10 research outputs found

    Nonsingular change of assembly mode without any cusp

    Get PDF
    International audienceThis paper shows for the first time a parallel manipulator that can execute nonsingular changes of assembly modes while its joint space is free of cusp points and cuspidal edges. The manipulator at hand has two degrees of freedom and is derived from a 3-RPR manipulator; the shape of its joint space is a thickening of a figure-eight curve. A few explanations concerning the relationship between cusps and alpha curves are given

    Kinematic analysis of a class of analytic planar 3-RPR parallel manipulators

    Get PDF
    A class of analytic planar 3-RPR manipulators is analyzed in this paper. These manipulators have congruent base and moving platforms and the moving platform is rotated of 180 deg about an axis in the plane. The forward kinematics is reduced to the solution of a 3rd-degree polynomial and a quadratic equation in sequence. The singularities are calculated and plotted in the joint space. The second-order singularities (cups points), which play an important role in non-singular change of assembly-mode motions, are also analyzed

    On the determination of cusp points of 3-R\underline{P}R parallel manipulators

    Get PDF
    This paper investigates the cuspidal configurations of 3-RPR parallel manipulators that may appear on their singular surfaces in the joint space. Cusp points play an important role in the kinematic behavior of parallel manipulators since they make possible a non-singular change of assembly mode. In previous works, the cusp points were calculated in sections of the joint space by solving a 24th-degree polynomial without any proof that this polynomial was the only one that gives all solutions. The purpose of this study is to propose a rigorous methodology to determine the cusp points of 3-R\underline{P}R manipulators and to certify that all cusp points are found. This methodology uses the notion of discriminant varieties and resorts to Gr\"obner bases for the solutions of systems of equations

    On The Dynamic Properties of Flexible Parallel Manipulators in the Presence of Payload and Type 2 Singularities

    Get PDF
    International audienceIt is known that a parallel manipulator at a singular configuration can gain one or more degrees of freedom and become uncontrollable. In our recent work [1], the dynamic properties of rigid-link parallel manipulators, in the presence of Type 2 singularities, have been studied. It was shown that any parallel manipulator can pass through the singular positions without perturbation of motion if the wrench applied on the end-effector by the legs and external efforts is orthogonal to the twist along the direction of the uncontrollable motion. This condition was obtained using symbolic approach based on the inverse dynamics and the study of the Lagrangian of a general rigid-link parallel manipulator. It was validated by experimental tests carried out on the prototype of a four-degrees-of-freedom parallel manipulator. However, it is known that the flexibility of the mechanism may not always been neglected. Indeed, for robots, joint flexibility can be the main source contributing to overall manipulator flexibility and can lead to trajectory distortion. Therefore, in our second paper [2], the condition of passing through a Type 2 singularity for parallel manipulators with flexible joints has been studied. In the present paper, we expand information about the dynamic properties of parallel manipulators in the presence of Type 2 singularity by including in the studied problem the link flexibility and the payload. The suggested technique is illustrated by a 5R parallel manipulator with flexible elements (actuated joints and moving links) and a payload. The obtained results are validated by numerical simulations carried out using the software ADAMS

    On the Dynamic Properties of Flexible Parallel Manipulators in the Presence of Type 2 Singularities

    Get PDF
    International audienceIn the present paper, we expand information about the conditions for passing through Type 2 singular configurations of a parallel manipulator. It is shown that any parallel manipulator can cross the singular configurations via an optimal control permitting the favourable force distribution, i.e. the wrench applied on the end-effector by the legs and external efforts must be reciprocal to the twist along the direction of the uncontrollable motion. The previous studies have proposed the optimal control conditions for the manipulators with rigid links and flexible actuated joints. The different polynomial laws have been obtained and validated for each examined case. The present study considers the conditions for passing through Type 2 singular configurations for the parallel manipulators with flexible links. By computing the inverse dynamic model of a general flexible parallel robot, the necessary conditions for passing through Type 2 singular configurations are deduced. The suggested approach is illustrated by a 5R parallel manipulator with flexible elements and joints. It is shown that a 16 th order polynomial law is necessary for the optimal force generation. The obtained results are validated by numerical simulations carried out using the software ADAMS

    Numerical computation and avoidance of manipulator singularities

    Get PDF
    This thesis develops general solutions to two open problems of robot kinematics: the exhaustive computation of the singularity set of a manipulator, and the synthesis of singularity-free paths between given configurations. Obtaining proper solutions to these problems is crucial, because singularities generally pose problems to the normal operation of a robot and, thus, they should be taken into account before the actual construction of a prototype. The ability to compute the whole singularity set also provides rich information on the global motion capabilities of a manipulator. The projections onto the task and joint spaces delimit the working regions in such spaces, may inform on the various assembly modes of the manipulator, and highlight areas where control or dexterity losses can arise, among other anomalous behaviour. These projections also supply a fair view of the feasible movements of the system, but do not reveal all possible singularity-free motions. Automatic motion planners allowing to circumvent problematic singularities should thus be devised to assist the design and programming stages of a manipulator. The key role played by singular configurations has been thoroughly known for several years, but existing methods for singularity computation or avoidance still concentrate on specific classes of manipulators. The absence of methods able to tackle these problems on a sufficiently large class of manipulators is problematic because it hinders the analysis of more complex manipulators or the development of new robot topologies. A main reason for this absence has been the lack of computational tools suitable to the underlying mathematics that such problems conceal. However, recent advances in the field of numerical methods for polynomial system solving now permit to confront these issues with a very general intention in mind. The purpose of this thesis is to take advantage of this progress and to propose general robust methods for the computation and avoidance of singularities on non-redundant manipulators of arbitrary architecture. Overall, the work seeks to contribute to the general understanding on how the motions of complex multibody systems can be predicted, planned, or controlled in an efficient and reliable way.Aquesta tesi desenvolupa solucions generals per dos problemes oberts de la cinemàtica de robots: el càlcul exhaustiu del conjunt singular d'un manipulador, i la síntesi de camins lliures de singularitats entre configuracions donades. Obtenir solucions adequades per aquests problemes és crucial, ja que les singularitats plantegen problemes al funcionament normal del robot i, per tant, haurien de ser completament identificades abans de la construcció d'un prototipus. La habilitat de computar tot el conjunt singular també proporciona informació rica sobre les capacitats globals de moviment d'un manipulador. Les projeccions cap a l'espai de tasques o d'articulacions delimiten les regions de treball en aquests espais, poden informar sobre les diferents maneres de muntar el manipulador, i remarquen les àrees on poden sorgir pèrdues de control o destresa, entre d'altres comportaments anòmals. Aquestes projeccions també proporcionen una imatge fidel dels moviments factibles del sistema, però no revelen tots els possibles moviments lliures de singularitats. Planificadors de moviment automàtics que permetin evitar les singularitats problemàtiques haurien de ser ideats per tal d'assistir les etapes de disseny i programació d'un manipulador. El paper clau que juguen les configuracions singulars ha estat àmpliament conegut durant anys, però els mètodes existents pel càlcul o evitació de singularitats encara es concentren en classes específiques de manipuladors. L'absència de mètodes capaços de tractar aquests problemes en una classe suficientment gran de manipuladors és problemàtica, ja que dificulta l'anàlisi de manipuladors més complexes o el desenvolupament de noves topologies de robots. Una raó principal d'aquesta absència ha estat la manca d'eines computacionals adequades a les matemàtiques subjacents que aquests problemes amaguen. No obstant, avenços recents en el camp de mètodes numèrics per la solució de sistemes polinòmics permeten ara enfrontar-se a aquests temes amb una intenció molt general en ment. El propòsit d'aquesta tesi és aprofitar aquest progrés i proposar mètodes robustos i generals pel càlcul i evitació de singularitats per manipuladors no redundants d'arquitectura arbitrària. En global, el treball busca contribuir a la comprensió general sobre com els moviments de sistemes multicos complexos es poden predir, planificar o controlar d'una manera eficient i segur

    Singularity-free workspace analysis and geometric optimization of parallel mechanisms

    Get PDF
    Les mécanismes parallèles sont fréquemment utilisés comme robots manipulateurs, comme simulateurs de mouvement, comme machines parallèles, etc. Cependant, à cause des chaînes cinématiques fermées qui caractérisent leur architecture, le mouvement de leur plateforme est limité et des singularités cinématiques complexes peuvent apparaître à l'intérieur de leur espace de travail. Par conséquent, une maximisation l'espace de travail libre de singularité pour ce type de mécanismes est souhaitable dans un contexte de conception. Dans cette thèse, deux types de mécanismes parallèles sont étudiés: les mécanismes parallèles plans ?avec, en particulier le 3-RPR? et les mécanismes spatiaux ?avec, en particulier, la plateforme de Gough-Stewart. Pour chaque type de mécanisme parallèle, une forme simple d'équation de singularité est obtenue. Le principe consiste à séparer l'origine O' du repère mobile du point considéré P et de faire coïncider O' avec un point particulier de la plateforme. L'équation ainsi obtenue est l'équation de singularité du point P de la plateforme qui contient un ensemble minimal de paramètres géométriques. Par ailleurs, il est prouvé que les centres des cercles et sphères définissant l'espace de travail se trouvent exactement sur les lieux de singularité. Cette observation et l'équation de singularité simplifiée constituent les points de départ de l'analyse de l'espace de travail libre de singularité ainsi que de l'optimisation géométrique. Pour le mécanisme parallèle plan 3-RPR, l'espace de travail libre de singularité et les limites correspondantes pour la longueur des pattes dans une orientation prescrite sont déterminés. Ensuite l'architecture optimale qui permet d'obtenir un espace de travail maximal tout en étant libre de singularité est discutée. En ce qui concerne la plateforme de Gough-Stewart, cette thèse se concentre sur le manipulateur symétrique simplifié minimal (MSSM). Comme une plateforme de Gough- Stewart a 6 degrés de liberté, son espace de travail se divise en deux: l'espace de travail en position (ou simplement espace de travail) et l'espace de travail en orientation. A partir de l'équation de singularité simplifiée, une procédure générale est développée afin de déterminer l'espace de travail libre de singularité maximal autour d'un point particulier dans une orientation donnée, et afin de déterminer les limites correspondantes des longueurs de patte. Dans le but de maximiser l'espace de travail libre de singularité en orientation, un algorithme est présenté qui optimise les trois angles d'orientation. Sachant qu'une plateforme fonctionne habituellement pour une certaine gamme d'orientations, deux algorithmes qui calculent l'espace de travail en orientation libre de singularité maximal sont présentés. En utilisant les angles d'Euler en roulis, tangage et lacet, l'espace de travail en orientation pour une position prescrite peut être défini par 12 surfaces. Basé sur ce fait, un algorithme numérique est présenté qui évalue et représente l'espace de travail en orientation pour une position prescrite dans les limites données de longueur de patte. Ensuite, une procédure est proposée afin de déterminer l'espace de travail en orientation libre singularité maximal ainsi que les limites correspondantes des longueurs de patte. En pratique, une plateforme peut fonctionner dans un ensemble de positions. Ainsi, l'effet de la position de travail sur l'espace de travail en orientation libre de singularité maximal est analysé et deux algorithmes sont proposés pour calculer ce dernier pour tout un ensemble de positions particulières. Finalement, un algorithme qui optimise les paramètres géométriques est développé dans le but de déterminer l'architecture optimale qui permet à la plateforme de MSSM Gough-Stewart d'obtenir l'espace de travail libre singularité maximal autour d'une position particulière pour l'orientation de référence. Les résultats obtenus peuvent être utilisés pour la conception géométrique, la configuration des paramètres (longueur des pattes) ou la planification de trajectoires libres de singularité des mécanismes parallèles considérés. En outre, les algorithmes proposés peuvent également être appliqués à d'autres types de mécanismes parallèles

    Advances in Robot Kinematics : Proceedings of the 15th international conference on Advances in Robot Kinematics

    Get PDF
    International audienceThe motion of mechanisms, kinematics, is one of the most fundamental aspect of robot design, analysis and control but is also relevant to other scientific domains such as biome- chanics, molecular biology, . . . . The series of books on Advances in Robot Kinematics (ARK) report the latest achievement in this field. ARK has a long history as the first book was published in 1991 and since then new issues have been published every 2 years. Each book is the follow-up of a single-track symposium in which the participants exchange their results and opinions in a meeting that bring together the best of world’s researchers and scientists together with young students. Since 1992 the ARK symposia have come under the patronage of the International Federation for the Promotion of Machine Science-IFToMM.This book is the 13th in the series and is the result of peer-review process intended to select the newest and most original achievements in this field. For the first time the articles of this symposium will be published in a green open-access archive to favor free dissemination of the results. However the book will also be o↵ered as a on-demand printed book.The papers proposed in this book show that robot kinematics is an exciting domain with an immense number of research challenges that go well beyond the field of robotics.The last symposium related with this book was organized by the French National Re- search Institute in Computer Science and Control Theory (INRIA) in Grasse, France
    corecore