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Chapter I
 

INTRODUCTION
 

Inter.laminar ,stresses play an important role in the load trans-'
 

fer mechanism in composite laminates. Both numerical and experimental
 

results have demonstrated that when a thin laminate is subjected to a
 

uniaxial extension (Fig. 1), there exist highly localized stress con­

centration regions near the free edges, the so-called boundary layer
 

regions. This phenomenon,has been suggested to be the dominant factor
 

initiating failure of some composite laminates.
 

The present thesis will analyze the boundary layer by "perturb­

ing" the exact elasticity equations with a stretching transformation.
 

Solutions to these transformed equations provide a higher order analysis
 

than idealized lamination theory [1].* Hence better insight into the
 

interlaminar stress behavior is obtained using the perturbation
 

ahalysis [2].
 

1.1 REVIEW OF LITERATURE
 

Bogy [3] analyzed a bonded material containing two mutually dis­

similar orthogonal wedges under arbitrary tractions. The stress fields
 

were found to contain a mathematical singularity at the intersection of
 

the interfacial plane and the loaded surface. Hein [4] studied the
 

residual stresses in a two-material wedge and found similar behavior.
 

*Numbers in brackets refer to- th6 references listed in the
 

bibliography.
 

1
 



2L 2
 

z 

-h 

. L1 h I 
hi2l 

I K 

hKrK 


-h 

GEOMETRY 
. LAMINATEFIGURE 



3
 

Hess [5] developed a plane elasticity solution for the end problem in
 

a two-layer laminated strip and showed a mathematical singularity,
 

defined to-be a:poin± where the convergence of an eigenfunction expan­

sion could not be.-attained. Puppo and Evensen [6] modeled the finite­

width symmetric laminate as a set of anisotropic layers separated by
 

isotropic shear layers. Each anisotropic layer was assumed to be under
 

generalized plane stress, i.e., the out-of-plane normal stress az
 

(Fig. 1) is zero and the in-plane stresses and displacements are the
 

thickness averages of the actual values. Solutions to the corresponding
 

equilibrium equations showed that while the interlaminar shear stresses
 

vanish everywhere for a laminate of infinite width, they attained
 

maximum finite values near the free edge of a finite width laminate.
 

Furthermore, in regions far away from the free edge, the solution
 

agreed well with the classical lamination theory [l]. A complete three
 

dimensional analysis was carried out by Pipes and Pagano [7] using the
 

finite difference technique to solve the exact elasticity equations.
 

The results showed good agreements with those of Reference [6) except
 

at the free edge where the interlaminar shear stress Txz seemed to 

- gtow without bound for some laminates. Due to the approximate nature
 

of the finite difference analysis, however, no evidence was available
 

to show the intensity of the suggested singularity. Isakson and Levy
 

[8] used a finite element approach to analyze a model similar to that
 

of Reference [6]. Based on the constant strain assumption within each
 

element, the corresponding stresses were obtained from the constitu­

tive equations. The total-.elastic strain energy was calculated and
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minimized [9] to yield a set of simultaneous linear algebraic equa­

tions. Levy, et al. [10) used the same model and formulation as
 

Reference .[8].-to further investigate the elastic and plastic inter­

laminar shear deformations in the laminate. The out,-of-plane "peel
 

stress" was not taken into account inboth studies due to the modeling.
 

Results from these solutions were quite similar to those of Reference
 

[6) except at the free edge where the interlaminar shear stress Txz
 

was 40%-lower than that of Reference [6]. This presumably was due to
 

the limitations of the finite element approximation. Improvements
 

were made by Rybicki [11] who carried out a three-dimensional finite
 

element analysis based on a complimentary energy formulation in terms
 

of three Maxwell stress functions. These functions resulted in a set
 

of simultaneous linear algebraic equations which were solved by Gauss
 

reduction and the back substitution process. The "peel stress" was
 

obtained in this investigation. The results showed excellent agreement
 

with References [6] and [7] in regions removed from the free edges,
 

while near the edges the interlaminar shear stress Txz agreed only with
 

Reference [6]; the magnitude of TXz was much lower than the singular
 

value of Reference [7]. The approximate nature of the finite element
 

formulation for the laminated plate apparently leads to questionable
 

and quite possibly poor results at the exact free edge. Pipes [12]
 

used the finite difference procedure to carry out extensive parametric
 

studies including laminate geometry, fiber orientations and stacking
 

sequences. The program used in Reference [12] iscapable of handling
 

no more than an 8 layer symmetric laminate owing to the limited
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computer capacity.
 

Several attempts have recently been made to verify experimentally
 

the numerical predictions, Results by,Pipes and,Daniel [13],-


Herakovich .[l4:]., and,Oplinger, et a...- [1.5] have all, showed-signifi.cant 

stress concentration behavior near the free edges. Although stress
 

intensities were not determined in these studies, there were strong
 

evidences to support the numerical prediction of significant stress
 

concentrations near the free edge.
 

Pipes and Pagano [16] more recently developed an analytical
 

solution to the elasticity equations under the assumptions of zero
 

interlaminar normal stress, oz , and zero transverse normal stress, ay,
 

for the [±45]s laminate. Pagano [17] obtained yet another approximate
 

solution following the cylindrical bending theory of Whitney and
 

Sun [18]. Good agreement with the elasticity solution of Reference
 

[7] was found for the interlaminar normal stress, aZ, (the ",peel
 

stress") on the midplane of a bidirectional [O/90]s laminate. However,
 

the solution did not recognize the stress free boundary conditions
 

tcyz(±b,z) 0 In addition, no through thickness distribution of the
0. 


-stresses was available. An approximate approach was then considered
 

by Tahg [19] following the isotropic theory of Reiss and.Locke [20].
 

The interior domain (regions removed from the free edges) was assumed
 

to be in a state of plane stress, the axial displacement u was assumed
 

to be a function of x only, and the displacement components, v and w,
 

were both assumed to vanish identically. The boundary layer equilib­

rium equations coupled with the compatibility equations were split into
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two problems. Namely, a modified torsion problem and a modified
 

plane strain problem. The resulting fourth order differential equa­

tions were solved by asymptotic expansion in terms of the ply thickness
 

h/2. The matching of the boundary layer solution with the interior
 

domain solution was satisfied by the imposed boundary conditions for
 

the two problems. The results for a [±45] s graphite-epoxy laminate
 

showed good agreement for the interior regions with References [6] and
 

[7] while the interlaminar shear stress cxz at the free edge was found
 

to be lower than the predicted singularity of Reference [7]. The
 

through-thickness stress distributions showed nonzero shear stresses
 

Txz and Tyz on the free surfaces z = ±h as well as on the midplane
 

z = 0. Also, the out-of-plane normal stress oz vanished on both the
 

interfacial planes z = ±h/2 and the midplane z = 0. This is unlike
 

the results of Reference [7] which indicated maximum values of az on
 

the midplane of a [0/90]s laminate and on the interfacial planes of a
 

[±45] s laminate. Finally, it should be noted that the approximate
 

nature of the formulation in Reference [19] did not satisfy the vanish­

ing stress boundary conditions Txy (±b,z) = 0 and ay (±b,z) = 0 for
 

each layer.
 

1.2 	 THE FINITE DIFFERENCE SOLUTION
 

In view of the discussion in Section 1.1, the finite difference
 

solution of Reference [7] seems'to serve as the most dependable solu­

tion known to the researcher. This is due to the fact that the formu­

lation was required to obtain the exact elasticity solution to the
 

problem. However, there were inherent'deficiencies in the finite
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difference procedures as pointed out by Pagano and Pipes-[21]. To
 

this end, numerous tests were carried out by this author to examine
 

the "exactness" of the solution in Reference [7] with emphasis on its
 

behavior near the free edge. The -following observatio6s can be'made.­

(1) For bidirectional laminates (0'and 900 plies), all stress
 

free boundary conditions were satisfied except at the four corners
 

of the laminate where the out-of-plane normal stress did not vanish
 

but took on a low value. Also, the sign of the outer layer az at the
 

exact free.edge was found to be inconsistent with that of the inner
 

layer. These results may be attributed to the dissatisfaction of the
 

equilibrium equations on the free boundaries as can be seen in the work
 

of Pipes [12].
 

(2) For angle-ply laminates [±O] s, neither of the stress free
 

boundary conditions, ay(±b,z) = Txy(±bz) = 0, was satisfied at the
 

intersection of the interface and the free edge. Both ay and Txy at
 

this suggested singularity wereof an erroneously large order of
 

magnitude--as high as the axial stress ax. As a result, the inter;
 

laminar shear stress Txz attained a maximum finite value rather than
 

the possible infinity predicted by Pipes and Pagano [7]. Failure to
 

satisfy the vanishing stress boundary conditions at the four corners,
 

az(±b,±h) = Txz(±b,±h) = 0, was found again. Moreover, the sign
 

reversal of stresses which was found for the bidirectional laminates
 

as a result of change in the stacking sequence, was not observed for
 

the angle-ply laminates. The above boundary violation may be due
 

to errors inherent inthe solution procedure for the'angle-ply
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laminates.
 

Itmay be concluded that despite the good agreement with the
 

results of References [6], [11] and [19] in regions removed from the
 

free edges, the finite difference solution yields poor results near
 

the mathematical singularity. Inorder to determine the proper order
 

of magnitude of stress intensity near the singular point, a more
 

rigorous analytical solution to the field equations must be obtained.
 

Such a solution was described by Pagano and Pipes [21] as a "mathe­

matical nightmare."
 

The present thesis seeks a solution which predicts accurate 

interlaminar free edge stress intensities for laminates. Due to the 

above-mentioned mathematical complexities, it is certainly not an easy 

task. As described in the'preceding section, all the previous investi­

gations show a common result--the plane stress lamination theory is 

recovered near the central plane y = 0 provided the laminate issuf­

ficiently wide (b/h >> 1). This suggests that the boundary layer 

effect isdirectly related to the geometrical ratio b/h, and that the 

stress distribution throughout the laminate is the combination of the 

interior region-solution and the boundary layer solution. The method 

of solution employed inthe present thesis isthe perturbation 

analyses [2, 22] developed in the 1940's to solve boundary value prob­

lems in fluid mechanics and extended to problems in solid mechanics in
 

the 1950's. The isotropic theory of Reiss and Locke [20] and the
 

anisotropic theory of Tang [19] were essentially based upon such
 

analyses. The main differences between the present thesis and the
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theory of-Reference [19] are summarized as follows. (1)The present
 

thesis is based upon the displacement formulation in which the compati­

bility equations are satisfied automatically. The resulting field
 

equations. are'second order partial differential equations in terms of
 

the displacement functions. Reference [19] was based upon the stress
 

formulation in which satisfaction of the compatibility equations
 

resulted in fourth order partial differential equations in terms of
 

the stress functions. (2) For the interior regions, the present
 

thesis determines the three dimensfonal solution to the reduced govern­

ing equations (h/b 0) while satisfying the symmetry and antisymmetry
 

conditions, the displacement condition, the continuity conditions
 

and the vanishing stress boundary conditions on the top and bottom
 

surfaces. In reference [19] the displacement components v and w
 

were both assumed to vanish identically .for the interior regions .and
 

the axial displacement u was assumed to be a linear function of x
 

alone for such regions. (3)For the boundary layer region, the
 

present thesis removes mathematical complexities by considering the
 

free body diagram of an infinitesimally thin slice Containing the
 

interfacial plane. Such a limiting analysis provides sufficiently
 

acdurate determination of the coefficients of the boundary layer
 

solution for h/b << 1. The physical validity of the composite solution
 

(interior and boundary layer solutions combined) is insured by the
 

following requirements. The material immediately adjacent to the
 

interfacial plane must satisfy the "stretched" governing differential
 

equations, the matching principle of perturbation theory (Section 1.3),
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the force and moment balance with the stress resultants on the central
 

plane 	(y= 0), the self-equilibrating conditions of the out-of-plane.
 

normal 	stress resultant, and the free edge stress boundary conditions.
 

Reference [19] considered two separate problems for the boundary layer
 

region 	according to the even and odd nature of the stress components.
 

A stress function following the-isotropic torsion problem was assumed
 

for the T0 (modified torsion) problem. A similar function was then
 

chosen as the.particular solution to the fourth order equation of the
 

P0 
(modified plane strain) problem. This particular solution along
 

with the homogeneous solution (5th order polynomial) constituted the
 

solution to this problem. The combination of the T0 problem and the
 

P° problem-failed to satisfy some of the stress boundary conditions at
 

the free edge and on'the free surfaces. And the approximate nature
 

made the through-thickness stress distributions incapable of properly
 

describing the force and moment equil-ibrium and the self equilibrating
 

condition at any level of z.
 

1.3 	 PERTURBATION METHOD
 

Consider the differential equation
 

y -	 y' + y = 0 , 0 < x < 1 (1.1) 

y(O) a , y(l) s 	 (1.2) 

where 0 < e << 1.
 

Assuming the exact solution to the problem is not available, the
 

following approximate steps must be taken:
 



As e vanishes, Equation (1.1) reduces to
 

y y = 0 (1.3) 

which has a solution of the form
 

x
y 0 = ae (1.4)
 

where the superscript 0 denotes the solution corresponding to c = 0 

and a is an unknown coefficient. Solution (1.4) can satisfy only one
 

of the boundary conditions (1.2). For the other boundary condition
 

to be satisfied, a stretching transformation is introduced in the form
 

= IB - x/(1.5) 

where-A > 0 and B is the boundary limit of the stretched end (0 or 1 

in the present problem). It will be shown that this transformation 

magnifies a small region called the boundary layer in which y changes 

rapidly in order to retrieve the dropped boundary condition at the end 

x = B; Solution to the boundary layer equation must match the sol'utibn 

of the reduced equation (1:3) according to Prandtl's matching 

principle [2], ­

m y° lim yBL (1.6)
 
B +
 

where yBL is the boundary layer solution.
 

It may be shown [2] for the present problem that the boundary 

layer exists near the end x = J and the value of A in Equation (1.5) 

is found to be 1. Hence 
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x
y0 ae	 (1.7) 

since itmust satisfy the first of Equations (1.2). Also, the
 

stretching transformation (1.5) becomes
 

1-l x (1.8)
 

Equation (1.8) isnow introduced to transform the original Equation
 

(1.1) 	into 

d2 + = (.9) 

cfE2 dg 

for e << 1.
 

Equation (1.9) has the solution
 

-
yBL = c + de	 (l.lO) 

which should satisfy the 	second of Equation (1.2). Hence,
 

c +d 	 (.11)
 

The matching principle (1.6) isnow applied as
 
0 

lim y = lim yBL 	 (1.12) 
x->
 

or, 

c = ae (1.13) 

Hence from Equation (1.11).,
 

d = B -. 	 (1.14) 
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which yields
 
-
yBL = ae + 0s - ae)e (1.15)
 

Finally a uniformly valid solution isformed accotding'to the
 

equation
 

= y
Yc ° + yBL - (yO)BL (1.16) 

where Yc is the composite solution and (yO)BL represents the common
 

part contained in both solutions. 

It i-s clear that in the present problem 

)BL i= lim yo = e , (1.17) 

hence the composite solution to the original equation is
 

-
Yc = cex + (5 - ae)e (1.18)
 

The above derivation was required for the zeroth order problem
 

of Equation (1.1). Fcr a very small e, the zeroth order composite
 

solution (1.18) provides sufficient accuracy. For a relatively larger
 

e, solution to higher orders must be carried out to achieve better
 

accuracy. This isshown in the following steps.
 

The solution to the original equation (1.1) may be expressed as
 

an asymptotic expansion of the form
 

y - s nyn(X) , e << 1 (1.19) 

n=O 

Substituting (1.19) into Equation (1.1) results in
 

http:ae)e(1.18
http:ae)e(1.15
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((n+lyI n - y'n + nyn) 0 (1.20) 

n=0
 

Since this isan identity equation inthe nonzero parameter c,
 

the coefficients .corresponding to each n must yanish for allxin the
 

domain specified by (1.1). Hence,
 

Y'o - Yo =0 (1.21)
 

II
 

Y'n - Yn = Yn-I n > 1 (1.22) 

Also, substituting (1.19) into the boundary condition (1.2) leads to
 

YO(0) : a (1.23)
 

Y(1) =B (1.24)
 

yn(0) = Yn(1) = 0 n > 0 (1.25) 

It,isclear'that the zeroth order problem isdefined by Equa­

tions (1.21), (1.23) and (1.24). The composite solution to this
 

problem can.be shown to be identical to (1.18). Also, it isseen that
 

at any level ofapproximation n,Yn-I is known, hence y. for any n is
 

-given by the first-order equation (1.22). Therefore, the stretching
 

transformation (1.8) should be continually introduced near the end
 

x = 1 where the boundary condition is dropped. Ifthe asymptotic
 

expansion
 

y = snyn(g) , s <c 1 (1.26) 
n=O 
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is assumed, the transformed equations are
 

d2y° dy° 0 (1.27)
 

d2
yn dYn 1 (1.28)
d{2 d- Yn-I1. (.8
 

And the boundary condition at x = 1 becomes 

Yo = 0) 8 (129) 

Yn(= 0) 0 n > 1 (1.30) 

At this point itmust be noted that Prandtl's matching principle
 

(1.6) fails to match expansions containing higher-order solutions.
 

Instead, Van Dyke's matching principle [2, 22] should be employed to
 

obtain a composite solution. For simplicity in the present thesis,
 

only the zeroth order problem will be considered, hence no elaboration
 

will be given. Nevertheless,. itmay well be an intriguing topic.of._
 

future study.
 

http:topic.of


Chapter II
 

PROBLEM FORMULATION
 

Figure 1 shows a balanced symmetric laminate of 2m plies of
 

homogeneous orthotropic lamina oriented at angles [o1/62/63/ ....
/emls
 

with the x axis. The laminate thickness is small compared 'to other
 

dimensions, i.e., the length dimensions are of the order L > b >> h.
 

One of .he orthotropic axes of the laminate coincides with the z axis.
 

The laminate is subjected to a constant inplane axial strain Ex. As­

suming elastic response exists everywhere throughout the laminate, the
 

field equations can be derived as indicated in the following section.
 

2.1 GOVERNING FIELD EQUATIONS
 

Introducing a rotational transformation (Reference [1]) to the
 

layerwise orthotropic material leads to the following constitutive
 

equations with respect to the reference coordinate axes xyz
 
"
 ax (k) CII C12 C13 0 0 C16 (k) (k)
 

y C12  C22 C23 0 0 C26 Ey
 

z C13 C23 C33 0 0 C36 E(z
.=. (2.1)
 
Tyz 0 0 0 .C44 C45 0 Yyz
 

Txz 0 0 0 C45 C55 0 i xz
 

Txy 016 C26 C36 0 0 C66, Lxy
 

where the superscript k denotes the kth layer inthe laminate. The
 

strain-displacement relations ineach layer are
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E = U'X 

Ey = v'y 

= ZW z (2 .2 ) 

Yyz = wy + v z 

"Yxz = W'x + U'z 

Yxy = V,X + U,y 

where a comia denotes partial differentiation. 

Since the long laminate isloaded only at its ends x = ±L. 

Saint Venant's principle [23] can be invoked such that'the stresses in
 

regions far away from the ends are independent of x. Thus, the
 

equilibrium equations in such regions reduce to
 

3 TXY- ++-3 TXZ 0 
a 3z 

=_ + ' 0 (2.3)ay 3z 

3TYZ la 0y 3z
 

Combining equations .(2.1) and (2.2), and integrating the
 

resulting stress-displacement relations (independent of x) results in
 

the following displacement fields for each layer.
 

u = (Cly + C2z + C3)x + U(y,z)
 

v = (C4z + C5)x - Cl -+ V(y,z) (2.4)
 

w = -C4xy ,+ C6x - C2 +
 

where C1 through C6 are unknown constants and U, V and W are unknown
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functions of y and z only.
 

The following symmetry and antisymmetry conditions must be
 

imposed;
 

u(x,y,z) = u(x,y,-z) 

v(x,yz) = v(x,y,-z) 

w(x,y,z) = -w(x,y,-z) (2.5)
 

v(x,y,z) = -v(x,-y,z) 

w(x,y,z) = w(x,-y,z) 

and the experimentally verified [13] condition
 

.u(Oy,h) = -u(O,-y,h) (2.6) 

is imposed.
 

Equation (2.6) leads to a more general antisymmetry condition
 

u(o,y,z) = -u(o,-y,z) (2.7) 

forcontinuity conside;-ation.-


At this point, the even and odd nature of the displacements u, v, 

w in relation to y and z can readily be seen. Substitution of Equa­

tions(2.4) into Equations (2.5) and (2.7) results in 

C1 = C2 =C 4 =C 5 = C6 = 0 (2.8)
 

and 

U(y,z) = U(y,-z), V(y,z) = V(y,-z), W(y,z) = -W(y,-z) 
=(2.9)U(y,z) = -U(-.y,z), V(y,z) : -V(-y,z), W(y,z) : W(-y,z) 
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This greatly reduces the layerwise displacement field functions (2.4)
 

to
 

u = C3x + U(y,z) 

v = y(y,z) (2.10) 

w = W(y,z)
 

As defined in the beginning of the present chapter, the laminate
 

is subjected to a uniform axial strain. Hence the constant C3 in
 

Equations (2.10) is nothing but the applied strain ex,
 

Combining Equations (2.1), (2.2), (2.3) and (2.10) results in
 

the following set of simultaneous partial differential equations with­

ineach layer.
 

C66U,yy + C55U,zz + C26V,yy + C45V,zz + (C36 + C45)W,yz = 0
 

C26Uyy + C45U,zz + C22V,yy + C44V,zz + (C23 + C44)W,yz = 0' (2.11)
 

(C45 +'C3 6)U,yz + (C44 + C23)V,yz + C44W,yy + C33W,zz = 0
 

The appropriate traction-free boundary conditions are (Fig.- I)z
 

ay(±b,z) 0 

rxyCb z)= 0 (2.12) 

Tyz(±b,z) = 0 

along the free edges, and
 

crz(y,±h) 0 

txz(y,±h) = 0 (2.13) 

Tyz(y,±h)= 0 
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on the top and bottom surfaces of the laminate.
 

Equations (2.12) and (2.13) may be expressed interms of the
 

unknown functions U, V, W in the form
 

{CI2E x + C22V,y(±b;z) + C23W,z(±b,z) + C26U,y(±b,z)}(k) = 0 

{Cl6Ex + C26V,y(±b,z) + C36W,z(±b,z) + C66U,y(±b,z) (k) = 0 (2.12) 

fC44V,z(±b,z) + C44W,y(±b,z) + C45U,z(±bz)D(k) = 0 

{C13Ex + C23V,y(y,±h) + C33W,z(y,±h) + C36U,y(y,±h)1(l) = 0 

{C44V,z(y,±h) + C44W,y(y,±h) + C45U,z(y,±h)l( 1) = 0 (2.13) 

{C45V,z(y,±h)+ C45W,y(y,±h) + C55U,z(y,±h)} (1) 0 

where the superscripts k and 1 denote the kth layer and the outermost
 

layer (Fig. 1), respectively. Equations (2.9) also yield the following
 

restrictions on the displacement fields
 

{U,z(y,0)1(m) = 0
 

fV,Z(G O)}(m) = 0- (2.14) 

MWy,0)}(m) = 0 

along the midplane and 

{U(O,z)l(k) = 0 

{V(O,z)}(k) = 0 (2.15) 

{W,y(O,z)}(k) = 0 

along the central plane and thesuperscript m denotes the layer 
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adjacent to the midplane (Fig. 1).
 

Equations (2.11) along with Equations (2.12) - (2.15) represent
 

a well defined boundary value problem. Also, it is important to note
 

that these field equations were derived for individual layers. Hence
 

continuity in displacements and tractions across the interfaces must
 

be enforced to insure completeness of the solution.
 

Equations (2.11) - (2.1.5) can be put inthe dimensionless forms
 

{Q66(h/b) 2U,yy + Q55U,ZZ + Q26(h/b) 2V,YY + Q45V,ZZ
 

+ Q36 + Q45)(h/b)W,YZJ (k) = 0 

{Q26(h/b) 2U,Yy + Q45U,ZZ + Q22(h/b)2V,YY + Q44V ZZ (2.16)
 
+ (Q23 + Q44)(h/b)W,YZ) }(k)= 0 

( 45 + Q36 )(h/b)UYZ + (Q44 + Q23)(h/b)V,YZ
 

+ Q44(h/b)2W,yy + Q33WZZ}(k) = 0
 

Q222S Q2 Q26  (k) 0
 
12fx + Qb-- v,Y(±I+,z) + -- W,Z(±1,2) + -t,Y(±l,Z)0
 

JY(±l I) (k (2.17){Q13Ex + -±--V,Y(Y,Z)+ - 3l,Z(±l I.)+ -
Z)
fQ44 Q-~-4,Q5(±l'z) 


2
{A V2Z(±L Z) + -t4J Z(±l.Z))+' 0 

(2.18)
fQ44+ Q4- ,Y(Y,±II)0
Z(Y,±) Q45(1) 0
 

{5vzcY.±l + W'('±l) + 2 .1Vz(Y,±l)y 
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fUZ(YO)1(m) = 0 

IV,Z(YO)} (m) = 0 (2.19) 

{W(Y,O)} (m) = 0 

{U(O,Z)}(k) = 0
 

{V(OZ)}(k) 0 (2.20)
-

{W,y(OZ)}l( k) = 0 

Q(k) CPk)/c(k) with c(k)-being the largest stiffness coef­
ij ij max max 

ficient of-the kth layer, Y = and Z the dimensionless co-I b h 
ordinates, and U, V, W and their partial derivatives being dimension­

less quantities.
 

2.2 	 EQUILIBRIUM CONSIDERATIONS
 

Before develpping the solution procedures, itwill be shown that
 

a close examination of the force and moment equilibrium of a section
 

of the laminate will lead to significant reduction inthe mathematical
 

compljexity. Consider the free body diagram in Fig. 2. Let
 

hk 
tk = , k = 1,2,...,m (2.21) 

hence,.
 
m 
z t. = 1 	 (2.22) 

j=l
 

The force and moment equilibrium per unit length require
 

zFy=0
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FIGURE 2 FREE BODY DIAGRAM OF QUARTER YZ- PLANE 



24
 

z 
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x 

FIGURE 3. PARTIAL FREE BODY DIAGRAM OFQUARTER 
SECTION. 
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which gives
 

1Zdy(O,Z)hdZ= 
f Tyz(k)(Y,Zk)bdY 
 (2.23)

fk fo
 

and z MA = 0 which gives 

Jay(O,Z)h2(Z - ZkdZ =oj oz(k)(Y,Zk)b2YdY (2.24) 
Zk0 

k 
where Zk =1 - E tj is the elevation of the kth interface in the 

j=l 
first quadrant. 

On the other hand, the force equilibrium per unit length
 

requires
 

z Fx 0
 

which yields'
 
11 

f Txy(O'Z)hdZ = o xz(Y'Zk)bdY (?.25) 
0-Zk 


-At this point, an important premise must be recognized in the
 

solution method of the present thesis. Ithas been numerically
 

observed in [24] and examined in the present study that the central
 

plane stresses ay(k)(o,Z) and Txy(k)(O,Z) are essentially constant
 

in each layer for h/b << 1 (Figs. 2, 3). Hence itmay be~expressed
 

mathematically that
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zFy m (k)(oZ)tk = 0 (2.26) 

and
 

E Txy(k)(O,Z)tk 0 (2.27)
 
x k=l
 

for equilibrium considerations.
 

Equations (2.23) through (2.27) together serve as an important
 

tool to reduce the mathematical complexities in the present thesis.
 

Since the material on either side of the kth interface Z = Zk must
 

satisfy the governing equations (2.16) and the boundary conditions
 

(2.17) and (2.20), and since the interlaminar stress distributions are
 

of primary interests, the boundary layer equations will be solved by
 

considering only the infinitesimally thin free body diagram about this
 

interface (Fig.'4). By doing so, the boundary value problem isre­

placed by the free body force and moment system of Fig. 4. Thus, the
 

stress boundary conditions on the top and bottom surfaces, (2.18), can
 

be safely ignored. This will be elaborated upon in Subsection 2.3.2.
 

:2.3 PERTURBATION SOLUTION
 

As described in Section 1.3, two regions will be considered
 

separately. 'Namely, the interior region where the solution to the
 

reduced equations (0 0) satisfies boundary conditions at one end, and
 

the boundary-layer region where solution to the "stretched" equations
 

satisfies the boundary condition at the other end. Matching of these
 

two solutions must be enforced to insure uniformity of the resulting
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composite solution.
 

2.3.1 	 THE INTERIOR REGION
 

To seek a straightforward expansion, let
 

.u(k)= E (k)(Y,Z)

n=O
 

V nvn(k)(YZ) (2.28)
 
n=O
 

W(k) E 	OW E: << 1,nw(k)(Y,Z) k :1,2,3,...,m 

- ' 0n 

where the small parameter E represents the geometrical ratio h/b. 

Substituting these expansions into Equations (2.16) and equating 

coefficients of equal powers of E to zero result inthe following sets 

of equations: 

0°.: 
{Q55Uo,zz + Q45Vozz (k)
= 0
 

Q45Uo,ZZ + 	Q44Vo,z(k) = 0 (2.29)
 
q33Wo, Z (k)= 0


{ 	 0 
S{Q55U1,zZ + Q45Vl,ZZ + (Q36 +Q 45)WoyZ (k)= 0
 

(2.30)

45I,zz + Q44VI,ZZ + (Q23 + Q44)Wo,yz (k)= 0 

{(Q45 + Q36)Uo,yz + (Q44 + Q23)Vo,yZ + Q33W1 ,zz}(k): 0 
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r {Q66Ur_2,Yy + Q55UrZZ + Q26Vr_2,yy + Q45Vr,7Z
 

+ (Q36 + Q45)Wr-l,YZ}(k) = 0
 

Q26Ur-2,YY + Q45UrzZ + Q22Vr-2,YY + Q44VrZZ
 

+ (Q23  'Q44)Wr-IYZ(k) = 0 (2.31)
 

(Q45 + Q36)Ur-I,YZ + (Q44 + Q23)Vr-lYZ
 

+ Q44Wr_2,yY + Q33Wr,ZZ}(k) = 0 r > 2 

Now the displacement conditions (2.19) and (2.20) givE 

(m)

Un, z (YO)= 0
 

(m)(yo) = 0 (2.32)
 

Wn(m)(Y,o) = P n = 0,1,2,.... 

and 

(k)
Un (0,z) =10 

Vn(k)(oz) = 0 (2.33) 

=
-Wn(k)(0,Z)= 0 -n 

w (k = 1,2., 

Re'cognizing that the boundary layer regions exist near Y = ± 1, 

the stress free boundary conditions (2.17) are dropped for this 

interior region. 

The stress boundary conditions on the top and bottom surfaces,
 

Equations (2.18), yield
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Q2 3 V 3 3Q3 0l 6 Un)(1)"= 

Ql3Ex +T Vn,y(Y,±) + T Wnz(Y,±l) + -- nY(Y,±.)f 

fQ44 Q44 Q45 (1) 0 (2.34) 
Q5 Vn,z(Y,±) + Wn,y(Y,') + T Un,z(Y±l)J = 0 

{n,ZY,±1) + 04F WnUnz(Yi±) 0h 

n.= 0,1,2. 

For the lamination theory, z xz ) yz
 

(k =.2,3,4,...,m) must also hold for the interior region. Hence
 

Equations (2.34) ma& be generalized to
 

{2 Q33 Q36k) 
= 0b Vny(Y,±l) + h Wn,z(Y,±+) + -p6Un,y(Y,±l)JfQ3Ex+ 

{Q4 Vn,z(y,+l) + Q4 Wn,y(Y,±i) + Q45 Unz(Y,l)}(k) =0 (2.35) 

JQh Vn,z(Y,±l) +- n,y(Y,+l) + 0 Un,z(Y,±l)J ( k  = 0 

n= 0,1,2,.. 

k 1,2,...,m 

The derived symmetry and antisymmetry conditions (2.9) lead to
 

Unk)(Y,Z) = Un(k)(Y,_Z)
 

Vn (k)(v,z) ="Vn (k)(v,-z) 

Wn(k)cY,Z) = -nk(,z 
Un(k)(y,Z) = _Un(k)(-Y,Z) (2.36)
 

Vn(k)(y,z) = _Vn(k)(-Y,Z)
 

wn(k)(g,z) = Wn(k)(-y,z)
 

n = 0,1,2,..:. 

k = 1,2 .... m 
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Equations (2.35) may be put in the following form with respect
 

to the order of e, similar to Equations (2.29) through (2.31).
 

go :-Q13(k)Sxh + Q33 (k)Woz(k)(Y,±l) = 0
 

-Q44 (k)Vo,Z(Y,±l) + Q45 (k)U z(Y,±1) = 0 .(2.37)
 

Q45ck)vo'z(Y,±) + Q55(k)Uo,z(Y,±l) = 0
 

:k (k)
 

gr :Q23 (k)V -IyY,±l) + Q33(k)Wr,Z(k)(y,±)
 

+Q3E6k)r(])Y(Y,±1) = 0 

Q44jk)V 
,(k)Y±)+Q4(k)ur(k)(y~tl) (.8
 

Q45(k)Vr,Z(k) (Y,±1) + Q55(k)Urz(k)(Y,±1)
 
r
 

(k)W (k) 
0 r > 1
Q45 r-Y(Y'±I) = 


Thus, the interior region problem is redefined by the infinite 

sets of equations with respect to the order of g. 

'The Zeroth Order Problem: 

Equations (2.29), (2.32), (2.33), (2.36) and (2-.37), (n= 0) 

consti.tute the zeroth order problem for the interior region. 

The solutions to Equations'(2,29) have the form 

Uo(k) = Ao(k)(y)Z + B0(k)(y)
 

Vo(k) = Co(k)(y)Z + Do(k)(Y) (2.39)
 

Wo(k) = To(k)(y)z + Fo(k)(Y)
 

k =1,2,.-..,m
 

where Ao(k)(Y) through Fo(k)(Y) are unknown functions. Itmay be
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noted that the form of Solution (2.39) issimilar to Pagano's approxi­

mate solution of Reference [17].
 

From Equations (2.36) with n = 0, itmay be shown that
 

A(k) k ()

Ao (Y)=C (k)() = Fojk)(Y) = 0 	 (2.40)
 

The first of Equation (2.37) then leads to
 

Ql3(k)
 
= 	-_i
Eo(k)(y) 	 x
 

3( k ) ex Z 


WO~ k = 


he n c e (Q 	 h C l 3 ( ) x h(
 

13--3 k	 (2.4])
Q3 k -Z C3 x 


The last two of Equations (2.37) are identically satisfied.
 

From Equations (2.32) with n = 0
 

Bo(k)(o) = Do(k) z 0 k = 1,2,...,m (2.42)
 

Also, from Equations (2.36) with n = 0
 

0 (k)(y) 


k'= 1,2,...,m
 

B°(k)(-Y) = _'B	 (2.43)
 

= 	- Do(k) y)Dok-Y(y) 


-Equations (2.26) and (2.27) may now be expressed inthe form
 

mF( C23C13](k)] m 2k k
 
EIhkCe2 - C xb + c22  kDo(kY)
.k~l k=l
 

m (k)hk Io(k)(
 
+ 	 £C26 KY) 0 (2.44) 

k=l 
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mi C26C13)(k)( ( (k 

C16 cI3 3 Jj hkxb z C26 hkDo' (Y)
 

k=l k=l
 
m C66(khkBo(k)(Y) : 0 
 (2.45)
 

+ k=l
 

where Bo'(k)(Y) and Do'(k)(y) are the first derivatives of the cor­

responding functions. Note that the higher order terms were neglected 

inthese equations. 

Equation (2.41) implies that continuity in the displacement 

W(Y,Z) can be insured only when higher order terms are included since 

Qij(k) (k = 1,2,...,m) are different ingeneral. 

Enforcing displacement continuity in U(Y,Z) and V(Y,Z) results 

in 

Bo(1)(Y) = BO(2) (V)= = o(m)(Y) (2.46) 

D ( )(Y)  Do(l)(Y)= Do(2)CY) =........= (2.47) 
0 (Y). (Y) 

Integrating Equations (2.44) and (2.45), making use of Equations
 

(2:42) and combining the resulting Equations with Equations (2.46) and
 

(2.47) lead to
 

(k)() - qlq 3 - q2q4 xbY 
Bq 2q5 - q3q3 ) 

k= 1,2,...m (2.48)
 

(qlq 5 - q3q4)
 
)
Dok)(y) = 2q5 -qq3q3 b 

where
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=l 
k=1 LC12 C 33 4 (khk 

m (k .C 
k=lC22q2 


m C2(k)h
 

q3 z C2 2 k
 

k=l
 

q m _ C26C13 1(k)h 

k=l 
m (k)
 

q5 6 6
Z C hk
 

As mentioned in the preceding section, higher-order approxima­
h Ck) (k

tions are not pursued in this thesis for simplicity. Hence, the 

q5 + 0h
interior region solutions3- areZ foundk tobe ,,.­

U(k) =B(k)(Y) + 0(s)
 

v(k) )(y) + 0(s) (2.50)
=Do/k 


)3 (k)
 

0
 

where Bok)(Y) and Do k)(Y) are 
given by Equations
 
whee B~k)Y) Eqatins(2.48), and 0(e)
andD0(k)(Y)aregivn b 


represents the highest order term truncated in the asymptotic expan­

sion.
 

2.3.2 MODIFIED ZEROTH ORDER INTERIOR REGION SOLUTION
 

Solution (2.50) does not completely satisfy the vanishing stress
 

condition (2.35) to the proper order of e. This can be seen
 

from Equation (2.38) where the zeroth order displacements U0(k)(Y,Z)
 

http:Eqatins(2.48
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ahd Vo(k)(y,z) were related to the undetermined first order displace­

ment w1(k)(y.Z). It has been described (Section 1.3) that solving 

higher order problems requires more complex mathematical procedures 

such as Van Dyke's matching principle. Also in Section 2.2, it 

was shown that the uniform stress distribution on the central xz ­

plane (Y = 0). a numerical result, is utilized as an important tool 

to reduce matlematical complexity for the boundary layer region. 

Therefore, an improved zeroth order interior region solution-to evalu­

ate better stress intensity near the central plane is certainly quite
 

demanding.
 

To seek such an improvement, Equation (2.39) along with Equation
 

(2.40) are now required to satisfy the stress conditions (2.35)
 

exactly. Equations (2.32), (2.33) and (2.36) remain satisfied. The
 

following eqUa-ions are obtained.
 

-Wo(k) E.(k)Z -(2.51)
 

•U(k)'= Bo(k)(Y (252)
 

luoY (212
 

Vo(k) DD(k)(Y)
0 (2.53)
 
(y) + Q33Eo+36}k
223 0 


36 B (k).013E: xI 
+ 

. 
0o(Y) (2.54)E+ 1(Y)) 0
Q 3s ~T~o 

where Eo(k) nov becomes an unknown constant for the kth layer.
 

Again enrcing continuity in displacements Uo(k)(Y,Z) and
 

Vo(k)(y,Z), resiectively, yields
 

0( ) Bo(2 ) . Bo(k)(Y) = Bo(Y)" (2.55) 
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and DoI (y)= D0 (2)(Y) = DY)k)Y) = (Y) (2156) 

Hence, Equation (2.54) may be written as
 
c23(k) c(Y) +
+3(k) C36 (k)
 

C13 kx b ' 0 (2.67)
 

Continuity in the displacement wo(k)(Y,Z), as developed in Sub­

section 2.3.1 (Equation (2.41)), will be insured only by higher order
 

considerations, hence it is not imposed as a physical requirement in
 

the present modification.
 

Finally, recalling Equations (2.26) and (2.27) gives
 

[In[k+(1+ E}(k)hks + J Do'(y
 

+ (k=1 b kj (Y)= 0 (2.58). 

and
 

[k 16 + h Ej hkjex + (k-Vo(lL3c6, (k)- m"vG(k h 

C6 (k)h]
c hk = 0 
(2.59)
 

Since there are m + 2 simultaneous equations ((2.57) - (2.5)) 

for the m + 2 unknowns fo'(Y), Do'(Y), and Eo(k); the modified zeroth 

order interior solution can be readily determined. 

To show the improvement made inthe present modified interior
 

region solution, two numerical examples are given inTables 1 and 2.
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TABLE 1*
 

[O/903s (c = 0.133)
 

Modified
 
Displacement Finite Difference ZIR** Solution ZIR Solution
 

u(k)/(cbY) 	 0 
 0 0
 

V(k)/(txbY) -0.0397 -0.0391 -0.0396
 

W(1)/(,xhZ) -0.2467 -0.2534 -0.2448
 

W(2)/(CihZ) -0.2055 -0.2172 -0.2072
 

* 	Material: graphite-epoxy laminate with constant ply 
thickness. 

** Zeroth order'interior region. 

TABLE 2
 

[45/-45] ( 0.133)
 

Modified
 
Displacement Finite Difference ZIR Solution ZIR Solution
 

(k)/(I xbY) 	 0
0 	 0
 

V(k)/(CExbY) -0.7409 	 -0.7298 -0.7433
 

W(I)/( xhZ) -0.0607 	 -0.2354 -0.0604
 

W(2 )/(xhz) -0.0613 	 -0.2354 -0.0604
 

As expected, the Modified ZIR solution yields more reliable
 

results than the ZIR solution.
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(l)(2) COUPLEOF Ry (Y=O) (7)8) COUPLEOFRxy
 
(3- (4) COUPLE OF Rxy(Y=O) (9)-(10) COUPLE OF Rxz
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() (4)' Io0
 
(_2_ 3).'". 6_- -- )- ­

726
 

x. 

FIGURE 5. FREE BODY DIAGRAM OF FIRST QUADRANT'
OF TYPICAL SECTION 
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Hence the former will be employed throughout the present thesis
 

to evaluate the central plane stress intensity for the determination
 

of the unknown coefficients inthe boundary layer region solution.
 

2.3.3 THE BOUNDARY LAYER REGION
 

Consider the first quadrant of the'yz - plane as shown in
 

Figure 5. Introducing the stretching transformation
 

n _ ) (2.60)
 

near the free edge Y = 1 to the governing equations (2.16) results in
 

the following equations for this quarter plane of the laminate.
 

{Q66U'nn + Q55UZZnn + O45VIzZ - (Q36 + Q45)W,Z(k) = 0 

{Q26U,nn + Q45U,ZZ + Q22V,nn + Q44V,ZZ - (Q23 + Q44)W,nZ (k) = 0
 

{-(Q45 + Q36)Unz - (Q44 + Q23)Vnz + Q44Wnn + Q33W',ZZ}(k) = 0 

(2.61)
 

To satisfy Prandtl's matching principle (Section 1.3), assume the
 

following composite expansions
 

e on
U(k) [Bo(Y) + Po cos ao Z(k) + 0(,)
 

V(k) [Do(Y + Roe Xon cos a Zj (k)+ O(e) k = 1,2, ...,m (2.62)
on z(k )
 

w F(k) sin ao Z]( + 0(s)
[EoZ + Soe 


where Bo(k)(Y), Do(k)(Y) and Eo(k) are the Modified ZIR solution
 

given by Equations (2.57) - (2.59), Po(k), RoCk) and So(k) are un-


S c f(k) o are Undetermined positive quantities
determined coefficients, and ac
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in radians. The subscript o implies the zeroth order solution for the
 

boundary layer region.
 

Substituting Equations (2.62) into Equations (2.61) and 6eglect­

ing the 0(E) terms results in the following set of three simultaneous
 

algebraic equations corresponding to the co order:
 

2 2
{(Q66xo _ Q55cz02 )P0 + (Q26 o - Q45% 2)Ro - (Q36 ± Q45 )XoSo}(k) = 0 

o2(26"o 2 - Q45a02)P0 + (Q2 2 - Q44t02)Ro - (Q23 + Q44)Xo%So}k) = 0 

2 =
{(Q45 +Q 36)oo 0 + (Q44 + Q23 )oRo + (Q44xo - Q33 2)So}(k) 0
 

k = 1,2,.. ,m (2.63) 

For each nontrivial term of Solution (2.62) to exist the
 

determinants of these algebraic equations must vanish individually.
 

Thus,
 
2 2 2 - Q45a. -(Q36 + Q45)xoao (k)
Q66A0 _ Q55a0 Q26 X0 

2 


4 4%2Q260o2 _ Q45t2, Q22xo2 _ Q -(Q 23 
+ Q44)%=a0 0. (264) 

(M45+ Q36)Aoct (Q44 + Q23)xoa Q44Xo2 - Q33% 2 

k = 1, ...m 

These sixth order equations may be regarded as third-order equa­

.tions by the classical treatment [25] and the method of complex
 

variables [26].
 

The six roots are found to be in the form
 

{Xo(1,2) = ± a }(k 

{fo(3,4) = ± B %}(k) (2.65) 

= ± 'ai(k)fxo(5,6) 
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where a(k), (k) - k) are three positive constants interms of
 

material constants of the kth layer (see Section 3.2). For matching
 

consideration, however, the positive roots must'be dropped since they
 

lead to exponenti-al growths of'the displacements for large n (or small
 

Y).
 

Upon determining the characteristic roots from Equations (2.65),
 

Solution (2.62) takes the following general form.
 

°n + P2
eb
U(k) = {Bo(Y) + (PIe-a a r aon + P3ecaOT) cos ao Z}(k) + O(E)
 

On )V(k) = {Do(Y) + (RIeaOn + R2e "On + R3e c cos ao Z} (k) + 0(s) 

a on + x
W(k) = {EoZ + (Sl + $3 cOl) sih ao ZIk) + O(s) (2.66)
 

(k) (k P2(k), p3(k), etc.
where P0 , are replaced by P1 , 


With the above solution, the stress boundary conditions (2.17a),
 

(2.17b) and (2.17c) transform to
 

[Q26(aPI +bP2 + 3) + Q22(TRl + FP2 +i-ER3 )-EP


+ Q23(SI + S2 + S3)Jc o cos(ao Zk)
 

+ T Eo)x + 2 Do'(±l) + Bo'(±l)]h}(k
)
 

= (Q2 


(2.67)
 

[Q66(aP1 + bP2 + EP3) + Q26("R1 + FR2 + _ER 3) 

+ Q36(Sl + S2 + S3)1a o cos (ao Zk)
 

- Q3 + Q66 B(lh(k)
 
-016 + h Eo)sx + b Do'(±I) + Bo'(±I) h}
 

(2.68)
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{Q44E(Rl + R2 + R3) - (SlT+ S2 U+S3E)J + Q45(PI + P2 + P3)}Ck) 

k = 1,2,...,m (2.69) 

Note that the right hand sides-of Equations .(2.67) and (2.68) are all
 

known quantities from the interior problem. .Since there are ten un­

known coefficients in the kth layer, solving simultaneously three
 

equations from the boundary conditions (2.67) through (2.69), and six
 

equations from Equations (2.63) leads to the determination of the nine
 

unknown coefficients interms of ao The accuracy of the coefficients
. 


thus obtained can be readily checked by the self-equilibrating condi­

tion of the stress resultant,
 

=S F )dY= 0 (2.70) 
0 

for any level of Z (Fig. 2). 

Finally, imposing the moment equilibrium conditions (2.24) and 

the force equilibrium conditions (2.23) and (2.25) determines the 

values of ao(k) and tan (a(k)Zk) to their orders of accuracy. -

Insummary, the zeroth order interior solution (ZIR) was ob­

tained by letting h/b go to zero. The Modified ZIR solution improved
 

the ZIR solution by satisfying the vanishing stress boundary condi­

tions (2.35) exactly. The zeroth order boundary layer solution was
 

obtained by transforming the'governing equations and the boundary con­

ditions (2.17) at the free edge. The matching principle was satisfied
 

by-the composite solution, and the self-equilibrating condition of the
 

interlaminar normal stress resultant was employed to check the
 

accuracy of the calculated coefficients. The continuity conditions
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inboth displacements and tractions were imposed. And the force and
 

moment equilibrium of the composite solution with the central plane
 

stress resultants were satisfied for the kth interfacial plane
 

Z = Zk (Figs. 3, 4).
 



Chapter III
 

SPECIAL LAMINATES
 

The solution method developed in the preceding chapter applies
 

to balanced, synmmetric laminates with variable-thickness plies. For
 

certain special cases the field equations ate greatly simplified by
 

the vanishing of some elements inthe stiffness matrix. Among the
 

vdrious laminates studied inthe literature (Section 1.1) are the bi­

directional laminates [0/90]s and [90/0]s, and the angle-ply laminates
 

[e/-6]s and [-e/e] s . These two laminates will be considered inthis
 

chapter.
 

3.1 BIDIRECTIONAL.LAMINATES WITH CONSTANT PLY THICKNESS
 

When the orientation of the fibrous layer iseither 0' or 90'
 

with respect to the x axis, the constitutive equation reduces to
 

(k) Cll C12  C13  0 0 (k) (k) 

ay . C12 C22  C28 0 0 0 Fy 

z C13 C23  C33 0 0 0 z(3.1)
 

"yz 0 0 0 C44  0 0 Yyz
 

Txz 0 0 0 0 C55 0 	 Yxz
 

T
Txy 0 0 0 0 .0 C66 xy 

k = 1,2,...,m. 

Consider the laminate consisting of 2m layers with the stacking
 

sequence [0/90/0/90/0/90...]s as shown in Fig. 6a.
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FIGURE 	 6. BIDIRECTIONAL AND ANGLE-PLY 
LAMINATES 
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Equations (2.16) reduce to
 

U,yy +,Q55 UIzz}(k){Q66 


{Q22 V,yy+ Q44 VZZ + (Q23 + Q44)( W,Yz(k) = 0 (3.2) 

{(Q44 + Q23) VYZ + Q44  W,yy + Q33 W,zz}() 0
 

Note that the first equation is an independent equation whose complete
 

solution may be assumed in the form
 

U(k) = 	 { nan e n Z(k) (3.3) 
(nkO 

(k) (n=
where an 0,1,2,....') are unknown coefficients.
 

Substituting Equation (3.3)' into the first of Equations (3.2)
 

yield
 
(k) = { Q55 b nf(k) 

An(k) =.Q 6 6 b n = 0,1,2 .... (.3.4) 

Hence
 
u~k(k)
 

__b
In=O anksinh A€ 6 h Y cos an Z} 	 (3.5) 

Solution (3.5) automatically satisfies the first of the displace­

ment symmetry conditions (2.19) and (2.20). The second equation of the
 

free edge stress boundary conditions (2.17) reduces to
 

{Q66 U~y (±lz)}(k) = 0 	 (3.6) 
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Substituting Solution (3.5) into Equation (3.6) results in
 

an (k)= 0 n.= 0,1,2 .... (3.7)
 

hence, U(k) = O (3.8) 

everywhere in this laminate.
 (k) (k)
 

This leads to the vanishing of the shear stresses TXy and xz
 

throughout the bidirectional laminate as may be physically expected.
 

The modified ZIR solution (Subsection 2.3.2) for V(k) and W(k)
 

may be determined by solving Equations (2.57) - (2.59) simultaneously
 

with %o'(Y) vanishing identically. For the simplest case of the four
 

layer symmetric [0/90]s laminate, the displacements are found to be
 

v(k) = Do(k)(y )
 

W( ) 
= Eo(1)Z (3.9)
 

W(2) = Eo(2)Z
 

w 'here (21 (1)(2) (2)(1) (21 ) (2) (I1( ) (2)
 
Ere=C23(C23C13-C23C1-1 +C33 C13 C22C22  2C21 (C2 (5.10)
 

=.(c22631 
 P bc(fl- 3
33 g 


-(2) (1) (2) (l) (2)
 
Eo(2 (1) C13 C13
) = 

C23 C33  -{.. -7 x~~(f(2)Eo ± 
u23 | h (3:11)
sj.+i 

I23ct c33 hn 33 23 i
 

(3.12)

= i~ b~ (1 + 3 x 

23 C23J
 

Introducing the stretching transformation
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(3.13)
W1 Y 

into-the remaining coupled equations of (3.2) results in the boundary
 

layer equation inthe form
 

(k)
 

{q22 V,nn + Q44 V,ZZ ­ (Q23 + Q44) W,nZ} =.01 (3.14)
 

{-(Q44 + Q23) V,nZ + Q44 W,nn + Q33 W,zz}(k) = 0
 

Following Subsection 2.3.3, the displacements are assumed to be
 

v(k) Do(k)(y) + [Re oS a Z]( k + 0() (3.15)
 

W k 
 o(k)Z + [so eA0 sin a0 Z](k) + 0( )
 

where Do(k)(Y), Eo(k) are known quantities from the modified ZIR solu­

tion. For the four ply [0/90]s laminate, they are given by Equations
 

(3.10) - (3.12). Ro(k) and So(k) are unknown coefficients.
 

Substituting Equations (3.15) into Equations (3.14) results in
 

the algebraic equations for the zeroth order boundary layer problem as
 

follows
 

2
{(Q22  o - Q44 co02)Ro - (Q23 + Q44 )o oa0 So(k) (3.16) 

((Q44 + Q23)xo ao Ro + (Q44 Ao
2 - Q33 ao2)so}(k) - 0 

For a nontrivial solution, the determinant of these equations
 

must vanish. Thus,
 

0 2 2 ° k)
2
Q22 'o P44 ao -(Q23 + Q44)2o .(1 

(Q44 + Q23)Ao 0 p44 'o
Qo 033 "o
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± Ip2 Q3311/2 (k)whence 


(k) 1+ 
2 (k) (3.18)
 

933  3p(k) = Q23Q23 + 2Q2"3 Q4 4] (3.19) 
[Q40220.44 

Note that the 2 x 2 determinant is only a principal minor of the
 

determinant inEquations (2.64). For conventional composites, such as
 

graphite-epoxy and 6oron-epoxy laminates,
 
Q(3](k) 

p2 _4 J---k > 0 (3.20) 

Hence Equation (3.18) yields two pairs of real roots. For match­

ing considerations, the positive roots are dropped, and the zeroth
 

order composite solution (Section 1.3) takes the following form
 

Z(k)
+ R2 ja2 aO)cos 1

_Vc(k) = D0 (k)(y) + {(Rl el ao 


-- (3.21Y 

l j" aon + S2 e12 'on)sin aoZ(k)
Wc(k) = Eo(k)Z + {(S


(k) 

where = p 2  4 Q33] / '2 
~~ (k2 2I 

- /k= (3.22) 

p 2 - 4 Q223r 

62(k) [P 2k 
n r '2 

and Prandtl's matching principle (Section 1.3) issatisfied.
 

http:Q40220.44
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The first and third of boundary conditions (2.17) lead to
 

{[Q22(BlRl + 62 R2 ) + Q23 (S1S2]ao COS (ao Zk) 

= -.Exh(Ql2 + Q22 Do'(Y) + Q23Eo)l(k) (3.23) 

=
{Q44 (R1 + R2 -S11 - S2$2 )1 (k)- 0 

From Equations (3.16), additional relations between R, and S1
 

R2 and S2, are obtained as follows
 

= 

1Q22012 - Q44)RI (Q23 + Q44)BIS]

](k) 0 (3.24)
 

= 

(Q22022 - Q44 )R2 - (Q23 + Q4 4 )B2S2

] (k) 0 (3.25) 

Solving Equations (3.23),T (3.25) simultaneously results in
 

.
RM R2 (k), S(k)s and.S(k) in te'risf-hcx/(ao cos ao(Zk ± 

where 0 < <<< I and Zk isdefined in Equation (2.24) and (2.25). 

Equations (2.23) and (2.24) then lead to the determination of 

o(k Zk ijand tan (ak) - to their orders of accuracy.
 

Thus the complete solution for the zeroth order displacement
 

function u(k), V(k), W(k) are obtained and the intdrlaminar stresses
 
k
 

between the kth layer and the (k+l)th layer, Zk.= 1 E tr , may be 
r= 1
 

readily calculated from the strain-displacdment equations (2.2) and the
 

constitutive equations (3.1).
 

3.1.1 [O/90]s GRAPHITE-EPOXY LAMINATE
 

As a numerical example, the four-ply [0/90s graphite-epoxy lami­

nate with constant ply thicknesses (Fig. 7a) is considered. The stiff­

ness coefficients (after transformation) are listed below.
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z Aif 
90 (7)A 0 (I)

90 (2) y o (2) 

-(a.) [O/O]sLAMINATE (d) [90/O]s LAMINATE 

0 (0()
 
A -- >A '4-5
 

(b) QUARTER Y-Z PLANE (e) QUARTER Y-Z PLANE 
OF TOP LAYER OF TOP LAYER 

So<C <<<1 o<C<<< I
 
(c) FBD OF Z= I1/2 (I)FBD OFZ=I/2t 

FIGURE 7. FOUR PLY BIDIRECTIONAL LAMINATES 
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0 (x 10-6 psi) 90 (x 10- 6 psi) 

c!l) = 20.2 C) = 2.21 

c(1) = 0.56 c(2) = 056
12 12 

C(I) = 
= 2.21 5(2) 20.2

22 22 

Cjl) = 0.56 C) = 48 

C(1) = 0.48 5(2) = 0.56 (3.26)
23 23 

C()C33 = 2.21 C(2) = 2.21'­33
 

cM1)  
 0.85 C(2) 0.85

44 44
 

C(1) = 0.85 c(2) = 0.85
55 .55
 

C(1 ) 
= 0.85 C(2) = 0.8566 66
 

From Equation (3.8), the axial displacement function U vanishes
 

everywhere in the laminate.
 

The interior region solutions (3.9) are found to be
 

Vo = Vo2 = -0.0396 cxbY (3:27) 

Wo(1) -0.2448 exhZ (3.28)
 

W0 (2)= -0.2072 ExhZ (3.29) 

From Equations (2.2), (3.1), and (3.27) - (3.29), the central
 

plahe (Y = 0) stresses are found to be
 

ly(l)(,) = 0.3552 Ex(lO 6 psi) (3.30) 
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y(2),(OZ) = -0.3552 Ex(l0 6 psi) (3.31) 

Tx (o,z) Txy (o,z) = 0 

Equation (3.22) gives
 

(1)= 1.10899 

2(1) 
= 0.90172 (3.32) 

q.(2) = 1.57550 

a2(2) = 0.20994 

Considering continuity of Equations (3.28) and (3.29) at the 

interfaces Z = + -and the exponents given by Equations (3.32), itmay-2
 

be postulated that the boundary layer effect in the 90°-ply (Layer 2)
 

penetrates deeper into the interior of the laminate than that in the
 

O°-ply (Layer 1).
 

Hence the zeroth order composite solution (3.21) is'in the form
 

Vc I = -0.0396 sxbY + [(RI-e-lW + R2 e 2aon)cos o Z(1)
 

Wc1 = -0.2448 exhZ + [(S1 e-l% + S2 ea2a°n)sin Z](1oI)
 

(3.33)
 

a + R2 eB2°n )cos ao Z](2)
Vc(2) = -0.0396 sxbY + [(R1 e l °n 


Wc-(2) = 0.2072 sxhZ + [(S1 alcon + S2 ea2aonl)sin ao Z](2)
 

=
The unknown coefficients are found (setting Z -)to be
 



,54
 

R(1)= 	 (2
 

0.8385 l R (2) = -0.0028 I2
 

R2 0) =-1.1776 I R2(2) = 0.0984 '2
 

SI(1) = -1.0619 I SI(2) = 0.0625 2
 

=
S2(1) 	= 0.9298 S2(2) -0.0134 '2
 

where
 

Cxh (3.35)
 

I :a0o91)Cos(co(1)(L + ))
2
 

Exh (3.36)
 
=
2 O(2)cos(co(2)(_
 

0 < 	 <<< 1
 

=
The self-equilibrating condition F F 0, Equation (2.70), can
z 


be written,in the form
 

-0z(k)n, ± c)hdn 
= 0 
 0 < 	 << 1 
 (3.37)
 

Substituting the coefficients of Equations (3.34) into Equations
 

(3.21)and the constitutive equation (3.1) determines the stresses on
 

either side of the interface Z = 1 It may be shown that Equation
 

(3.37) 	is satisfied identically. This further confirms the correct­

ness 	of the calculated coefficients of Equations (3.34).
 

Equations (2.23) and (2.24) now become
 

0 
 Tyz(i)(n, !-+ c)hd 
 . 0.3552 hex(10 6) (3.38)
 

J 	 yz (2)(n 1 )hd, 0.3552 hcx(10) (3.39) 
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0 - z () , %-+ )bh(l - en)dn - 352 hex(l06$ (3.40) 

-z2 )(n21 - c)bh(l - n)dn -032 hsx(1064 (3-A4) 

0 < <<< 1
 

(1)R (2)
where L is the approximate distance of the resultants 


from the interfacial plane.
 

To compare with the numerical results of Pipes and Pagano [7],
 

the interlaminar stresses are calculated based on the 900 ply (the
 

lower layer). Equation (3.39) leads to
 

a(2)
trn a(2
 
tan 2 (2) 0.5 0 < <<< 1 (3.42).
 

a0(2
)
 

whence ao(2)' = 0.180, 8.9868, 15.4505, (3.43)
 

Equation (3.41) gives
 

ao(2) = 2.8284 (3.44)
 

From Equations (3.38) - (3.41), it is clear that the stress resultant
 

isof-order 0(hExlO5) while the couple moment isof order 0(h2Ex10 5 );
 

Hence, requiring exact satisfaction of Equation (3.39 and approximate.
 
(2)


satisfaction of Equation (3.41) fixes the value of o at
 

(2)= 8.9868 (3.45) 

While rxy and Txz vanish throughout the laminate, the other
 

stress components are obtained inthe following zeroth order form
 

x( n,j- = [2.08837 + (0.0275 e1.8868. 

+14.158n)]x 6
 
+ 0.0051 e )J0(l Psi)- (3.46.)
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y ( - = - (0.3552 + 0.0546 e14 .58n 

- 0.4098 el 887lxe (106 psi) (3.47) 

yz(N ), = 0.3865(e1 887 - e14158n)x (106 psi) (3.48)
(2,1 14.158n e 


)) = (0.1356 el4158- 0.0185 el'887n)x(106 psi) (3.49) 

where 0 < <<< 1 

The last two components of stress, theinterlaminar stresses, 

are plotted and compared with numerical results in Figs. 8 - 11. 

If the stacking sequence of the laminate is reversed to [90/0] s, 

(Fig. 7d), the derivation of these interlaminar stresses is as indi­

cated 'inthe following subsection. 

3.1.2 [90/0] s GRAPHITE-EPOXY LAMINATE
 

While ,U(k).vanishes everywhere in the laminates, the modified ZIR
 

solution for V(k) and W(k) can be obtained by interchanging the
 

superscripts in Equations (3.27) through (3.41).
 

To compare with the numerical results [7], the 0' ply is now
 

used as the reference layer for the interlaminar stresses.
 

The stress components inzeroth order forms are obtained as
 

ax(2)(n, - ) = [20.04 0.074(e9 " 966 nl + e8. 104n)]ex(10 6 psiy (3.50) 
(2

y(2)( 1, - ) = (0.3552 + 1.5452 e9 966l 

- 1.9004 e8'104n):x(10 6 psi) (3.51)
 

= 
T ( ) 7.6996(e9966n - e8"l4n) x(l'06 psi) (3.52)-

az (2)(n, - ) = (-1.9004 e 9.966n4+ 1.5452 e8.104n )Ex(10 6 psi) (3.53)
wr t0 
 < <<< 1
 

where the last two are the interlaminar stresses.
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These stresses are plotted in Figs. 12 - 15.
 

3.2 ANGLE PLY LAMINATES WITH CONSTANT PLY THICKNESS
 

For contemporary fiber-reinforced composites havinq three mutual­

ly perpendicular planes of elastic symmetry, C45(k) vanishes. If the
 

laminate consists of one material with symmetric [ey-eJs or [-e/oJ
 s
 

orientations (Fig. 6b), it is called-an angle ply laminate and the
 

following relations between material constants are found,
 

Ci i 2C = 1,2,3 and j 1,2,3 

(1) (2)
Ckk = Ckk k = 4,5,6 (3.54) 

=
Cn) = - Cn6(2) n 1,2,3
 

The modified ZIR solution gives
 

Uo((1) Uo-(2) 0
 

Vo(1) V0o(2) (Ci2C33 - C13C23)(1)cxb Y (3.55 
(C22C33 - C23C23)( l) 

Wo(i = o(2) = (CI3C22 - C12C23)(1)xh Z
 
-o (C
22C33 -C23C23 ) l
 

On the central plane (Y = 0), the stresses are.obtained from 

Equations (3.55), (2.2), and (3.1) as 

y(1)(O,Z) = - ay(2)(O,Z) = 0 (3.56) 
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Txy1)(0,Z) : (xyC_ 2 )(O;Z) 

"Ic16 - c26 (C12C33 - C13C23 ) . . . 
(C2 2C3 3 c23C23)-

(3.57)
 

The first equation.indicates that the zeroth order solution
 

(3.55) contributes no transverse normal stress throughout the angle-ply
 

laminate. For the laminate to be inequilibrium, two self-equilibrat­

ing conditions inaddition to Equation (2.70) should be expected to
 

hold (Fig. 16). Recalling Equations (3.38) through (3.41), the follow­

ing equations may be established.
 

S yz± )hdn =0 k = (3.58) 

0 < <<l 

S(n, ± )bh(l - £)dn 00 k 1,2 (3.59) 

Furthermore, the shear stress resultants Rxy(1 ) and Rxy(2) must 

also be inequilibrium (Fig. 3 with m = 2) as indicated in the follow­

ing equations. 

-? Txz( 1)&nmhdn + RXY) 0 where Rxy( 1) JTxy(1)(O,Z)hdZ (3.60) 

21"_fo0x (2) L1d 2 

-(( )hdn + Ry ) - 0 where Rxy(2) = T2 )(O,Z)hdZ (3.61) 

The characteristic equation (2.64) leads to two identical sixth
 

order algebraid equations for both layers. Three positive roots to
 

this equation must be dropped for matching considerations. The compos­

ite solution will be in the form of Equation (2.66) with 0(e)
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truncated. A numerical'example is presented inthe following sub­

section.
 

3.2.1 [45/-45]s GRAPHITE-EPOXY LAMINATE
 

Consider the [45/-45] s graphite-epoxy laminate of constant ply
 

thickness h/2 (Fig. 17a). The stiffness coefficients (after transfor­

mation) are
 

-
45(x I06 psi) 	 -45(x 10-6 psi)
 
(1)= 6745 C (2)= 6.745 

11. 	 11
 
C& ) 
 5.045 	 C (2)= 5.045 

12 12 
(1))
 

C13  = 0.521 C (2)= 0.521

3 	 13
 

(1) C 2 ) .4
 
C22 = 6.745 C22 = 6.745
 

(2)

C (1) = 0.52i 	 C = 0.52123 	 23
 

(1))
 
C3( = 2.213 C(2) = 2.213
 

C(1 )=C ) 1 -4.506 (2) C 2 4.506
16 26 =C	 = 26 = 16 


C (1) = -0.04387 	 C (2) 0.04387­36 	 36 ­

(1) (1) 	 (2) C (2)= 0.85
C44  =C 5 =0.85 C44 5
 

C66 (1) C66(2)
= 5.33 


(1) C6 (2)
 

45 C45 =o
 

rhe modified ZIR solution (3.55) gives
 

Uo(1) (2)= 0
 

Vo = Vo(2) = -0.7433 sxbY 	 (3.62) 

Wo ) Wo(2) = -0.0604 exhZ
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Equation (3.57) yields T (1)(O,Z) = -T (2)(0,Z) l.154exC106 psi).
 

The boundary layer equations (2.61) through (2.64) yield the
 

algebraic equation for both layers
 

6
Xo6 _ 2.5460 o% 2 + 1.6337 Ao2aot 0.1202 0 (3.63)
- -o 

which is readily transformed to 

W3 _ 2.5460 w2 + 1.6337 w - 0.1202 = 0 (3.64) 

2by letting X0 = ± 1/ (3.65) 

Furthermore, setting w = y - 1/3(-2.5460) = y + 0.8487 (3.66) 

results in y _ 0.5269 y + 0.0438 = 0 (3.67) 

Let Y = Po + qo (,3.68)
 

and substitute it into Equation (3.67). The resulting set of algebraic
 

equations are
 

3
po3 + qo = 0.0438 (3.69) 

poqo = 0.1756 

which give 

po3 = (O.0736){cos(2kw + 107'.30) + i sin(2kx + 107.30))
3 (3.70)
 

3
qo = (0.0736){cos(2kn + 252.7 ) + i 
sin(2kir + 252.70)}
 

k = 0,1,2
 

By applying DeMoivre's formula [26] and recalling Equation
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(3.68), (3.66) and (3.65), the six roots for Equation (3.63) are
 

found to be
 

Xo(1,2) = ± 1.2364 ao
 

xo(3,4) = ± 0.2903 ao (3.71)
 

X0(5,6) = ± 0.9659 a0 

Hence the zeroth order composite solution (Section 1.3) takes
 

the form
 

n + P2e + P3e 
3 0 )cos a0Zl (k)
Uc(k)'= {(Ple 1 


Vc(k) = - 0.7433 xbY + {(R el on + R2 e
2a n 

-03aon (k) (3.72) 

+ R3e )cos UoZ} 

Wc(k) - 0.0604 exhZ + {(S5e l 0 + S2e 

03anOi (k)
+ S3e )sin aoZ} 

where l(k) 1.2364-

02(k) = 0.2903
 

B3 (k)' 0.9659
 

Satisfying the governing equations and the boundary conditions
 

leads to the following equations:
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=
P1 (I) = - 0.5871 'I P1(2) 0.5871 2 

P2(I) 	 (2) 
= 0.1707 OI 	 P2 = _ 0.1707 2 

P3(2) = PP ) = 1.2021 OI 	 - l.'2021 2
 

R1(2) 
RIM)= - 0.6309 OI , _ 0.6309 02 
I' 	 (3; 73)2
R2 (2)= - 0.1813I
= - 0.1813R2() 


) 	 =
RP = 1.1897 I R3 (2) 1.1897 02
 

=
*S1(.1) = 1.1358 , Sl(2) 1.1358 2 

S2(0) = 	 S . 0.0347 2
0.0347 $2(2) 


=
83(1) = - 1.0736 'I S3(2) - 1.0736 02 

h
cx

where I= a0 1 cos( ((1 + ))
 

(3.74)
 
Exh
 

'2 (2)co( 2 -(2) 

0 < <<< I
 

It can be shown that these coefficients lead to identical satis­

faction of Equations (2.70), (3.54) and (3.55). Hence the correctness
 

of these coefficients is-confirmed.
 

Equation (3.61) then leads to
 

a2) 
s0
 

0 < <<< 1
 

which is identical to Equation (3.42).
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Now consider Equations (3.69). It is clear that Layer 1
 

(+450) and Layer 2 (- 450) are antisynmnetric in U and symmetric in
 

V and W with respect to the infinitesimal thin slice (Fig. 17d).

1 

Upon enforcing exact continuity in displacements at Z = , the 

following equation is obtained.
 

fa0() (1c= 12
0(2) 

+ a (1) 2 - o(2)Cos--flim im1Cos = 0 (3.76)
 

4*0 C-4OJ 

which gives 

- o (1) = (2n +1) , n = 0,1,2,....
0 (3.77) 

n = 0,1,2,.,
a(2) = (2n + I)r 

Hence,
 

cos ao2() + a(1)lf 0(2( 0
) 

(3.78)
-p=2 -- c -

Cos + 1 0 = Cos 


for 0 < c <<< 1
 

where a(l) and ao(2) are given inEquations (3.77).
 

Thereby tn +± 0(3.79) 

[oak) (k) =
 
±okc} K (3.80)
and tan 


0 < <<< 1
 

where K is a finite large positive value.
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At this stage, assigning any large value for K determines the
 
k) corresponding ao(k) and tan F° + co(k)j and hence the interlaminar 

stresses. Itmay be shown that the only stresses related to 

a (k) (k)
tan-0-2 ± ao(k)j are xz(k) and 'yz However, the latter 

vanishes identically at the free edge as required by the stress free
 

boundary conditions (2.17). Hence the singular behavior is found in
 

(k) at the intersection of the free edge and the interfacial plane
 
1 

Z = . This ptovides a definite mathematical evidence for the pre­2 
­

dicted singularity in Reference [7] and wjll be further discussed in 

the following chapter. 

The interlaminar stressea re plotted in Figures 18 - 20. 

3.2.2 -[-45/45]s GRAPHITE-EPOXY LAMINATE
 

Consider the laminate of Fig. 17e. Interchanging the super­

scripts 1 and 2 in Equations (3.62) through (3.73) gives a composite
 

solution identical to (3.72). The corresponding interlaminar stresses
 

are shown in Ftgures 21 - 23.­
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Chapter IV
 

RESULTS AND DISCUSSION
 

Inthe preceding chapter, the general method of solution of
 

Chapter IIwas applied to the special graphite-epoxy laminates [O/90]s,
 

.[90/01s, [45/-45] s and [-45/45] s. To demonstrate the capability of
 

the solution the results for these laminates are presented and dis­

cussed inthis chapter.
 

4.1 THE FOUR LAYER UNIDIRECTIONAL LAMINATES
 

Ithas been stated in Section 1.3 that the accuracy of the pertur­

bation solution depends upon the perturbation parameter c. That is,
 

the smaller c, the better the result. This will be demonstrated in
 

what follows.
 

The interlaminar shear stress Tyz and the interlaminar normal
 

stress az (the peel stress) as functions of the perturbation parameter
 

e are presented, respectively, inFigures 8 and 9 for the [0/90]s
 

laminate. From the figures, it is clear that the boundary layer width
 

becomes smaller as e decreases inmagnitude. (Asymptotic recovery of
 

the lamin'ation theory is implied by the incomplete domain.of Y) It
 

should be noted that the relative extreme values of the stresses are
 

finite and remain unchanged as e decreases. This indicates that the
 

present theory iscapable of approximating the maximum value of the
 

interlaminar stress intensities for intermediate as well as small
 

values of e. Also, the difference between the cases ' = 0.133 and
 

http:domain.of
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= 0.050 ismuch more than that between c = 0.050 and c = 0.033. 

While the curve of E = 0.033 serves as the most accurate of the three 

stress results for their corresponding E, it lends confidence to say 

that for this.[0/90]s graphite-epoxy laminate, a geometric ratio of 

*1

0.050 (= k) or smaller is sufficiently small to lead to good results
 

using the present method of solution.
 

Numerical results obtained by this author using the finite dif­

ference program of Pipes [12] indicate that the smallest geometric
 

ratio for which that program gives physically admissible result is
 

= 0.133 (2 ). Below this ratio, the instability in the solution'
15 

does not yield satisfaction of the force equilibrium F Fy = 0 (Fig. 2 

and Equation (2.26)). This may be attributed to the inherent sensi­

tivity of the finite difference approximation to the ratio of the'grid 

spacings for partial differential equations [27]. 

Comparisons between the results of the finite difference sol'ution 

and the present theory are presented in Figures 10 and 11 for the case 

: 0.133. From Figure 10 it is clear that the present theory tends to 

predict a higher maximum intensity for the interlaminar shear stress 

The boundary layer width is approximately the same for both 

solutions. Figure 11 shows that the present theory predicts a smooth, 

continuous distribution for az which identically satisfies the self­

equilibrating condition z Fz = 0 (Equation (2.70)) whereas the finite­

difference solution yields unstable results near the free edge which 

obviously do not satisfy this equilibrium condition. In regions 

removed from the free edge, both solutions indicate Asymptotic recovery 
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of the lamination theory.
 

Figures 12 and 13 show the interlaminar stresses for the [9Q/O)s
 

laminate--the .reversed stacking sequence from the previous example.
 

From the figures, the physical validity of the present theory is con­

firmed by the sign reversals in both Tyz and oz as a result of force
 

and moment equilibrium (Fig. 7). Again, boundary layer shifts due to
 

the reduction in c are observed. The maximum stress intensities of
 

Tyz and az-in the [90/01s laminate are found to be finite but higher
 

than those in the [0/90]s laminate (Figs. 8 and 9). This is due to
 

the fact that in the calculation for the [90/0]s laminate, the 00 layer
 

was employed as the reference layer. On the other hand, in the calcu­

lation for the [0/90]s laminate, the 900 layer was employed as the
 

reference layer.
 

Comparisons between the finite difference results and the present
 

theory are presented in Figures 14 and 15. The present theory again
 

predicts a higher Tyz than the finite difference solution. Also, the
 

present theory yields a more acceptable distribution for the inter­

laminar normal stress 0z in view of the zero stress resultant require­

ment.. In regions removed from the free edge, the lamination theory is
 

recoVered asymptotically in both solutions.
 

4.2 THE FOUR LAYER ANGLE-PLY LAMINATES
 

Pipes and Pagano [7] pointed out that the interlaminar shear
 

stress Txz in a [45/-45]s laminate tends to grow without bound near
 

the free edge (Section 1.1). Hence the calculated maximum intensity of
 

txz by the finite difference approximation, though higher than other
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numerical investigations [6, 8, 1J, is still very questionable. It
 

was discussed in Section 1.2 that failure to satisfy some stress free
 

boundary,conditions were observed in the finite difference solution.
 

Also, these results showed no sign reversals inay, az and Tyz in
 

consequence of reversing the stacking sequence.
 

In the present theory the mathematical evidence for the singu­

larity in Txz can be shown (Subsection 3.2.1) to be interms of 

the trignometric equation 

a(2) 
tan (a2 a 2) ) = K (4.1) 

where 0 <
1 

<<< 1 and K is a.near-singular large number. The value of 

C9(2) must satisfy equation (3.75) 

((2) 2) 

tan ( 2 0.5 0 < <<< l 
a(2) 

(4.2). 

Obviously, the limiting analysis of the present theory (Fig. 17d, h)
 

provides no unique determination of the value of K. It is only through
 

experimental investigation that this value may be realistically deter­

mined. Such an investigation should be considered as a future study.
 

For the purpose of comparisons, K is taken to be 20.3713, a value that
 

leads to a maximum stress intensity within the elastic limit.
 

Comparisons between the results of the finite difference solution
 

and the present theory are presented in Figures 18 through 23. Figure
 

.18 shows the variation of the interlaminar shear stress Txz along the
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1o
 

interface Z = The near-singular free edge intensity of the present 

theory ismuch higher than the finite difference result and the
 

boundary layer width ismuch smaller. Figure 19 shows the variation
 

of the interlaminar shear stress Tyz. Both solutions satisfy the
 

stress free boundary condition Ty. = 0 at the free edge. The negative­

positive variation of the present theory confirms the additional self­

equilibrating condition
 

E F = btTyz dy = 0 (4.3) 

(as a result of the zeroth order vanishing of ay inthe interior
 

region). The finite difference solution, on the other hand, cannot
 

satisfy such a condition. The erroneous a of the finite dif­

ference solution at the free edge (not shown in the figures), as
 

described in Section 1.2, isbelieved to be caused by inherent errors.
 

In Figure 20 the interlaminar normal stress crz of the finite difference
 

solution indicates instability-near the tree edge; hence, no comparison
 

can be made between the two solutions inthis region. Since the auto- ­

matic satisfaction of the self-equilibrating condition
 

b 
E Fz = J az dy = 0 (4.4) 

has-been demonstrated by the present theory (Chapter III) and can be
 

observed from the figure, and since az is not proportional* to the
 

*As shown in Equations (3-46) - (3.53).
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near-singular value of K, the present theory isbelieved to have pre­

dicted a more accurate maximum .finite intensity of the interlaminar
 

normal stress. Such a determination ismost important inthe delami­

nation failure mode [21, 28] of composites. Although the moment self­

equilibrating condition (Fig. 16) isnot.directly observable from
 

Figure 20, the magnitude of this couple moment can be determined as
 

6
EM = J az y dy .0027 hxO in-lb;(4.5) 
0 (-(2)2 lengthJ 45
 

where (2)equals 2K, a near-singular value from Equations (4.1) and
 

(4.2). Hence the self-equilibrating condition of the couple moment is
 

confirmed immediately.
 

When the stacki.ng sequence is reversed to [-45/45]s (Figs. 21, 22,
 

23), the interlaminar shear stress Txz experiences a sign change in
 

order to balance the central plane shear resultant i TXY(l)(oZ)hdZ
 

2 
which also experiences a sign reversal. The sign of both Tyz and oz 

remain unchanged. This is in agreement with the finite difference 

results (Figs. 19 and 22, 20 and 23). For e = 0.133, the finite dif­

ference solution predicts a small uniform ay along the central plane 

(not shown inthe figures) which does not change its sign and magnitude 

for the reversed stacking sequence. For e < 0.0133 the finite dif­

ference solution yields erroneous results for ay due to the instability 

of the solution. The present theory exhibits no such instabilities. 

It is important to note that the interlaminar normal stressa z 

is independent of the stacking sequence and always tensile near the 

http:stacki.ng
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free edge. For both the [45/-45]s and the L-45/45Js laminates, a
 

finite maximum intensity ispredicted at the exact free edge (Figs. 20,
 

23). This indicates that the delamination failure mode [21, 28] should
 

always be considered for reliable design of such laminate configura­

tions.
 

It is clear that the present study has obtained improved results
 

for the interlaminar behavior of the [45/-45]s and [-45/45]s, graphite­

epoxy laminates. Since the aforementioned self-equilibrating conditions
 

were originally considered for the 2m layer angle-ply laminate (Fig.
 

16), the interlaminar stress variations in any angle-ply laminate may
 

be expected to be similar to those in Figures 18 through 23.
 

4.3 ACCURACY AND LIMITATIONS"
 

As discussed earlier, the accuracy of the present theory depends
 

upon the geometric ratio e = h Hence, the relative order of magni­

tude of the individual terms in the governing equations, in relation to
 

h 
should be further discussed.
 

4.3.1 BIDIRECTIONAL LAMINATES
 

The coupled governing differential equations for bidirectional
 

*laminate (Equations (3.2)) ate
 

(k)
 h 2 h = 
1Q22(9) V'yy + Q44Vzz + (Q44 + Q23)()WYZ (4.6) 

{(Q44 + Q23)()Vyz + Q44(h)2 WYy + Q33W'zz 

From these dimensionless equations, it is essential that the
 

order of magnitude of the coefficients of V,yy and Wyy, V,yz and
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W,yz, V,ZZ and W,ZZ be 0(T2 ) < O(-) < 0(1)*, respectively, in order to 

properly stretch the boundary layer region with a transformation in the 

form 

= (l- Y) (4.7)
S 

Hence, if the material properties are fixed, the geometric ratio
 
b
 

obviously plays the dominant role. For the graphite-epoxy laminate
 

with h= 0.133 (Chapter III), Equations (4.6) may be transformed to
 

(00) 0.046 V,yy + V,ZZ + 0.208 W,yz = 0 (4.8) 
0.080 V,yz + 0.007 W,yy + WZZ = 0 

(0.42 V,yy + V,ZZ + 0.22 W,yz = 0
 

= 
)0.085 V,yz + 0.007 W,yy + W,ZZ (
 

Itmay be.observed that, for this geometric ratio, a perturba­

tion solution using the 00 layer as the reference layer should lead to
 

more accurate results. -


Ifthegeometric ratio is now reduced to 0.050 for the same
 

laminate material, Equations (4.6) become
 

(0 .0065 V,yy + V,zz + 0.0782 W,yz = 0 (4.10)
 

0.030 V,yz + 0.001 W,yy t WZZ = 0
 

(0.05 V,yy + V,ZZ + 0.083 W,yz = Q

10.032 V,yz + 0.001 W'yy + WZZ = 0 

* erepresents the approximate order of the products of Qij 
and E. 
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It is clear that the order of each term relative to V,ZZ or 

W,ZZ shrinks as e diminishes. This means that the degree of accuracy 

of the zeroth-order perturbation solution is improved by the diminish­

ing geometric ratio. Obviously, these equations provide mathematical 

evidence to support the judicious statement made in Section 4.1-­

"Ageometric ratio of 0.050 or smaller leads to sufficiently accurate 

results." 

4.3.2 	ANGLE-PLY LAMINATES
 

The governing differential equations for the t 450 graphite-epoxy
 

laminate with h 0 133 are
 -

b
 

0.111 U,yy + U,ZZ - 0.094 Vyy - 0.007 W,yz = 0 

(450) 	 -0.094 U,yy + 0.140 V,yy + VZZ + 0.215 W,yz = 0 (4.12)
 

-0.003 U,yz + 0.083 V,yz + 0.007 W,yy + W,ZZ = 0
 

0.111 U,yy + U,ZZ + 0.094 V,yy + 0.007 W,yz = 0
 

(-45-) 0.094 U,yy + 0.140 V,yy + V,ZZ + 0.215 W,yz = 0 (4.13)
 

0.003 U,yz + 0.083 V,yz + 0.007 W,yy +.W,ZZ = 0
 

Again, the order of magnitude of each coefficient relative to
 

U,ZZ, V,ZZ and W,ZZ can be observed. From Equations (4.12) and (4.13),
 

itcan be safely stated that the present theory should lead to suf­

ficientlyacuaerslsfr-=013obeo.yaccurate results for b = 0.133 or below. Hnenfrte
Hence no furte ­

b
 
reduction of the geometric ratio needs be elaborated upon.
 

From the above discussion, the fact that the boundary layer
 

penetration becomes weaker ash decreases can be deteeted simply by
5f
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examining the relative orders of various terms in the governing dif­

ferential equations. The smaller the coefficients relative to the co­

efficient one of U,ZZ, V,ZZ and W,ZZ, the weaker the boundary layer
 

effect. Hence the uniform stress distribution inthe central plane
 

(Section 2.2) isjustified by the more rapid recovery of the lamina­

tion solution.
 

Itmust be-recalled that in the interior region of the'present
 

theory the exact satisfaction of the vanishing stress boundary condi­

tions on- the top and. bottom surfaces, the continuities in the inter­

laminar stresses, and the force equilibrium inthe central plane were
 

inforced. Also inthe interior region the exact displacement continuil
 

in U and V were satisfied by the modified zeroth order interior
 

region (Subsection 2.3.2). For bidirectional laminates, the slight dii
 

ference found in the displacement W (Table 1) for the two layers may
 

be reduced or eliminated by higher order considerations. This is
 

mainly due to the differences in material properties that constitute
 

the governing differential equations. For the angle-ply laminates,
 

the exact continuity inthis displacement was found tobe satisfied
 

automatically (Table 2).
 

In the boundary layer region, the bidirectional laminates again
 

reveal-differences inthe exponential functions (Equations (3.33))
 

owing to the intractable material dissimilarities. Hence no exact
 

displacement continuity inthis region may be inforced for the limit­

ing free body considered inFigure 7. Nevertheless, the satisfaction
 

of the symmetry conditions, the stress boundary conditions at the free
 



edge, the force and moment equilibrium about this free body, and the
 

continuity in interlaminar tractions, is believed to have attained a
 

solution whi-ch is.an improvement over previously available solutions.
 

On the other hand, the boundary layer region solution-for the
 

angle-ply laminate exactly satisfies the symmetry conditions, the
 

stress boundary conditions at the free edge, the displacement and
 

stress continuity conditions, and the force and moment equilibrium re­

quirements (Figs. 16, 17). This exactness of the present theory is
 

entirely due to the favorable parametric relations
 

(2)

Ci) 
 C i I, 2, 3 1 and j'= 1, 2, 3
 

k kk k=4,5, 6 (4.14)
C(2 


(1) -C(2)1,23
 
Cn6 = -n n =I, 2,n3
 

Moreover, it is this exactness that leads to the mathematical evidence
 

f6r the stress singularity inthe interlaminar shear stress Txz.
 

4.4 GENERALITY AND APPLICABILITY
 

From the solution method developed in Chapters IIand.III, it is
 

clear that the detailed solution priocedures of the present theory can
 

be readily programmed for a computer. The simple calculation steps
 

require no approximate or iterative techniques. The generality of the
 

theory can b4 directly applied to variable laminate configurations
 

(Fig. 1) with more layers than any existing computer program can
 

possibly handle. Thermal strains can be readily included through the
 

constitutive equations (2.1) to determine the induced thermal stresses
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due to the temperature drop from the curing temperature of the laminate 

or for laminates in a high temperature environment. The computer 

program thus developed would be capable of predicting the interlaminar 

stress intensities between any two layers including the midplane Z = 0. 

Failure hypotheses can then be established based on the interfacial
 

plane where the stress intensity reaches a relative maximum.
 

Finally the generality of the solution procedures inthe present
 

theory can be directly applied to explore related problems such as a
 

laminate with internal free edge inthe form of center holes, cracks,
 

etc., a laminate subject to pure bending at the ends x = t L, time­

dependent boundary layer effects due to cyclic loadings, and so forth.
 

The important experimental determination of the material parameter K
 

may also be pursued as a future research topic.
 



Chapter V
 

CONCLUSIONS
 

In the present thesis a general method of solution for a balanced
 

symmetric composite laminate subject to a uniaxial extension has been
 

developed based upon a perturbation analysis of an elastic limiting
 

free body containing an interfacial plane.
 

In summary of the theoretical achievements of the present study,
 

the following conclusions can be made.
 

(1) The solution satisfies the symmetry conditions, the stress
 

free boundary conditions, most continuity conditions, and
 

the force and moment equilibrium of the limiting free body.
 

(2) The solution predicts smooth continuous interlaminar
 

stresses with no instabilities.
 

(3) The solution provides the finite maximum magnitude of the
 

interlaminar normal stress az for all laminate configura­

ti.ons.
 

(4) For given material properties, the solution accuracy depends
 

upon the geometric ratio E For[O/90]s Gr/E laminate, 

S< -leads to satisfactory results while for [±45]s Gr/E
2 

laminate, e < L predicts satisfactory results. 
(5) For all laminates with geometric ratio, 0 < << 1, high
 

b
 

gradient displacement, strain and stress fields are shown
 

to exist near the free edge.
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(6) The above boundary layer effect decays exponentially to
 

recover the lamination solution in the interior regions.
 

(7) For bidirectional laminates the axial displacement function
 

U is identically zero. Hence no Txy or TXZ exist in the
 

laminate.
 

(8) For bidirectional laminates, the interlaminar normal stress
 

Uz is finite with the sign depending upon the stacking
 

sequence. For example, for a [0/901 s Gr/E laminate, a
 

maximum tensile az exists at the free edge white for a
 

[90/ s Gr/E laminate, a maximum compressive oz is predicted.
 

(9) For angle-ply laminates, the exactness of the solution leads
 

to the mathematical evidence of singular Interlaminar shear
 
stresses Txz and Tyz at or near the free edge.
 

(10) 	 For angle-ply laminates, the interlaminar normal stress oz 

takes on a finite maximum tensile value at the free edge, and
 

is independent of the stacking sequence.
 

(11) 	 The solution procedure can be readily programmed for a
 

computer. Such a generalized computer program would be
 

capable of predicting interlaminar stresses between any­

two layers of a general multi-layered laminate.
 

(12) 	 The present theory suggests vaiable means for solving
 

important related problems of practical interest.
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