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Summary

In this thesis, the distributive proper forcing axiom (DPFA) is studied. On one hand,

DPFA implies c = ℵ2. On the other hand, assume the consistency of the existence

of a supercompact cardinal, DPFA is consistently true with many consequences of

CH, such as cardinal invariants of the continuum being ℵ1 and the existence of non

isomorphic ℵ1- dense subsets of the real line. An application of these results is that

DPFA can be separated from other fragments of PFA.
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Conventions and Notations

Notations used in this thesis are standard.

Ord,Card, Lim denotes the class of ordinals, cardinals and limit ordinals respec-

tively.

P(A) denotes the power set of A.

For a cardinal κ, Pκ(A) = [A]<κ = {X ⊆ A : |X| < κ}.

[A]κ = {X ⊆ A : |X| = κ}, [A]≤κ = {X ⊆ A : |X| ≤ κ}.

If p, q are sequences, then p ⊇e q stands for “p end extends q”. If p, q are sets of

ordinals, then p ⊇e q stands for p ⊇ q and ∀α ∈ q ∀β ∈ p \ q(α < β).

FIN is the Fréchet ideal, which consists of finite subsets of the underlying set.

A ⊆∗ B is short for the statement: A \ B is finite.

∀∞n abbreviates for ∃ m ∈ ω ∀ n ≥ m; dually, ∃∞n is an abbreviation for

∀ m ∈ ω ∃ n ≥ m.

Fn(I, J, κ) = { f : I → J
∣∣∣ | f | < κ}, Fn(I, J) = Fn(I, J, ω).

L denotes the collection of null sets, B denotes the collection of meager sets.

For a linear order (A, <), (a, b) denotes the interval {x ∈ A | a < x < b}.
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Chapter 1

Introduction

Forcing is powerful in consistency proofs of mathematical statements. Since its

birth in the proof of non-provability of continuum hypothesis in the usual formal

axiom system of mathematics in 1963 [14] [15], forcing has been studied deeply and

various applications have been found in mathematical logic as well as in analysis,

algebra and topology. Forcing axioms were sometimes regarded as “black boxes”

for people from different branches of mathematics to gain some power of forcing

without getting into technical details of consistency proofs. Classical examples of

forcing axioms are Martin’s Axiom and Proper Forcing Axiom. We will be of special

interest in a fragment of PFA which focuses on those partial orders that does not

introduce new countable sequence of ordinals. In this chapter, we briefly review

forcing, forcing axioms and other related background materials.

1.1 Continuum Hypothesis

The Zermelo-Fraenkel axiom system (ZF for short) is commonly accepted as the

foundation of mathematics. An additional axiom, the axiom of choice, is usually re-

quired in dealing with infinite objects. It was the analysis of such objects, especially

the real line, that led to the research work in set theory. Cantor proved in the 19th
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century that the size of the real line is uncountable and conjectured that it is the first

uncountable cardinal.

This conjecture is known as continuum hypothesis (CH for short). CH simplifies

the structure of the real line and hence has wide applications (see [48] for examples).

At this point, it is interesting to know whether CH itself is provable or disprovable

in ZFC. This problem became the first one in Hilbert’s famous list of 23 problems.

For centuries, people used to label mathematical statements with “True” or

“False”. The situation was changed completely by Gödel’s Incompleteness Theo-

rems [20], which implies that if ZFC is consistent, then there are statements neither

provable nor disprovable by the ZFC axiom system. Combine this with Gödel’s

Completeness Theorem [19], it is equivalent to say that such statement survives in

one model, but dies in another.

Later, Gödel built a constructible universe L [21] and showed that CH holds in it.

L is a class model of set theory. In fact it is the minimal one among all class models.

As a corollary, CH is not refutable by ZFC. However, this universe seems to be

too idealized. Gödel pointed out several phenomena that indicated the possibility of

failure of CH.

This possibility was confirmed in 1960s when Cohen discovered the method of

forcing. Generally speaking, forcing is a way to extend models of set theory or its

fragments, to add designated “generic objects” to the “ground model” while preserv-

ing the class of ordinals. Therefore, CH could be violated by adding enough reals

to the ground model (additional arguments are needed, such as the preservation of

cardinals). Thus CH is not provable from ZFC. Combining these two together, it

can be concluded that it is independent.
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1.2 Forcing

In this section, we review some basic facts about forcing. The reader is referred to

the standard textbooks [32] and [34] for a complete introduction to forcing. [16] is a

wonderful survey on forcing and especially on iterated forcing.

1.2.1 Forcing

A notion of forcing is a pre-ordering. One may also use a partial order or a complete

Boolean algebra instead. Any of the three provides essentially equivalent approach

to the theory of forcing. Suppose ϕ is a statement which is true if some witness

is found. We wish to build some model with such a witness. Assume we have

a “ground model” M, namely a model of ZFC that we start with. Without loss

of generality, assume M � ¬ϕ. Find in M a notion of forcing P which contains

information to approximate the witness we need. A filter on P consists of non-

conflicting elements of P. If the filter is “big enough”, then the approximation can

be achieved. Formally speaking, if a filter G is “generic”, then M[G], a larger model

of ZFC, can be constructed. Each element of M[G] has a “name” in M. M[G] is the

collection of all interpretations of (M,P)-names with respect to the generic filter G.

M[G] contains the same ordinals as M and additionally the required witness.

However, this does not mean that M[G] � ϕ, since ϕ may have new explanation

in M[G]. Either we are lucky enough to obtain the absoluteness for some objects

involved in ϕ and succeed to get the consistency of ϕ, or we need further forcing

to deal with the new situation in M[G]. In the former case, we need to argue the

preservation of certain properties such as cardinality, cofinality or stationarity. In the

latter case, iterated forcing would be needed. There is a third case, namely no matter

how hard we work, ϕ can never be forced to be true.

For example, let P be the partial order consists of finite partial functions from ω
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into 2. The order on P is reverse extension. Then a filter on P gives a partial function

from ω into 2 and a generic filter “codes” a function from ω into 2. In other words, a

generic filter corresponds to a real number. By genericity, this real has to be different

from the ones in the ground model. We see that the generic real is approximated by

its finite parts, which are elements of P.

We defer the discussion of the second case. As an example for the third case, let

ϕ be the statement c = ℵ0. Cantor showed ZF ` ¬ϕ and so we can not expect to

force ϕ. If we naively take P to be the partial order which consists of finite partial

functions from ω into the “reals” and is ordered by reverse extension, then we find

in the generic extension a surjection from ω into the “reals”. However, new reals

would appear and the surjection is fake in the generic extension.

We adopt the notation of [34]. For two elements p and q from a notion of forcing

P, p ≤ q means p contains more information than q. In many cases, we use V to

denote the ground model. We may use VP, other than V[G], to denote the generic

extension if it is unnecessary to specify the generic filter.

The following facts are frequently quoted.

Fact 1.1. 1. If p 
 ϕ, then for any generic filter G 3 p, V[G] � ϕ.

2. If V[G] � ϕ, then there is some p ∈ G, p 
 ϕ.

3. If p 
 ∃x ϕ(x), then there is a P-name τ in V, p 
 ϕ(τ).

1.2.2 Chain Condition, Distributivity and Closure Property

A notion of forcing has countable chain condition (c.c.c.) if every antichain is count-

able. A typical example is the collection of nonempty open subsets of the real line

ordered by inclusion. This partial order actually satisfies a stronger property: sep-

arability. Separable partial orders play the same role as a countable partial order;

namely, they add the same generic objects.
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c.c.c. partial orders are very useful since they preserve cardinals and cofinalities.

Chain conditions can be generalized to any cardinal κ: a notion of forcing has

κ chain condition (κ − c.c.) if every antichain has cardinality less than κ. Hence,

ℵ1 − c.c. is same as c.c.c.

If P satisfies κ − c.c., then every cardinal ≥ κ is preserved by P.

In order to preserve cardinals, closure or distributivity might also be required.

A partial order is κ-closed, where κ ≥ ℵ1 is a cardinal, if for every λ < κ, every

decreasing sequence 〈pα : α < λ〉 ⊆ P, there exists a p ∈ P such that ∀α < λ, p ≤ pα.

We also abuse the notion of ω - closed or countably closed to mean ℵ1-closed.

A partial order is κ-distributive, where κ ≥ ℵ1 is a cardinal, if it does not introduce

new sequence of ordinals with length < κ. It is distributive iff it is ℵ1- distributive.

If P is κ-closed, then it is κ-distributive. If P is κ-distributive, then every cardinal

≤ κ remains a cardinal in VP.

1.2.3 Properness

On the other hand, properness concerns about the preservation of stationary sets.

Jech [27] generalized the notion of club subsets and stationary subsets of a regu-

lar uncountable cardinal to spaces of the form Pκ(X), where X is an uncountable set

and κ ≤ |X| is a regular cardinal:

Definition 1.2. 1. C ⊆ Pκ(X) is unbounded, if ∀x ∈ Pκ(X), ∃y ∈ C such that

x ⊆ y.

2. C ⊆ Pκ(X) is closed, if for any ⊆-increasing sequence 〈xα : α < µ〉 ⊆ C, where

µ < κ,
⋃

α<µ xα ∈ C.

3. C ⊆ Pκ(X) is a club, if it is both closed and unbounded.

4. S ⊆ Pκ(X) is stationary, if for any club C ⊆ Pκ(X), S ∩C , ∅.
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Shelah [42] introduced properness: A notion of forcing P is proper, if for any

uncountable cardinal λ, for any stationary subset S ⊆ Pℵ1(λ), S remains stationary

in VP.

There are several equivalent formulations of properness, and the most popular

one is:

Definition 1.3. P is proper, if for any regular cardinal λ > (2|P|)+, there is a club

C ⊆ Pℵ1(Hλ) s.t. for any M ∈ C, M is a countable elementary submodel of 〈Hλ, ∈,P〉

and ∀p ∈ M ∩ P,∃q ≤ p s.t. q 
 Ġ ∩ M is (M,P ∩ M)- generic.

Remark 1.4. 1. We will use the term “λ is large enough” to mean λ > (2|P|)+.

2. Let “q is (M,P)-generic” be short for “q 
 Ġ ∩ M is (M,P ∩ M)- generic”.

Proper forcing is a wide class, since

Lemma 1.5. (1) Every c.c.c. forcing is proper.

(2) Every ℵ1 - closed forcing is proper.

However, distributivity does not imply properness. The forcing “club-shooting”

in [9] is distributive but destroys a stationary subset of ω1, and hence is not proper.

Proper forcing preserves ℵ1, since

Lemma 1.6. If P is proper, A ∈ VP is a countable set of ordinals, then there is a

B ∈ V, a countable set of ordinals s.t. A ⊆ B.

1.2.4 Iterated Forcing

Now we discuss the second case in the section 1.2.1. A generic extension VP is itself

a model of ZFC and thus can also be regarded as a “ground model”; namely, we

can pick up a partial order Q ∈ VP and form the two-step iteration P ∗ Q in V and

the corresponding generic extension is VP∗Q = (VP)Q. We can generalise this process
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to any finite steps without any problem. The main difficulty is how to pass over the

limit steps.

Let 〈(Pn,Qn) : n < ω〉 be a sequence of partial orders in the above pattern: Qn is

a notion of forcing in VPn and VPn+1 = (VPn)Qn .

Pn consists of sequences with length n. Pn is an n-step iteration and each Qk,

where k < n, is called an iterand of Pn. Notice that Pn+1 � n = Pn.

We wish to define Pω. One possible approach is that Pω consists of all sequences

〈qn : n ∈ ω〉 s.t. ∀m 〈qn : n ∈ m〉 ∈ Pm. This collection is the maximal one we can

form.

Another approach to define Pω involves the consideration of “compactness”. For

this purpose, assume each partial order Qn has a largest element 1Qn . Define for

p = 〈qn : n ∈ ω〉, the support of p, spt(p) = {n ∈ ω : qn , 1Qn}. Let Pω be the

collection of all sequences p = 〈qn : n ∈ ω〉 s.t. ∀m p � m ∈ Pm and spt(p) is

bounded in ω.

The first approach is called “inverse limit” at stage ω, and the second is called

“direct limit” at stage ω. One can easily generalize it to any limit stage. If direct

limit is taken at any limit stage, then the support of any condition is finite. Such an

iteration is called “finite support iteration”.

Solovay and Tennenbaum proved in [50] that it is consistent that there is no

Souslin tree. Starting with a model with a Souslin tree T , one can “kill” T by adding

an uncountable branch to it. We can also list all Souslin trees in the ground model

and eliminate them one by one. However, new Souslin trees may occur while old

ones are killed. Fortunately, Solovay and Tennenbaum proved that a finite support

iteration of c.c.c. forcing is c.c.c. (or the property of being c.c.c. is preserved under

finite support iteration). By using a ω2-step finite support iteration, with iterands

suitably arranged, one can build the model Pω2 . Each “potential Souslin tree” in Pω2

comes from an intermediate step and is therefore killed in latter steps. So there will
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be no Souslin tree in the last model.

For proper forcing, Shelah [42] proved that properness is preserved under count-

able support iteration, in which inverse limits are taken at stages with cofinality ω

and direct limits are taken elsewhere. This fact is fundamental in many proofs today.

It is worth noting that distributivity is not preserved in many cases. For instance,

a finite support iteration of nontrivial iterands will always add Cohen reals. Similarly,

a countable support iteration of nontrivial ℵ2 - distributive forcing notions is not ℵ2

- distributive.

1.3 Forcing Axioms

A forcing axiom describes that for any forcing in a certain class, for any collection

of dense subsets satisfying a prescribed property, there is a filter meet every dense

subset in the collection.

1.3.1 Martin’s Axiom

Martin’s Axiom was isolated by Martin and Solovay [37].

Definition 1.7. For a cardinal κ, MA(κ) is the following statement: If a nontrivial

forcing P is c.c.c., D is a collection of dense subsets of P, |D| ≤ κ, then there is a

filter G ⊆ P s.t. ∀D ∈ D,G ∩ D , ∅.

Remark 1.8. 1. Notice that MA(ω) is always true and MA(2ω) is always false,

MA(κ) makes sense only when ω ≤ κ < 2ω. MA is the statement: ∀κ <

2ω,MA(κ).

2. MA(κ) is equivalent to the form in which partial orders are “small”: If a

nontrivial forcing P is c.c.c. and have size ≤ κ, D is a collection of dense

subsets of P, |D| ≤ κ, then there is a filter G ⊆ P s.t. ∀D ∈ D,G ∩ D , ∅.
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The class of c.c.c. forcing is the most commonly known family of partial orders

that arise in the study of analysis and topology; so MA is formed naturally. Histori-

cally, its formulation was motivated by [50].

Clearly MA follows from the continuum hypothesis. It is proved in [37] that MA

is also consistent with the failure of continuum hypothesis. Many consequences have

been found in [37] under the assumption of MA and larger continuum. For instance,

Souslin’s hypothesis holds and Borel’s conjecture fails.

On the other hand, MA alone is sufficient to extend the properties of countable

subsets of the real line to those with cardinality less than the continuum. For instance,

the study of cardinal invariants of the reals is trivialized if MA is assumed. Martin

and Solovay proved that if MA holds, then add(L) = c (See Chapter 3 for definition).

As a corollary, MA implies that c is a regular cardinal. Since almost all other cardinal

invariants are not less than add(L), they equal to c in a model of MA.

Martin’s Axiom succeeded in opening a new area for set theorists and set-

theoretic topologists.

However, weaknesses had been found for the practice of MA. For example,

Baumgartner [5] showed that it is consistent to have 2ω = ω2 with all ℵ1 - dense

subsets of the real line are order isomorphic (See Chapter 2 for definition). Avaraham

and Shelah [2] showed that MA +¬CH is not enough to guarantee the isomorphism.

We will return to this topic in Chapter 2. It can be concluded that MA lacks the

power in dealing with more complicated structures.

1.3.2 Proper Forcing Axiom

PFA is the statement: If P is proper,D is a collection of dense subsets of P, |D| = ℵ1,

then there is a filter G ⊆ P s.t. ∀D ∈ D,G ∩ D , ∅.

Remark 1.9. 1. Since every c.c.c. forcing is proper, PFA is a generalization of

MA(ω1).
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2. PFA(ω2), if being defined analogically as MA(ω2), is false. Since

Fn(ω1, ω2, ω1) is ω-closed, it is proper.

Baumgartner [8] made the first step in studying the effect of proper forcing axiom

in various contexts. It was argued that many problems which were proved unsolvable

or left unsolved by MA could have a definite answer in the presence of PFA. One

significant example found by Baumgartner is that PFA implies that there is only one

equivalence class of ℵ1-dense sets of reals under order isomorphism. The result was

further developed by Moore [39] to obtain five uncountable linear orders which form

a basis for all uncountable linear orders. Moore also introduced the Mapping Reflec-

tion Principle (MRP) [38], which becomes recently a popular candidate between

PFA and its applications.

Besides the structure of the real line, Baumgartner [8] showed that PFA is able to

deduce club-isomorphism between any two Aronszajn trees, chain-antichain prop-

erty of P(ω) and to trivialize every automorphism of P(ω)/FIN. Many other inter-

esting properties were studied in this fruitful work.

PFA also has impact on cardinal arithmetic. Todorc̆ević [11] and Velic̆ković [56]

showed that PFA ` c = ℵ2. Thus PFA is quite different from its c.c.c. fragment,

MA. Several principles such as Open Coloring Axiom (OCA) [54] and P-Ideal Di-

chotomy (PID) [55] were studied along the way. These principles follow from PFA

and capture many consequences of PFA. Later, Viale [58] proved that the Singular

Cardinal Hypothesis (S CH) follows from PFA. In fact, Viale showed in his PhD

thesis [57] that S CH holds in a model satisfying either PID or MRP, while the lat-

ter two statements are mutually independent. In other words, two provably different

approaches were provided in this thesis to show the implication of S CH from PFA.

As pointed out by Baumgartner [8], the power of PFA might be explained by

its large cardinal strength. Starting from a model with a supercompact cardinal, a

model satisfying PFA could be constructed with the assistance of a Laver function.
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For the lower bound, Todorc̆ević [53] proved that the principle of squares fails in the

presence of PFA, and hence an inner model with Woodin cardinals would exist.

1.3.3 Fragments of PFA

We will mainly be interested in the following fragments of PFA: ω − PFA, < ω1 −

PFA, BPFA and DPFA. Each of these fragment captures many consequences of

PFA. We wish to know the relationship between them.

In some applications of PFA, each relevant dense subset has cardinality ≤ ℵ1.

Definition 1.10. [23] The Bounded Proper Forcing Axiom (BPFA) is the statement:

If P is proper, D is a collection of dense subsets of P, |D| = ℵ1, and each D ∈ D,

|D| ≤ ℵ1, then there is a filter G ⊆ P s.t. ∀D ∈ D,G ∩ D , ∅.

Remark 1.11. As the name indicates, BPFA deals with dense subsets whose cardi-

nality have a bound ℵ1. By Remark 1.8, BPFA implies MA(ω1).

We refer to section 1.2.2 for the notion of distributivity.

Lemma 1.12. Suppose P is proper, then P is distributive if and only if it adds no

new real.

Proof: The “only if” part is trivial since each real is a countable sequence of

ordinals. For the “if” part, suppose X ∈ VP \ V, and VP � X is a countable set of

ordinals. Then by Lemma 1.6, there is some Y ∈ V, a countable set of ordinals such

that X ⊆ Y . Let π ∈ V be a bijection between ω and Y , then π−1(X) is a real. Since

π−1 ∈ V, this real must be a new real. �

Definition 1.13. The Distributive Proper Forcing Axiom (DPFA) is the statement:

If P is distributive and proper, D is a collection of dense subsets of P, |D| = ℵ1, then

there is a filter G ⊆ P s.t. ∀D ∈ D,G ∩ D , ∅.
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Remark 1.14. • In [18], a property called “totally proper” was defined and

proved to be equivalent to “distributive proper” we use here.

• This forcing axiom is originally studied by Magidor and is denoted by

“PDFA” in an unpublished note.

Definition 1.15. [46] For a partial order P, a regular cardinal λ that is large enough,

and an ordinal 0 < α < ω1, say 〈Mβ : β < α〉 is an α-tower for P on Hλ, if

• Each Mβ is a countable elementary model of Hλ and P ∈ Mβ,

• If β < γ < α, then 〈Mδ : δ ≤ β〉 ∈ Mγ,

• If γ < α is a limit ordinal, then Mγ =
⋃

β∈γ Mβ.

Definition 1.16. P is α-proper, where 0 < α < ω1, if for any α-tower 〈Mβ : β < α〉

for P, for any p ∈ M0 ∩ P, there is a q ∈ P, q ≤ p such that ∀β < α, q is (Mβ,P)−

generic.

Definition 1.17. P is < ω1-proper, if ∀α < ω1, P is α- proper.

Lemma 1.18. 1. Properness is 1-properness,

2. If P is α- proper and 0 < α′ < α, then it is α′- proper,

3. If P is α- proper, then it is α + 1 -proper,

4. If α = α1 + α2, P is both α1- proper and α2- proper, then it is also α- proper.

Theorem 1.19. [46] α-properness is preserved under countable support iteration.

Definition 1.20. [7] A notion of forcing P = 〈P,≤〉 satisfies Axiom A, if there is

〈≤n: n ∈ ω〉 such that:

• Each ≤n is a partial order on P,

• ≤ ⊇ ≤0 ⊇ ≤1 ⊇ ≤2 . . .,

12



• If 〈pn : n ∈ ω〉 is a sequence such that ∀n pn ≥n pn+1, then

∃ q ∈ P∀n ∈ ω(q ≤n pn)

• For each p ∈ P and n ∈ ω, if 
 α̇ is an ordinal, then there is q ≤n p and a

countable set of ordinals X such that q 
 α̇ ∈ X.

Lemma 1.21. The following are true:

1. If P has c.c.c., or is countably closed, then it satisfies Axiom A.

2. If P satisfies Axiom A, then it is proper. In fact, it is < ω1-proper.

Ishiu [26] showed that the converse is true:

Theorem 1.22. If P is < ω1-proper, then there is some Q satisfying Axiom A and

π : Q→ P such that the range of π is dense in P.

Hence, we obtain the following diagram (where “→” stands for “implication in

the sense of forcing” and κ ≥ ℵ1):

κ − closed

��

// κ − distributive

��
ℵ1 − c.c. = c.c.c.

�� **

ℵ1 − closed = ω − closed

��

//

  

ℵ1 − distributive = distributive

κ − c.c. Axiom AOO

��
< ω1 − proper

��
ω − proper

��
proper =< ω − proper DP = distributive and properoo

OO

Let C be a class of forcing notions. Define FA(C) to be the statement: If P ∈ C,

D is a collection of dense subsets of P, |D| = ℵ1, then there is a filter G ⊆ P s.t.

∀D ∈ D,G ∩ D , ∅.
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Hence, FA(c.c.c.) is MA(ω1), FA(proper) is PFA and FA(DP) is DPFA, as

defined above. Similarly, let ω − PFA be FA(ω − proper) and < ω1 − PFA be

FA(< ω1 − proper).

The forcing axioms of these classes of forcings admit the same diagram, with all

arrows inverted:

FA(κ − closed) FA(κ − distributive)oo

MA(ω1) FA(ℵ1 − closed)

OO

FA(ℵ1 − distributive)oo

OO

��

FA(κ − c.c.)

OO

FA(Axiom A)

OOii

< ω1 − PFA
��

OO

ω − PFA

OO

PFA

OO

// DPFA

\\

Remark 1.23. FA(κ − c.c.) makes little sense. If P = Fn(ω,ω1), then P has size ℵ1

and hence has ℵ2-c.c. But FA(P) is false!

Lemma 1.24. FA(Axiom A) holds iff < ω1 − PFA holds.

Proof. The “if” part follows from Lemma 1.21. For the “only if” part, let P

be < ω1- proper. Let 〈Dα : α < ω1〉 be a collection of dense subsets of P. By

Theorem 1.22, let Q satisfy Axiom A and π : Q → P be a dense embedding. Let

Eα = {q ∈ Q : ∃p ∈ Dα π(q) ≤ p} for each α < ω1, then each Eα is dense in Q.

Apply FA(Axiom A), let H ⊆ Q be a filter which meets each Eα, say qα ∈ H ∩ Eα.

Let G = {p ∈ P : ∃q ∈ H(p ≥ π(q))}, then G ⊆ P is a filter. By definition of Eα, let

pα ∈ Dα, π(qα) ≤ pα. But qα ∈ H, so pα ∈ G. Hence G ∩ Dα , ∅. �

The more interesting question would be that whether the implications in the dia-

gram can be reversed. We will continue with this topic in Chapter 4.
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Before we proceed to the result chapters, a few words about the motivation will

be necessary. In a unpublished note, Menachem Magidor proved that it is consistent

relative to a supercompact cardinal that DPFA holds and for each infinite cardinal

κ, �κ,ℵ1 holds. This provides evidence that though DPFA implies ¬CH, there is a

chance that DPFA is consistent with some consequences of CH.
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Chapter 2

DPFA and Order Type of the Real

Line

In this chapter, we consider the effect of forcing axioms on the ordered structure of

the real line.

Definition 2.1. Let A, B be linear orders.

1. A and B are isomorphic, denoted by A ' B, if ∃ f : A → B, a bijection which

preserves the order.

2. A is embedable into B, denoted by A � B, if ∃ f : A → B which is strictly

order preserving. In other words, A is isomorphic to a subset of B.

Definition 2.2. Let C be a collection of linear orders, a subset B ⊆ C is a basis if

∀A ∈ C ∃B ∈ B (B � A).

Notation 2.3. If A is a linear order, let A∗ denote the linear order obtained by reverse

the order on A.

For example, let C be the collection of all infinite linear orders. Let B = {ω,ω∗}.

Then both B and C are basis for C.
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2.1 Well Known Results

This section records the results on the ordered structure of the real line in ZFC. The

real line, denoted by R, is the collection of real numbers with the usual linear order.

We mainly follow Baumgartner’s survey [6].

Definition 2.4. A ⊆ R is ℵ1-dense, if

• A has no endpoints and

• for any two elements a < b from A, |{x ∈ A
∣∣∣ a < x < b}| = ℵ1.

Since the linear order on R is seperable, we can show:

Fact 2.5. If A is ℵ1-dense, then |A| = ℵ1. Conversely, if A ⊆ R, |A| = ℵ1, then there

is a countable subset of C ⊆ R, A \C is ℵ1-dense.

To prove this, we list all “rational” intervals in someω-sequence. Delete all those

“rational” intervals that have countable intersection with A. Now, the following is an

immediate consequence.

Corollary 2.6. The collection of ℵ1-dense subsets of the reals forms a basis for the

collection of uncountable subsets of the reals.

Fact 2.7. We can focus on ℵ1-dense subsets of the interval (0, 1). Also, if we corre-

spond a member of (0, 1) with its binary representation whose string does not end

with infinite string of 1’s, then the natural order on (0, 1) corresponds to the lexico-

graphic order on Cantor space.

Definition 2.8. For ℵ1-dense sets A and B, they are comparable if either B � A or

A � B.

Theorem 2.9. [47] Assume CH, then there are incomparable ℵ1-dense sets.

Shelah generalized this theorem greatly:
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Theorem 2.10. [43] Assume that 2ℵ0 < 2ℵ1 , then

1. ∀ ℵ1-dense A, ∃ ℵ1-dense B such that ¬(A � B).

2. There is a family F of mutually incomparable ℵ1-dense sets, |F | = 2ℵ1 .

Definition 2.11. For ℵ1-dense A, B, they are compatible if there is some ℵ1-dense C,

C � A ∧C � B.

It is directly observed that if A and B are comparable, then they are compatible.

However, the converse fails badly.

Theorem 2.12. [43] It is consistent with 2ℵ0 < 2ℵ1 that any two ℵ1-dense sets are

compatible.

On the other hand, as Baumgartner pointed out:

Fact 2.13. [6] It is consistent with 2ℵ0 < 2ℵ1 that there is a family F of mutually

incompatible ℵ1-dense sets, |F | = 2ℵ1 .

He also argued that with slight modification of the argument above, one can get

the consistency of 2ℵ0 = 2ℵ1 with such an F .

Now let us turn to the isomorphism type of ℵ1-dense sets of reals.

Theorem 2.14. [8] Assume CH. A, B are ℵ1-dense. Then there is a c.c.c. partial

order which forces “A and B are isomorphic”.

Iterating this process in ω2 steps by dealing with all potential pairs of ℵ1-dense

sets and interleaving the partial order to force Martin’s Axiom, Baumgartner proved:

Theorem 2.15. [5] It is consistent that 2ℵ0 = 2ℵ1 = ℵ2 together with MA and “any

two ℵ1-dense sets are isomorphic”.

Baumgartner asked if MA + ¬CH guarentees the isomorphism between any two

ℵ1-dense sets. This was disproved by Avaraham and Shelah:
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Theorem 2.16. [2] It is consistent with MA+¬CH that there are two nonisomorphic

ℵ1-dense sets.

However, Baumgartner’s proof directly give the following:

Theorem 2.17. [8] Assume PFA. If A and B are ℵ1-dense, then they are order

isomorphic.

2.2 DPFA and ℵ1-Dense Sets

Theorem 2.18. If it is consistent to have a supercompact cardinal, then it is also

consistent to have DPFA and the existence of two nonisomorphic ℵ1-dense sets.

Proof: Let V be a model of ZFC with a supercompact cardinal κ. Let C = Cω1 ∈ V

be the partial order to add ℵ1 many Cohen reals. Namely,

C = Fn(ω1 × ω, 2) = { f | f : ω1 × ω→ 2 ∧ | f | < ω}.

In VC, let C = {cα|α < ω1} be the set of Cohen reals. We will use the fact that these

Cohen reals are mutually generic.

Fact 2.19. VC � C is ℵ1-dense.

Proof of Fact: Suppose otherwise, then ∃a < b from C, (a, b) ∩ C is countable.

Let θ < ω1 be such that (a, b) ∩ C ⊆ {cα : α < θ}. By density argument, one can

force some c′θ, θ
′ ≥ θ to be in (a, b), a contradiction. �

Recall from Notation 2.3, for X ⊆ R, X∗ denotes the linear order obtained from

X by reversing the order.

Fact 2.20. In any generic extension of VC that preserves ℵ1, both C and C∗ are

ℵ1-dense.
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Let C2 = Fn(ω× 2, 2) be the partial order to add two Cohen reals. Notice that C2

is equivalent to the product forcing ω<ω × ω<ω. So we will abuse the notation of C2

to refer to this forcing. In VC, for η, ξ < ω1, let

Zη,ξ = {(s, t) ∈ C2 : s ⊆ cη ∧ t ⊆ cξ}

be the filter to add (cη, cξ).

Definition 2.21. In VC or its generic extension, a notion of forcing Q is “nice” if

• ∀λ large regular cardinal,

• ∀N ≺ Hλ countable elementary model such that Q ∈ N,

• ∀η ∈ ω1 \ N such that ∀ξ ∈ ω1 \ N, Zη,ξ is (N,C2)-generic,

• ∀p ∈ N ∩ Q,

∃q ∈ Q such that:

• q ≤ p,

• q is (N,Q)-generic,

• q 
 ∀ξ ∈ ω1 \ N, Zη,ξ is (N[Ġ ∩ N],C2)-generic.

Remark 2.22. 1. If q is (N,Q)-generic, then q 
 ω1 ∩ N = ω1 ∩ N[Ġ ∩ N].

2. The last requirement on q is the same as

∀ξ ∈ ω1 \ N , q 
 Zη,ξ is (N[Ġ ∩ N],C2)-generic.

Lemma 2.23. In VC, fix a large regular cardinal λ. Let W be the collection of all

countable N ≺ Hλ such that ∀η, ξ ∈ ω1 \ N, Zη,ξ is (N,C2)-generic. Then W is a club

in [Hλ]ω.
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Proof: (i) W is closed. Given any increasing sequence N0 ⊆ N1 ⊆ · · · from W, let

N =
⋃

n<ω Nn. We show that N ∈ W. By Tarski’s criteria, N ≺ Hλ. Let η, ξ ∈ ω1 \ N,

D ∈ N be any dense subset of C2. So ∃n ∈ ω, D ∈ Nn. Since η, ξ ∈ ω1 \ Nn and

Nn ∈ W, Zη,ξ ∩ D ∩ Nn , ∅. So Zη,ξ ∩ D ∩ N , ∅. Hence, N ∈ W.

(ii) W is unbounded. We claim that for any N ∈ [Hλ]ω, there is N′ ∈ [Hλ]ω

satisfying:N′ ⊇ N and ∀η, ξ ∈ ω1 \ N′,∀D ∈ N dense open subset of C2,

Zη,ξ ∩ D ∩ N′ , ∅.

Proof of Claim: Let {Dk : k ∈ ω} list all dense open subsets of C2 that lie in N.

Since C2 ∈ V and C2 is countable, each Dk appears in VC�θk for some θk ∈ ω1. Let

θ = sup{θk : k < ω}. Then θ < ω1. Let N′ ∈ [Hλ]ω be such that θ∪N∪
⋃

k∈ω Dk ⊆ N′.

We check that N′ works. For any ∀D ∈ N, a dense open subset of C2, we have

D ∈ VC�θ and D ⊆ N. For any η, ξ ∈ ω1 \ N′, we have η, ξ ≥ θ. So Zη,ξ is C2-generic

over VC�θ, Zη,ξ ∩ D , ∅. But D ⊆ N′, Zη,ξ ∩ D ∩ N′ , ∅.

Now we prove the unboundness of W. Given any N ∈ [Hλ]ω, we construct

N = N0 ⊆ N1 ⊆ · · · inductively by the claim. We can require that Nn+1 ⊇ N′n and

Nn+1 ≺ Hλ. Let N+ =
⋃

n∈ω Nn, then N ⊆ N+ ≺ Hλ. Now it is easy to check that

N+ ∈ W. �

Lemma 2.24. If VC � Q is nice, then VC∗Q � C and C∗ are not order isomorphic.

Proof: Suppose otherwise, VC∗Q � ∃π : C → C, a reverse order isomorphism.

In VC, let p ∈ Q be such that p 
 π̇ : Č → Č is a reverse order isomorphism.

Let N ∈ W be such that {C,C,Q, p, π̇} ⊆ N. Let η = ω1 ∩ N. By elementarity,

p 
 π̇ : C ∩ N → C ∩ N is a bijection. So p 
 π̇(cη) < N.

Since Q is nice, let q′ ≤ p be such that q′ is (N,Q)-generic and ∀ξ ∈ ω1 \ N ,

q′ 
 Zη,ξ is (N[Ġ ∩ N],C2)-generic.

Let q ≤ q′ decide π̇(cη). Namely, q 
 π̇(cη) = cξ for some ξ ∈ ω1. So ξ ∈ ω1 \ N.

Moreover, q is (N,Q)-generic and q 
 Zη,ξ is (N[Ġ ∩ N],C2)-generic.
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Let G 3 q be (VC,Q)-generic. Let π be the interpretation of π̇ in VC[G]. Define

in (Hλ)VC[G] = (Hλ)VC[G],

D = {(s, t) ∈ C2 : ∃x ∈ C((x >lex s ∧ π(x) >lex t) ∨ (x <lex s ∧ π(x) <lex t))}.

Claim: D is dense. Proof of claim: Fix any (s, t) ∈ C2. We will find some

(s′, t′) ∈ D, such that s′ ⊇e s and t′ ⊇e t. By density arguments applied to C in V,

we observe that each Cohen real cα is irrational. In other words,each cα is neither

eventually 0 nor eventually 1. We can also assume that for some γ < ℵ1, cγ ⊇e s.

case1 π(cγ) ⊇e t. There are u, v finite strings of 1’s such that cγ ⊇e s_u_0 and

π(cγ) ⊇e t_v_0. Let s′ = s_u_1 and t′ = t_v_1, then cγ <lex s′ and

π(cγ) <lex t′.

case2 π(cγ) >lex t. There is a finite string v such that π(cγ) ⊇e v_1 and t ⊇e v_0. Let

u be the finite string of 0’s, cγ ⊇e s_u_1. Let s′ = s_u_0 and t′ = t.

case3 π(cγ) <lex t. Similar to case2.

Hence D ∈ (Hλ)VC[G] is dense.

Since q is (N,Q)-generic and q ∈ G, N[G ∩ N] ≺ (Hλ)VC[G]. Since

π̇ ∈ N, π ∈ N[G ∩ N]. Hence D ∈ N[G ∩ N]. So Zη,ξ ∩ D ∩ N[G ∩ N] , ∅. Let

(s, t) ∈ D, s ⊆e cη and t ⊆e cξ. Let x ∈ C witness (s, t) ∈ D. Then either x >lex cη and

π(x) >lex cξ, or x <lex cη and π(x) <lex cξ. But π(cη) = cξ, which contradicts that π is

reverse order isomorphism. �

Fact 2.25. If Q is distributive and proper, then Q is nice.

Proof. The reason is that each D ⊆ C2 is essentially a real. Hence if Q is

distributive, then there will be no new dense subsets of C2. �

The key is the following preservation theorem:
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Theorem 2.26. In VC, let 〈(Pα, Q̇α)|α ∈ ε〉 be a countable support iteration.

If ∀α < ε, 
Pα
Q̇α is nice, then Pε is nice.

Lemma 2.27. [22] Let 〈(Pα, Q̇α)|α ∈ ε〉 be a countable support iteration. Assume

α1 < α2 ≤ β ≤ ε, D ⊆ Pβ is dense open, and 
α1 ṗ1 ∈ Pβ. Then


α2 ∃p2

(
(p2 ∈ Pβ) ∧ (p2 ≤ ṗ1) ∧ (p2 ∈ D) ∧ ( ṗ1 �α2∈ Ġα2 → p2 �α2∈ Ġα2)

)
.

Theorem 2.26 is a special case of the following lemma by taking α = 0, β = ε.

Lemma 2.28. In VC, let 〈(Pα, Q̇α)|α ∈ ε〉 be a countable support iteration of nice

forcing notions. Assume that

• λ is a large regular cardinal,

• N ≺ Hλ is countable, Pε ∈ N,

• η ∈ ω1 \ N,

• α < β ≤ ε are both in N,

• ṗ ∈ N such that 
α ṗ ∈ Pβ,

• q ∈ Pα satisfying

�α
1 q is (N,Pα)-generic,

�α
2 q 
 ṗ �α∈ Ġα ∩ N,

�α
3 q 
 ∀ξ ∈ ω1 \ N, Zη,ξ is (N[Ġα ∩ N],C2)-generic.

Then there is q+ ∈ Pβ, q+ �α= q such that

�β
1 q+ is (N,Pβ)-generic,

�β
2 q+ 
 ṗ ∈ Ġβ ∩ N,
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�β
3 q+ 
 ∀ξ ∈ ω1 \ N, Zη,ξ is (N[Ġβ ∩ N],C2)-generic.

Proof of Lemma 2.28: We prove by induction on the pair (α, β):

case1 β = α + 1. Since q is (N,Pα)-generic, we have q 
 N[Ġα ∩ N] ≺ Hλ[Ġα] is a

countable elementary submodel and q 
 η ∈ ω1 \ N[Ġα ∩ N].

Also by hypothesis, q 
 ∀ξ ∈ ω1 \ N, Zη,ξ is (N[Ġα ∩ N],C2)-generic. Since

α ∈ N, Q̇α ∈ N ∧ ṗα ∈ N. Therefore,

q 
 Q̇α ∈ N[Ġα ∩ N] ∧ ṗα ∈ Q̇α ∩ N[Ġα ∩ N]

By assumption, 
 Q̇α is nice. So q forces : ∃x

1. x ∈ Q̇α ∧ x ≤ ṗα and

2. x is (N[Ġα ∩ N], Q̇α)-generic, and

3. x 
 ∀ξ ∈ ω1 \ N, Zη,ξ is
(
(N[Ġα ∩ N])

[
Ġ(α) ∩ N[Ġα ∩ N]

]
,C2

)
-generic.

By existence completeness theorem, there is a Pα name x such that q force x

to satisfy the properties above. By computing names, we see that

(N[Ġα ∩ N])
[
Ġ(α) ∩ N[Ġα ∩ N]

]
= N[Ġα+1 ∩ N]

(q, x) ∈ Pα+1, (q, x) 
 (ṗ �α, ṗ(α)) = ṗ �α+1∈ Ġα+1 and (q, x) is (N,Pα+1)-

generic. Thus,

(q, x) 
 Pα+1 ∩ N[Ġα+1 ∩ N] ⊆ N

But ṗ ∈ N, so (q, x) 
 ṗ ∈ N.

By the third requirement on x, we see that

(q, x) 
 ∀ξ ∈ ω1 \ N, Zη,ξ is (N[Ġα+1 ∩ N],C2)-generic.

So q+ = (q, x) is as required.

25



case2 β = γ+ 1,where γ > α. By induction hypothesis on the pair (α, γ), we can first

extend q to some q∗ ∈ Pγ, then use case1 to extend q∗ to q+ ∈ Pβ.

case3 β is a limit ordinal. Let δ = sup(β ∩ N). Let 〈αn : n ∈ ω〉 be an increasing

sequence of ordinals from β ∩ N, with the supremum δ, and α0 = α.

Let {Dn : n ∈ ω} list all dense open sets of Pβ that lie in N. Let {τn : n ∈ ω} list

all Pβ names for dense open sets of C2 that lie in N.

We build in N inductively Pαn-names ṗn for conditions in Pβ. Let ṗ0 = ṗ.

Suppose we have 
αn ṗn ∈ Pβ. Apply Lemma 2.27 inside N, we obtain ṗn+1 ∈

N such that


αn+1 ṗn+1 ∈ Pβ∧ ṗn+1 ≤ ṗn∧ ṗn+1 ∈ Dn∧ ( ṗn �αn+1∈ Ġαn+1 → ṗn+1 �αn+1∈ Ġαn+1)

By assumption, �α0
1 ,�

α0
2 and �α0

3 holds for q0 = q and α0 = α .

By induction hypothesis on the pair (α0, α1), we can find q1 ∈ Pα1 , q1 �α0= q0

satisfying

– q1 is (N,Pα1)-generic,

– q1 
 ṗ0 �α1∈ Ġα1 ∩ N,

– q1 
 ∀ξ ∈ ω1 \ N, Zη,ξ is (N[Ġα1 ∩ N],C2)-generic.

Hence q1 
 ṗ1 �α1∈ Ġα1 ∩ N.

Inductively, we get qn ∈ Pαn such that qn �αn−1= qn−1 and

– qn is (N,Pαn)-generic,

– qn 
 ṗn �αn∈ Ġαn ∩ N,

– qn 
 ∀ξ ∈ ω1 \ N, Zη,ξ is (N[Ġαn ∩ N],C2)-generic.
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Notice that τn ∈ N and 
β τn ⊆ C2 is dense open. We have

qn 
αn

(
τn ∈ N[Ġαn ∩ N]

)
∧

(

αn,β τn ⊆ C2 is dense open

)
.

Let Ṫn be a Pαn-name such that 
αn Ṫn = {u ∈ C2 :
αn,β u ∈ τn}.

We can find such Ṫn in N. Then

qn 
 Ṫn ∈ N[Ġαn ∩ N] ∧ Ṫn is dense open in C2. Thus, ∀ξ ∈ ω1 \ N,

qn 
 Ṫn ∩ Zη,ξ , ∅. So (qn, 1) 
 τn ∩ Zη,ξ , ∅.

Let q+ ∈ Pβ be the limit of 〈qn : n ∈ ω〉. Namely, and ∀θ ∈ spt(q+), there is

some n ∈ ω, θ ∈ spt(qn), and for any such n, q+(θ) = qn(θ).

We need to verify that q+ works. Let Gβ 3 q+ be any (VC,Pβ)-generic filter

and pn be the interpretation of ṗn by Gβ. We show the following:

(i) pn ∈ N ∩Gβ,

(ii) N ∩Gβ is (N,Pβ)-generic,

(iii) ∀ξ ∈ ω1 \ N, Zη,ξ is (N[Gβ ∩ N],C2)-generic.

Let Gαn = {r �αn: r ∈ Gβ}. It is a (VC,Pαn)-generic filter.

So qn ∈ Gαn and pn �αn∈ Gαn . Since pn+1 ≤ pn,we have pn �αn+1∈ Gαn+1 .

Therefore, ∀n,m ∈ ω, pn �αm∈ Gαm . By general theory of forcing, we see that

pn �δ∈ Gδ.

Notice that pn ∈ Pβ ∩ N[Gαn ∩ N] ⊆ N, spt(pn) ∈ N. Since N is a countable

elementary model, spt(pn) ⊆ N ∩ β ⊆ δ. So pn ∈ Gβ. This complete the proof

of (i).

For (ii), let D ∈ N be a dense open subset of Pβ. Say D = Dn. By the

construction, pn+1 ∈ Dn. So pn+1 ∈ Gβ ∩ N ∩ D. Therefore, N ∩Gβ is (N,Pβ)-

generic.

For (iii), let T ∈ N[Gβ ∩ N] be a dense open subset of C2. Then T has a Pβ-

name in N, say τn. Since (qn, 1) 
 τn ∩ Zη,ξ , ∅ and (qn, 1) ∈ Gβ, T ∩ Zη,ξ , ∅.
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Say u ∈ T ∩ Zη,ξ. Also, by elementarity, C2 ∈ N ⊆ N[Gβ ∩ N], hence u ∈ C2 ⊆

N[Gβ ∩ N]. So T ∩ N[Gβ ∩ N] ∩ Zη,ξ , ∅.

This completes the proof of Lemma 2.28. �

A useful fact in forcing with large cardinals is that mild extension does not

change large cardinal properties. For instance, the following holds:

Lemma 2.29. [32, Theorem 21.2] If κ is a supercompact cardinal, P is a partial

order with |P| < κ, then VP � κ is supercompact.

Lemma 2.30. VC � κ is supercompact.

Proof. |C| = ℵ1 < κ in V. By Lemma 2.29, it will not affect the large cardinal

property of κ. In other words, VC is a mild extension, in which κ is still supercompact.

�

Let us now continue to prove Theorem 2.18.

Work in VC, let D be the notion of forcing to force DPFA. In other words, we

revise the standard consistency proof of PFA from a supercompact cardinal. The

reader is referred to Theorem 31.21 of [32] for this proof. Let f be a Laver function

[35] witnessing that κ is supercompact. D = 〈(Pα, Q̇α) : α < κ〉 is a κ - step countable

support iteration whose iterands are assigned by f . If at step α, f (α) is a “good

pair” (Ṗ, Ḋ) in VPα , where Ṗ is distributive and proper, then we adopt it to be Q̇α;

otherwise, we use a trivial forcing notion. The rest of the proof goes the same way

as that of PFA. So VC∗D � DPFA.

Notice that each iterand of D is distributive and proper. By Lemma 2.25, each

iterand is nice. So by Theorem 2.26, D is nice. By Lemma 2.24, VC∗D � C and C∗

are nonisomorphic ℵ1- dense subsets of the reals. This completes the proof. �
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Chapter 3

DPFA and Cardinal Invariants

3.1 Review on Cardinal Invariants of the Reals

The material in this section can all be found in Blass’s Handbook chapter [12], where

“cardinal characteristic” was used instead of “cardinal invariant”. As the name sug-

gests, a cardinal invariant characterizes the cardinality of sets satisfying certain given

property.

We need the fact that among all cardinal invariants mentioned in [12], the maxi-

mal ones are co f (L), u, a and i.

Notation 3.1. For f , g ∈ ωω, denote f ≤∗ g if ∀∞n ∈ ω, f (n) ≤ g(n).

Notations such as ≥∗, <∗, >∗ and =∗ can be similarly interpreted.

A natural question is: can we have a small family of functions which grow fast

enough? The invariants d and b characterize the least size of a “≤∗-dominating”

family and a “≤∗-unbounded” family, respectively. More explicitly,

d = min{|F | : F ⊆ ωω : ∀ f ∈ ωω∃g ∈ F ( f ≤∗ g)}

b = min{|F | : F ⊆ ωω : ∀ f ∈ ωω∃g ∈ F (g 6≤∗ f )}
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It can be shown that ℵ1 ≤ b ≤ d ≤ c.

Definition 3.2. Let I be an ideal on a set S . Define

The additivity of I: add(I) = min{|F | : F ⊆ I,
⋃
F < I};

the covering number of I: cov(I) = min{|F | : F ⊆ I,
⋃
F = S };

the uniformity of I: non(I) = min{|A| : A ⊆ S ∧ A < I};

the cofinality of I: co f (I) = min{|F | : F ⊆ I,∀A ⊆ S∃B ∈ F (A ⊆ B)}, namely, the

least cardinality of a basis for I.

We usually assume that

• S = R;

• I contains all the singletons of reals;

• I , P(R);

• I is ω-complete; namely, I is closed under increasing sequence of countable

length;

• I has a basis consists of Borel sets.

Under these assumptions, we can show that

ℵ1 ≤ add(I) ≤ min
(
cov(I), non(I)

)
≤ max

(
cov(I), non(I)

)
≤ co f (I) ≤ c

Typical examples of such ideals are the collection of null sets and the collection

of meager sets, which are denoted by L and B respectively, in honor of “Lebesgue”

and “Baire”. By Baire Category Theorem, B is ω-complete. Notice that every null

set is contained in a Gδ null set and every meager set is a subset of a Fσ meager set.
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The invariants b and d can also be described via ideals. Let Kσ be the collec-

tion of all subsets of reals X which can be covered by the union of countably many

compact subsets of ωω. Then Kσ is an ideal and

add(Kσ) = non(Kσ) = b, cov(Kσ) = co f (Kσ) = d.

The relation between these invariants can be shown in the following Cichoń’s

Diagram: where “→” stands for “≥”.

cov(L)

��

non(B)oo

��

co f (B)oo

��

co f (L)oo

��

b

��

doo

��
add(L) add(B)oo cov(B)oo non(L)oo

We will define cardinal invariants u, a and i in following sections.

Many cardinal invariants can be defined as “norms” [12]. If A and B are two sets

and R ⊆ A × B is a relation such that ∀a ∈ A∃b ∈ B (a, b) ∈ R, then the norm of R

(or of the triple (A, B,R)) is:

||(A, B,R)|| = min{|C|
∣∣∣ C ⊂ B,∀a ∈ A∃b ∈ C(a, b) ∈ R}.

3.2 DPFA and Cardinal Invariants

in Cichoń’s Diagram

Theorem 3.3. It is consistent to have DPFA and co f (L) = ℵ1 relative to the con-

sistency of existence of a supercompact cardinal.

Definition 3.4. A function s : ω→ [ω]<ω is called a slalom, if ∀n ∈ ω, |s(n)| ≤ 2n.
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Notation 3.5. S denotes collection of slaloms, i.e. S =
∏

n∈ω[ω]≤2n
.

Definition 3.6. Let s ∈ S, f : ω → ω. Define f goes through s, if ∀∞n, f (n) ∈ s(n).

Denote this by f ∈∗ s.

The following characterization is very useful.

Lemma 3.7. [3] co f (L) = ||ωω,S, ∈∗ ||.

Definition 3.8. A notion of forcing P has Sacks property, if ∀ f ∈ ωω∩VP, ∃s ∈ S∩V,

such that ∀n ∈ ω, f (n) ∈ s(n).

The following facts are immediate:

Fact 3.9. P has Sacks property, if ∀ f ∈ ωω ∩ VP, ∃s ∈ S ∩ V, such that f ∈∗ s.

Fact 3.10. If forcing with P does not add reals, then P has Sacks property.

The key is the following preservation theorem:

Lemma 3.11. [22] Sacks property is preserved by countable support proper itera-

tion.

Proof of Theorem 3.3: We start with a model V � ∃κ(κ is supercompact). First

we force CH. The forcing consists of countable partial functions from ω1 into the

ground model reals and is ordered by reverse inclusion. This notion of forcing is

small, hence it does not affect the large cardinal property of κ. Without loss of

generality, we may assume that V � CH +∃κ(κ is supercompact). Let D ∈ V be the

p.o. to force DPFA. Each iterand of D does not add reals, hence has Sacks property.

By Lemma 3.11, D has Sacks property. Let S∗ = S ∩ V, i.e. S∗ is the collection of

slaloms in V. For each f ∈ ωω∩VD, ∃s ∈ S∗, such that f ∈∗ s. Therefore, by Lemma

3.7,

VD � co f (L) = ||ωω,S, ∈∗ || ≤ |S∗|
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Since V � CH, V � |S∗| = ℵ1. Since D is proper, ℵ1 is preserved. Thus,

VD � |S∗| = ℵ1. It is concluded that VD is a model satisfying DPFA and co f (L) =

ℵ1. �

Remark 3.12. Since co f (L) is the largest one in Cichoń’s diagram, we see that in

the model VD, all cardinal invariants in Cichoń’s diagram, including d, equal to ℵ1.

3.3 DPFA and Ultrafilter Number

Theorem 3.13. It is consistent to have DPFA and u = ℵ1 relative to the consistency

of existence of a supercompact cardinal.

Definition 3.14. Suppose B ⊆ P(ω), we say B is an ultrafilter base, if B generates

an ultrafilter, namely {x ⊆ ω : ∃y ∈ B(y ⊆ x)} is an ultrafilter.

For example, any principal ultrafilter has a base consists of a singleton.

Definition 3.15. u is the smallest cardinality of any nonprincipal ultrafilter base.

u is a “big” cardinal invariant, r ≤ u, for instance. The reader is referred to [12]

for more details.

p-points and selective ultrafilters are those ultrafilters with certain completeness

properties, more precisely:

Definition 3.16. A nonprincipal ultrafilter U on ω is a p-point, if

∀〈Xn : n ∈ ω〉 ⊂ U, ∃X ∈ U such that ∀n ∈ ω, X ⊆∗ Xn.

Definition 3.17. A nonprincipal ultrafilter U on ω is selective (or Ramsey), if

∀〈Xn : n ∈ ω〉 ⊂ U, ∃X ∈ U, such that ∀n ∈ ω, |X \ Xn| = 1.

It is direct that every selective ultrafilter is a p-point.

Lemma 3.18. [40] Assume CH, then selective ultrafilter exists.
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Definition 3.19. A notion of forcing P preserves p-points (resp. selective ultrafilter),

if for any p-point (resp. selective ultrafilter) U, VP � U generates an ultrafilter.

Use Lemma 1.6, one can prove:

Lemma 3.20. [42] If P is proper and preserves p-points, then for any p-points U,

VP � U generates a p-points.

Fact 3.21. If P does not add reals, then P preserves p-points.

Again, the key is the preservation theorem:

Theorem 3.22. [13] The property of preserving p-points is preserved under count-

able support proper iteration.

Proof of Theorem 3.13: Start with a model V � CH + ∃ supercompact cardinal.

Since V � CH, there is a p-point U ∈ V and moreover V � |U | = ℵ1. Let D ∈ V

be the notion of forcing to force DPFA. Each iterand of D is proper and adds no

new reals, hence preserves p-points. By Theorem 3.22, D preserves p-points. Thus

by Lemma 3.20, VD � u ≤ |U |. Since D is proper, ℵ1 is preserved. Therefore,

VD � u = |U | = ℵ1 ∧ DPFA. �

The preservation of selective ultrafilters is more subtle.

Definition 3.23. A notion of forcing P is ωω-bounding, if for each f ∈ ωω∩VP, there

is g ∈ ωω ∩ V such that ∀n ∈ ω f (n) ≤ g(n).

A typical example for ωω-bounding forcing is Solovay’s random forcing. If a

forcing is ωω-bounding, then it will not enlarge the dominating number d.

Theorem 3.24. [22] The property of being ωω-bounding and proper is preserved

under countable support iteration.

Lemma 3.25. [42] If P is proper, ωω-bounding and preserves selective ultrafilters,

then for any selective ultrafilter U, VP � U generates a selective ultrafilter.
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Fact 3.26. If P does not add reals, then P is ωω-bounding and preserves selective

ultrafilters.

Theorem 3.27. [42] The property of being ωω-bounding and preserving selective

ultrafilters is preserved under countable support proper iteration.

Use this preservation theorem, the same proof as Theorem 3.13 enables us to do

slightly better:

Corollary 3.28. It is consistent to have DPFA and u = d = ℵ1 relative to the

consistency of existence of a supercompact cardinal.

Actually, by combining the preservation theorems in this and the previous sec-

tions, we can have CON(DPFA + co f (L) = u = ℵ1). We will deal with more

cardinal invariants in one model in Section 3.6.

The preservation theorems can be generalized to filters. Though we do not need

them in this section, they will be useful in the next section.

Definition 3.29. A nonprincipal filter F on ω is a p-filter, if for any partition

{Wn : n ∈ ω} of ω, such that for each n, ω \Wn ∈ F , then there is some A ∈ F such

that |A ∩Wn| < ω.

Definition 3.30. A non principal filter F on ω is a q-filter, if for any partition

{Wn : n ∈ ω} of ω, such that for each n, |Wn| < ω, then there is some A ∈ F such that

|A ∩Wn| ≤ 1.

Definition 3.31. A non principal filter F on ω is a Ramsey (or selective) filter, if for

any partition {Wn : n ∈ ω} of ω, such that for each n, ω \Wn ∈ F , then there is some

A ∈ F such that |A ∩Wn| ≤ 1.

Fact 3.32. 1. A filter is selective iff it is both a p-filter and a q-filter.

2. A p-point, q point or selective ultrafilter is an ultrafilter that is a p-filter, q-filter

or selective filter, respectively.
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We have the following preservation theorems which correspond to Theorem 3.22

and Theorem 3.27, respectively.

Theorem 3.33. Let 〈(Pα,Qα) | α < ε〉 be a countable support iteration of proper

forcing notions. Assume F is a filter on ω.

1. If F is a p-filter and each Qα preserves p-filter, then the limit

VPε � F is a p-filter.

2. If F is a selective-filter, each Qα is ωω-bounding and preserves selective filter,

then the limit VPε � F is a selective filter.

The proof is similar to those for Theorem 3.22 and Theorem 3.27. See [42] for

example.

3.4 DPFA and Independence Number

Theorem 3.34. It is consistent to have DPFA and i = ℵ1 relative to the consistency

of existence of a supercompact cardinal.

This theorem follows from Shelah’s work [44]. A maximal independent family

was constructed in a ground model satisfying CH such that the maximality is not

vialated by any forcing with certain property. The construction will help us to prove

Theorem 3.34.

First, some definitions and notations are needed.

Definition 3.35. 1. For A ⊆ ω, denote A1 = A and A−1 = ω \ A.

2. For B ⊆ P(ω), FF(B) denotes the collection of finite partial functions from B

into {1,−1}.

3. For B ⊆ P(ω), h ∈ FF(B), denote Bh =
⋂
{Bh(B) : B ∈ dom(h)}. If h = ∅, then

Bh = ω.
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4. A ⊆ P(ω) is an independent family, if ∀h ∈ FF(A),Ah is infinite.

5. i is the least cardinality of an independent family which is maximal under

inclusion.

6. AP = {(A, A) : A is a countable independent family and A ∈ [ω]ω such that

∀h ∈ FF(A), A ∩Ah is infinite }.

7. Assign a partial order on AP: (A1, A1) ≥ (A2, A2) iffA1 ⊆ A2 and A1 ⊇
∗ A2.

8. For any infinite independent familyA, let

idA = {A ⊆ ω : ∀g ∈ FF(A)∃ h ∈ FF(A) s.t. g ⊆ h and A ∩Ah is finite }.

9. For any infinite independent familyA, let f ilA = {A ⊆ ω : ω \ A ∈ idA}.

Fact 3.36. 1. For an infiniteA ⊆ P(ω),A is independent iff ∀h ∈ FF(A),Ah ,

∅. Similarly in definition 6 , we can require only that A∩Ah , ∅; in definition

8, we can replace “finite” by “empty”.

2. idA is an ideal on ω containing all finite subsets; thus f ilA is the dual filter.

3. IfA1 ⊆ A2, then idA1 ⊆ idA2 and f ilA1 ⊆ f ilA2 .

4. If A ∈ f ilA, then (A, A) ∈ AP.

5. i is big, since r ≤ i and d ≤ i. The reader is referred to [12] for proof.

To carry out the construction, the following lemma is needed:

Lemma 3.37. (1) For a decreasing sequence 〈(An, An) : n ∈ ω〉 from AP, there

is some A ⊆ ω, such that (
⋃

nAn, A) ∈ AP and is a lower bound for this

sequence.

(2) For any (A, A) ∈ AP, there is some B ⊆ A, B < A such that

(A∪ {B}, A) ∈ AP and (A∪ {B}, A) ≤ (A, A).
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(3) For any (A, A) ∈ AP and finite-to-one f : ω → ω, there is some B ⊂ A such

that (A, A) ≥ (A, B) ∈ AP and f �B is one-to-one.

(4) For any (A, A) ∈ AP, e : ω → ω and g ∈ FF(A), there is some B ⊂ A,

h ∈ FF(A) such that (A, A) ≥ (A, B) ∈ AP, g ⊆ h and e �Ah∩B is either

one-to-one or constant.

The proof is given in detail in [44]. As a corollary, we have:

Corollary 3.38. If (A, A) ∈ AP, then there is B ⊇ A such that (B, A) ∈ AP and

A ∈ f ilB.

Proof: By (2) of Lemma 3.37, we can find {Bn : n ∈ ω} ⊂ P(A) inductively such

that ∀m ∈ ω, Bm < A ∪ {Bn : n ∈ m} and (A ∪ {Bn : n ∈ m}, A) ∈ AP . Let

B = A ∪ {Bn : n ∈ ω}. Then (B, A) ∈ AP. Moreover, if g ∈ FF(B), then there

is some n such that Bn < dom(g). Let h = g ∪ (Bn, 1), then Bh ⊆ Bn ⊆ A. Thus,

A ∈ f ilB. �

If CH holds, then i = ℵ1. We will assume CH and construct a “stable” maximal

independent family with size ℵ1.

We build inductively (Ai, Ai) ∈ AP for each i ∈ ω1 and A∗ =
⋃

i∈ω1
Ai will be

the desired family. We impose the following requirements on the construction:

(i) ∀i < j < ω1, (Ai, Ai) ≥ (A j, A j).

(ii) ∀i ∈ ω1, ∃A ∈ Ai+1 \ Ai, A ⊆ Ai.

(iii) ∀e : ω → ω, p ∈ FF(A∗), ∃q ∈ FF(A∗) such that q ⊇ p and e �Aq
∗

is

one-to-one or constant.

(iv) ∀ f : ω→ ω finite to one, ∃i such that f �Ai is one to one.

(v) f ilA∗ is the filter generated by {Ai : i < ω1}; moreover, for each X ∈ f ilA∗ ,

there are unbounded many i < ω1 such that X ⊇ Ai.
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(vi) If n , m are natural numbers, then there are unbounded many i < ω1 such that

n ∈ Ai and m < Ai.

From (iii), A∗ is maximal: Assume E < A∗, let e : ω → 2 be the characteristic

function for E, p = ∅. Let q be given by (iii), then e �Aq
∗

is constant function. The

constant values 0 or 1 corresponds to the cases E ∩ Aq
∗ = ∅ or Aq

∗ ⊆ E respectively.

Therefore,A∗ ∪ {E} is not independent.

Though the construction of A∗ is straight forward, we keep record of it as a

complementarity of [44].

List [ω]ω in 〈Xi : i ∈ ω1〉 such that each infinite subset of ω appears unbounded

many times in the list. Let 〈(ei, pi) : i ∈ ω1〉 be a list of all pairs (e, p) where

e : ω → ω is a total function and p : [ω]ω → {−1, 1} is a finite partial function. Let

〈 fi : i ∈ ω1〉 list all finite to one total functions from ω to ω.

• Step i = 0: take arbitrary (A0, A0) ∈ AP.

• Step i + 1: we have (Ai, Ai) ∈ AP.

– substep1: By Corollary 3.38, we can find Bi+1 ⊇ Ai such that (Bi+1, Ai) ∈

AP and Ai ∈ f ilBi+1 .

– substep2: If Xi ∈ f ilBi+1 , then let Bi+1 = Ai ∩ Xi; otherwise, let Bi+1 =

Ai. Therefore, Bi+1 ∈ f ilBi+1 . By Fact 3.36, we have Bi+1 ⊆ Ai and

(Bi+1, Bi+1) ∈ AP.

– substep3: Check if (Bi+1 ∪ dom(pi), Bi+1) ∈ AP.

If yes, let Di+1 = Bi+1 ∪ dom(pi). So (Di+1, Bi+1) ∈ AP and pi ∈

FF(Di+1). By (4) of Lemma 3.37, there is qi ∈ FF(Di+1) and Di+1 ⊆ Bi+1

such that qi ⊇ pi , (Di+1,Di+1) ∈ AP and ei �Dqi
i+1∩Di+1

is one-to-one or con-

stant.

If no, letDi+1 = Bi+1 and Di+1 = Bi+1.
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So we obtainedDi+1 ⊇ Bi+1 and Di+1 ⊆ Bi+1 such that (Di+1,Di+1) ∈ AP.

– substep4: By (2) of Lemma 3.37, there is some Zi+1 ⊆ Di+1 such that

Zi+1 < Di+1 and (Di+1 ∪ {Zi+1},Di+1) ∈ AP. LetAi+1 = Di+1 ∪ {Zi+1}.

– substep5: By (3) of Lemma 3.37, there is some Ai+1 ⊆ Di+1 such that

(Ai+1, Ai+1) ∈ AP and fi � Ai+1 is one to one.

• Step lim(i): By (1) of Lemma 3.37, let Ai =
⋃

j<iA j. Let Ai be such that

(Ai, Ai) ∈ AP and is a lower bound for {(A j, A j) : j < i}; moreover, if the

Cantor Normal Form of i ends with ω · 2n3m, then we require n ∈ Ai and

m < Ai.

This completes the construction. Let us now verify properties (i)-(vi).

It is easy to check that our construction satisfies (i), (ii), (iv)and(vi).

For (iii), suppose we are given e : ω → ω and p ∈ FF(A∗). Say (e, p) = (ei, pi).

Claim that at substep3 of step i + 1, (Bi+1 ∪ dom(pi), Bi+1) ∈ AP. Let j > i + 1 be

such that pi ∈ FF(A j), then Bi+1 ∪ dom(pi) ⊆ A j and Bi+1 ⊇
∗ A j. So the claim

is proved as (A j, A j) ∈ AP. Hence in this substep we get Di+1,Di+1 and qi such

that ei �Dqi
i+1∩Di+1

is one-to-one or constant . At substep4, we obtain Zi+1 such that

Zi+1 < Di+1, hence Zi+1 < dom(qi). Let q = qi ∪ (Zi+1, 1), then q ∈ FF(A∗) and

A
q
∗ ⊆ A

qi
∗ ∩ Zi+1 ⊆ D

qi
i+1 ∩ Di+1

Therefore ei � A
q
∗ is one-to-one or constant.

For (v), first notice that for each i ∈ ω1, Ai ∈ f ilBi+1 ⊆ f ilAi+1 ⊆ f ilA∗ .

On the other hand, if X ∈ f ilA∗ , we claim there is some j ∈ ω1, X ∈ f ilA j . By

definition, ∀h ∈ FF(A∗),∃h ⊆ g ∈ FF(A∗),A
g
∗ ⊆ X. ListA∗ = {Wα : α < ω1},

we can define a function β 7→ θβ satisfying ∀h ∈ FF({Wα : α < β}),

∃h ⊆ g ∈ FF({Wα : α < θβ}),A
g
∗ ⊆ X. Let C0 = { j ∈ ω1 : ∀β < j, θβ < j} and
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C1 = { j ∈ ω1 : A j = {Wα : α < j}}. Both C0 and C1 are clubs and any j ∈ C0 ∩ C1

suffices.

Fix any such j, there are unbounded many i ∈ ω1 such that j ≤ i and X = Xi. For

any such i, Xi ∈ f ilA j ⊆ f ilAi . Hence at substep2 of step i + 1, Bi+1 ⊆ Xi = X. But

Ai+1 ⊆ Di+1 ⊆ Bi+1 ⊆ X. This completes the verification. �

The key is the following preservation theorem.

Theorem 3.39. [44] Assume 〈(Pα,Qα) : α < δ〉 is a countable support iteration. If

for each α < δ, the iterand Qα satisfies the following properties:

⊗0
α Qα is proper in VPα .

⊗1
α Qα has Sacks property in VPα .

⊗2
α Qα has “dense open set property” in VPα . Namely, for each D ∈ VPα∗Qα ,

D ⊆ ω<ω is dense open, there is E ∈ VPα , E ⊆ ω<ω is dense open and E ⊆ D.

⊗3
α If X ∈ ( f ilA∗)

VPα∗Qα , then there is Y ∈ ( f ilA∗)
VPα with X ⊇ Y.

⊗4
α In VPα∗Qα , for each g ∈ FF(A∗) and A ⊆ Ag

∗, then either ∃X ∈ ( f ilA∗)
VPα such

that A ⊇ X ∩Ag
∗, or ∃h ∈ FF(A∗) such that g ⊆ h and A ∩Ah

∗ = ∅.

⊗5
α In VPα∗Qα , for each g ∈ FF(A∗) and A ⊆ Ag

∗, then ∃h ∈ FF(A∗), g ⊆ h such

that either A ∩Ah
∗ = ∅ orAh

∗ ⊆ A.

⊗6
α Qα is ωω-bounding in VPα .

Then Pδ also satisfies the corresponding properties ⊗0
δ − ⊗

6
δ (in V).

The complete proof can be found in [44], we sketch some key points.

Remark 3.40. 1. It is argued in [44] that ⊗2
α → ⊗

3
α and ⊗3

α → (⊗4
α ↔ ⊗

5
α).

2. If P does not add reals, then obviously P satisfies corresponding properties

⊗1-⊗6.
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3. The construction of A∗ guarantees that f ilA∗ is a selective filter, see require-

ments (iv) and (v).

4. ⊗4 guarantees thatA∗ is maximal: let g = ∅, A ⊆ Ag
∗ = ω, then either there is

some X ∈ ( f ilA∗)
VA such that A ⊇ X and hence some h such that A ⊇ X ⊇ Ah

∗,

or there is some h′ such that A ∩Ah′
∗ = ∅. So i ≤ ℵ1.

5. The preservation of ⊗1,⊗2 and ⊗6 under countable support iteration of proper

forcings are well known.

6. By Theorem 3.33, ⊗6 guarantees that f ilA∗ generates a selective filter in VPα

for each α ≤ δ.

Sketch of the proof of ⊗5
δ: Let T = {Ah

∗ |h ∈ FF(A∗)} and J = f ilA∗ (in the

ground model). We show that whenever p 
δ Ẋ ⊂ ω, then there is some q ≤ p such

that either

(1)some A ∈ T satisfies q 
 Ẋ ∩ A = ∅ or

(2)some A ∈ J satisfies q 
 A ⊆ Ẋ.

We may assume w.l.o.g. that δ = ω. Let [J] denote the filter J generates. Let N

be a countable elementary submodel of some Hλ, with Pω ∈ N etc.

If there is some p′ ≤ p and q ∈ Pn which is (N,Pn)-generic, q ≤ p′ � n such that

q 
n {n : p′ 1 n < Ẋ} < [J]V[Ġn]

Then by induction hypothesis, we meet the requirement (1).

Otherwise, we define qn, pn, 〈pn
l ; l ∈ ω〉 inductively :

When n = 0, it is trivial to define q0 and p0. However, we define 〈p0
l ; l ∈ ω〉 ∈ N

and A ∈ J as follows: we inductively find p0
l such that p0

l ≤ p0
l−1 and p0

l decides

Ẋ ∩ l and some B0
l ∈ J ∩ N such that p0

l 
 B0
l ∩ l ⊆ Ẋ ∩ l. This is possible by the

requirement (vi) on J = f ilA∗ . Now since J is selective, let B0 ∈ N ∩ J selects at
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most one element from each B0
l . W.l.o.g, assume that exactly one element kl ∈ B0

l

is selected for each l ∈ ω. Let A ∈ J “covers” N, namely ∀Z ∈ N ∩ J, A ⊆∗ Z, and

A ⊆ B0.

When n > 0, we require that

1. qn is (N,Pn)-generic,

2. pn ∈ N is a Pn-name for a condition in Pω, same for each pn
l ,

3. Bn ∈ J ∩ N such that A ⊆ Bn,

4. qn � n − 1 = qn−1,

5. qn 
 pn ≤ pn−1 ∧ pn � n ∈ Gn,

6. 
 pn ≥ pn
l ≥ pn

l+1

7. qn 
 {pn
l ; l ∈ ω} ⊆ Pω/Gn, pn

l 
Pω/Gn Bn ∩ l ⊆ Ẋ ∩ l.

Briefly, we use the fact that [J] is selective to find Bn. Notice that if we let q ∈ Pω,

then q � A ⊆ Ẋ. This is because for each n ∈ A, qn+1 
 pn+1
n+1 
 n ∈ Ẋ. �

Proof of Theorem 3.34: We start with a model V � CH+∃ supercompact cardinal.

Since V � CH, we can find in V the maximal independent familyA∗ with cardinality

ℵ1. Let D ∈ V be the notion of forcing to force DPFA. Each iterand of D is proper

and adds no new reals, hence satisfies properties ⊗0-⊗6. By the preservation theorem

3.39, D also satisfies these properties. Hence VD � A∗ is maximal. So VD � i ≤ |A∗|.

Since D is proper, ℵ1 is preserved. VD � i = |A∗| = ℵ1 and DPFA. �

3.5 DPFA and Almost Disjointness Number

Theorem 3.41. It is consistent to have DPFA and a = ℵ1 relative to the consistency

of existence of a supercompact cardinal.
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Definition 3.42. Let A, B ∈ [ω]ω, they are almost disjoint, if A ∩ B is finite.

Definition 3.43. F ⊆ [ω]ω is an almost disjoint family, or AD family for short, if F

is infinite and any two distinct members of F are almost disjoint.

Definition 3.44. F ⊆ [ω]ω is a maximal almost disjoint family, or MAD family for

short, if F is AD family and it is maximal under inclusion among all AD families.

Definition 3.45. a is the least cardinality of a MAD family.

Fact 3.46. a is big, since b ≤ a. See [12] for proof.

Fact 3.47. If F is an infinite AD family, then the union of any finite many elements

of F is coinfinite.

Proof of Theorem 3.41: Let V be a model of ZFC with a supercompact cardinal

κ. First we force a MAD family {aα : α ∈ ω1}. We define inductively the forcing〈
〈Aα, Bα〉|α ∈ ω1

〉
. At each successor step α + 1, we add aα as a generic real.

To simplify notation, we may assume without loss of generality that Aω is trivial

(namely VAω = V) and VAω � {aα : α ∈ ω} forms a partition of ω.

For successor stage β + 1, with ω ≤ β < ω1. Assume we have constructed VAβ ,

and VAβ � {aα : α ∈ β} is AD family.

Consider in VAβ the partial order:

Bβ = {p = 〈sp, tp〉|sp ∈ [ω]<ω, tp ∈ [β]<ω}

The partial order on Bβ is defined by letting p ≤ q iff:

sp ⊇e sq, tp ⊇ tq, (sp \ sq) ∩
⋃
α∈tq

aα = ∅

Remark 3.48. Bβ is countable, hence it is essentially Cohen forcing.

If G ⊆ Bβ is a VAβ-generic filter, then define aβ =
⋃
{sp : p ∈ G}. Conversely, G

can be recovered from aβ. G = {p : sp ⊆e aβ}. We will denote this filter by a∗β.
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Lemma 3.49. If a ∈ VAβ ∩ [ω]ω satisfies that ∀t ∈ [β]<ω, a \
⋃

α∈t aα is infinite, then

VAβ+1 � |a ∩ aβ| = ω.

Proof of the lemma : Argue in VAβ . For any given k ∈ ω, let

Dk = {p ∈ Bβ : |sp ∩ a| > k}. We show that Dk is a dense subset of Bβ. Fix any

q ∈ Bβ, we have that a \
⋃

α∈tq aα is infinite. Let n0 < n1 < · · · < nk be natural

numbers from a \
⋃

α∈tq aα such that n0 > max(sq). Define p = 〈sp, tp〉 by letting

sp = sq ∪ {n0, . . . , nk} and tp = tq. Then we have p ≤ q and p ∈ Dk, so Dk is dense.

Let pk ∈ Dk ∩ a∗β, then pk 
 |ȧβ ∩ a| > k. Therefore a ∩ aβ is infinite in VAβ+1 . �

Corollary 3.50. 1. ω satisfies the assumption for a in the lemma above.

So aβ = ω ∩ aβ is infinite.

2. If a ∈ VAβ ∩ [ω]ω satisfying ∀α < β, |a ∩ aα| < ω, then VAβ+1 � |a ∩ aβ| = ω.

Lemma 3.51. VAβ+1 � {aα : α ∈ β + 1} is an AD family.

Proof of the lemma: Given any γ < β, we show that |aγ ∩ aβ| < ω.

In VAβ , let D = {p ∈ Bβ : γ ∈ tp}. Fix q ∈ Bβ. Define p = 〈sp, tp〉 by letting

sp = sq and tp = tq ∪ {γ}. Then we have p ≤ q and p ∈ D, so D is dense.

Let p ∈ D ∩ a∗β, so γ ∈ tp. If n ∈ aβ \ max(sp), then ∃q ∈ a∗β with n ∈ sq. We may

assume that q ≤ p, then n ∈ sq \ sp ⊆ ω \
⋃

α∈tp
aα ⊆ ω \ aγ. So n ∈ aβ \ aγ. Thus

aβ \ max(sp) ⊆ aβ \ aγ and aβ ∩ aγ ⊆ aβ ∩ max(sp). Since sp is finite, we see that

aβ ∩ aγ is finite. This completes the proof of lemma. �

At limit stage, we take finite support.

Let A = Aω1 denote the finite support limit of
〈
〈Aα, Bα〉|α ∈ ω1

〉
.

Lemma 3.52. If X is a real in VA, then there is some α < ω1, such that X ∈ VAα .

Therefore, CH holds in VA.

Proof: Each iterand Bα is countable, therefore has c.c.c. Since we use finite

support for the limit, A has c.c.c. If Ẋ is a A-name for a real, let for each n ∈ ω,
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Yn ⊆ {p : p 
 n ∈ Ẋ} be a maximal incompatible set. Then each Yn is countable.

There is some α < ω1 such that ∀n ∈ ω,∀p ∈ Yn, spt(p) ⊆ α. So Ẋ is decided by Aα.

So we have

P(ω) ∩ VA =
⋃
α<ω1

P(ω) ∩ VAα

By computing nice names for subsets of ω, we can prove by induction that for

each α < ω1, VAα � CH. Therefore, VA � CH. �

Lemma 3.53. VA � {aα : α < ω1} is a MAD family.

Proof of the lemma : (1) For any α < β < ω1, VAβ+1 � |aα ∩ aβ| < ω. This is also

true in VA. Thus, {aα : α < ω1} is a AD family.

(2) Maximality: Given a ⊆ ω, there is some β < ω1 by Lemma 3.52 such that

a ∈ VAβ . If there is some α < β with |aα ∩ a| = ω, then we are done; otherwise, by

Corollary 3.50, VAβ+1 � |a ∩ aβ| = ω. Thus VA � |a ∩ aβ| = ω. Therefore, maximality

is proved. �

Let’s continue the proof of Theorem 3.41. Since in the ground model V, A is

small relative to the supercompact cardinal κ, κ remains supercompact in VA. Let

D ∈ VA be the partial order to force DPFA, all we need is that {aα : α < ω1} remains

maximal in VA∗D.

Definition 3.54. In VA or its generic extension, define a partial order Q to be “nice”

iff ∀λ large regular cardinal, ∀N ≺ Hλ countable elementary model such that Q ∈ N,

∀ξ ∈ ω1 \ N such that aξ is (N, Bξ)-generic, ∀p ∈ N ∩ Q, ∃q ∈ Q such that:

• q ≤ p,

• q is (N,Q)-generic,

• q 
 aξ is (N[Ġ ∩ N], Bξ)-generic.
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Lemma 3.55. In VA, let

W = {N ∈ [Hλ]ω : N ≺ Hλ ∧ ∀ξ ∈ ω1 \ N (aξ is Bξ − generic over N)}.

Then W contains a club in [Hλ]ω.

Proof: Similar to the one we used in Lemma 2.23. For instance, we sketch the

idea in showing the unboundness of W. We claim that for any N ∈ [Hλ]ω, there is

N′ ∈ [Hλ]ω satisfying: N′ ⊇ N and ∀ξ ∈ ω1 \ N′, ∀D ∈ N dense open subset of C2,

aξ ∩ D ∩ N′ , ∅.

The key is that for each ξ ∈ ω1, we can view VA as an ω1-step iteration with

ground model VAξ+1 . If E ∈ VA is a subset of Bξ, then E is countable. Since Bξ is in

this “ground model”, by the chain condition, there is some θ < ω1, such that E ∈ VAθ .

The rest of the proof will be the same as in Lemma 2.23. �

Lemma 3.56. If VA � Q is nice, then VA∗Q � {aα : α < ω1} is MAD.

Proof: Otherwise, in VA, there will be some p ∈ Q, and some Q-name τ such that

p 
 τwitnesses that {aα : α < ω1} is not maximal. By the previous lemma, let N ∈ W

be such that {τ, p,Q} ⊂ N. Let ξ ∈ ω1\N, then aξ is (N, Bξ)-generic. By the definition

of niceness, ∃q ≤ p, q is (N,Q)-generic and q 
 aξ is (N[Ġ ∩ N], Bξ)-generic. By

a similar argument as in Lemma 3.49, we see that q 
 ∃α ≤ ξ |τ ∩ aα| = ω, a

contradiction. �

Fact 3.57. If Q is distributive and proper, then Q is nice.

The most important part is the preservation theorem below:

Theorem 3.58. In VA. Let 〈(Pα, Q̇α)|α ∈ ε〉 be a countable support iteration.

If ∀α < ε, 
Pα
Q̇α is nice, then Pε is nice.

We need Lemma 2.27 and the following inductive lemma:
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Lemma 3.59. In VA. Let 〈(Pα, Q̇α)|α ∈ ε〉 be a countable support iteration of nice

forcing notions. Assume that λ is a large regular cardinal. N ≺ Hλ is countable,

Pε ∈ N. ξ ∈ ω1 \ N. α < β are both in N. ṗ ∈ N such that 
α ṗ ∈ Pβ, q ∈ Pα

satisfying

�α
1 q is (N,Pα)-generic,

�α
2 q 
 ṗ �α∈ Ġα ∩ N,

�α
3 q 
 aξ is (N[Ġα ∩ N], Bξ)-generic.

Then there is q+ ∈ Pβ, q+ �α= q such that

�β
1 q+ is (N,Pβ)-generic,

�β
2 q+ 
 ṗ ∈ Ġβ ∩ N,

�β
3 q+ 
 aξ is (N[Ġβ ∩ N], Bξ)-generic.

Proof: We prove by induction on the pair (α, β):

case1 β = α + 1.

Since q is (N,Pα)-generic, we have

q 
 N[Ġα ∩ N] is a countable elementary submodel of Hλ[Ġα] and

q 
 ξ ∈ ω1 \ N[Ġα ∩ N].

Also by induction hypothesis, q 
 aξ is (N[Ġα ∩ N], Bξ)-generic.

Since α ∈ N, Q̇α ∈ N ∧ ṗ(α) ∈ N. Therefore,

q 
 Q̇α ∈ N[Ġα ∩ N] ∧ ṗ(α) ∈ Q̇α ∩ N[Ġα ∩ N]

By assumption, 
α Q̇α is nice. Therefore, q forces : ∃x

1. x ∈ Q̇α ∧ x ≤ ṗ(α) and
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2. x is (N[Ġα ∩ N], Q̇α)-generic, and

3. x 
 aξ is
(
(N[Ġα ∩ N])

[
Ġ(α) ∩ N[Ġα ∩ N]

]
, Bξ

)
-generic.

By existential completeness theorem, there is a Pα name x such that q force x

to satisfy the properties above. By computing names, we see that

(N[Ġα ∩ N])
[
Ġ(α) ∩ N[Ġα ∩ N]

]
= N[Ġα+1 ∩ N].

Therefore, (q, x) ∈ Pα+1, (q, x) 
 ( ṗ �α, ṗ(α)) = ṗ �α+1∈ Ġα+1 and (q, x) is

(N,Pα+1)-generic. Thus, (q, x) 
 Pα+1 ∩ N[Ġα+1 ∩ N] ⊆ N. But ṗ ∈ N, so

(q, x) 
 ṗ ∈ N.

By the third requirement on x, we see that

(q, x) 
 aξ is (N[Ġα+1 ∩ N], Bξ)-generic.

So q+ = (q, x) is as required.

case2 β = γ + 1,where γ > α.

By induction hypothesis on the pair (α, γ), we can first extend q to some q∗ ∈

Pγ satisfying �γ
1 −�γ

3, then use case1 to extend q∗ to q+ ∈ Pβ.

case3 β is a limit ordinal. Let δ = sup(β ∩ N). Let 〈αn : n ∈ ω〉 be an increasing

sequence of ordinals from β ∩ N, with the supreme δ, and α0 = α.

Let {Dn : n ∈ ω} list all dense open sets of Pβ that lie in N. Let {τn : n ∈ ω} list

all Pβ names for dense open sets of Bξ that lie in N.

step1 We build in N inductively Pαn-names ṗn for conditions in Pβ.

Let ṗ0 = ṗ. Suppose we have 
αn ṗn ∈ Pβ. Apply Lemma 2.27 inside N,

we obtain ṗn+1 ∈ N such that the following is forced by 1αn+1:

( ṗn+1 ≤ ṗn) ∧ ( ṗn+1 ∈ Dn) ∧ ( ṗn �αn+1∈ Ġαn+1 → ṗn+1 �αn+1∈ Ġαn+1)
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step2 Notice that τ0 ∈ N and 
β τ0 ⊆ Bξ is dense open. Let Ẏ0 be a Pα0-name

such that 
α0 Ẏ0 = {u ∈ Bξ : ∃y y 
α0,β u ∈ τ0}.

Then Ẏ0 can be found in N and 
α0 Ẏ0 is dense open in Bξ.

By assumption, �α0
1 ,�

α0
2 and �α0

3 holds for q0 = q and α0 = α .

So q0 
 Ẏ0 ∈ N[Ġα0 ∩ N] ∧ Ẏ0 ∩ aξ , ∅.

Thus, q0 
 ∃x ∈ aξ∃y y 
α0,β x ∈ τ0.

So q0 
 ∃y y 
α0,β ∃x ∈ aξ x ∈ τ0. That is, q0 
 ∃y y 
α0,β aξ ∩ τ0 , ∅.

By existential completeness, there is a Pα0 name r0 for a condition in

Pα0,β such that (q0, r0) is a condition in Pβ and (q0, r0) 
 aξ ∩ τ0 , ∅.

By induction hypothesis on the pair (α0, α1), we can find

q1 ∈ Pα1 , q1 �α0= q0 satisfying

∗ q1 is (N,Pα1)-generic,

∗ q1 
 ṗ0 �α1∈ Ġα1 ∩ N,

∗ q1 
 aξ is (N[Ġα1 ∩ N], Bξ)-generic.

Hence q1 
 ṗ1 �α1∈ Ġα1 ∩ N. Without loss of generality, it can assumed

that q1 ≤ (q0, r0) �α1 .

By a similar argument as above, we can find a Pα1 name r1 for a condition

in Pα1,β such that (q1, r1) is a condition in Pβ and (q1, r1) 
 aξ ∩ τ1 , ∅.

We can also assume that (q1, r1) ≤ (q0, r0).

Inductively, we get qn ∈ Pαn such that qn �αn−1= qn−1, (qn, rn) ≤

(qn−1, rn−1) and

∗ qn is (N,Pαn)-generic,

∗ qn 
 ṗn �αn∈ Ġαn ∩ N,

∗ qn 
 aξ is (N[Ġαn ∩ N], Bξ)-generic.

∗ (qn, rn) 
 aξ ∩ τn , ∅.
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step3 Let q+ ∈ Pβ be the limit of 〈qn : n ∈ ω〉. Namely, and ∀θ ∈ dom(q+),

there is some n ∈ ω, θ ∈ dom(qn), and for any such n, q+(θ) = qn(θ).

Then for each n ∈ ω, q+ ≤ (qn, rn).

We need to verify that q+ works. Let Gβ 3 q+ be any (VA,Pβ)-generic filter and

pn be the interpretation of ṗn by Gβ. We show the following:

(i) pn ∈ N ∩Gβ,

(ii) N ∩Gβ is (N,Pβ)-generic,

(iii) aξ is (N[Gβ ∩ N], Bξ)-generic.

Let Gαn = {r �αn: r ∈ Gβ}. It is a (VA,Pαn)-generic filter.

So qn ∈ Gαn and pn �αn∈ Gαn . Since pn+1 ≤ pn,we have pn �αn+1∈ Gαn+1 .

Therefore, ∀n,m ∈ ω, pn �αm∈ Gαm . Therefore, pn �δ∈ Gδ.

Notice that pn ∈ Pβ ∩ N[Gαn ∩ N] ⊆ N, dom(pn) ∈ N. Since dom(pn) is

countable and N is a countable elementary model, dom(pn) ⊆ N ∩ β ⊆ δ. So

pn ∈ Gβ. This complete the proof of (i).

For (ii), let D ∈ N be a dense open subset of Pβ. Say D = Dn. By the

construction, pn+1 ∈ Dn. So pn+1 ∈ Gβ ∩ N ∩ Dn. Therefore, N ∩ Gβ is

(N,Pβ)-generic.

For (iii), let T ∈ N[Gβ ∩ N] be a dense open subset of Bξ. Then T has a Pβ-

name in N, say τn. Since (qn, rn) 
αn,β aξ ∩ τn , ∅ (qn, rn) ∈ Gβ, aξ ∩T , ∅. By

elementarity, Bξ ∈ N. But Bξ is countable. So T ⊆ Bξ ⊆ N ⊆ N[Gβ ∩ N]. So

aξ ∩ N[Gβ ∩ N] ∩ T , ∅.

So q+ satisfies �β
1 −�β

3.

�

Take α = 0, β = ε in the lemma, we prove the Theorem 3.58.
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3.6 Conclusion

In this section, we combine the results obtained in the previous sections.

Theorem 3.60. If it is consistent that a supercompact cardinal exists, then it is con-

sistent that DPFA holds and all the following cardinal invariants are equal to ℵ1:

a, b, d, e, g, h, i,m, p, r, s, t, u,

add(B), cov(B), non(B), co f (B), add(L), cov(L), non(L), co f (L).

Remark 3.61. The reader is referred to [12] for the cardinal invariants not defined

in this thesis. The fact that we need is: co f (L), u, i, a are the maximal ones among

these cardinal invariants.

Proof of the Theorem: As before, we start with a model V with a supercompact

cardinal. We may also assume that V � CH. Force with A, the partial order defined

in Section 3.5, to get the MAD family {aα : α < ω1}. By Lemma 3.52,

VA � CH. In VA, there are ℵ1 many Slaloms and moreover we can find a p-point U as

in Section 3.3 and construct the independent familyA∗ as in Section 3.4. Let D ∈ VA

be the poset to force DPFA, then each iterand of D preserves p-points and satisfies

properties ⊗0-⊗6 which are defined in Section 3.4. By the preservation theorems,

D preserves p-points and satisfies properties ⊗0-⊗6. In VA∗D, DPFA holds, each

f : ω → ω goes through a Slalom in VA, the ultrafilter generated by U is a p-point,

A∗ is maximal independent and {aα : α < ω1} is MAD. �
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Chapter 4

Fragments of PFA

In this chapter, we will apply the results obtained in the previous chapters to distin-

guish fragments of Proper Forcing Axiom.

4.1 Weakness of DPFA

Theorem 4.1. [8] Either < ω1 − PFA or BPFA implies that any two ℵ1-dense

subsets of the reals are order isomorphic.

Proof. The partial order Baumgartner used is of the form ω-closed ∗c.c.c..

Namely the partial order is a two-step iteration, the first step being an ω-closed

forcing and the second step being a c.c.c. forcing. Hence it satisfies Axiom A, and is

< ω1-proper.

Also, all the dense subsets to meet have size ≤ ℵ1, so BPFA suffices.

Combining with Theorem 2.18, we get

Corollary 4.2. 1. DPFA does not imply < ω1 − PFA, hence DPFA does not

implies ω − PFA,

2. DPFA does not imply BPFA.
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4.2 Weakness of BPFA

Theorem 4.3. [23] The consistency strength for BPFA is that of a Σ1-reflecting

cardinal.

Corollary 4.4. 1. BPFA does not imply < ω1 − PFA,

2. BPFA does not imply DPFA.

Proof. < ω1 − PFA ` PID, DPFA ` PID [55]. PID implies for every cardinal

κ with cofinality > ℵ1, ¬ � (κ) [55]. By inner model theory, the failure of squares

implies the consistency of many Woodin cardinals [51]. Therefore, The Corollary

holds. �

4.3 Alternative Approaches

The Open Coloring Axiom studied in [54] is a nice “Ramsey type” statement.

Theorem 4.5. Todorc̆ević [54] proved:

1. < ω1 − PFA implies OCA,

2. OCA implies b = ℵ2,

3. OCA implies that there is no (ω2, ω
∗
2)- gap.

Therefore, by Theorem 3.3, DPFA does not imply OCA. Besides, it was proved

in [1] that BPFA is consistent with the existence of (ω2, ω
∗
2)- gap. Hence, BPFA

does not imply OCA. These provides alternative approaches in showing that neither

DPFA nor BPFA implies < ω1 − PFA.

Theorem 4.6. BPFA implies u = ℵ2.
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Proof. Suppose {Aα : α < ω1} ⊆ [ω]ω. Let P = [ω]<ω. P is ordered by letting

p ≤ q iff p ⊇e q. P is actually Cohen forcing. Let for each α < ω1,

Dα = {p : ∃k ∈ Aα \ p (k < max(p))}

Dα is clearly a dense subset of P as Aα is infinite. Since P is countable, BPFA

guarantees that there is some G ⊆ P, a filter that meets each Dα. Let Z =
⋃

G,

pα ∈ G ∩ Dα. Then pα will “force” that Aα * Z. Hence {Aα : α < ω1} is not an

ultrafilter base. �

Combine with 3.13, this provides an alternative way to prove that DPFA does

not imply BPFA.

One can actually do much better. Consider the “localization forcing” [4], BPFA

implies p = ℵ2 [12]. Since p is a relatively small cardinal invariants, many others

must equal to ℵ2 under BPFA.

In fact, either BPFA or < ω1 − PFA proves that MA + c = ℵ2, while DPFA does

not imply MAω1 .

4.4 Weakness of < ω1 − PFA

Definition 4.7. [45] 〈cα : α ∈ Lim ∩ ω1〉 is a club guessing sequence, if

1. Each cα is an unbounded subset of α,

2. For each club C ⊆ ω1, {α ∈ Lim ∩ ω1 : cα ⊆ C} is stationary in ω1.

Remark 4.8. The second requirement above is equivalent to the following: For each

club C ⊆ ω1, {α ∈ Lim ∩ ω1 : cα ⊆ C} , ∅.

Let “CG” denote the statement: there is a club guessing sequence.

Theorem 4.9. If P is the forcing to add an ω1- Cohen real, then VP � CG.

55



Proof: The argument is similar to the one showing VP � ♦. We use a substitute of

ω1- Cohen forcing, namely P = Fn([ω1]2, 2, ω1). If G ⊆ P is generic, for each limit

α < ω1, let cα : α→ 2 be defined such that: cα(η) =
⋃

G({α, η}). For any θ ≤ ω1, we

identify a function f : θ → 2 with the set {τ ∈ θ : f (τ) = 1} for simplicity of notation.

〈cα : α ∈ ω1 ∩ Lim〉 is a ♦ sequence, but not a club guessing sequence. Nevertheless,

we can define dα = cα whenever cα is cofinal in α and dα = α elsewhere.

Claim: VP � ∀ club C ⊆ ω1, {α : cα is cofinal in α ∧ cα ⊆ C} is stationary.

Suppose otherwise. Then VP � C and D are clubs of ω1, ∀α ∈ D ( either cα is

bounded in α or cα * C).

Let p ∈ P such that p 
 Ċ and Ḋ are clubs of ω1, ∀α ∈ Ḋ ( either ċα is bounded

in α or ċα * Ċ). For each r ∈ P, define f (r) = min{γ : dom(r) ⊆ [γ]2}. We are going

to construct pn, βn, qn, δn, bn inductively such that:

1. p = p0 ≥ q0 ≥ p1 ≥ q1 ≥ · · · ,

2. βn = f (pn),

3. β0 ≤ δ0 ≤ β1 ≤ δ1 ≤ · · · ,

4. qn 
 δn ∈ Ċ ∩ Ḋ,

5. bn ⊆ δn,

6. pn+1 
 Ċ ∩ δn = bn.

The construction is straight forward. Given pn, βn, since pn 
 Ċ ∩ Ḋ is a club,

there is some qn ≤ pn and δn > βn such that qn 
 δn ∈ Ċ ∩ Ḋ; then there is some

pn+1 ≤ qn and bn ⊆ δn such that pn+1 
 Ċ ∩ δn = bn.

Let pω =
⋃

n∈ω pn, b =
⋃

n∈ω bn, δ =
⋃

n∈ω δn. Then δ =
⋃

n∈ω βn = f (pω), and

pω 
 Ċ ∩ δ = b. Therefore, ∀n ∈ ω, δn ∈ b. Thus b is unbounded in δ. Let

q = pω ∪ {({δ, η}, 1) : η ∈ b}, then q 
 ċδ = b. Hence, q 
 δ ∈ Ḋ ∧ ċδ ⊆ Ċ ∧ ċδ
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is unbounded in δ. Contradicts to the assumption on p. This completes the proof of

claim.

For any α, if cα is unbounded in α and cα ⊆ C, then dα = cα and dα ⊆ C. By the

lemma, we have: VP � ∀ club C ⊆ ω1, {α ∈ Lim ∩ ω1 : dα ⊆ C} is stationary. So

〈dα : α ∈ Lim ∩ ω1〉 is a club guessing sequence in VP . �

Theorem 4.10. [25] If Q is < ω1-proper, 〈cα : α ∈ Lim ∩ ω1〉 is a club guessing

sequence, then VQ 
 〈cα : α ∈ Lim ∩ ω1〉 is a club guessing sequence.

Proof. Suppose p 
 Ḋ ⊆ ω1 is a club. Fix a large regular cardinal λ, build an ω1

tower 〈Mi : i ∈ Lim ∩ ω1〉 in Hλ such that {P, p, Ḋ, ω1} ⊆ M0. Let δi = Mi ∩ ω1. Let

E = {δi : i ∈ Lim ∩ ω1}. Then E is a club, hence ∃α ∈ ω1, cα ⊂ E. So α ∈ E. Let

i be such that α = δi. Since P is i-proper, let q ≤ p satisfying ∀ j < i, q is (M j,P)-

generic. Therefore, q 
 Ḋ ∩ M j is unbounded in ω1 ∩ M j = δ j. So q 
 δ j ∈ Ḋ.

Hence, q 
 E ∩ α ⊂ Ḋ. So q 
 cα ⊆ Ḋ. �

Corollary 4.11. The consistency of “∃ a supercompact cardinal” implies the con-

sistency of < ω1 − PFA + CG.

Proof. We start with V � ∃ a supercompact cardinal, force with

P = Fn([ω1]2, 2, ω1). Then VP � CG + ∃ a supercompact cardinal. In VP, let Q be

the forcing to get < ω1 − PFA. Again, the Laver function will help us. Each iterand

of Q is < ω1-proper. Now by Theorem 1.19, Q is < ω1-proper. So by Theorem 4.10,

VP∗Q � CG+ < ω1 − PFA. �

Definition 4.12. [24] Let ω −CG be the statement: there is a sequence

〈cα : α ∈ Lim ∩ ω1〉 such that:

1. Each cα is cofinal subset of α with order type ω,

2. For each club D ⊆ ω1, there is α ∈ Lim ∩ ω1 such that cα ⊆ D.
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Definition 4.13. [24] Let ω − wCG be the statement: there is a sequence

〈cα : α ∈ Lim ∩ ω1〉 such that:

1. Each cα is cofinal subset of α with order type ω,

2. For each club D ⊆ ω1, there is α ∈ Lim ∩ ω1 such that D ∩ cα is infinite.

Remark 4.14. It is immediate that CG is equivalent to ω −CG and ω −CG implies

ω − wCG.

Theorem 4.15. [38] MRP implies ¬(ω − wCG).

Combining these together, we get

DPFA→ MPR→ ¬(ω − wCG)→ ¬(ω −CG)↔ ¬CG.

Definition 4.16. Let “pseudo club guessing (PCG)” be the statement: there is a

sequence 〈cα : α ∈ ω1〉 such that:

1. Each cα is an infinite subset of ω1,

2. For each club D ⊆ ω1, there is α ∈ ω1 such that cα ⊆ D.

Remark 4.17. It is immediate that CG implies PCG.

Baumgartner use the forcing “adding a club with finite conditions” to show:

Theorem 4.18. [8] PFA implies ¬PCG.

Since this forcing has size ℵ1, we have: BPFA implies ¬PCG, hence ¬CG.

Hence, we have:

Theorem 4.19. 1. < ω1 − PFA does not imply DPFA.

2. < ω1 − PFA does not imply BPFA.

We conclude that < ω1 − PFA, BPFA and DPFA are mutually independent.
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