10 research outputs found

    MVDR broadband beamforming using polynomial matrix techniques

    Get PDF
    This thesis addresses the formulation of and solution to broadband minimum variance distortionless response (MVDR) beamforming. Two approaches to this problem are considered, namely, generalised sidelobe canceller (GSC) and Capon beamformers. These are examined based on a novel technique which relies on polynomial matrix formulations. The new scheme is based on the second order statistics of the array sensor measurements in order to estimate a space-time covariance matrix. The beamforming problem can be formulated based on this space-time covariance matrix. Akin to the narrowband problem, where an optimum solution can be derived from the eigenvalue decomposition (EVD) of a constant covariance matrix, this utility is here extended to the broadband case. The decoupling of the space-time covariance matrix in this case is provided by means of a polynomial matrix EVD. The proposed approach is initially exploited to design a GSC beamformer for a uniform linear array, and then extended to the constrained MVDR, or Capon, beamformer and also the GSC with an arbitrary array structure. The uniqueness of the designed GSC comes from utilising the polynomial matrix technique, and its ability to steer the array beam towards an off-broadside direction without the pre-steering stage that is associated with conventional approaches to broadband beamformers. To solve the broadband beamforming problem, this thesis addresses a number of additional tools. A first one is the accurate construction of both the steering vectors based on fractional delay filters, which are required for the broadband constraint formulation of a beamformer, as for the construction of the quiescent beamformer. In the GSC case, we also discuss how a block matrix can be obtained, and introduce a novel paraunitary matrix completion algorithm. For the Capon beamformer, the polynomial extension requires the inversion of a polynomial matrix, for which a residue-based method is proposed that offers better accuracy compared to previously utilised approaches. These proposed polynomial matrix techniques are evaluated in a number of simulations. The results show that the polynomial broadband beamformer (PBBF) steersthe main beam towards the direction of the signal of interest (SoI) and protects the signal over the specified bandwidth, and at the same time suppresses unwanted signals by placing nulls in their directions. In addition to that, the PBBF is compared to the standard time domain broadband beamformer in terms of their mean square error performance, beam-pattern, and computation complexity. This comparison shows that the PBBF can offer a significant reduction in computation complexity compared to its standard counterpart. Overall, the main benefits of this approach include beam steering towards an arbitrary look direction with no need for pre-steering step, and a potentially significant reduction in computational complexity due to the decoupling of dependencies of the quiescent beamformer, blocking matrix, and the adaptive filter compared to a standard broadband beamformer implementation.This thesis addresses the formulation of and solution to broadband minimum variance distortionless response (MVDR) beamforming. Two approaches to this problem are considered, namely, generalised sidelobe canceller (GSC) and Capon beamformers. These are examined based on a novel technique which relies on polynomial matrix formulations. The new scheme is based on the second order statistics of the array sensor measurements in order to estimate a space-time covariance matrix. The beamforming problem can be formulated based on this space-time covariance matrix. Akin to the narrowband problem, where an optimum solution can be derived from the eigenvalue decomposition (EVD) of a constant covariance matrix, this utility is here extended to the broadband case. The decoupling of the space-time covariance matrix in this case is provided by means of a polynomial matrix EVD. The proposed approach is initially exploited to design a GSC beamformer for a uniform linear array, and then extended to the constrained MVDR, or Capon, beamformer and also the GSC with an arbitrary array structure. The uniqueness of the designed GSC comes from utilising the polynomial matrix technique, and its ability to steer the array beam towards an off-broadside direction without the pre-steering stage that is associated with conventional approaches to broadband beamformers. To solve the broadband beamforming problem, this thesis addresses a number of additional tools. A first one is the accurate construction of both the steering vectors based on fractional delay filters, which are required for the broadband constraint formulation of a beamformer, as for the construction of the quiescent beamformer. In the GSC case, we also discuss how a block matrix can be obtained, and introduce a novel paraunitary matrix completion algorithm. For the Capon beamformer, the polynomial extension requires the inversion of a polynomial matrix, for which a residue-based method is proposed that offers better accuracy compared to previously utilised approaches. These proposed polynomial matrix techniques are evaluated in a number of simulations. The results show that the polynomial broadband beamformer (PBBF) steersthe main beam towards the direction of the signal of interest (SoI) and protects the signal over the specified bandwidth, and at the same time suppresses unwanted signals by placing nulls in their directions. In addition to that, the PBBF is compared to the standard time domain broadband beamformer in terms of their mean square error performance, beam-pattern, and computation complexity. This comparison shows that the PBBF can offer a significant reduction in computation complexity compared to its standard counterpart. Overall, the main benefits of this approach include beam steering towards an arbitrary look direction with no need for pre-steering step, and a potentially significant reduction in computational complexity due to the decoupling of dependencies of the quiescent beamformer, blocking matrix, and the adaptive filter compared to a standard broadband beamformer implementation

    Adaptive beamforming and switching in smart antenna systems

    Get PDF
    The ever increasing requirement for providing large bandwidth and seamless data access to commuters has prompted new challenges to wireless solution providers. The communication channel characteristics between mobile clients and base station change rapidly with the increasing traveling speed of vehicles. Smart antenna systems with adaptive beamforming and switching technology is the key component to tackle the challenges. As a spatial filter, beamformer has long been widely used in wireless communication, radar, acoustics, medical imaging systems to enhance the received signal from a particular looking direction while suppressing noise and interference from other directions. The adaptive beamforming algorithm provides the capability to track the varying nature of the communication channel characteristics. However, the conventional adaptive beamformer assumes that the Direction of Arrival (DOA) of the signal of interest changes slowly, although the interference direction could be changed dynamically. The proliferation of High Speed Rail (HSR) and seamless wireless communication between infrastructure ( roadside, trackside equipment) and the vehicles (train, car, boat etc.) brings a unique challenge for adaptive beamforming due to its rapid change of DOA. For a HSR train with 250km/h, the DOA change speed can be up to 4⁰ per millisecond. To address these unique challenges, faster algorithms to calculate the beamforming weight based on the rapid-changing DOA are needed. In this dissertation, two strategies are adopted to address the challenges. The first one is to improve the weight calculation speed. The second strategy is to improve the speed of DOA estimation for the impinging signal by leveraging on the predefined constrained route for the transportation market. Based on these concepts, various algorithms in beampattern generation and adaptive weight control are evaluated and investigated in this thesis. The well known Generalized Sidelobe Cancellation (GSC) architecture is adopted in this dissertation. But it faces serious signal cancellation problem when the estimated DOA deviates from the actual DOA which is severe in high mobility scenarios as in the transportation market. Algorithms to improve various parts of the GSC are proposed in this dissertation. Firstly, a Cyclic Variable Step Size (CVSS) algorithm for adjusting the Least Mean Square (LMS) step size with simplicity for implementation is proposed and evaluated. Secondly, a Kalman filter based solution to fuse different sensor information for a faster estimation and tracking of the DOA is investigated and proposed. Thirdly, to address the DOA mismatch issue caused by the rapid DOA change, a fast blocking matrix generation algorithm named Simplifized Zero Placement Algorithm (SZPA) is proposed to mitigate the signal cancellation in GSC. Fourthly, to make the beam pattern robust against DOA mismatch, a fast algorithm for the generation of at beam pattern named Zero Placement Flat Top (ZPFT) for the fixed beamforming path in GSC is proposed. Finally, to evaluate the effectiveness and performance of the beamforming algorithms, wireless channel simulation is needed. One of the challenging aspects for wireless simulation is the coupling between Probability Density Function (PDF) and Power Spectral Density (PSD) for a random variable. In this regard, a simplified solution to simulate Non Gaussian wireless channel is proposed, proved and evaluated for the effectiveness of the algorithm. With the above optimizations, the controlled simulation shows that the at top beampattern can be generated 380 times faster than iterative optimization method and blocking matrix can be generated 9 times faster than normal SVD method while the same overall optimum state performance can be achieved

    Lamb: a simulation tool for air-coupled lamb wave based ultrasonic NDE systems

    Get PDF
    La técnica de las ondas de Lamb acopladas por aire representa un importante avance en el área de los Ensayos No Destructivos (END) de materiales laminares.Sin embargo la compleja naturaleza de las vibraciones mecánicas encontradas en acústica, hacen que el análisis y el estudio de esta área del conocimiento sea un tema muy complejo. De allí que la posibilidad de contar con una herramienta de simulación de software que permita la evaluación y prueba de diferentes configuraciones de excitación y recepción acústica utilizando la flexibilidad de un modelo de computadora sea de una gran utilidad y ayuda.El objetivo de la presente tesis es proveer al área de los END con un software de simulación gratuito: The LAMB Matlab® toolbox basado en el modelo del software libre de la GNU.El software es capaz de simular el comportamiento de sistemas de END basados en ondas de Lamb acopladas por aire en láminas isótropas simples utilizando transductores tipo array.El programa se basa en un arreglo tipo C-scan de un sistema de END y está compuesto por tres bloques principales: 1) Excitación, 2) Propagación y 3) Recepción.La verificación individual del funcionamiento de dichos módulos se presenta a lo largo de la tesis mediante una serie de comparaciones entre simulaciones y datos experimentales provenientes de diferentes pruebas. Por otro lado, la validación del programa completo se llevo a cabo por medio de experimentos en láminas de cobre y aluminio; utilizando un sistema real de END por ondas de Lamb acopladas en aire mediante arrays cóncavos.La influencia negativa en el desempeño general de dicho sistema de END real basado en este tipo de transductores se comprobó efectivamente mediante el simulador desarrollado. Esto se debió fundamentalmente al efecto de directividad de los sensores individuales en los transductores y a la simetría cóncava de los arrays.Para emular este comportamiento la tesis presenta un modelo geométrico bidimensional simple de un filtro espacial, junto a las simulaciones de un nuevo tipo de array plano propuesto.El programa desarrollado comprobó así mismo la naturaleza coherente de los campos acústicos emitidos en aire por las láminas sujetas a vibraciones de Lamb. Esto se realizó mediante la implementación de un conformador de haz simple de suma y demora; constituyéndose así la etapa inicial de procesamiento de señal del bloque de recepción del programa.El objetivo principal del presente trabajo fue contribuir con un modelo operativo de simulación y prueba de nuevos diseños de arrays e implementación de estrategias de procesado de señal útiles en sistemas de END basados en ondas de Lamb acopladas por aire.Finalmente, si bien el objetivo de la calibración del programa no se pudo conseguir; si se logró efectivamente un notable grado de similitud con un sistema de END real.Air-coupled ultrasonic Lamb waves represent an important advance in Non- Destructive Testing and Evaluation (NDT & NDE) techniques of plate materials and structures. Examples of these advances are the characterization and quality assessment of laminate materials in manufacturing processes, the location of damaged parts in aircrafts and structure monitoring in the aerospace industry.However the rich and complex nature of mechanical vibrations encountered in acoustics make the subject of analysis and study of these systems a very complex task. Therefore a simulation tool that permits the evaluation and testing of different configuration scenarios using the flexibility of a computer model is an invaluable aid and advantage.The objective of this thesis is to provide the field of NDT with free open source software i.e. the LAMB Matlabrtoolbox. The toolbox is capable of simulating the behaviour of Lamb wave based NDE systems for single ideal isotropic laminates using air-coupled ultrasonic arrays. The programme usesa pitch-catch type of a Cscan NDE arrangement and is composed of three integrated sections each individually modelling a feature in the system: 1) Excitation, 2) Propagation, and 3) Reception.For assessment of the individual modules of the toolbox the thesis presents comparisons between each section simulations and the data obtained from different acoustic experiments. The validation of the complete simulator was carried out by evaluation tests on the copper and aluminium plates by use of a real hardware prototype of a Lamb wave based NDE system with aircoupled concave arrays.The negative impact on the performance of the real air-coupled NDE systembased on concave arrays was effectively confirmed by the programme. This was produced by the inherent directivity of the individual sensors as well as their concave arrangement. To emulate this behaviour the thesis introduces a simple two-dimensional geometric model for the inclusion of the spatial filtering effect of the sensors plus a group of simulations for a new proposed air-coupled plane array transducer.The software also verified the spatial coherent nature of the Lamb wave fields emitted by a plate in air. This was demonstrated by the implementation of a delay and sum beamformer to constitute an initial signal processing stage in the reception section

    Modelling, Simulation and Data Analysis in Acoustical Problems

    Get PDF
    Modelling and simulation in acoustics is currently gaining importance. In fact, with the development and improvement of innovative computational techniques and with the growing need for predictive models, an impressive boost has been observed in several research and application areas, such as noise control, indoor acoustics, and industrial applications. This led us to the proposal of a special issue about “Modelling, Simulation and Data Analysis in Acoustical Problems”, as we believe in the importance of these topics in modern acoustics’ studies. In total, 81 papers were submitted and 33 of them were published, with an acceptance rate of 37.5%. According to the number of papers submitted, it can be affirmed that this is a trending topic in the scientific and academic community and this special issue will try to provide a future reference for the research that will be developed in coming years

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion
    corecore