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Nonsingular change of assembly mode without

any cusp

Michel Coste, Damien Chablat and Philippe Wenger

Abstract This paper shows for the first time a parallel manipulator that can execute

nonsingular changes of assembly modes while its joint space is free of cusp points

and cuspidal edges. The manipulator at hand has two degrees of freedom and is

derived from a 3-RPR manipulator; the shape of its joint space is a thickening of

a figure-eight curve. A few explanations concerning the relationship between cusps

and alpha curves are given.

Key words: parallel robots, singularities.

1 Introduction

The nonsingular change of assembly mode in parallel manipulators was first ob-

served by C. Innocenti and V. Parenti-Castelli [1]. The possibility to execute such

a motion is most frequently associated with the presence of cusps, and the non-

singular change of assembly mode is realized by turning around a cusp point, or

a cuspidal edge of the singularity surface (see for instance [2, 3, 4, 5]). It has also

been reported [6, 7] that nonsingular change of assembly modes can be realized by

following an “alpha curve” (i.e. a fold curve intersecting itself transversally) but, in

the examples shown, such an alpha curve is always associated with the presence of

cusps. Figure 1 shows such an example. The figure depicts a slice of the joint space

for a 3-RPR manipulator, along with a nonsingular assembly mode changing trajec-

tory that goes around the alpha-curve. The zone with four (resp. two) solutions to
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the direct kinematic problem is colored in green (resp. red). Going from the green

zone to the green zone following the trajectory, one passes from one solution to the

other solution in the same aspect. Since there are two cusps, note that a nonsingular

change of assembly mode may also be executed by encircling one of them.

Fig. 1 Change of assembly mode looping around an alpha curve, with a zoom on the zone with

four solutions to the direct kinematic problem

In the present paper we describe a planar parallel manipulator with two degrees of

freedom which has absolutely no cusp, but nevertheless allows nonsingular changes

of assembly modes. This manipulator is derived from a 3-RPR manipulator with

one prismatic articulation blocked, coupled with a mechanism for reversing an an-

gle. We describe this manipulator in the next section. The idea behind the special

design of this manipulator is to obtain a joint space which has the shape of a thick-

ened figure-eight curve. This is first established with an asymptotic simplification of

the inverse kinematic mapping in section 3. Section 4 contains the actual example

of a nonsingular change of assembly mode showing no cusp at all. Some remarks

on stable singularities are given in section 5; in particular, we comment about the

relationship between cusps and alpha curves.

2 The non cuspidal manipulator

The manipulator we describe here derives from a planar 3-RPR. It has a triangular

moving platform B1B2B3 which is linked to the base A1A2A3 via three legs AiBi, with

passive rotoidal joints at Ai and Bi (for i = 1,2,3). The length r1 of the leg A1B1 is

fixed. The lengths r2 and r3 of the other two legs A2B2 and A3B3 are controlled by

actuated prismatic joints. The vertices A1 and A2 of the base are fixed. The length

A1A3 is fixed. The peculiarity of this manipulator, which makes it different from a

3-RPR with one blocked prismatic joint, is the fact that the angle Â2A1A3 varies.
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Precisely, if we denote by θ the angle Â2A1B1, then Â2A1A3 =
π

2
− θ (see Figure

2).

Fig. 2 The manipulator

Let us complete the description of the manipulator. The platform B1B2B3 is a

right-angled triangle, with right angle at B1. Its dimensions are given by bB = B1B2

and hB = B1B3. The dimensions of the base are given by bA = A1A2 and hA = A1A3.

The position of the manipulator is completely described by the angles θ and ψ =

B̂2B1A1.

We explain now how one can constrain the angle Â2A1A3 to be equal to
π

2
−θ .

Consider a 4-bar kite A1CDE with A1C = A1E and CD = ED. The rotoidal joint A1

is fixed and D is constrained to glide on A1A2. The rotoidal joint E is on the leg

A1B1. Of course, we have Â2A1C =−θ . We constrain A1A3 to be orthogonal to A1C

so that Â2A1A3 =
π

2
−θ (see Figure 3, left).

Fig. 3 The 4-bar kite and the two coupled kites

When the 4-bar kite is flat (this happens when θ = 0 or π), it can change its

operating mode by moving in such a way that C and E remain coincident. In order

to rule out this possibility, we can couple the first kite A1CDE with a second one

A1C′D′E ′, as shown on Figure 3, right.
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We could have used other mechanisms in order to reverse the angle θ : for in-

stance Kempe’s reverser consisting of two contra-parallelograms (see [8] p.270), or

belts, or gears.

3 The inverse kinematic mapping and its asymptotic

simplification

The constraint equations of the manipulator can be written as follows. Recall that

ri is the length of the leg AiBi. The actuated joint variables are r2 and r3, while r1

is fixed. The position of the manipulator is determined by the angles θ and ψ . We

have:
r2

2 = (r1 −bA cosθ −bB cosψ)2 +(bA sinθ +bB sinψ)2
,

r2
3 = (r1 −hA sin2θ −hB sinψ)2 +(hA cos2θ +hB cosψ)2

.

(1)

Equations (1) describe the inverse kinematic mapping from the workspace, which is

a torus parametrized by the angles θ and ψ , to the actuated joint space, which is the

positive quadrant parametrized by the lengths r2 and r3.

We shall now consider the asymptotic version of the inverse kinematic mapping

as r1 tends to infinity, as was done in [9] for the usual 3-RPR manipulator. In order

to do this, we replace r2 and r3 with r2 − r1 and r3 − r2 and take their limit δi =
limr1→∞(ri − r1) for i = 2,3. We obtain:

δ2 =−bA cosθ −bB cosψ ,

δ3 =−hA sin2θ −hB sinψ .

(2)

Equations (2) describe the asymptotic simplification of the inverse kinematic map-

ping, from the torus (θ ,ψ) to the plane (δ2,δ3). The singularities of the asymptotic

inverse kinematic mapping are easily understood. Remark that (bA cosθ , hA sin2θ)
is a parametrization of a figure-eight curve, or lemniscate of Gerono (a particular

case of a Lissajous curve), while (bB cosψ, hB sinψ) is, of course, the parametriza-

tion of an ellipse. So the curve of critical values of the asymptotic inverse kinematic

mapping is the envelope of a family of translated ellipses with centres on a figure-

eight curve. If the ellipse is small compared to the figure-eight curve, we obtain just

a thickening of the figure-eight curve.

Specifically, take bA = 10, hA = 5, bB = 1, hB = 2. The Jacobian determinant of

the asymptotic inverse kinematic mapping is then

J =−20 sinθ cosψ +10 cos2θ sinψ . (3)

Solving J = 0 for ψ , we obtain that the critical points of the asymptotic inverse

kinematic mapping are those such that

cosψ =
±cos2θ

√

1+4 sin4 θ
, sinψ =

±2 sinθ
√

1+4 sin4 θ
. (4)
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The two branches of the curve of critical points in the (θ ,ψ) torus are represented

in thick black line in Figure 4, left. These two branches delimit two aspects.

Carrying these values in the equations (2) for the asymptotic inverse kinematic

mapping, we get the two branches of the curve of critical values in the (δ2,δ3) plane.

They are represented in Figure 4, right. These curves delimit zones where the direct

kinematic problem has two solutions (red zone), and four solutions (green zone).

Fig. 4 Work space: the (θ ,ψ) torus (left) and joint space: the (δ2,δ3) plane (right) for the asymp-

totic model

There is no cusp, but a nonsingular change of assembly mode is possible since

there are two aspects and a zone where the direct kinematic problem has four solu-

tions. A trajectory for such a nonsingular change of assembly mode is represented

in Figure 4. The nonsingular change of assembly mode can be interpreted using a

comparison with a figure-eight race track where the crossroads is realized with a

bridge, i.e. there are two levels at the crossroads. Each level is associated with an

assembly mode. The track represents an aspect (the joint space is made of two su-

perimposed similar aspects). Starting from the crossroads on the bridge (level 1),

the car can drive until it reaches the crossroads at the same horizontal position but

under the bridge (level 0).

The characteristic curves have been plotted in thin black line in Figure 4, left.

These curves, together with the critical curves, define the uniqueness domains: any

two points in the same uniqueness domain of the (θ ,ψ) torus have different images

in the (δ1,δ2) plane (joint space). For a complete definition of the characteristic

surfaces and uniqueness domains, see [10]. Any point in the green region of the joint

space (Figure 4, right) is the image of four points in the workspace (four assembly

modes). These four points are distributed in the four green regions shown in the

workspace (Figure 4, left), two in each aspect.

The preceding analysis concerns, of course, only an asymptotic case. However,

since the asymptotic inverse kinematic mapping has only stable singularities (folds

and transverse intersection of folds, see Section 5) which are not altered by small

perturbations, the conclusion obtained will remain valid for all sufficiently large

values of r1. We shall check this in the next section.
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4 An actual, non asymptotic example

The asymptotic analysis of the preceding section corresponds to r1 = ∞. We show

here that the conclusion remains valid for r1 = 30 (keeping the same bA,hA,bB,hB).

We have now to deal with equations (1) which are more complicated than their

asymptotic simplification. The computation is done using the SIROPA library. In

order to simplify calculations, we use coordinates l2 = r2
2, l3 = r2

3 for the actuated

joint space, which is an unessential change.

Fig. 5 Workspace and joint space for r1 = 30, with a nonsingular change of assembly mode

We can see on Figure 5 that the picture of the singularities is the same as the one

for the asymptotic simplification (Figure 4). In particular, there is no cusp. We have

also represented a nonsingular trajectory between two configurations corresponding

to the same values l2 = 1000, l3 = 880 for the actuated joints.

5 Stable singularities and nonsingular change of assembly modes

The only stable singularities of a mapping from a surface to a surface (see [11])

are the folds (codimension one singularity, giving a fold curve), the cusps and the

transverse intersections of fold curves (codimension two singularities, i.e. isolated

points). Any other singularity will be decomposed into a combination of these stable

singularities by a small perturbation, whereas a stable singularity is persistent under

small perturbations.

Figure 6 represents these three stable singularities for a critical value P. Gener-

ically, the picture of parallel singularities in a two-dimensional surface around a

critical value of the inverse kinematic mapping in the joint space will fit into one of

these three cases. The direct kinematic problem has a double solution for a fold, a

triple solution for a cusp and two double solutions for a transverse intersection of

fold curves.
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Fig. 6 Stable singularities: fold, cusp and transverse intersection of fold curves

The only stable singularity which allows local nonsingular change of assembly

mode is the cusp. By “local”, we mean that the change of assembly mode is per-

formed by following a loop which can be shrunk to become arbitrarily small. This

is certainly the case for a loop encircling a cusp, but not for a loop following an

“alpha curve”, i.e. a fold curve intersecting itself transversally.

In examples, an alpha curve is frequently associated with cusps because a

transversal intersection of folds often appears after a “swallowtail bifurcation” (see

[12] p. 34), together with a pair of cusps. One might think that a cusp is obtained by

shrinking the loop of an alpha curve to a point. This is not the case, since a cusp is

a stable singularity which cannot be obtained by degenerating another singularity.

If the loop of an alpha curve is shrunk to a point, then this point corresponds to a

quadruple, not triple, solution to the direct kinematic problem.

In order to illustrate an example of degeneration of an alpha curve, and also the

swallowtail bifurcation, we show the transformation of the (δ2,δ3) joint space of

section 3, as we decrease hA keeping the other dimensions fixed. Only a half of the

joint space is shown in Figure 7, since it is symmetric.

Fig. 7 Degeneration of an alpha curve

Figure 7 shows that, at first, two cusps and a transverse intersection of fold curves

appear as a result of a swallowtail bifurcation. Then, the two transverse intersections

of fold curves disappear through a tangent crossing of these curves.
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6 Conclusion

While it is clear that the existence of cusps or cuspidal edges is a sufficient condi-

tion for allowing a nonsingular change of assembly mode, the question of whether

this condition is necessary or not remained to be fixed because previous examples

of nonsingular assembly mode changing manipulators always exhibited cusps, even

in the presence of an alpha-curve. This paper showed that the aforementioned con-

dition is indeed not necessary, through the presentation of a 2-DOF parallel manip-

ulator that can execute a nonsingular change of assembly mode while its joint space

is free of cusps. This manipulator is derived from a 3-RPR and its joint space is

a thickening of a figure-eight curve. The kinematic properties of this manipulator

were first established using the asymptotic simplification of its inverse kinematic

mapping.

It was recalled that a cusp is a necessary and sufficient condition for local non-

singular change of assembly mode in generic situations; it was also explained that a

cusp cannot be interpreted as a degeneration of an alpha-curve.
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