5,489 research outputs found

    An Initial Value Technique using Exponentially Fitted Non Standard Finite Difference Method for Singularly Perturbed Differential-Difference Equations

    Get PDF
    In this paper, an exponentially fitted non standard finite difference method is proposed to solve singularly perturbed differential-difference equations with boundary layer on left and right sides of the interval. In this method, the original second order differential difference equation is replaced by an asymptotically equivalent singularly perturbed problem and in turn the problem is replaced by an asymptotically equivalent first order problem. This initial value problem is solve by using exponential fitting with non standard finite differences. To validate the applicability of the method, several model examples have been solved by taking different values for the delay parameter δ , advanced parameter η and the perturbation parameter ε . Comparison of the results is shown to justify the method. The effect of the small shifts on the boundary layer solutions has been investigated and presented in figures. The convergence of the scheme has also been investigated

    A seventh order numerical method for singular perturbed differential-difference equations with negative shift

    Get PDF
    In this paper, a seventh order numerical method is presented for solving singularly perturbed differential-difference equations with negative shift. In recent papers the term negative shift has been used for delay. Such problems are associated with expected first exit time problem of the membrane, potential in models for neuron and in variational problems in control theory. In the numerical treatment for such type of boundary value problems, we first use Taylor approximation to tackle terms containing small shifts which converts into a singularly perturbed boundary value problem. This two point boundary value problem is transformed into general first order ordinary differential equation system. A discrete approximation of a seventh order compact difference scheme is employed for the first order system and solved by using the boundary conditions. Several numerical examples are solved and compared with exact solution. We also present least square errors, maximum errors and observed that the present method approximates the exact solution very well

    Interlaminar stresses in composite laminates: A perturbation analysis

    Get PDF
    A general method of solution for an elastic balanced symmetric composite laminate subject to a uniaxial extension was developed based upon a perturbation analysis of a limiting free body containing an interfacial plane. The solution satisfies more physical requirements and boundary conditions than previous investigations, and predicts smooth continuous interlaminar stresses with no instabilities. It determines the finite maximum intensity for the interlaminar normal stress in all laminates, provides mathematical evidences for the singular stresses in angle-ply laminates, suggests the need for the experimental determination of an important problem parameter, and introduces a viable means for solving related problems of practical interest

    Energy management of three-dimensional minimum-time intercept

    Get PDF
    A real-time computer algorithm to control and optimize aircraft flight profiles is described and applied to a three-dimensional minimum-time intercept mission

    Numerical integration of singularly perturbed delay differential equations using exponential integrating factor

    Get PDF
    In this paper, we proposed a numerical integration technique with exponential integrating factor for the solution of singularly perturbed differential-difference equations with negative shift, namely the delay differential equation, with layer behaviour. First, the negative shift in the differentiated term is approximated by Taylor\u27s series, provided the shift is of (o(varepsilon )). Subsequently, the delay differential equation is replaced by an asymptotically equivalent first order neutral type delay differential equation. An exponential integrating factor is introduced into the first order delay equation. Then Trapezoidal rule, along with linear interpolation, has been employed to get a three term recurrence relation. The resulting tri-diagonal system is solved by Thomas algorithm. The proposed technique is implemented on model examples, for different values of delay parameter, deltadelta and perturbation parameter, varepsilonvarepsilon . Maximum absolute errors are tabulated and compared to validate the technique. Convergence of the proposed method has also been discussed

    Synchronization and Transient Stability in Power Networks and Non-Uniform Kuramoto Oscillators

    Full text link
    Motivated by recent interest for multi-agent systems and smart power grid architectures, we discuss the synchronization problem for the network-reduced model of a power system with non-trivial transfer conductances. Our key insight is to exploit the relationship between the power network model and a first-order model of coupled oscillators. Assuming overdamped generators (possibly due to local excitation controllers), a singular perturbation analysis shows the equivalence between the classic swing equations and a non-uniform Kuramoto model. Here, non-uniform Kuramoto oscillators are characterized by multiple time constants, non-homogeneous coupling, and non-uniform phase shifts. Extending methods from transient stability, synchronization theory, and consensus protocols, we establish sufficient conditions for synchronization of non-uniform Kuramoto oscillators. These conditions reduce to and improve upon previously-available tests for the standard Kuramoto model. Combining our singular perturbation and Kuramoto analyses, we derive concise and purely algebraic conditions that relate synchronization and transient stability of a power network to the underlying system parameters and initial conditions

    Proceedings for the ICASE Workshop on Heterogeneous Boundary Conditions

    Get PDF
    Domain Decomposition is a complex problem with many interesting aspects. The choice of decomposition can be made based on many different criteria, and the choice of interface of internal boundary conditions are numerous. The various regions under study may have different dynamical balances, indicating that different physical processes are dominating the flow in these regions. This conference was called in recognition of the need to more clearly define the nature of these complex problems. This proceedings is a collection of the presentations and the discussion groups
    corecore