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Chapter 1
INTRODUCTION

Interlaminar stresses play an important role in the load trans-'
fer mechanism in composite laminates. Both numerical and exberimental
results have demonstrated that when a thin laminate is subjected to a
unjaxial extension (Fig. 1), there exist highly localized stress con-
centration regions near the free edges, the so-called boundary layer
regions. This phenomenon. has been suggested to be the dominant factor
initiating failure of some composite laminates.

The present thesis will analyze the boundary layer by "perturb-
ing" the exact elasticity equations with a stretching transformation.
Solutions to these transformed equations provide a higher order analysis
than jdealized lamination thedry [1].* Hence better insight into the
interlaminar stress behavior is obtained using the perturbation

analysis [2].

1.1 REVIEW OF LITERATURE

Bogy [3] analyzed a bonded material bontain%ng two mutually dis-
similq% orthogonal wedges under arbitrary tractions. The stress fields
were found to contain a mathematical singularity at the intersection‘of
the interfacial plane and the loaded surface. Hein [4] studied the

residual stresses in a two-material wedge and found similar behavior.

*Numbers in brackets refer to:-the references listed in the
bibliography.
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Hess [5] developed a plane elasticity solution for the end problem in

a two-layer laminated strip and showed a mathematical singularity,
defined to be a-point where the convergence of an eigenfunction expan-
sion could not be -attained. Puppo and Evensen [6] modeled the finite-
width symmetiric laminate as a set of anisotropic layers separated by
isotropic shear layers. Each anisotropic layer was assumed to be under
generalized plane stress, j.e., the out-of-plane normal stress o,

(Fig. 1) is zero and the in-plane stresses and displacements are the
thickness averages of the actual ;a1ues. SoTut%ons to the corresponding
ehui?ibrium equations showed that while the interlaminar shear stresses
vanish everywhere for a laminate of infinite width, they attained
maximum finite values near the free edge of a finite width laminate.
Furthermore, in regions far away from the free edge, the solution
agreed well with the classical lamination theory [1]. A complete three
dimensional analysis was carried out by Pipes and Pagano [7] using the
finite difference-technique to solve the exacf q]asticity equations.
The éesu1ts_§howed good agreéments with those of Reference [6j except
at the free edge where the interlaminar shear stressty, seemed to

. grow without bound for same laminates. Due to the approximate naturg
of the finite difference analysis, however, no‘evidence was available
to show the intensity of the suggested singqularity. Isakson and Levy
[8] used a finite element approach to analyze a model similar to that
of Reference [6]. Based on the constant strain assumption within each -
element, the corresponding stresses were obtained from the constitu-

tive equations. The total elastic strain energy was calculated and



minimized [9] to yield a set of simultaneous linear algebraic equa-
tions. Levy, et al. [10] used the same model and formulation as
Reference [[8] -to further investigate the elastic and plastic inter-
laminar shear deformations in the laminate. The out-of-plane "peel
stress” was not takén into account in both studies due to the modeling.
Results from these solutions were quite similar to thﬁse of Reference
[6] except at the free edge where the interlaminar shear stress Ty,

was 40%-Tower than that of Reference [6]. This pfesumab]y was due to
the Timitations of the finite element approximation. Improvements
were made by Rybicki [11] who carried out a three-dimensional finite
element analysis based on a complimentary energy formulation in terms
of three Maxwell stress functions. These functions resulted in a set
of simultaneous linear algebraic equations which were solved by Gauss
reduction and the back‘substitution process. The "peel stress" was
obtained in this investigation. The results showed excellent agreement
w?tb References [6] and [7] in regions removed from the free edges,
whi]e-near the edges the interlaminar shear stress 1y, agreed only with
Reference [6];_§he magnitude of txz was much lower than the singular ]
value of Reference [7]. The approximate nature o% the finite element
formuTatiqn for the laminated plate apparently leads to questionable
and quite possibly poor results at the exact free edge. Pipes [12]
u;ed the finite difference procedure to carry out extensive paraﬁetric
studies including l1aminate geometry, fiber orientations aﬁd stacking
sequences. The program used in Reference [12] is capable of handling

no more than an 8 layer symmetric laminate owing to the limited



computer capacity.

Several attempts have recént1y been made to verify experimentally
the numerical predictions, Results by. Pipes and Daniel [13],.
Herakovich [14]. and Oplinger, et al.. [15] have all showedsignificant ..
stress concentration behavior near the free edges. Ailthough stress
intensities were not determined in these studies, there were strong
evidences to support the numerica] prediction of significant stress
concentrations near the free edge.

Pipes and Pagano [16] more recently developed an analytical
solution to the e]asticify equations under the assumptions of zero
interlaminar normal stress, oz, and zero transverse normal stress, oy,
for the [i45]s'1amfnate. Pagano [17] obtained yet another approximate
solution following the‘ cylindrical bending theory of Whitney and
Sun [18]. Good agreement with the elasticity solution of Reference
F7] was found for the interlaminar normal stress, 0z (the "peel
;tress") on the m%dpjane of a bidirectional [0/90]S Taminate. quey?r,
thé éo]ution did not r;cognize the stress free boundary conditions
Tyzgib,z) = 0. 1In addition, no through thickness distribution of the
'_stresses was available. An approkimate approach was then considered
" by Tang [19] following the isotropic theory of Reiss and Locke [20].

- The interior ﬁomain (regions removed from the free edges) was assumed
to be in a state of plane stress, the axial displacement u was assuméd
to be a function of x only, and the displacement components, v and w,
were both assumed to vanish identically. The boundary layer equilib-

rium equations coupied with the compatibility equatibns were split into



two probiems. Namely, a modified torsion problem and a modified

plane strain problem. The resulting fourth order differential equa~
tions were solved by asymptotic expansion in terms of the ply thickness
h/2. The matching of the boundary layer solution with the interior
domain solution was satisfied by the imposed boundary conditions for
the two problems. The results for a [+45]; graphite-epoxy laminate
showed good agreement for the interior regions with References [6] and
f7] whi}e the interlaminar shear stress T, at the free edge was found
to be lower than the predicted singularity of Reference [7]. The
through-thickness stress distributions showed nonzero shear stresses
Txz and Ty, on the free surfaces z = th as well as on the midplane

z = 0. Also, the out-of-plane normal stress o, vanished on both the
interfacial planes z = th/2 and the midplane z = 0. This is unlike
the results of Reference [7] which indicated maximum values of o, on
the midplane of a_[0/90]S laminate and on the interfacial planes of a
[145]5 laminate. Finally, it should be noted that the approximate
nature of the formulation in Reference [19] did not satisfy the vanish-
ing stress Soundary conditions'rxy‘(ib,;) = 0 and gy kib,z) = 0 for

each layer.

1.2 fHE FINITE DIFFERENCE SOLUTION

In view of the discussion in Section 1.1, the finite difference
salution of Reference [7J seems' to serve as the most dependable solu-
tion known to the researcher. This is due to the fact that the formu-
lation was required to obtain the exact elasticity solution to the

problem. However, there were inherent deficiencies in the finite



difference procedures as pointed out by Pagano and Pipes-[21]. To
this end, numerous tests were carried out by this author to examine
the "exactness" of the solution in Reference [7](with emphasis on its
behavior near the free edge. The-fo]loﬁjng observations can be made. -

(1) For bidirectional laminates {0° and 90° plies), all stress
free boundary conditions‘were satisfied except at the four corners
of the laminate wheré the out-of-plane normal stress did not vanish
but took on a Tcw value. A?so, the sign of the outer layer o, at the
exact free_edge was found to be inconsistent with that of the inner
layer. These results may be attributed to the dissatisfaction of the
equilibrium equations on the free boundaries as can be seen in the work
of Pipes [12].

(2) For angle-ply laminates [iﬁ]s, neiﬁher of the stress free
boundary conditions, Uy(ib,z) = rxy(ib,z) = 0, was satisfied at the
intersection of the interface and the free edge. Both oy and 14y at
this suggested singularity were ‘of an erroneously large order of
magﬁitude—-as high as the axial stress ox. As a're§u1t, the inté;r -
laminar sheér stress Ty, attained a maximum finite value rather than
the passib1e in%inity predicted by Pipes and Pagano [7]. Failure to
-satisfy the vanishing'stress boundary conditions at the four corners,
oz(#b,zh} = 1., {(¢b,#h) = 0, was found again. Moreover, the sign ‘
reversal of stresses which was found for the bidirectional laminates
as a result of change in the stacking seguence, was not observed for
the angle-ply laminates. The above boundary violation may be due

to errors inherent in the solution procedure for the®angle-ply



laminates.

It may be concluded that despite the good agreement with the
results of References [6], [11] and [19] in regions removed from the
free edges, the finite difference solution yields poor results near
the mathematical singularity. In order to determine the proper order
of magnitude of stress intensity near the singular point, a more
rigorous analytical solution to the field equations must be obtained.
Such a §o1ution was described by Pagano and Pipes [21] as a "mathe-
matical nightmare."

The present thesis seeks a solution which predicts accurate
interlaminar free edge stress intensities for laminates. Due to the
above~mentioned mathematical complexities, it is certainly not an eésy
task. As described in the preceding section, all the previous investi~
gations show a common resuli--the plane stress lamination theory is
recovered near the central plane y = 0 provided the Taminate is suf-
ficiently wide (b/h >> 1). This suggests that the boundary layer
_effect is directly related to the geometrical ratio b/h, and that the
stress distribution throughout the laminate is the thbination of the
interior region solution and the boundary layer solution. The methcd
of solution employed in the present thesis is fhe perturbation
a;1a1yses [2, 22] developed in the 1940's to solve boundary value prcb-
lems in fluid mechanics and extended to problems in solid mechanics in
the 1950's. The fisotropic theory of Reiss and Locke [20] and the
anisotropic theory of Tang [19] were essentially based upon such

analyses. The main differences between the present thesis and the



theory of Reference [19] are summarized as follows. (1) The present
thesis is pased upon the displacement formulation in which the compati-
bility equations are satisfied automatica]iy. The resulting field
equations: aresecond order partial differentig] eaﬁafions in terms of
the displacement functions. Reference [19] waskbaéed upon the‘stress
formulation in which satisfaction of the Eompatibi1ity equations
resulted in fourth order partial differential equations in terms of
the stress functions. (2} For the interior regions, the present
thesis determines the three dimensional seolution to the reduced govern-
ing equatioﬁs {h/b'> 0) while satisfying the symmetry and antisymmetry
conditions, the disP1acement condition, the continuity conditions

and the vanishing stress boundary conditions on the top and bottom
suffaces. In reference [19] the dispTacemént components v and w

were both assumed to vanish identically for the interior regions .and
the axial displacement u was assumed to be a linear function of x
alone for such regions. {3) For the boundary layer region, the
present thesis removes mathematical complexities by considering the
free body diagram of an infinitesimally thin slice containing the
interfacial plane. Such a Timiting énalysis provides sufficiently
acdurate determination of the coefficients of the boundary layer
solution for h/b << 1. The physical validity of the composite solution
(interior and boundar} layer sotutions combined) is insured by the
following requirements. The material immediately adjacent to ﬁhé
interfacial plane must satisfy the "stretched” governing differential

equations, the matching principle of perturbation theory (Section 1.3},
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the force and moment balance with the stress resultants on the central
plane (y = 0), the self-equilibrating conditions of the out-of-plane -
normal stresg resultant, and the free edge stress boundary conditions.
Reference [19] consjdered two sépérate problems for the boﬁndany Tayer
region.accérding to the even and odd nature of the §tress components.
A stress function following the'isotropié torsion problem was agsumed
- for the T° (modified torsion) problem. A similar function was then-}
chosen as the. particular solution to the fourth order equation ﬁf the
pe (moaified plane strain) problem. This particular solution along |
with tﬁe homogenedus solution (50 order po]ynomia])-constituted the
solution to this problem. The combination of the T° problem and the
P°'prob]em_fa1]ed to satisfy some of the stress boundary conditions at
the free adge and on the free surfaces. And the approximate nature
made the through-thickness stress distributions incapable of properly
describing the force and moment equilibrium and the self equilibrating

condition at any level of z.

1.3 PERTURBATION METHOD

Consider the differential equation
ey' -y +y=0 , 0<x<l (1.1)
y(0) =a , ¥y =8 (1.2)

where q < g << 1,

Assuming the exact solution to the problem is not available, the

following approximate steps must be taken:



N

As e vanishes, Equation {1.1) reduces to
y' -y=0 (1.3)
which hgs a solutio? of the form
y° = ae* .(1:4)

where the superscript © denotes the solution corresponding to e = 0
and a is an unknown coefficient. Solution (1.4) can satisfy only one
of the boundary conditions (1.2). For the other boundary condition

to be satisfied, a stretching transformation is introduced in the form
£=|B - x|/t (1.5)

where ‘A > 6 and B is the boundary limit of the stretched end {0 or 1

in the present problem). It will be shown that this transformation
magnifies a small region called the boundary layer in which y changes
rapidly in order to retrieve the dropped boundary condition at the end
x = B; Solution to the boundary layer equation must match the solution
of the reduced equation {1.3) according to Prandt?'§ ﬁatching -

principle [2], -

o : BL
my . lim ¥ .
‘where yBL is the boundary layer solution. :

It may be shown [2] for the present problem that the boundary
Tayer exists near the end x = 1 and the value of A in Equation (1.5)

is found to be 1. Hence



. since it must satisfy the first of Equations (1.2). Also, the

stretching transformation {1.5) becomes

g:

(1.7)

(1.8)

Equation (1.8) is now introduced to transform the original Equation

(1.1) into

o o
0 2 E RS )
™

+
oo
&g

I

o

for e << 1.

Equation (1.9) has the solution
yBL = ¢+ de”®
which should satisfy the second of Equation (1.2). Hence,
c+d=¢g
The métching principle (1.6) is now appﬁied as
Q
lim y = Tlim yBL

X > 1 E >

or,

g}
"

oe

Hence from Equation (1.11),

(1.9)

(1.10)

(1)

(1.12)

{1.13)

(1.14)
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which yields
yBL = qe + (B - ne)e™® (1.15)

Finally a uniformly valid solution is formed acco?ding‘to:the

equation
ve =y +yBL - (y)Bt (1.16)

where y. is the composite solution and (yo}BL represents the common
part contained in both solutions.
It s clear that in the present problem

(v )% = 1im yBL = Tim = ee (1.17)
E—}m x+']

hence the composite solution to the original equation is
Yo = aeX + (B - we)e”t (1.18)

The above derivation was required for the zeroth order problem
of Equation (1.1). Fer a very small e, the zeroth order composite
soTution (1.18) provides sufficient accuracy. For a relatively larger ‘
e, solution to higher orders must be carried out to achieve bhetter
accuraéy. This is shown in the following steps.

. The solution to the original equation.(1.1) may be—expressed as
an asymptotic expansion of the form

y= & enyn(x) s £ << 1 (1.19)
n=0

Substituting (1.19) into Equaﬁion (1.1) results in


http:ae)e(1.18
http:ae)e(1.15

14

Py - Myt + ey ) = 0 (1.20)
n= : :

Since this is an identity equation in the nonzero parameter e,
the coefficients corresponding to éach n must vanish for all x in the

domain specified by (1.1). Hence,
Yo - Yo =0 (1.21)
Y'n = ¥p = y;,i .on 5_1 (1.22)
Also, substituting (1.19) into ?he boundary cond{tion (1.2) Teads £o
¥ol0) = e (1.23)

(1.24)

Ii
w

.yo(])

h>0 " (1.25)

o

¥a(0) = y,(1) =

It is clear that the zeroth order problem is defined by Equa-
t%ons_(].Zl), (1.23) and (1.24). The composite solution to this -
problem can.be shown to be identical to (1.18). Also, it is seen that
at any level of approximation n, Yp-1 1s known, hence y, for any n is —
-given by the first-order equation (1.22). Therefore, the stretching
'transformation (1.8) should be continually introduced near the end

X = 1 where the boundary condition is dropped. If the asymptotic

expansion

y= I E"YR(E) , & << 1 (1.26)
0
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is assumed, the transformed equations are

2
Yo  dyo | (1.27)
daz dg _

d2 dy
__Zﬂ._ n no> (1.28)

— T ._y
dEZ dE n-]. =

And the boundary condition at x = 1 becomes

0) =8 (1:29)

Yol&

’

yn{& = 0)

1]
[}

n > 1 (1.30)

At this point it must be noted that Prandtl's matching principle
(1.6)'fails to match expansions containing higher-order solutions.
Instead, Van Dyke's matching principle [2,_22] should be employed to
obtain a composite solution. For sTmplicit& in the present thesis,
only the zeroth order problem will be consideéed, hence no elaboration
wﬁl]‘be given. Nevertheless, it may well be an intriguing topic of .

future study.


http:topic.of

'Chapter II
PROBLEM FORMULATION

Figure 1 shows a balanced symmetric laminate of 2m plies of
homogeneous orthotropic lamina oriented at angles [61/82/83/..:./8m]s
with the x axis. The laminate thickness is small compared to other
dimensions, i.e:, the length dimensions are of the order L > b »>> h.
One of the orthotropic axes of the laminate coincides with the z axis.
The laminate is subjected to a constant inplane axial strain ey. As-
suming elastic response exists everywhere thfoughout the laminate, the

field equations can be derived as indicated in the following section.

2.7 GOVERNING FIELD EQUATIONS
Introducing a rotational transformation (Reference [1]) to the
layerwise orthotropic material Teads to the following constitutive

equations with réspect to the reference coordinate axes xyz

o 19 Ty b 3 00 0 gt [, 10

oy Clz Cp Co3 0 0 Cog| ey

2| C13 Co3 C3 0 0 G35 |e )
Tyz 0 0 0ty Cg5 O Yys

Tyz 0 0 0 Cas Cgs O Yz

| Ty L6 Co6 C36 0 0 Cgpl Yy

'

where the superscript k denotes the kth Tayer in the laminate. The

strain-displacement relations in each layer are

16
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X
Ey V.Y
Ez T W,Z
(2.2)
sz =W,y t v,z

Yyz = WeX * U,Z

]

Txy = VL,X + u,y

where a comma denotes partial differentiation.

Since the long laminate is loaded only at its ends x = zL.
Saint Venant's principle [23] can be invoked such that'the stresses in
regions far away from the ends are indebendent o% x. Thus, the

equilibrium equations in such regions reduce to

3T 3T
Xy , Zxz

3y 8z
og 9T
Y Yz
Ay * 9z 0 (?'3)
! oT ’ éo
yZ Z _
3y T3z -0

Combining equations {2.1) and {2.2), and ‘integrating the
resulting stress-displacement relations (independent of 3) results in

the following displacement fields for each layer.

g = (C]y + Cpz + C3)x + U(y,z)
2
v = (Cgz + C5)x - 5+ Viy,2) (2.4)
2
= —Cpxy & CgX - Cooe + W(y,z
W gy * Cgx - (o7 (y ?

where C; through Cg are unknown constants and U, V and W are unknown
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functions of y and z only.

The following symmetry and antisymmetry conditions must be

imposed:

u(x,y,z) = u(x,y,-z)
v(X,¥.z) = v{X,y,-z)
w(x,y,2) = wlx,y,-z) (2.5)

V(X,¥,2) = -v(X,-y,2)

i

w(X,y,z) = w(x,-y,z)

and the experimentally verified [13] condition

~u(0;y,h) = -u(0,-y,h) (2.6)

is imposed.

Equation (2.6) leads to a more generé] antisymmetry condition
u(OsY:Z) = "U(Os'ysz) (2°7)

for continuity consideration.-
At this pbint, the even and odd nature of the'dispﬁécements u, v,
w in relation to y and z can readily be seen. Substitution of Equa-

‘tions (2.4) into Equations (2.5) and (2.7) results in

10 =Cr=Cp=0C5=Cg=0 (2.8)

and ’
Uly,z) = Uly,-z), V(y,z) = V(y,-2), W(y.z) = -W(y,-2z)
D Uly,z) = -U(-y,.z), VIy,z) = -V(-y,z), W(y,z) = W(-y,z)

(2.9)

[
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This greatly reduces the Tayefwise displacement field functions (2.4)

to
u= Cgx + U{y,z)
v = V(y,z) (2.10)
w = Wly,z)

As defined in the beginning of the preéent chapter, the laminate
is subjected to a uniform axial strain. Hence the constant Cq in
Equations (2.10) is nothing but the applied strain e.

Comb%niﬁg Equations {2.1), (2.2), (2.3) and (2.10} results in
the following set of simultaneous partial differential equations with-

in each layer.

|
o

CgeU vy *+ CS5U,22 + C25V,yy + Cqp¥,zz + (C35 + C45)W,y2 =
CogU,yy + CagU,zz + CopV,yy + CyqV.2zz + (C23 + C44)w,yz =0 (2.11)

o

(C45 +-c35)U,yz + (C44 + C23)V,y2 + C44N, y + C33H,ZZ =
The appropriate traction-free boundary conditions are (Fig- 1):

oy(¥b,z) = 0

Ty (th,2) = 0 (2.12)

Ty, (tb,z) = 0
along the free edges, and

o, {y,th) = 0
Tz (¥52zh) = 0 (2.13)

Tyz(Ysih) =

|
<o
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on the top and bottom surfaces of the laminate.
Equations (2.12) and (2.13) may be expressed in terms of the

unknown funetions U, V, W in the form

‘ k
{Cypex + CopV,y(2b,z) + CogW,z(2b,z) + CzsU,y(ib,z)}( . 0
{Crpey * C25V,y(ib,z) + Q36N,Z(ib,z) + C56U,y(ib,z)}(k) =0 (2.12)
{CaaV.2(2b,2) + Cqqll,y(2b,z) + CyglU,z(252)1(K) = 0
{C]3sx.+ CoaV,y(y.*h} + Ca3¥,z(y,*h) + C35U,y(y,ih)}(1) =
[C4q¥-2(y>th) + Cagitay(yazh) + CgsU,z(y,=n) 1) = o (2.13)

(1) _

1
(=]

{Cq5V,z(ysth) + Cagh,y(y,2h) + Cosl,z(y,th)}

where the superscripts k and 1 denote the kth Jayer and the outermost

layer (Fig. 1), respectively; Equations (2;9) also yield the following

restrictions on the displacement fields

t,z(y,0{m = g
lv,z(y,o)}(m) = Q. (2.14)
(y,003{M = g
along the midplane and
{U(O,Z)}(k) =0
(0,23 = o ' (2.15)

: {M,y(O,z)}(k) =0

along the central plane and the 'superscript m denotes the layer
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adjacent to the midplane (Fig. 1).

Equations (2.11) along with Equations (2.12) - {2.15) represent
a well defined boundary value problem. Also, it is important to note
that these field equations were derived for individual layers., Hence
continuity in displacements and tractions across the interfaces must
be enforced to insure completeness of the solution.

Fquations {2.11) - (2.15) can be put in the dimensionless forms
{Qgg (n/0)2U,YY + Qg5U,ZZ + Qpg(n/b)Y2V,YY + QgsV,2Z
+ (Qgg + Qg5) (/o)L yz3(K) =

{st(h/b)zu,yy + QusU,ZZ + ng(h/b)ZV,YY + QuaV52L (2 {6)

+ (Qpg + Qgq) (/)W,¥2)3(K) =
{(Qg5 + Q3)(h/b)U,YZ + (Qaq + Qp3) (h/b)V,YZ
+ Qaq(h/b)2H, Y + 0gqu,223(K) = 0
. .
ooy + ~2210(1,7) + By,241,2) + 28y, v(21,23(K) = 0
o Q
Qgey + —o2,Y(21,7) + Qgéw,z(ii 7) + Qgﬁu Y(+1 z)}(k) =0 (2.19)
{94—4\! Z(+T z) + Q{?mv&‘t,z) + Q—ﬁ—s«u,z(ﬂ z)} k) =9
{Qyqe, + Q23v V(Y,21) + ggéw,z Y gs-u Yy, +1)}(]) = 0
Q Q

{'(?%&V,Z(Y,i'l) + “—gﬂW,Y(Y,.t]) +_—45'U,Z( ,ﬂ)}(” = (2.18)
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U,2(v,0)3(m = ¢
v, 20y,003™ < g (2.19)
" W(y,0)3(m = g

(w(0,2)3%) = 0
v,k =g (2.20)
i, v(0, 231K = o

k k
where ng) = C§§)/Céal

ficient of -the kth Igyer, Y = %-and 7= ﬁ-, ;he dimensioniess co-

with Cézi-being the largest stiffness coef-

ordinates, and U, V, W and their partial derivatives being dimension-

less quantities.

2.2 EQUILIBRIUM CONSIDERATIONS

Before developing the solution procedures, it will be shown that
a close examination of the fo%ce and moment equilibrium of a section
of the-laminate will lead to significant reduction in the mathematical

complexity. Consider the free body diagram in Fig. 2. Let
hk ;
=p > k=1,2,....m (2.21)

hence,.

mn
T ot.=1. (2.22)
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NOTE | Tyy , Txz (NOT SHOWN)

£
=3 8, 1
i
Oy (0,20hdz - %Iz
: == =
K < B 1k oy
A /V@____._._l b1
| id
\ IOJ Y.anﬁ’m
> 2y T
n BkH iR es) .
o Ty (0,Z)hdz e ! E

FIGURE 2 FREE BODYDIAGRAM OF QUARTER YZ~PLANE
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.foy(O,Z)hdZ g
J z
>< /‘//’ié?’_ 91 hl

Ry—““"&

A

FIGURE 3. PARTIAL FREE BODY DIAGRAM OF QUARTER
SECTION.
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which gives

1 ]
L o :
Jzk 3y(0,Z)hdZ [O g2 (1,74 )baY (2.23)

and ¢ My = 0 which gives

1 3y RS 2 ‘
| ayto.mm?(z - ez = J o, K (v, 7, )b2yay (2.24)
Zy : 0
. k .
where Zp = 1 - & tj is the elevation of the kP interface in the

j=1
first quadrant.

On the other hand, the force equitibrium per unit length
requires

T Fy =0

which yields’
1

1
[ exy(0.200dz = | 2y (¥,2, )by (2.25)
Zk G .

-At this point; an important premise must be recognized in the
solution method of the present thesis. It has been numeéica1]y
observed in [24] and examined in the present study that the central
plane stresses cy(k)(O,Z) and Txy(k)(O,Z) are essentially constant
in each layer for h/b << 1 (Figs. 2, 3). Hence it may be -expressed

mathematically that
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" (k)
b Fy = kE] ay (O,Z)tk =0 (2.26)
and
. (k)
Z_Fx = kEI Ty (O,Z)tk =0 (2.27)

for equilibrium considerations.

Equations (2.23) through (2.27) together serve as an important
tool to reduce the mathematical complexities in the bresent thesis.
Since the material on either side of the kM interface z = Z) must
satisfy the governing equations (2.16) aﬁd the boundary conditions
(2.17) and (2.20)}, and since the interlaminar stress distributions are
of primary interests, the boundary layer equations will be solved by
considering only the infinitesimally thin free body diagram about this
interface (Fig.'4). By doing so, the boundary value problem is re-
ptaced by the free body force and moment system of Fig. 4. Thus, the

stress boundary conditions on the top and bottom surfaces, (2.18), can

be safely ignored. This will be elaborated upon in Subsection 2.3.2.

:2.3 PERTURBATION SOLUTION

As described in Section 1.3, two regioﬁs wiill be considered
separately. ‘Namely, the interior region where the solution to the
reduced equations (e ~ 0) satisfies boundary conditions at one end, aﬁd
the boundary-layer region where solution to the "stretched" equations
satisfies the boundary condition at the other end. Matching of these

two solutions must be enforced to insure uniformity of the resulting
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(K}
O Y, Ze#0) FYaY
o]

- Tl Y24 L baY ¢
TxdYY, Z+L)bdy 0
0/; X K g ) \ ?

J (K1) 4
f Tz Y Z LY e ————2 Q@ .
[ o3 .
° o7

/ | z
I (K+) e+l
0

Z

O<f<<<| i
; -0 \

L (ge1) - »
o'c"z (Y, Zg=C)b" YdYy

F_'IGURE 4. LIMITING FREE BODY DIAGRAM OF THE INTERFACE -
Z "'ZK
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composite solution.
« 2.3.1 THE INTERIOR REGION

To seek a siraightforward expansion, let

uk) = 5 eny (K)(y,z)
n=0 .
vk = 5 ey iy g (2.28)
n=0 ) .
W = 7 ) e, k=1.23...m
* n=0

where the small parameter e represents the geometrical ratio h/b.
Substituting these expansions into Equations (2.16) and equating
coefficients of equal powers of e to zero result in the following sets

of equations:

g 1(k
e {QSSUO,ZZ * 045Vo,zz}( Y’
k
{Q45Uo,zz * Q44Y9,72 Koo (2.29)
{Q33wo,22 (k) = o
el : {055U1,zz * QgsVy,zz + (036 +‘Q45)wo,yz}(k) =0
10a5U1,77 + QaaV1,7z * (Qp3 + 044)No,v2}(k) =0 (2.30)

{(Q45 + Q36)Up vz + (Qgq + Q3)Vp,yz + Q33W1,zz}(k) =0
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el ¢ {stur-z,vv + O55Up,77 * Q26Vr-2,vy * U5V, 77
* Q36 * 045)Wr-1,vz}(k) =0

{Qzﬁur"z’YY * Qg5Up 77 * Q2Vro2 vy * Qad¥r 2z
* Qg3 +''Qa,t;)‘*’r-1,Yz}(k) =0 (2.31)

{(Q45 * Q36)Upq,yz * (Qag * Qp3)Vp vz
K)
*%ﬂwaw+QmWJﬁ()'0 r2

Now the displacement conditions (2.19) and (2.20) give

unfg)(Y,O) =0
v (m)(Q 0) = 0 (2.32)
n,Z ‘' _ '
| u, ™M (y,0) = n=0,1,2,....
and
un(k)(o,z) =0
v, % 0,2) = 0 | (2.33)
w4 (0,2) = 0 n o= 0,52,
= 1,2,.0.,m

- i k

'Rehognizing that the boundary layer regions exist near Y =4 1,

the stress free boundary conditions (2.17) are dropped for this
interior region.

The stress boundary conditions on the top and bottom surfaces,

Equations (2.18), yield
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Qo3 Q33 Q
{Q]3ex FoE v (V1) 2wy S(Y,e1) + a2 Uy y(Y, +1)}(1

|
(]

Q Q
{—%i Uy 2 (11) + Sy (1) + Sy (v _1)}(7) _

Q Q Q '
{ 2y, (Y, ) + 22 Wy y(V,21) + 22 Uy LY, +1)}( l =g

(2.34)

n-=0,1,2,....

k) _ k) _
xz( ) Tyz( ) =0

(k = 2,3,4,...,m) must also hold for the interior region. Hence

(k) -

For the lamination theory, a, T

Equations (2.34) may be generalized to

Q Q 0
{Q]3€X + b3 Vn, y(YsxT) + 33 Wn, z2{Y,£1) + gs Un, y{¥s +])}( ) - =0

0
{ 4y o0y + gy 2 8 Uy, 2%} = 0 (2.35)
Q Q Q
{¥%§-vn,z(v £1) + 52 Uy y(V,21) + =2 Uy (Y, +1)}(k) = 0
n=0,1,2,....
k=1,2,...,m

The_dgrived symmetry and antisymmetry conditions (2.9) lead to

0,V (v,2) = 4,V y,-2)
v, v,y < va(Ky,-p)

u, K (v,2) = - (K y,-7)
(y " (2.36)
U, (v,2) = -y R v,z
vkl (v,2) = v (K (ov,z)
(K (v,2) = w (k) (-v,2)
n=0,1,2,....
k=1,2,....,m
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Equations (2.35) may be but in the following form with respect

to the order of ¢, similar to Equations (2.29) through (2.31).

e? :,Q]3(k) exh + Q33(k)Wo,Z(k)(Y’i]) =0
.044(k)VO,Z(Y,iT) + 045(k)U0:Z(Y,i1) =0 (2.37)
045(k)V0;Z(Y,11) + st(k)Uo,z(Y,t1) =0

o (k)
s Ml (e a5, ;1,21

+.Q36(k)9r£¥2Y(Y’i7) =0

04g "M, ) (1,01) + Q4§(k)”r,z(k)(Y=i1)

(2.38)
+ Q44(k)”rE$ZY(Y’i]) =0 |
Q45(k)vr,2(k)(YsiT) + Q55(k)ur,2(k)(y’i1)
+0%&m£ﬂﬂ“ﬂlzo "2

Thus, the interior region problem is redefined by the infinite
sets of equations with respect to the-orQEr of .
’Thg_zeroth Order Problem:

Equations (2.29), (2.32), (2.33), (2.36) and (2.37), (n = 0)
constitute‘tﬁe.geroth order problem for the intérior region.

The solutions to Equations’ (2.29) have the form

0K = A Mz + 8, M) |
= co(k)(v)z + 0, (k) (y) (2.39)
W, (k) = g (K vyz + £ (KD (y)

==
———
-~
—
I

k=1,2,....m

where Ao(k)(Y) through Fo(k)(y) are unknown functions. It may be
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noted that the form of Solution (2.39) is similar to Pagano's approxi-

mate solution of Reference [17].

0, it may be shown that

n

From Equations (2.36)‘with n
20800 = ¢, =,y - 0 (2.40)

The first of Equation (2.37) then leads to

Q13(k)exh'

(k) /vy =
£y = -
° 033(k?

hence :
- (k (k)
(k) - Gy5tK)e, n Gz egh ‘
W, = - ““*E;——(ET‘Z = —“E;;TEj*'Z .- (2.41)
33 :

" The last two of Equations (2.37) are identically satisfied.
From Equations (2.32) with n =0

8,500 = 0, =0 k=1,2,...,m (2.42)
Aiso, from Equations (2l36) with n =.0
go(k)(,y) - _“Bo(k)(y) ’
Koy = 2o, vy k= 1,2...m (2.43).
0 0 shsee e

-Equations (2.26) and (2.27) may now be expressed in the form

m C23C13 (k) m (k) )
5 [[512 - g3 ] ]hk %0 2 G Do )
v 5o im0 (2.4
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m CorCamy (k)7 n
. 2613 (k) (k)
z [(C - ————-J ) ]h esb + ¢ C h, D ' (Y)
k=1 16 C33 . k=x k=1 26 k-0

- kg] ces Fone8, () (v) = 0 (2.45)
where Bo'(k)(Y) and Dol(k)(Y) are fhe first derivatives of the cor-
respondiﬁg functions. Note that the higher order‘terms were neglected
{n these equations. ‘

Equation (2.41) implies that continuity in the displacement
W(Y,7) éan_be insured only when higher order terms are included since
Qijgk) (k= 1,2,...,m) are different in generai. |

Enforcing displacement continuity in U(Y,Z) and V{Y,Z) results

in

3, (1) = 8, By = L= g™y (2.46)

Do 1 (vy 20 = o= 0™y | (2.47)

'

Integrating Equations (2.44) and (2.45), making use of Equations
(2:42) and combining the resulting Equations with Equations (2.46) and
(2.47) lead to

5 (gyy = . 1198 7 %) py
0 - {9005 - 0303) ‘
k =1,2,...5m (2.48)
4795 - 959
o, (K (yy = - (1% 7 3%)

- (qzqs - q3Q3)

where
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m CoaCyqt (k)
2313

k= 33 J
M
k)
g, = 1 C, K
2™ Ly Tk
m .
03 k§1C26(k)hk (2.49)
n [ 026913](k)
a = - 7%
4 k=1 16 33 k
m (k)
qg- = = C h
5% 2,066 "k

" As mentioned in the preceding section, higher-order approxima-
tions are not pursued in this thesis for simplicity. Hence, the

interior region solutions are found to be

ut) = 5 &) (v) + o(e) B
vk = p KDy + 0(e) : (2.50)
y(K) - C}é(k)Exh : -

- z + O(E) k = ]525- . ,ITI
ST TR - 3
633 -

1!

where Bo(k)(Y) and Do(k)(Y) are given by Equations (2.48), and 0{¢)
répreseﬁts the highest order term truncated in the asymptotic expan-
sion. -
2.3.2 MODIFIED ZEROTH ORBER INTERIOR REGION SOLUTION

Solution (2.53) does nat completely satisfy the vanishing stress

conditjon (2.35) to the proper order of e. This can be seen

from Equation (2.38) where the zeroth order displacements Uo(k)(Y,Z)
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and Vo(k)(v,z) were related to the undetermined first order displace-
ment w](k)(Y,Z). It has been described (Section 1.3) that solving
higher order problems requires more’compTex mathematical procedures
such as Van pyke's matching principle. Also in Section 2.2, it
was shown that the uﬁiform stress distriﬁution on the central xz -
plane (Y = 0), a numerical resuit, is utilized as an important tool
+o rediuce mathematical complexity for .the boundary layer region.
Therefore, an improved zeroth order interior region solution to eQa1u-
ate better stress intensity near the central plane is certainly quite
demanding..

To seek such an improvement, Fquation (2.39) along with Equation
(2.40) are now required to satisfy the stress conditions (2.35)
exactly. Equations (2.32), {2.33) and (2.36) remain satisfied. The

following equations are obtained.

AL £ Kz s
AL Bo(k)(Y)' (2752)
VOFE) - Do(k)(¥)‘ _ (2.5§)A_
10Qq3¢, 9%é-Do'(Y) + 9%2.50 * 9gﬁ-Bo'(Y)}(k) =0 (2.54)

where Eo(k) nov becomes an unknown constant for the kth Tayer.
Again en@ircing continuity in displacements Uo(k)(Y,Z) and

Vo(k)(y,z), resiectively, yields

AQIOEEALIGEIRNESE UGS A0 (2.55)
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and o, (D(wy =0, @ vy <=0, Wy = By(v) (256)

Hence, Equation (2.54) may be written as

(k) (k) (k)
P M YT (3

C]3(k)€x b 2 £, (k) 4 b FM=o (2.57)

Continuity in the displacement wo(k)(v,z), as deve]oped in Sub-
section 2.3.1 (Equation (2.41)), will be insured only by higher order
conside%ations, hence it is not imposed as a physical requirement in
the present modification.

Finally, recalling Equations (2.26) and (2.27) gives

(k}y
m C m C h
{ L (612 ¥ _%g'go](k)hk}sx + [ - "ggE—_"E'ﬁbl(Y)
k=1 X k= |
CoeKn :
+ [ ? ‘EQB___K]EBI(Y) =0 (2.58).
k=1
and ‘ i
' - ' (k)
m C36. (k)- ‘m CZG hk _
LE]_(% +Tfo] hk}ax TR Do"(¥)
. (kj
™ ey
. ———IB_ (Y} =0 2.59
+'[k§1 5 J o (V) (2.59)

Since there are m + 2 simultaneous equations ((2.57) - (2.59))
for the m + 2 unknowns B,'(Y), D' (Y}, and Eo(k); the modified zeroth
order interior solution can be readily determined.

To show the improvement made in the present modified interior

region solution, two numerical- examples are given in Tables 1 and 2.
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TABLE 1*
[0/90]¢ (e = 0.133)
Modified
Displacement Finite Difference LIR** Sglution ZIR Sotution
ulk) /(e bY) 0 0 0
v(K)/(e,bY) ~0.0397 -0,0391 -0.0396
/(e ) -0.2467 -0.2534 -0.2448
w(2) /(esh2) ~0.2055 ' 0.2172 -0.2072
* Material: graphite-epoxy laminate with constant ply
thickness.
*% Zaroth order interior region.
TABLE 2
[45/-45]5 (e = 0.133)
: : Modified
Displacement _ Finite Difference ZIR Solution ZIR Solution
ik} /(e bY) 0 0 0
v(k)/ (e, bY) -0.7409 -0.7298 -0.7433
W)/ (e,n2) -0.0607 -0.2354 -0.0604
W(2)/(e,n7) -0.06)3 -0.2354 -0.0604

As expected, the Modified ZIR solution yields more reliable

results than the ZIR solution.
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(1) =(2) courLe OF Ry (v=0}  (7)~(8) COUPLE OF Ray

{3Y-{4) coupLE OF Rxy(Y=0) {9)-(10) coUPLE OF Rxz
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FIGURE 5. FREE BODY DIAGRAM OF FIRST QUADRANT -
OF TYPICAL SECTION
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Hence the former will be employed throughout the present thesis
to evaluate the central plane stress intensit& for the determination
of the unknown coefficients in the boundéry layer region solution.
 2.3.3 THE BOUNDARY LAYER REGION
Consider the first quadrant of the yz - plane as shown 1n

Figure 5. Introducing the stretching transformation

n = 1—15141) ' (2.60)

near the free edge Y = 1 to the governing equations (2.16) results in

the following equations for this quarter plane of the laminate.

k) _ .
{Q6Ys 1y *+ Qs5Uszz + QpgVopy + 0g5Vszz - Q36 * 045)Wsnz1( ) =0

' k) _
{QpgUsnn + Quslszz + Q2Vany + QugVozz - (Q3 + Q44)N=nz}( =0

' k
{-{Qq5 *+ Q36)Us.7 - (Qag *+ Qp3)Vonz + Qagonn + Q33t-t,zz}( ) = 0
(2.61)

To satisfy Prandtl's matching p%incip1e (Section 1.3), assume the

following composite expansions

utk) = [Bo (1) + Pe " cos oy 21(K) + 0(e)

. A )
[0, (Y) + Re ™" cos oo 1K) 4 0(e) Kk =1,2,....m (2.62)

it

= .
Ce )
~
S
1

Agn
= [E,Z + Spe °" sin ag Z](k) + 0fe)

where Bo(k)(Y), Do(k)(Y) and Eo(k) are the Modified ZIR solution

given by Egquations (2.57) - (2.59), Po(k), Ro(k) and So(k) are un-

(k)

determined coefficients, and oq are undetermined positive quantities
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in radians. The subscript o implies the zeroth order solution for the
boundary layer region.

Subst%tuting Equations (2.62) into Equations (2.61) and neglect-
ing the 0(e) terms results in the following set of three éimu1taneous

algebraic equations corresponding to the =° order:

2 2 k
(6% - Tsgte )Py + (Oaghe? - Uagzg IR = (O35 + Qgghiagse) ) = 0
4 k
{(stloz - Q45302)P0 + (Qggloz - Qa0 IRy = (Qog + Q44)10a050}(,) =0
. . k
U045 + 03g)omoPo * (g *+ Gpg)hmoRy *+ (Uaaro? - Qgzae?)sh ) = 0
k=1,2,...,m (2.63)
For each nontrivial term of Solution (2.62) to exist the
determinants of these algebraic equations must vanish individdal%y.
Thus . ‘
Qer 2 - g ) ) 20 2 £ Qe (k)
66% ~ 5%  Qgre - Ugso Q36 + Qg5)207
Q26;\02 - Q45u02:. QZZAQZ - 044q02 ~(Qpy + Q44)loa0 = 0 (2.64)

1(Qg5 + Q3g)rge  (Qga + 023)%0 Qag2o” - 03300
k=1,2,....m

These sixth order equations may be regarded as third-order equa-
_tions_by the classical treatment [25] and the method of complex
variables [26].

The six roots are found to be in the form

{10(] :2) = i- a ao}(k)
(p(3.4) = = B gt ) (2.65)
2o(5.6) = = E,ao}(k)
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where E{k), E{k), E{k) are three positive constants in terms of
material constants of the kiP layer (see Section 3.2). For matching
consideration, however, the positive roots must‘be dropped since they
Tead to exponen%iaI growths of‘tﬂe disp1acement; for large n {or s&al]
Y).

Upon determining the characteristic foots from Equations (2.865),

Solution (2.62) takes the following general form.

) e

o
—
-
—
il

fBO(Y) + (PTe-aaon + Pzébaon + P3éca°“) cos ag Z}

vk = o (v + (Rye™%0" + Rpelo" Ry ") cos o 2K 4+ o(c)

W) = (Eyz + (5738%N + s,E0%0N 4 S4°"0") sin o 23K+ o(c) (2.66)

n

where Po(k), are replaced by P](k), Pz(k), P3(k), etc.
With the above solution, the stress boundary conditions (2.77a},

(2.17b) and (2.17c) transform to

{[Qp6(aPy + B, + TPg) + Qpy(aRy + BPy +.CR3)
C g 023(51 + Sp # S3)]a0 éos(ao )

- - Q Q Qog - k
I B ey + -2y (1) + -2 gyt ey m

(2.67)

{[Qgg(aPy + BP, + CP3) + Qpg(aRy + BRy + CR3)
+ Q36(S7 + Sp + S3)]og cos (ag Z)

Q Q Q
= - [{1e * % Egley + % D' (£1) + %BO'(ﬂ)h}

(2.68)

(k)
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{Qgq[(Ry + Ry + R3) - (S93 + Spb + S3c)] + Q45(P]r+ Py + P3)}($) =0
k=1,2,...,m (2.69)

Note that the right hand sides .of Equations (2.67) and (2.68) are all
known quantities from the interior problem. .S{nce there are ten un-
known coefficients in the kth Tayer, solving simultaneously three
equations from the boundary conditions (2.67) through (2.69), and six
equations from Equations (2.63) leads to the determination of the nine
unknown coefficients in terms of ag. The accuracy of the coefficients
thus obtained can be readily checked by the self-equilibrating condi-
tion of the stress resultant,

ZF, = Jb csz“‘)cnf= 0 (2.70)

) 0 ‘

for any level of Z (Fig. 2).

Finally, imposing the moment equilibrium conditions (2.24) and
the force équi1ibf1um conditions (2.23) and (2.25) determines the
values of ao(k) %nd tan (ao(k)zk) to their orders of accuracy. -

In summary, the zeroth order interior solution (ZIR) was ob-
tained by letting h/b go to zero. The Modified ZIR solution improved
"the Z;R solution by satisfying the vanishing stress boundary condi-
tions {2.35) exactly. The zeroth order boundary layer solution was
obtained by transforming the governing equations and the boundary con-
ditions (2.17) at the free edge. The matching prjncip]e was satisfied
by-the composite solution, and the self-equilibrating condition of the
interlaminar normal stress resultant was employed to check the

accuracy of the calculated coefficients. The continuity conditions
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in both displacements and tractions were imposed. And the force and
moment equiiibrium of the composite solution with the central plane
stress resultants were satisfied for the kth interfacial plane

Z = 7y (Figs. 3, 4).



" Chapter III
SPECIAL LAMINATES:

The solution method developed in the preceding chapter applies
to balanced, symmetric laminates with variable-thickness plies. For
certain special cases the field equations are greatly simplified by
the vanisﬁing of some elements in the stiffness matrix. Among the
vdarious laminates studied in the Tliterature (Section 1.1) are the bi-
directioﬁa1_1aminates [0/90]¢ and [90/0];, and the angle-ply laminates
[e/-é]S and [-8/68]g. These two laminates will be considered in this

chapter. -~

3.1 BIDIRECTIONAL .LAMINATES WITH CONSTANT PLY THICKNESS
When the orientation of the fibrous layer is either ° or 90°

with respect to the x axis, the constitutive equation reduces to

o 1® fen o oz 0 o 0 7tKe, 1)

gy - {Cy2  Cy2 Co3 0 0 0 ey

2 _|913 f3 Gz 00 0 22 (3.1)

Tys 0 0 - 0 Cg 6 0 Yyz

Tz o 0o o o ek O Yz

Ty 0 0 0 0 .0 Gl lryy
k=1,2,...,m

Consider the Taminate consisting of 2m layers with the stacking

sequence [0/90/0/90/0/90...]s as shown in Fig. 6a.

44
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X
A.
0 ho &
90 ho
h o Ny
hy = 7 90 ho
o hy h
90 h,
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OF , b &
(a) BIDIRECTIONAL LAMINATE
aZ -
g ho &
-8 _h,
h g h,
ho="/m g - h
9 h, h
-8 h
b %’ Y

(b) ANGLEPLY LAMINATE

FIGURE 6. BIDIRECTIONAL AND ANGLE-—-PLY
LAMINATES
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Equations (2.16) reduce to

2
h (k
{06 [BJ Usyy * Q55 Uszz} Y

" ‘ |
{Qyp [E] Voyy + Qggq Vozz + {Qpg Q44)[%J W,YZ](k) =0 (3.2)

2
h h k
{{Qqq + st){b] Voyy + Qg4 [b] Wiyy *+ Q33 wszz}( ) -

Note that the first equation is an independent equation whose complete

solution may be assumed in the form

ulk) = { ; a, e)LnY cos ay, Z}(k) " (3.3)
n=0 .

where a (k) (n = 0,1,2,....) are unknown coefficients.

n
Substituting Equation (3.3) into the first of Equations (3.2)

yield
. %55 b
Hence — | . - i
B _ (x) .
U(k) = { zo ay, s'inh[ —Q-g—g-%an Y] CoS ap Z} (3.5}
n= T .

Soiution (3.5) automatically satisfies the first of the displace-
ment symmetry conditions (2.19) and (2.20}. The second equation of the

free edge st;ess boundary conditions (2.17) reduces to

1 o (K) 2
{Hgg_u,y (,1,2)} 0 (3.6)
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Substituting Solution (3.5) into Equation {3.6) results in

a, K =0  n=0,.2,... (3.7)
hence, . U(k) =0 ' ) (3.8)
everywhere in this laminate,
_ o (k) (k)
This leads to the vanishing of the shear stresses Txy and Tz

throughout the bidirectional laminate as may be physically expected.
The modified ZIR solution (Sussection 2.3.2) for v{k) and ulk)

may be determined by so'lvi’ng Equations {2.57) - (2.59) simultaneously

with §b'(Y) vanishing identically. For the‘simplest case of the four

1ayef symmetric [0/90]; laminate, the displacements are found to be

y(k) = p (K y)

| () =g (1) (3.9)
w(@) - g (2);
where
) (2} (2)(1 1 2
). 023% %13) ész( 3+ 33E z éz%cézg C( % 12}r 5231 Yexh (3.16)
0 {ch5s 333105%&£§&333- $3¢351 cé%lcgg
2) (1) - 2)
). %23 %3 (W, b3, 43)053) £ (3:11)°
Bt = T o T T ey T T2y L
33033 33 23 733
(1) (1) :
C33 b ('!) C'f3 e,b -
Do(k)(y) - E;(?E-EO +--—_Eg§7—-Y (3.12)

Introducing the stretching transformation
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n="Tp (3.13)
b

into- the remaining coupled equations of (3.2) results in the boundary

layer equation in the form

| (k)
{Qp Vo + Qaa Vozz - (Qp3 + Qq4) Hsnzl = Q-

(K)

(3.14)

{-(Qqq * Q3) Vinz * Qaq Wonn * Q33 Wszz}
Following Subsection 2.3.3, the displacements are assumed to be

v{k)

) . AT ‘
p. (k) (Y) + [R.e © e 715 + 0(e)
o (1) * [Roe 7 cos o 2] (3.15)

Eo(k)Z + [Sg e"" sin 2o 21%) + 0fe)

vhere Do(k)(Y), Eo(k) are known quantities from the modified ZIR solu-
tion. For the four ply [0/90]; laminate, they are given by Equations
(3.10) - (3.12). Ro(k) and So[k) are unknown coefficients.

) _ Substituting fquations (?.15) into Equatibns (3.14) resu]fs-jn )

the algebraic equations for the zeroth order boundary layer problem as

follows.

(02 102 - Qg aoz)Ro - (Qo3 + Qg4)2, “6 SO}(k) = 0 (3.16)

{(Qqq * Q3)20 o9 Ry + (Qga 102 - 033 “02)50}(k) =0

For a nontrivial solution, the determinant of these equations

must vanish. Thus,

» (k)
Gpp 2o° - Qg o (O3 * Qa0 o | (3.17)

. 2 2
(Qgq * Qi3)30 =g Ogq 25" - Q33 %
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whence

aolK) = =

0l - 4 933
Qs

172

(k)

W (38)

‘ (k)
() - %3 _ Qesls + 20730a4]
p b=
Qaq

022044

(3.19)

Note that the 2 x 2 determinant is only a principal minor of the

determinant in Equations (2.64).

graphite-epoxy and boron-epoxy Taminates,

-

022,

Q33](k) > 0

For conventional composites, such as

(3.20)

Hence Eguation (5.18) yields two pairs of real roots. For match-

ing considerations, the positive roots are dropped, and the zeroth

order composite solution (Section 1.3) takes the following form

. _ -" _ k
v.i(k) = p (k)(y) + {(Ry 21907 4 p P2 %M cos o Z}( )
c 0 ] 2 0 (321
© , , . 3:21)
i (k) = g (k)7 4 g(s; 681907 4 5, B2 @04 o2y (K)
(k)
where p + [pz -4 9§§m]/2
o () - Y22
: .2 " (3.22)
2 Q33\1/2\
"TP Ty
(k) - -
B2 _ 2

and Prandtl's matching

principle (Section 1.3) is satisfied.
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The first and third of boundary conditions (2.17) lead to

{[Q22(81Ry + BpRp) + Qo3(S1SpTag cos (ag Zk)
= - exh(012 + Qa2 Do’ (Y) + Gpakio) 1) (3.23)

{044 (R] + R2 - S]B] - 5282)}“()-: 0

From Equations (3.16), additional relations between Ry and $q

Ro and 52, are obtained as follows

[(QZEB]Z - Q44)R] - (Q23 + Q44)B]5}](k) =

(3.24)

\
L]

|
o

[(Qp8,2 - Qaa)Ro - (Qp3 + Qg)855,1) = (3.25)

Solving Equations (3.23)‘7 (3.25) simultaneously results in
R (K), Ry (K, 5 (KD ang. 5,5(K) in tevinsiof hey/(aq cos ag(Zy + ©))
where 0 < ¢ <<< 1 and Z, is defined in Equation (2.24) and (2.25).
Equations (2.23) and (2.24) then lead to the determination of
ua(g)_and.tan (ao(k) %k - ¢) to their orders of aﬁcuracy. - .
Thus the complete solution for the zeroth order displacement
function U(k), ka), w(k)_are obtained and the intérlaminrar stresses
between ?he kth layer and the (k+1)th layer, Zy = 1 - rgltr , may be
readi]& calculated from the strain-displacement equations (2.2) and the
constitutive equations (3.1).
3.1.1 [0/90]5 GRAPHITE-EPOXY LAMINATE
As a numerical example, the four-ply [0/90]S graphite-epoxy lami-
nate with constant ply thicknesses (Fig. 7a) is consf@ered. The stiff-

ness coefficients (after transformation) are Tisted below.
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“ FIGURE 7. FOUR PLY BIDIRECTIONAL LAMINATES
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0 {x 107 psi) 90 (x 1076 psi)
c{]) = 20.2 | c{2) = 2.2
cdl) = o0.56 cf2) = 0.56
cf)) = 2.21 cgg) - 20.2
c{l) = 0.56 cf2) = 0.8 |
Cé;) = 0.48 cég) = 0.56 (3.26)
c{l) = 2.21 cgg) . ?.2f'
o} = 0.8 ci2) - 0.85
cil) = 0.85 cég? = 0.85
ctl) = o.e5 ‘ c{2) - o.e5

From Equation (3.8); the axial displacement function U vanishes
everywhere in the Taminate.

The interior vegion solutions (3.9) are found to be

] 2) oy
vq( ). vo( ) = -0.0396 &,bY (3:27)
w1 = 0,248 eonz (3.28)

Q . * X .
i, (2) = -0.2072 gz (3.29)

From Equations {2.2), {3.1), and (3.27) - (3.29), the central

plane (Y = 0) stresses are found to be

oy 1100.2) = 0.3552 €, (10 psi) (3.30)
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oy(Z)(o,z) = -0.3552 £,(10° pst) (3.31)
(1) (2) :
Txy.(O,Z) = Tyy (0,Z) = 0
Equation (3.22) gives
a1 = 1.10809 -
8,{1) = 0.90172
(2) . (3.32)
8,(2) = 1.57550
8,(2) = 0.20994

Considering continuity of Equations (3.28) and (3.29) at the-

interfaces 7 = + %

and the exponents given by Equations (3.32), it may

/

be postulated that the boundary layer effect in the 90°-ply (Layer 2)

penetrates deeper into the interior of the laminate than that in the

0°-ply (Layer 1).

Hence the zeroth grder composite solution (3.21) is in the form

(D = 20,039
) = -0.2848
ve'?) = -0.0396
w2 = -0.2072

The unknown coefficients

- -B
e?]aon e 20[On)cos Q

sng + [(Ry + R

-B10gN

~Baa,n
e 2%

exhZ + [(S; + 5y e )sin o
: . (3.33)
- -8

exbY + [(R e81a0n + Ry € 20lon)cos

-8 -8
ehZ + [(S7 e 0" +5, & 2%)sin

are found (setting Z = %J to be
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Ry{1 = 0.8385 o R, (2 = _0.0028 4,
R (1) = 21,1776 4 Ry(2) = 0.0984 4, 330
3.34

5701 = 21,0619 4, 5;(2) = 0.0625 ¢

s,(1 = 0.9298 4, 5,(2) = _0.0134 4,

where -
: x - (3.35)
¢] - u0(1)c05(ao(1)(%,+ ;)) .
' sxh

6, = (3.36)

ao(z)cos(ao(z)(%-- z))

0 <z <<< 1.

The self-equilibrating condition & F, = 0, Equation (2.70}, can

be written. in the form

+

0
_j Uz(k)(n’ %'i glhdn = 0 0 < g, <<< ] (3.37)

Substituting the coefficients of Equations (3.34) into Equations

(3.27) and the constitutive equation (3.1) determines the stresses on

either side of the interface Z = %a It may be shown that Equation

(3.37) is satisfied identically. This further confirms the correct-

ness of the calculated coefficients of Equations.(3.34).

Equations (2.23) and (2.24) now become

18]

[ "=, 3 odhan = - 0:3582 pe, (106) (3.38)
(0 .

L - Tyz(z)(n, ;— - g)hdn = - 9—'—312—5—2— hf:x(loﬁ) (3.39)
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0

[" - 0, £+ eoh(1 - enlon = - BEZ ne, 1) (3.40)
° ] . h ,

J - 02(2)(n, 3 - g)bh(1 - en)dn = g'égég'hﬂx(106)ﬁ' (3:41)
= 0 < g <<<]

where 2—15 the approximate distance of the resultants Ry(]), Ry(z)

from the interfacial plane.
To compare with the numerical results of Pipes and Pagano (71,
the interlaminar stresses are calculated based on the 90° ply (the

lower layer). Equation (3.39) leads to

tan QO(Z) - ao(z) 4 | :
. = 0.5 0 < <<<] (3.42).
)
0 -
whence o, (%) = 0.180, 8.9868, 15.4505, .... © (3.43)
Equation (3.41) gives '
aot?) = 2.8284 L (3.44)

From Equations (3.38) - (3.41), it is clear that the stress resultant
is of -order o(hax105) while the couple moment is of order 0(h25X105)r
Hence, requiring exact satisfaction of Equation (3.39] and approximate .

~ satisfaction of Equation (3.41) fixes the value of ao(z) at
2o2) = 8.9868 | (3.45)

While Ty, and t,, vanish throughout the laminate, the other

stress components are obtained in the following zeroth order form

cx(e)(n,%- - ¢) = [2.08837 + (0.0275 51'886&"

-14.
e ]58!’})]

+ 0.0057 e, (10° psi)- (3.46)
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Uy(2)(n,%-. z) = - (0.3552 + 0.0546 g14-158n
- 0.4098 53‘887”)ex(105 psi) (3.47)
Tyz(z)(n,%~—~c)r= 0.3865(a "5/ . 514']58”)ex(105 psi)  (3.48)

14.158n -1.887n

o, B n, k- 2) = (01356 & - 0.0185 & %87 (10 psi)  (3.49)

°2
where 0 <z <<< 1

The last two components of stress, the-interlaminar stresses,
are plotted and compared with numerical resu]?s in Figs. 8 - 11.

If the stacking sequence of the Taminate is reversed to [90/0]5,
{Fig. 7d); the derivation of these interlaminar stresses is as‘indi—
cated in the fo]fowing éubsection.
3.1.2 [90/0] GRAPHITE-EPOXY LAMINATE

WhiTe-U(k).vanishes everywhere in the laminates, the modified ZIR
solution for V(k) and w(k) can be obtained by interchanging the
superscripts in Equations (3.27) through (3.41).

To compare with the‘numerical resuits [7], the 0° ply is now

used as the reference layer for the interlaminar stresses.

The stress components in zeroth order forms are obtained as

[20.04 - 0.074(a° " %66M 4 é8'104”)]ex(106 psi) (3.50)

TR

5,8 (g £) = (0.3552 + 1.5052 & 70"
- 1.9004 & 19y (10° psi) (3.51)
ty, B nid - 1) = 7.6906(8%-%00 . B 100my . (105 psi)  (3.52)
, ] 8.1
o2 ik - 2) = (19008 %600 1 sasz %1 (106 psi)  (3.59)
0 < g <<<] T

where the last two are the interlaminar stresses.
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These stresses are plotted in Figs. Té - 15.°

3.2 ANGLE PLY LAMINATES WITH CONSTANT PLY THICKNESS

For contemporary fiber-reinforced composites having three mutual- -
ly perpendicular p]ane; of elastic symmetry, 045(k) vanishes., If the
laminate consists of one material with symmetric [6/-8]s or [-8/6]
orientations (Fig. 6b}, it is called 'an angle ply laminate and the

following relations between material constants are found,

1 2 :

CiJ(' )=C1‘§ ) ,» 1=1,2,3and j=1,2,3

. ] - R "

Ck}({ ) = Ck!(<2) . - I-( = 4’5’6 (3.54)
1 ' :

Cné ) : - Cn6(2) s n-= 15293 :

The modified ZIR solution gives

Uo(i) =y, (2 =0

)
- ‘e (1) S
oy (@ (C15C33 - Cy3Cp3) ?xb . .55
0 ‘ (C22C33 - C23C23)( )
.- 3 ('|
p (1) 2y (@) (C13lep - CraCas) e
c 0 =

z
(1)
(Colsz - Cagloz)’ *

On the central plane (Y = 0), the stresses are.obtained from

Equations (3;55), (2.2), and (3.1) as

oy{12(0,2) = - 0,()(0,2) = 0 (3.56)
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ny{1(0.2) = - 5, 2)(0,2)
)

‘e .,\,J £y

} '[?16 CoplCyalsz - Cy3Cp3)
(C22C33 - C23Cp3)

(3.57)

" The first equation indicates that the zeroth order solution
(3.55) contributes no transverse normal stress throughout the angle-ply
Taminate. For the 1aﬁinate to be in equilibrium, two self-equilibrat-
ing condftiong in addition to Equation (2.70) shouid be expected to
ho]d-(Fig. ﬁs). Recalling Equations (3.38) through (3.41), the follow-

~ing equations may be established.

4] . . : .
_ Jm (2 ohhdn =0 k=1,2 (3.58)
0 < g <<< ]
. '0. ’ ’ - ’ - .
_J Uz(k)(ﬂ,%'i £)bh(1 - en)dn = 0 k=1,2 (3.59)

Furthermore,'the shear stress resu]tapts ny(1) and ny(Z) must
also be in equilibrium (Fig. 3 w#th m=2) as indic§ted in the foi]ow-
ing eduations.

. L
0 where Ry, (1) = jl_fxy(1)(0,z)hdz (3.60)

"

) _ _
[ v Dhn + R (V)

o

(@) 0, 2yndz  (3.61)

-

The characteristic equation (2.64) leads to two identical sixth

]
(2) . |2
{0 where ny = T

Y Xy
order algebraic equations for both layers. Three positive roots to
this equation must be dropped for matching considerations. The compos-

jte solution will be in the fovxm of Equation (2.66) with 0(¢)
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truncated. A numerical example is presented in the following sub-
;ection.
3.2.1 [45/-45]5 GRAPHITE-EPOXY LAMINATE

Consider the [45/-45]; graphite-epoxy laminate of constant ply
thickness h/2 (Fig. 17a). The stiffness coefficients (after transfor-

mation) are

45(x 107° psi) : -45(x 10°6 psi)
i = 6,75 ¢,$8) = 6.745
eV = 5.005 | ¢, i) = 5.085
c]§1) = 0.521 | t1§2) = 0.52]
czé1) = 6.745 ngz) - 6.745
02§1) = 0.521 ngz) = 0.521
cagl) = 2.213 : c3§2) = 2.213
- ¢, 42 < ¢, {2 = 4506
e, {1 - 0.04387 cSéz) - 004367 -
: c4£?) - c5é1) = 0.85 6452) . cséz) = 0.85
_ csé]) - 533 cséz) = 5.33
Cel) =0 C4é2) =0
The modified ZIR solution'(3.55) gives
ORI
Vo1 = v, (B) = _g.7433 e by (3.62)
1) = 1,2 = -0.0608 e,hz
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(2)
Txy
The boundary layer equations (2.61) through (2.64) yield the

Equation (3.57) yields Tx§1)(0,2) = - (n,7) = 1.]54ex(106 psi).

algebraic egquation for both layers . \

6 4 2 2_ 4 6
Ao = 2.5460 1, +1.6337 A, - 0.1202 ay

o, a, =0 (3.63)

which is readily transformed to
w® - 2.5460 o +1.6337 w ~ 0.1202 = 0 © (3.54)
by letting -~ BRIV aow]/z (3.65)
Furthermore, setting w = v - 1/3(-2.5460) = vy + 0.8487 (3.66)
results in . ‘y? - 0.5269 v + 0.0438 = 0 ‘ (3.57)
Let Y = Py + g _ " (3.68)

and substitute it into Equation (3.67). The resulting set of algebraic

equations are

Po> + 9g° = -0.0438 ;

(3.69)
' Pyl = 0.1756
which give
po> = (0.0736){cos(2kn + 107.3°) + 1 sin(2kn + 107.3°)} (3.70)
' 3.70
qo° = (0.0736){cos(2kn + 252.7°) + i sin(2ks + 252.7°)}

k =0,1,2

By applying DeMoivre's formula [26] and reca11{ng Equation
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(3.68), (3.66) and (3.65), the six roots for Equation (3.63) are

" found to be
ao(1,2) = £ 1.2364 a4
10(3,4) = x (,2903 g (3.71)
2o(5,6) = = 0.9659 o

Hence the zeyoth order composite solution (Section 1.3) takes

the form .

-B.a_n =B, 0 n -Boa 7
u (k) {(p]e "o + Pze 270 + P3e 3" )cos aOZ}(k)

C
~B.,0.n -B.0 7
VefK) = 10,7433 exbY + {(Rpe 1 O 4 Rpe 2O
“Bat, 1 K (3.72)
+ Rqe 370 Ycos aoz}( )
-Bia.n -Ba0 N
™) = - 0.0508 exhz + t(se | O + 5,0 20
. ~Bya n k
+sge 30" )sin g3\ K
where 81(3) = 1.2364
6,(K) = 0.2903
8. K) = 00659

Satisfying the governing eqguations and the boundary conditions

leads to the following equations:



a
—
~
™
—
I
o

P = ousert 4y 5871 4,
p,(1) = 0.1707 ¢ P, e = - 0.1707 ¢
2 707 01 5 P 1707 4,

p1) = 12001 6y, P38 = - 102021 6,

R = 06300 o; , R )=~ 06309 4,
(3.73)
R = - 01813 47 ., R(8) = - 0.1813 4,
R = 11897 4 . Rg(2) = 11897 4,
5= qasss e, , 5B = 13y,
s(1) = 0.0347 97, 5,2 = 0.0347 ¢,
531 = - 1.0736 ¢4, $3(8) = - 1.0736 o,
: h
€x
where ¢ =
Vo agMeos o (L + 1))
2 (3.74)
exh .
8 = :
2 ao(z)cos(uo(?)(%-- z))
_0 < r <<< ]

- . It can be shown that these coefficients lead to identical satis-
faction of Fquations (2.70), (3.54) and (3.55). Hence the correctness
of these coefficients is -confirmed.

_Equation (3.61) then leads to
L (2)

_0 - (Z)J
tan |~ - ?2;0 - 0.5 (3.75).
0

0 < <<c ]

which is identical to Equation (3.42).
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Now consider Equations (3.69). It is clear that Layer 1
(+ 45°) and Layer 2 (- 45°) are antisymmetric in U and symmetric in

V and W with respect te the infinitesimal thin slice (Fig. 17d).
Upon enforcing exact continuity in displacements at Z = %-, the

following equation is obtained. :
L , L@

1im cos + aO(T): = 1im cos
z+0 >0

cagBl =0 (3.76)

which gives

a0(1) ={2n+ 1)t , n

=0,1,2,.... ( . )
3.77

o @ =+ r , n=01.2,....

Hence,
() (@
cos tr a0(1) = cos 02 -z ao(z) =0 (3.78)
for 0 < ¢ <<< 1

where ao(])'and QO(Z) are given in Equations (3.77).

- - . (k) B - -
Thereby _ Vim{tan|-S—« ao(k); = o (3.79)

0], ' ~
L () ) |
and _|tan 02 + ao(k)c = K (3.80)
0 <z <<< ]

where K is a finite Targe positive value.
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At this stage, assigning any Targe value for K determines the
k
%o

corresponding ao(k) and tan + ao(k)c] and hence the interlaminar

stresses. It may be shown that the only stresses related to

yz

o, (k) _ .
tan{ 02 + ao(k)g are sz(k) and T (k). However, the latter
vanishes identically at the free edge as required by the stress free

boundary conditibns (2.17). Hence the singular behavior is found n
sz(k) at the intersection of the free edge and the interfacial plane
= %—. .Thjs provides a definite ma%hematica] evidence for the pre-
dicted singularity in Reference [7] and will be further discussed in
the following chapter.

The interlaminar stressea re plotted in Figures 18 - 20.
3.2.2 [-45/45]¢ GRAPHITE-EPOXY LAMINATE

Consider the laminate of Fig. 17e. Interchanging the super-
séripts 1 and 2 in Equations (3.62) through (3.73) gives a composite
sqlution idgntica1.t0 {3.72). The corresponding interlaminar stresses

are shown in Figures 21 - 23. -
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Chapter 1V
RESULTS AND DISCUSSION

In the preceding chapter, the general method of solution of
Chapter II was applied to the special gréphite-epox; laminates [0/90],
_[90/0]5, [45/—45]S and [—45/45]5. To demonstrate the capability of
the-solution the results for these Taminates are presented and dis-

cussed in this chapter.

4,1 THE FOUR LAYER UNIDIRECTIONAL LAMINATES

It has been stated in Section 1.3 that the accuracy of the pertur-
bation solution depends upon the perturbgtion parameter c. That is,
the smaller ¢, the better the result. This will be demonstrated in
what follows. ‘

The interlaminar shear stress ty, and the interiaminar normal
‘stress o, (the peel stress) as functions of the perturbation parametgr
e are presented, respecfive]y: in Fiéures 8 and 9 for the [0/90]
laminate. From the figures, it is clear that the boundary layer width
pecomes sma]]ef ;s € decréases in magnitude. (Asymptotic recovery of
‘the lamination theory is implied by the incomplete domain.of %31 It
should be noted that the relative extreme values of the stresses are
finite and remain unchanged as e decreases. This indicates that the
present theory is capable of approximating the maximum value of the
interlaminar stress intensities for intermediate as well as small

values of . Also, the difference between the cases e = 0.133 and
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e = 0.050 is much more than that between e = 0.050 and ¢ = 0.033.
While the curve of € = 0.033 serves as the most accurate of the three
stress results for their corresponding e, it lends confidence to say
that for this.[0/90]s graphite-epoxy laminate, a geometric ratio of
0.050 (= %ﬁﬂ or smaller is sufficiently small to Tead to good results
using the present method of solution.

Numerical results obtained by this author using the finite dif-
ference program of Pipes [12] indicate that the smallest geometric
ratio for wﬁich that program gives physically admissible result is

e = 0.133 (= Below this ratio, the instability in the solution’

). 8
does not yield satisfaction of the force equilibrium z Fy = 0 (Fig. 2
and Equation (2.26)). This may be éttribqted to the inherent sensi-
t{vity of the fin{te différence approximation to the ratio of the grid
spacings for partial differential equations [27].

Comparisons between the results of the finite difference soTution
and Fhe preéeﬁt théory are presented in Figures 10 and 11 for the case

e = 0.133. From Figure 10 it is clear that the present theory tends fo

predict a higher maximum intensity for the interlaminar shear stress
Tyz. The bounda;y layer w}dth is approximately the same for both
solutions. Figure 11 shows that the present théory predicts a smooth,
continuous distribution for oz which identically satisfies the self-
equilibrating condition ¢ F, = 0 (Equation (2.70)) whereas the finite -
difference solution yields unstable results near the free edge which

obviously do not satisfy this equilibrium condition. In regions

removed from the free edge, both solutions indicate asymptotic recovery
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of the Tamination theory.

Figures 12 and 13 show the interlaminar stresses for the [90/0]g
1aminatg--the.peverseé stacking sequence from the previous example. -
From the figures, the physical validity of the present theory is con-
firmed by the sign reversals in both 1, and o as a result of force
and moment equilibrium (Fig. 7). Again, boundary Tayer shifts due to
the reduction in e are observed. The maximum stress intensities of
Tyz and oz _in the [90/0]; laminate are found to be finite but higher
than those in the [0/90]; laminate (Figs. 8 and 9). This is due to
the fact that in the calculation for the [90/0]S laminate, the 0° layer
was emp]byed as the reference layer. On the other hand, in the calcu-
lation for the [0/90]S laminate, the 80° Tlayer was employed as the
reference Tayer.

Comparisons_between the finite difference results and the present
theory are presented in Figures 14 and 15. The present theory again
predicts a higher t, than the finite difference solution. Also, the
present thedry yields a more'acceptab]endistribution %or the inter-
laminar rormal stress oz in view of the zero stress resultant require-

ment. . In regions removed from the free edge, the lamination theory is

recovered asymptoticalily in both solutions.

4.2 THE FOUR LAYER ANGLE-PLY LAMINATES

Pipes and Pagano [7] pointed out that the jnterlaminar shear
stress Ty, in a [45/-—45]S laminate tends to grow witﬁout bound near
the free edge (Section 1.1). Hence the calculated maximum intensity of

Tyy Dy the finite difference approximation, though higher than other
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numerical inveﬁiigations [6, 8, 11], is still very questionable. It
was discussed in Section 1.2 thaﬁ failure to satisfy some stress freg
boundary conditions were observed in the finite difference squﬁion. .
Also, these results showed no sign reversals in gy, o and 7, in
consequence of reversing the stacking sequence.

In the present theory the mathematical evidence for the singu-

Tarity in tgy can be shown (Subsection 3.2.1) to be in terms of

the trignometric equation

(2)
tan (55— - al2)g) = x T (8.1)

where 0 < ¢ <<< 1 and K is a.near-singular Targe number. The value of

a(z) must satisfy equation (3.75)

: (2) '
tan (%4— - o{2)g)
(2) = 015 Iy

0 < <<<]
o

(4.2).

Obviously, the Timiting analysis of the present theory (Fig. 17d, h)
provides no unique determination of the value of K. It is only througé
experimental investigation that this value ﬁay be reafistica?]y deter-
mined. Such an‘investigation should be considered as a future study.
For the purpose of comparisons, K is taken to be 20.3713, a value that
leads to a maximum stress intensity within the elastic limit. ]
Comparisons between the results of the finite difference so]ﬁtion

and the present theory are presented in Figures 18 through 23. Figure

- 18 shows the variation of the interlaminar shear stress ty, along the
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interface Z = %—. The near—singﬁ1ar free edge intensity of the present
theory is much higher than the finite difference result and the
boundary layer width is muéh smaller. Figure 19 shows the variation

of the 1nter1amina} shear stress ty,. Both so{htions sat&sfy the
stress free boundary condition ty, = 0 at the free edge. The negative-

positive variation of the present theory confirms the additional self-

equilibrating condition

b
zFy = jo Ty dy = 0 (4.3)

(as_a result of the zeroth order vanishing of oy in the interior
region). The finite difference solution, on the other hand, cannot
satisfy such a condition. The erroneous ay of the finite dif-

“ference solution at the free edge {not shown in the figures), as'
described in Section 1.2, is believed to be caused by inherent errors.
In Figure 20 the interlaminar normal stress oz of the finite difference
solution indicates instability near the free ¢dge; hence, no comparison

can be made between the two solutions in this regionl "Since the auto- -

matic satisfaction of the self-equilibrating condition

b
EFZ=J o, dy = 0 (4.4)
0

has been demonstrated by the present theory (Chapter III} and can be

observed from the figure, and since 0, is not proportional* to the

*As shown in Equations (3.46) - (3.53).
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near-singular value of K, the present theory is believed to have pre-
dicted a more accurate maximum_fini?e intensity of the interlaminar
normaf strgss: Such a determination is mosﬁ important in the delami-
nation failure mode {27, 28] of composites. Although the moment self-
equilibrating condition (Fig. 16) is not directly observable from

Figure 20, the wagnitude of this couple moment can be determined as

b : he, 108 [ '
- S X in - 1b)
- jo oz ¥ dy = 0.0027 (&(2))2[1engthj (4.5)
where a(z) equals 2K, a near-singu]a? value from Equations (4.1) and
(4.2). Hence the self-equilibrating condition of the couple moment is
confirmed immediately.

When the stacking sequence is reversed to [-45/45]¢ (Figs. 21, 22,

23), the interlaminar shear stress ty; experiences a sign change in

2
which also experiences a sign reversal. The sign of both Tyz and oy

1
order to balance the central plane shear resultant f] r;y(])(U,Z)hdZ

reméih unchqﬁged. Thié is in—agreement with the finite difference
results (Figs. 19 and 22, 20 and 23). For e = 0.133, the finite dif-
ference so]utionnpredicts-a smg]] uniform oy along the central plane
(not shown in the figures) which does not change its sign. and magnitude
for the reversed stacking sequence. For e < 0.0133 the finite dif-
ference solution yields errongous results for Ty due to the instabilify
of-the solution. The present theory exhibits no such instabilities.

It is important to note that the interlaminar normal stress o,

is independent of the stacking sequence and always tensile near the
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free edge. For both the [45/~45js and the [-45/45]. laminates, a
finite maximum intensity is predicted at the exact free edge (Figs. 20,
23). This indicates that the delamination failure mode [27, 28] shéuid
always be considered for reiiable design of such laminate configura-
tions. ‘ .

It is clear that the present study has 5btained jmproved results
for the interlaminar behavior of the [45/-45]; and [-45/45]; graphite-
epoxy laminates. Since the aforementioned se1f-eduilibrating conditions
were origiﬁa11y considered for the 2m layer angie-ply laminate (Fig.
]§), the interlaminar stress variations in any angle-ply laminate may

be expected to be similar to those in Figures 18 through 23.

4.3 ACCURACY AND LIMITATIONS
As discussed earlier, the accuracy of the present theory depends
upon the geometric ratio e = E—. Hence, the relative order of magni-

tude of the individual terms in the governing equations, in relation to
h ,

b’ ]
4,3.1 BIDIRECTIONAL LAMINATES

‘should be further discussed.

The coupiéd governiﬁg differential equations for bidirectional
-laminates (Equations (3.2)) are
hy2 y/h i}
{Qop(5) Voyy + QuqVszz + (Qqq + Q23)(EJW’YZ = 0}

, .
U(Qqq + 023) (Vg7 + QaalD) Woyy + Qggitizz °

From these dimensioniess equations, it is essential that the

order of magnitude of the coefficients of V,yy and W.,yy, V,y; and
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Wayzs Vszz and W,77 be 0(z%) < 0(2) < 0(1)*, respectively, in order to
properly stretch the boundary layer region with a transformation in the
form

p={-Y (4.7)
c .
Hence, if the material properties are fixed, the geometric ratio g
obviously plays the dominant role. For the graphite-epoxy laminate

with = 0.133 {Chapter III), Equations (4.6) may be transformed to

b=
(
0.046 V,Y + vV, + 0.208 N’YZ =0 .
{0°) Y Z " (4.8)
0.080 V,y7 + 0.007 W,yy + W,y7 =
. )
0.42 v, + V,ZZ + 0.22 W, =0 ]
(90°) 1 e Yz (4.9)
0.085 V’YZ + 0.007 w,YY + w,zz =0

It may be observed that, for this geometric ratio, a perturba~-

tion solution using the 0° layer as the reference Tayer should Tead to

more accurate results. -
IT the geometric ratio is now reduced to 0.050 for the same

laminate material, Equations (4.6) become

: 0.0065 V,yy + Viz7 + 0.0782 U,y7 = 0
(0°) y ° (4.10)
0.030 V,yy + 0.001 sy + Hszz = 0
,
(50°) - 0.05 V,Yy + V,ZZ + 0.083 W,YZ = { (5.11)
- 0.082 V,yz + 0.001 Wayy + U7z = 0 '

* ¢ represents the approximate order of the products of Qi
and €. :
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It is clear that the ordef of each term relative to V,zz or
W,77 shrinks as e diminishes. This means that the degree of accuracy
of the zeroth-order perturbation solution is improved by the diminish-
ing geometric ratio. Obviously, these equations'péovide mathematical
evidence to support the judicious statement made in Section 4.1-- ‘
“"A geometric ratio of 0.050 or smaller leads to sufficiently accurate
results.”
4.3.2 ANGLE-PLY LAMINATES

The governing differential equgtions for the = 45° graphite-epoxy

laminate with g-= 0.133 are

[ 0.117 Upyy + Uszy - 0.098 V,yy - 0.007 H,y; = 0

(45°) {-0.098 U,yy + 0.140 V,yy + Vyz7 + 0.215 W,y7 = 0 (4.12)
0,003 Upyz + 0.083 Vyyz + 0.007 Wayy + Wyz7 = 0
[ 0.111 Uyyy + Uszz + 0.098 V,yy + 0.007 U,yz = 0

(-45°) { 0.094 U,yy + 0.140 Vyyy + V,z7 + 0.215 Uyy7 = 0 (4.13)
; 0.003 Uyyy + 0.083 V,yy + 0.007 Hoyy + Hazy = 0

Again, the order of magnitude of each coefficient relative to
Usz7, V77 and W,77 can be observed. From Equations (4.12) and (4.13),

it can be safely stated that the present theory should lead to suf-

ficiently accurate results for g—= 0.7133 or below. Hence no further

reduction of the geometric ratio needs be elaborated upon.

From the above discussion, the fact that the boundary layer

penetration becomes weaker as'g-decreases can be detected simply by
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examining the relative order§ of various terms in the governing dif-
ferential equations. The smaller the coefficients relative to the co-
efficient one of U,77, V,77 and W,77, the weaker the boundary layer
effect. Hence the uniform stress distribution in the central plane
(Section 2.2) is justified by the more rapid recovery of the iamina-
tion solution.

It must be recalled that in the interior region of the 'present
tﬁeony the exact satisfaction of the vanishing stress boundary condi-
tions on the top and.bottom surfaces, the continuities in the inter-
Taminar stresses, and the force equi]%brium in the central plane were
inforced. Also in the intérior region the exact displacement continuii
in U and V were satisfied by the modified zeroth order interior
region (Subsection 2.3.2). For bidirectional laminates, the slight dif
ference found in the displacement W (Table 1) for the two layers may
be reduced or eliminated by higher order considerations. This is
mainly due to the differences in material properties that constitute
the governfng différentia] equations. For the angle-ply Taminate§,
the-eiact continuity in,this displacement was found .to be satisfied
automatically (T?ble 2}). _

In the boundary Tayer region, the bidirectional laminates again
revea]’d{fferences in the exponential functions (Egquations (3.33))
owing to the intractable material dissimilarities. Hence no exact
displacement continuity in this region may be inforced for the limit- ’
ing free body considered in Figure 7. Nevertheless, the satisfaction

of the symmetry conditions, the stress boundary conditions at the free
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edge, the force and moment equj%ibrium about this free‘body, and the
continuity in'inter1aminar tractions, is believed to have attained é
solution which is.an improvement -over previously available solutions.
On thg other hand, the boundary layer region solution for the
angle-ply laminate exactly sat%sfies the symmetry conditions, the
étress‘boundary conditions at the free edge, the displacement and
stress continuity conditions, and the force and moment equilibrium re-
quirements (Figs. 16, 17). This exactness of the present theory is

entirely due to the favorable pqrametric relations

]
ety
I

: | | ,
e8! = {2 =1,2,3and j=1,2,3

1j
N -
cké ) . ck£2) , k=4,5,6 (4.14)
2 .
Cné]) = -Cné ) ] n= ]: 2: 3

Moreover, it is this exactness that leads to the mathematical evidence

for the stress singularity in the interlaminar shear stress ty,.

4.4 GENERALITY AND APPLICABILITY

From the solution method deveioped in Chapters II and.III, it is
clear that the detailed solution procedures of the present theory can
be readily programmed for a computeri The simple calcuTation steps
require no approximate or iterative techniques. The generality of the
theory can bé directly applied to variable laminate configurations
(Fig. 1) with more layers than aﬁy existing computer program can
possibly handle. Therma1 strains can be readily included through the

constitutive equations (2.1) to determine the induced thermal stresses
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due to the temperature drop'from the curing temperature of the laminate
or for laminates in a high temperature environment. The computer
program thus developed would be capable of predicting the interlaminar
stress intensities between any fwo layers inc]ﬁding‘the midplane 7 = 0.
Failure hypotheses can then be established based on the interfaciai
plane where the stress intensity reaches a relative maximum.

Finally the generality of the soTut}on procedures in the present
theory can be directly applied to explore related ﬁrob]ems such as a
laminate with internal free edge in the form of center holes, cracks,
etc., a laminate subject to pure bending at the ends x = = L, time-
dependent boundary layer effects due to cyclic loadings, and so forth.
The important experimental determination of the material parameter K

may also be pursued as a future research topic.



Chapter ¥
CONCLUSIONS

In the present thesis a general method of solution for a balanced
symmetric composite laminate subject to a uniaxial extension has been
developed based upon a perturbation analysis of an elastic Timiting
free body containing an interfacial plane.

In summary of the theoretical achievements of the present study,
the following conclusions can be made.

(1) The solution satisfies the symmetry conditions, the stress
free boundary conditions, most continuity conditions, and
the force:and momenp equilibrium of the 11miting free body.

. (2) The solution predicts smooth continupus interlaminar
stresses with no instabilities.

(3) The solution provides the finite maximum magnitude of the
interlaminar normal stress o, for all laminate configura-

tions.

(4) For giyen materja] properties, the solution accuracy depends
upon the geometric ratio ¢ = g—. For_[0/90]S Gr/E laminate,
£ < l—-leads to satisfactory results th]e for [+45]¢ Gr/E

— 20
Taminate, ¢ 5_%§-predicts satisfactory results.
(5) For all laminates with geometric ratio, 0 < g-<< 1, high -
‘gradient displacement, strain and stress fields are shown

to exist near the free edge.



(6)

(7)

(9)

(10)

g

(12)
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The above boundary lﬁyer effect decays exponentially to
recover the ]amiqation solution in the interior regions.

For bidirectional laminates the axial displacement function
U is identically zero. Hence no Txyy OF Txz exist in the
laminate.

For bidirectional Taminates, the interlaminar normal stress
o, 1s finite with the sign depending upon the stacking
sequence. For example, for a [0/90]; Gr/E Taminate, a
maximum tensile o, egists at the free edge while for a’
'[90/0]S Gr/E laminate, a maximum compressive g, is predicted.
For angle-ply laminates, the exactness of the solution Teads
to the mathematical evidence of singular interlaminar shear
stresses 7y, and Tyz at or near the free edge.

For angle-ply laminates, the interlaminar normal stress Uy
takes on a finite maximum tensile value at éhe free edge, and
is independent of the stacking sequence.

The solution procedure can Be readily programmed for a_
computer. Such a generalized computer program would be
capable of predicting interlaminar stresses between any:

two layers of a general multi-layered Taminate.

The present theory suggests vaiable means for solving

important related problems of practical interest.
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