on method, ’must retrace its own trajectory back to the

point where something remains obscure and unthematized’ (Ibid., p. 8).

Usually, the method or a methodology are considered closed systems, finished

products, doctrinal recipes to follows. But in its original Greek meaning,

méthodos (μέθοδος) is the ’pursuit of knowledge’. The purpose of method is to

offer a certain direction or even several directions.

The notion of infinite has a certain role in this regard. In set theory, the infinite

is never given as an ambiguous or vague concept to be prone to fuzzy digressions.

It is always associated to a certain ’order’ (the ordinal numbers, the uncountable

linear orders), ’function’, ’structure’, ’size’ (cardinality) etc. In other words, the

infinite is always determinate in one way or another. Such determinations come
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from the axioms, as properties of relations. The set theoretical results show that

the infinite itself is somehow associated to the idea of method. And, I would add,

to the countless boundaries in our own view.

Firstly, it is not always possible to apply the same mathematical rules and

intuition involved in the finite realm to the transfinite one. Given the

conceptual jumps determined by the infinite, some adjustments and changes are

to be made. It is already accepted that infinity can be used as a logical

principle to establish certain properties of finite objects, which could otherwise

have remained inaccessible (e.g. [160], but also see Roitman). Or, ”I tried to

show (...) that you can prove many things on infinity on the basis of the ZFC

set theory if you just ask the right questions”, writes Shelah ([107], p. 9).

Such a possibility is determined by the organising principles expressed in the

axioms, and this represents a second aspect in tackling the idea of the infinite as

a method. Even Mac Lane, one of the proponents of category theory (another

alternative for the foundations of mathematics), emphasises the ability of the

set theoretic axioms to reduce arguments to a few: ”[T]he rich multiplicity of

mathematical objects and the proofs of theorems about them can be set out

formally with absolute precision on a remarkably parsimonious base” ([127], p.

358). The axiomatic method describes mathematical objects and formally prove

them. It is only a method, but it is a method nonetheless, so it shouldn’t be

discarded as not being ampliative, as Cellucci does.

”Furthermore, the introduction of higher orders of infinity ”can be likened to the

introduction of an additional proof principle” ([32], p. 387) : ”what is crucial

now is no longer the truth of the axiom, but rather its potential richness and

its proving power. And, from this viewpoint, the stronger the axiom is, and

therefore the closer the contradiction, the more powerful it is likely to be in terms

of applications” ([32], p. 388). Such a role for set theory goes through Cantor

back to Plato. And, I think, in approaching the mathematical practice through

the concept of hypothesis related to the mathematical object. The creation of
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different universes or the extension of models are part of the method.

With regard to universality, it represents a set theoretic and model theoretic

problem. We could consider the notion of problem also in its original Greek

meaning, próblēma, (πρόβλημα), as ”an obstacle, anything thrown forward or

projecting; as anything put before one as a defence, a headland”. A

mathematical problem has several sides, it can be approached from different

directions, employing different hypothesis, which, at their turn, can establish

relations with other problems, some in other fields. All these aspects put the

initial problem into a new perspective, they create a context of analysis. The

’elements’ of the universality problems present certain characteristics, both in

set theory and model theory, that makes it a methodological instrument and

also a form of interrogation of method. It does that through the roles it takes.

In model theory, as other test problems in classification theory, it provides a

context for establishing connections across different areas of mathematics.

It is inextricably connected to combinatorics in set theory. ”The important ideas

of combinatorics do not usually appear in the form of precisely stated theorems -

writes Gowers -, but more often as general principles of wide applicability ([74],

p. 68). And ”[W]hile the structure is less obvious than it is in many other

subjects, it is there in the form of somewhat vague general statements that allow

proofs to be condensed in the mind, and therefore more easily memorized and

more easily transmitted to others (Ibid., p. 72). ”However, just as the true

significance of a result in combinatorics is very often not the result itself, but

something less explicit that one learns from the proof, so the general goals of

combinatorics are not always explicitly stated” (Ibid., p. 73). The proof would

offer a new technique. ”In general, as one gains experience at solving problems

in an area such as combinatorics, one finds that certain difficulties recur. It

may not be possible to express these difficulties in the form of a precisely stated

conjecture, so instead one often focuses on a particular problem which involves

those difficulties. The problem then takes on an importance which goes beyond

merely finding out whether the answer to it is yes or no. This explains why it
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was possible for so many of Erdös’ problems to have hidden depths”([74], p. 75).

Set theory and the existence of a few axioms does not mean similarity in

arguments. A reason for that is the way infinite combinatorics works. It often

happens that the core of a set theoretic problem is combinatorial, but

approaching the universality problem from both a set theoretic perspective and

a model theoretic means we don’t restrict ourselves to recognising the patterns

in just one mathematical area. The combinatorial aspect abstracted from a

certain problem is the part connected to pure calculation without taking into

account the larger structure of a proof. Furthermore, a common characteristic

of the combinatorial principles involved is that they are independent of the

usual system of axioms in set theory. As a result, they are particularly useful in

proving non-existence results regarding universality. This combinatorial core

contains, from a certain point of view, the conditions that makes possible the

result, the argument and the proof. It offers a certain direction in finding a

solution or solutions. And, to a certain extent, in the same way in which the

theorems of mathematics motivate the definitions and the definitions motivate

the theorems, ”just like the proof of a theorem is ’justified’ by appealing to a

previously given definitions” ([177], p. 172), so that there is no linear trajectory

from definition to theorem.

All these aspects and the conceptual ’movements’ or the various problems that

it entails, shape the universality problem as a form of interrogating and giving

directions to some methods. It offers an instrument of mapping an infinite

mathematical landscape. From a chronological point of view, the analysis of

universality determined the development of other central notions in model

theory: saturated models, homogeneous models and, eventually, non-forking, an

essential tool in classification theory. So what would a solution or the solutions

to the ’universality problem’ mean? Given the range of mathematical notions

and results related to universality, one could look for connections. Classification

theory is an answer. In this framework, connections are continuously discovered,

while methods are constantly created and developed. Universality involves an
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analysis of models and theories, it is connected to their deeper understanding,

the possibility of discovering new relations, connections or orders among them.

And then some other perspectives, other approaches could follow.

6.5 And order

Various major scientific results in the 20th century have emphasised certain

limits with regard to knowledge: Heisenberg’s uncertainty principle for the

measurement process, the constancy of the speed of light in relativity theory on

the transmission of information, the sensitive dependence on initial conditions

in chaos theory on the ability to predict the ’future’ from less perfect

measurements in the present, and others. In mathematics, we have Gödel’s

incompleteness theorems and Turing’s theorem in computation. In addition, for

Gödel, there are real objects extending beyond our capability to name or

formalize them in any language. Thus, any formal system we have is

incomplete, but we are also left with questions regarding the limits of naming

objects, including concepts, which we nonetheless can (in some sense) think. We

are left with the issue of how we come to know such objects. While the

ontological presuppositions here are quite problematic, his arguments are

connected to the problem of knowledge, mathematical knowledge in particular.

There are some aspects in the process of mathematical practice that cannot be

quantified or brought forward without any ambiguities involved. We use notions

such as intuition, imagination, reason, etc. without having a definitive response

as to their meaning. They do not belong to mathematics but to the general

human sphere, and they were traditionally transposed into the area of

philosophy. The use of symbols does not necessarily eradicate such mundane,

human tendencies. Some go further and attribute an ontological value to what

stands behind these symbols. This ”ontologising power of sign systems, that

generate spaces structures within which to dream” ([212], pp. 132-133) belongs

to the individual space. It might be the impetus behind extraordinary
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mathematical activities and results, but it points to individual values and belief.

It goes the same for ’have feelings or intuition’ that something is right or wrong,

true or false. Mathematics is done by human beings, it represents one of the

possible activities in which one could be engaged.

Besides unveiling individual values and beliefs, this un-mathematical element in

someone’s mathematical practice points to cultural elements as well. An

assumption in mathematics is that mathematical theorems are necessarily true,

an aspect that could lead to the assertion that mathematical objects exist by

necessity (for a view on this implication, see [101], for instance). And as pointed

up by Eglash, ”[F]or mathematicians in the Euro-American tradition, truth is

embedded in an abstract realm, and these transcendental objects are

inaccessible outside of a particular symbolic analysis” ([55], p. 112).

I would contend that this vague element involves somehow the idea of order.

This might be a place where mathematics and philosophy meet. While focusing

her analysis on the overall intellectual context of the ancient Greece, Wersinger

claims that the nascent ’ontology’ represents one of the possible answers to a

more original question concerning the harmony of things, whether of the body,

of what we call ’world’ or of the language which expresses it” ([226], p. 10). In

set theory, a general survey of ordering ends up in capturing quite an impressive

history: it starts with the foundational work on cardinal and ordinal numbers,

fundamentals of cardinal and ordinal arithmetic, and then found ingrained in

various themes throughout infinite combinatorics: Ramsey theory, trees, graphs,

regressive functions, set mappings, etc. All these aspects involved interactions

with other mathematical areas, such as model theory, topology, finite

combinatorics.

But we can consider a more general account than set theory: ”Does

understanding the demonstration of a theorem consist in examining each of the

syllogisms of which it is composed in succession, and being convinced that it is

correct and conforms to the rules of the game? In the same way, does
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understanding a definition consist simply in recognizing that the meaning of all

the terms employed is already known, and being convinced that it involves no

contradiction? (...) Almost all are more exacting; they want to know not only

whether all the syllogisms of a demonstration are correct, but why they are

linked together in one order rather than in another. As long as they appear to

them engendered by caprice, and not by an intelligence constantly conscious of

the end to be attained, they do not think they have understood.” (Poincaré,

[163], Book II, Chapter II, p. 118) [emphasis added]. And further, ”Logic

teaches us that on such and such a road we are sure of not meeting an obstacle;

it does not tell us which is the road that leads to the desired end” (Ibid., pp.

129–130).

Cournot made a distinction between a logical order and a rational one. I am

only mentioning him in his drawing attention to this element in connection to

mathematical explanation, but for an extended analysis, see [139]:

”Generalizations which are fruitful because they reveal in a single general

principle the rationale of a great many particular truths, the connection and

common origins of which had not previously been seen, are found in all the

sciences, and particularly in mathematics. Such generalizations are the most

important of all, and their discovery is the work of genius. There are also sterile

generalizations which consist in extending to unimportant cases what inventive

persons were satisfied to establish for important cases, leaving the rest to the

easily discernible indications of analogy. In such cases, further steps toward

abstraction and generalization do not mean an improvement in the explanation

of the order of mathematical truths and their relations, for this is not the way

the mind proceeds from a subordinate fact to one which goes beyond it and

explains it. (Cournot, 1851, sect. 16, Engl. trans. 1956, p. 24 quoted in [141],

p. 144).

The idea of order I am referring to here has epistemological connotations and is

connected to the other general notion of mathematical knowledge, with its

different aspects mentioned in the first chapter, and also to the idea of
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explanation. Mathematical objects are not isolated entities to be study in

isolation. They are always connected to others and part of a space, a

mathematical conceptual space: a field, a group, a structure, a family of

structure, a relation R etc. The way different mathematical objects are

connected is reflected in the specific features of that conceptual space, which, at

its turn, can be generalised, abstracted, or reconceptualised using strict

mathematical methods. Method points to order. A good method is a way in

which ideas, concepts and hypotheses are sought in a proper order.

In this context, it is not set theory per se that unifies mathematics, as many

researchers have emphasised. There are other foundational systems, and they

are not opposed, but adapted to certain aspects and problems in the vast

mathematical landscape. And in doing so, each one determines, explores and

give priority to certain methods and proofs, all the while creating mathematical

knowledge. It so happens that a very/the most efficient way to inquire into the

universe5 opened by the acceptance of the strict, well-defined mathematical

notion of infinity is set theory.

In a way, mathematicians, like other thinkers, are a sort of geographers. I am

using here a distinction operated by Olsson, for whom ”[T]o be a geographer is

by definition to be a baptizer. (...) knowledge is an exercise in translation. The

trouble is that no translation can be perfect. What, then, is knowledge? It is to

say that something is something else and be believed when you do it” ([159], p.

87).

Maps point to boundaries and limits as well. And probably in a quite unintuitive

way, the infinite represents the most general idea of limit. It represents the central

concept around which the mathematical field of set theory is organised and, given

the foundational role of set theory, it might be implied all over mathematics,

although the large part of it does not use the hierarchies of infinities. But as

Feynman remarked at some point, the ”fact that things have common features

5We do not take universe here in the formal set theoretic definition.
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turns out more and more universal”.

What is it that allows us to look at a new proof or mathematical argument and

conclude that it represents a sample of good reasoning? Firstly, we examine its

form to make sure that it does not lead from true premises to a false conclusion.

Then we acknowledge that the argument is new with regard to the content. But

the second aspect involves a certain comparison and, therefore, also points to

something common in relation to which we have something new. Such a common

thing does not entail anything ontological.

We could then ask how are two proofs essentially the same. And how is that

aspect related to mathematical knowledge? Tao distinguishes and exemplifies

”four general ways in which one might try to capture the notion of equivalence

between proof A and proof B: semantic, syntactic, algorithmic, and conceptual

([209]). The semantic or model-theoretic approach, involves the description of

”the largest set of models to which proof A ’naturally’ generalises, and compare

that set to the corresponding set for proof B”. A difficulty regarding this

approach is that sometimes a proof has to be re-written or ’deconstructed’

”until it becomes obvious how to extend it properly”. Another one is

determined by the use of model-theoretic techniques, and in this case one ”may

need some sort of ’second order model theory’ (ugh) to properly analyse such

proofs semantically”. Syntactic approaches would include the use of ideas ”from

’proof mining’ (which are useful, for instance, in converting ’infinitary’ proofs to

’finitary’ ones or vice versa). One can also work in the spirit of ’reverse

mathematics’: declare a certain ’base theory’ to be ’obvious’, and then isolate

the few remaining non-obvious steps in a proof which are external to that

theory”. For Pythagoras’ theorem in Euclidian geometry, for instance, one could

use as a base theory ”the strictly smaller theory of affine geometry, which can

handle concepts such as linear algebra and area, but not lengths, angles, and

rotations”, deconstruct here a proof for this theorem ”and what one eventually

observes is that at some point in that proof one must (implicitly or explicitly)

use the fact that rotations preserve area and/or length. By isolating the one or
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two non-affine steps in the proof one can get a handle on the extent to which

two proofs of Pythagoras are ’equivalent’”. The algorithmic approach, similar

to the syntactic one, works if the proof can be expressed as an algorithm. Given

two constructions A and B, a ”crude way to detect differences between these

constructions is to look at their complexity: for instance, Construction A might

be polynomial time and Construction B be exponential time”. But if both are

exponential time, construction B ”is equivalent to Construction A if one could

run Construction B in (say) polynomial time assuming that every step in

Construction A could be called as an ’oracle’ in O(1) time, and vice versa. This

would say that, modulo polynomial errors, Construction A and Construction B

use the ’same’ non-trivial ingredients, though possibly in a different order. (...)

That would be a convincing way to conclude that Steinitz is ’essentially a

special case of’ Gaussian elimination”. The conceptual approach seems harder

to formalise: ”two different proofs of the same result (or of analogous results in

different fields) are somehow ’facing the same difficulty’, and ’resolving it the

same way’ at some high level, even if at a low level the two proofs and results

are quite different (...) One could imagine in those cases that there is some

formal Grothendieckian abstraction in which the two proofs could be viewed as

concrete realisations of a single abstract proof, but in practice (especially when

’messy’ analysis is involved) I think one has to instead proceed non-rigorously,

by deconstructing each proof into vague, high-level ’strategies’ and ’heuristics’

and then comparing them to each other” (Ibid).

One might argue that the first and the fourth could well constitute one

approach and the second and the third another one, following general lines from

the philosophy of mathematics. One example of this last kind of studies could

be Leitgeb ([125]), who maintains that the informal proofs differ from the

formal proofs due to the fact that they are characterised by semantic and

intuitive components. Semantic means that the terms and sentences occurring

in such proofs have a meaning and are therefore open to interpretation. The

intuitive aspect refers to the choices of the elementary steps of the proof and
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the axioms adopted. But the distinctions operated by Tao are too valuable from

a mathematical practice perspective to be ignored. They highlight subtleties

that should forbid a quick reduction.

These various questions and approaches point to an elusive element that is

neither purely syntactic, nor purely semantic, and which could be considered as

a certain kind of order in connection to the very general notion of mathematical

knowledge. It is a condition of possibility for arranging the mathematical

knowledge on solid basis that can only be determined by mathematical practice.

It represents the space in which hypotheses, mathematical and logical, are

conceptualised, formulated, and connected to other mathematical content.

As far as analogies go, it can be connected to Plato’s notion of the ”bastard”

kind of reasoning used to introduce the Receptacle in Timaeus. First and

foremost, it points to the existence of different kind of reasoning. It is the

unique nature of the Receptacle which demands this specific kind of reasoning,

different from the understanding used to grasp the Forms, or the opinion and

sensation that apprehend the becoming of the physical objects. As many

commentators have emphasized, the employment of the term bastard (nōthos)

does not have pejorative connotations. Besides emphasizing the methodological

aspects I mentioned above, it offers some new insights into the essence of

metaphysical approach itself, as pointed out by Naomi Reshotko: ”Plato’s

statement that the Receptacle is introduced through a bastard sort of reasoning

should not be taken as a negative statement concerning what we ultimately find

in Plato’s ontology. Plato is simply confirming his conviction that, when we do

metaphysics, we don’t have the luxury of discovering a priori or necessary

truths, nor do we have the comfort of seeing or intuiting that that which seems

the best explanation for our experience must be either the true or the only

explanation. Plato faces up to the fact that when we do metaphysics, we risk

everything. We cannot do metaphysics without taking the chance that we are

dead wrong as we somehow, by the skin of our teeth, by the seats of our pants,

venture into completely uncharted territory - territory where assuming the
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existence of a legitimate compass is obviously and necessarily assuming far too

much from the outset, and threatens to get us further lost rather than help us

find our way. In using the term nothos Plato demonstrates his concern that to

assume the existence of a legitimate compass in the form of some preordained or

codifiable piece of reasoning is to degrade the integrity with which we begin our

search into the question ’what is?’ ” ([172], pp. 134-5).

Just a small note: metaphysics here is not equivalent to ontology, quite the

opposite, it offers the context of attributing truth to objects, making them suches

instead of thises6. And, in this context, one could easily replace ’metaphysics’

with ’mathematics’.

6the physical objects are not objective entities with stable identities, but fleeting properties
of some further, underlying this).
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Concluding remarks

We approached the universality problem in different contexts, many presented

probably too concisely and not exhaustively from the point of view of references.

And there are of course other suitable frameworks for analysis. But, like the

current state of the universality problem in set theory and model theory, choice

is also open and, once configured in the form of a question or investigation,

becomes determined by formal (and informal) requirements.

Set theory and model theory represent theories able to offer valuable insights

regarding the notion of mathematical knowledge and mathematical practice and

even offer the possibility of further (philosophical) interrogations. The notion of

universal object and the universality problem constitute a very rich conceptual

space offering accordingly a good contextual framework for analysis.

We have described above some instances in which the universality problem in

set theory and model theory is related to and determined the constitution and

development of new mathematical proofs and techniques, and, as such, led to new

ways of hypothesising about mathematical content and providing (mathematical)

knowledge.

One of the central topics in model theory is represented by the classification

theory for elementary classes, i.e., the classes of models of a first order theory,

with the aim of finding dividing lines (by determining a structure theory for the

models on one hand, and probing how complicated they are, on the other), and
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using good test problems, like universality. There is still work taking place in this

regard, with researchers like Shelah attempting to find, like in all his endeavours,

the most general theses.

Universality in set theory is, due to its nature, connected to other subjects and

problems, and is inextricably determined and shapes different lines of inquiry

and proof methods. The hierarchy of the infinite offers complex challenges in

finding universal objects, and although there are many results regarding the first

uncountable cardinal, there are less when we move to the next. One is still to

find the universe in which there is a universal Aronszajn tree at ℵ1 (or ℵ2), for

instance. There are many researchers in this area, some of them mentioned with

different results throughout this text. Their work is connected to different aspects

of this topic, but also to (many) others, determining a continuously expanding

field of mathematical knowledge. It is not a unique feature of set theory or of

this particular topic, but different topics and different areas of mathematics offer

unique perspectives that are unavailable to others.

Consequently, it is not necessary to look for a certain kind of unification, in the

form of a unique foundation for the entire mathematics, for instance. It might

be more interesting to follow the movements and connections in this vast and

complex area of knowledge, and maybe abstracting it to even more general forms

of knowledge. Is it another question, to be asked of mathematicians and others

researches as well, if such an endeavour is possible or even desirable.



8

Bibliography

[1] Uri Abraham and Saharon Shelah. Isomorphism types of Aronszajn trees.

Israel Journal of Mathematics, 50(1-2):75–113, 1985.

[2] Giorgio Agamben. The Signature of All Things. On Method. Zone Books,

2009.

[3] Arthur W. Apter and James Cummings. A global version of a theorem of

ben-david and magidor. Annals of Pure and Applied Logic, 102:199–222,

2000.

[4] Aristotle. Metaphysics, Translated, with Introduction and Notes by C. D.

C. Reeve. Hackett Publishing Company, 2016.

[5] Jeremy Avigad. Understanding proofs. In Paolo Mancosu, editor, The

philosophy of mathematical practice. Oxford University Press, 2008.

[6] John T. Baldwin. Model Theory and the Philosophy of Mathematical

Practice. Formalization without Foundationalism. Cambridge University

Press, 2018.

[7] John T. Baldwin. The dividing line methodology: Model theory motivating

set theory. Theoria, A Swedish Journal of Philosophy, 87(2):361–393, April

2021.

[8] J. Baumgartner, J. Malitz, and W. Reinhardt. Embedding trees in the

rationals. Proceedings of the National Academy of Sciences of the United

States of America, 67:1748–1753, 1970.



Chapter 8: Bibliography 262

[9] James E. Baumgartner. Almost-disjoint sets the dense set problem and the

partition calculus. Annals of Mathematical Logic, 10:401–439, 1976.

[10] James E. Baumgartner. Iterated forcing. In A.R.D. Matthias, editor,

Surveys in Set Theory, number 87 in Londlon Mathematical Society Lecture

Note Series, pages 1–59. Cambridge University Press, 1983.

[11] James Earl Baumgartner. Results and independence proofs in combinatorial

set theory. PhD thesis, University of California, Berkley, Mathematics,

1970.

[12] Robert Emile Beaudoin. On uncountable trees and linear orders. phdthesis,

Dartmouth College, Hanover, New Hampshire, September 1984.

[13] Andreas Blass. Set theories without ”junk” theorems?

https://mathoverflow.net/users/6794/andreas-blass, 2012.

URL:https://mathoverflow.net/q/90945 (version: 2012-03-11).

[14] Bernard Bolzano. Contributions to a better-grounded presentation of

mathematics ii. In Steve Russ, editor, The Mathematical Works of Bernard

Bolzano, pages 87–137. Oxford University Press, 2004.

[15] Samuel R. Buss, Alexander S. Kechris, Anand Pillay, and Richard A. Shore.

The prospects for mathematical logic in the twenty-first century. The

Bulletin of Symbolic Logic, 7(2):169–196, 2001.

[16] Georg Cantor. Foundations of a general theory of manifolds: a

mathematico-philosophical investigation into the theory of the infinite.

In William Ewald, editor, From Kant to Hilbert: A Source Book in

theFoundations of Mathematics II, pages 878–920. Oxford University Press,

2005.

[17] Carlo Cellucci. Filosofia e matematica. Laterza, 2002.

[18] Carlo Cellucci. Philosophy of mathematics: Making a fresh start. Studies

in History and Philosophy of Science, 44:32–42, 2013.



Chapter 8: Bibliography 263

[19] Carlo Cellucci. Rethinking Logic: Logic in Relation to Mathematics,

Evolution, and Method, volume 1 of Logic, Argumentation and Reasoning.

Springer Science+Business Media, 2013.

[20] Carlo Cellucci. Rethinking Knowledge. The Heuristic View. Number 4 in

European Studies in Philosophy of Science. Springer, 2017.

[21] C.C. Chang and H.J. Keisler. Model Theory. North Holland, third edition,

1990.

[22] Gregory L. Cherlin. The Classification of Countable Homogeneous

Directed Graphs and Countable Homogeneous n-tournaments, volume 621

of Memoirs AMS. American Mathematical Society, 1998.

[23] Artem Chernikov, Itay Kaplan, and Saharon Shelah. On non-forking

spectra. Journal of the European Mathematical Society (JEMS),

18(12):2821–2848, 2016.

[24] Alonzo Church. Paul Cohen and the Continuum Problem. In

I. G. Pterovsky, editor, Proceedings of International Congress of

Mathematicians, pages 15–20, Moscow, 1968. Mir Publishers.

[25] Paul J. Cohen. Set Theory and the Continuum Hypothesis. Addison–Wesley,

1966.

[26] James Cummings. Souslin trees which are hard to specialise. In Proceedings

of the American Mathematical Society, volume 125, pages 2435–2441,

August 1997.
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[65] Roland Fräıssé. Theory of relations, volume 145 of Studies in Logic and the

Foundations ofMathematics. North-Holland Publishing Co., Amsterdam,

revised edition edition, 2000. Translated from the French.

[66] Gottlob Frege, editor. The Foundations of Arithmetic: A Logico-

Mathematical Enquiry Into the Concept of Number, translated by J.L.

Austin. Northwestern University Press, 1960.

[67] Harvey Friedman. Countable models of set theories. In Cambridge Summer

School in Mathematical Logic, volume 337 of Lecture Notes in Mathematics,

pages 539–573. Springer, 1971.

[68] Harvey Friedman. On closed sets of ordinals. In Proceedings of the American

Mathematical Society, volume 43, pages 190–192, 1974.

[69] Haim Gaifman. Non-standard models in a broader perspective. In Ali

Enayat and Roman Kossak, editors, AMS Special Session Nonstandard

Models of Arithmetic and Set Theory (2003 : Baltimore, Md.), number

361 in Contemporary mathematics, pages 1–22. American Mathematical

Society, 2004.

[70] Haim Gaifman and E. P. Specker. Isomorphism types of trees. Proceeding

of the American Mathematical Society, 15:1–7, 1964.

[71] Shimon Garti. Yablo’s paradox and forcing. Thought: A Journal of

Philosophy, 10:28–32, 2021.

[72] Mohammad Golshani and Yair Hayut. The special aronszajn tree property.

Journal of Mathematical Logic, 20(1):2050003, 2020.



Chapter 8: Bibliography 268

[73] Timothy Gowers, June Barrow-Green, and Imre Leader. The Princeton

Companion to Mathematics. Princeton University Press, USA, illustrated

edition, 2008.

[74] W. T. Gowers. The two cultures of mathematics. In P. Lax V. Arnold,

M. Atiyah and B. Mazur, editors, Mathematics: frontiers and perspectives,

pages 65–78. American Mathematical Society (AMS), 2000.

[75] W. T. Gowers. Does mathematics need a philosophy? In Reuben Hersh,

editor, 18 Unconventional Essays on the Nature of Mathematics, chapter 10,

pages 182–200. Springer Science, New York, NY, 2006.

[76] John Gregory. Higher Souslin Trees and the Generalized Continuum

Hypothesis. Journal of Symbolic Logic, 41(3):663–671, 1976.

[77] Stephen Grimm. Is understanding a species of knowledge? The British

Journal for the Philosophy of Science, 57(3):515–535, 2006.
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editors, Selected papers of Duro Kurepa, pages 165–186. Matematički
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