17 research outputs found

    Renewable Energy

    Get PDF
    Renewable Energy is energy generated from natural resources - such as sunlight, wind, rain, tides and geothermal heat - which are naturally replenished. In 2008, about 18% of global final energy consumption came from renewables, with 13% coming from traditional biomass, such as wood burning. Hydroelectricity was the next largest renewable source, providing 3% (15% of global electricity generation), followed by solar hot water/heating, which contributed with 1.3%. Modern technologies, such as geothermal energy, wind power, solar power, and ocean energy together provided some 0.8% of final energy consumption. The book provides a forum for dissemination and exchange of up - to - date scientific information on theoretical, generic and applied areas of knowledge. The topics deal with new devices and circuits for energy systems, photovoltaic and solar thermal, wind energy systems, tidal and wave energy, fuel cell systems, bio energy and geo-energy, sustainable energy resources and systems, energy storage systems, energy market management and economics, off-grid isolated energy systems, energy in transportation systems, energy resources for portable electronics, intelligent energy power transmission, distribution and inter - connectors, energy efficient utilization, environmental issues, energy harvesting, nanotechnology in energy, policy issues on renewable energy, building design, power electronics in energy conversion, new materials for energy resources, and RF and magnetic field energy devices

    ANALYSIS AND DESIGN OF IMPULSE COMMUTATED SOFT-SWITCHING CURRENT-FED CONVERTERS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Grid integration of renewable power generation

    Get PDF
    This thesis considers the use of three-phase voltage and current source inverters as interfacing units for renewable power, specifically photovoltaic (PV) into the ac grid. This thesis presented two modulation strategies that offer the possibility of operating PV inverters in grid and islanding modes, with reduced switching losses. The first modulation strategy is for the voltage source inverter (VSI), and exploits 3rd harmonic injection with selective harmonic elimination (SHE) to improve performance at low and high modulation indices, where the traditional SHE implementation experiences difficulties due to pulse dropping. The simulations and experimentation presented show that the proposed SHE allows grid PV inverters to be operated with less than a 1kHz effective switching frequency per device. This is vital in power generation, especially in medium and high power applications. Pulse dropping is avoided as the proposed modified SHE spreads the switching angles over 90°, in addition increasing the modulation index. The second proposed modulation strategy, called direct regular sampled pulse width modulation (DRSPWM), is for the current source inverter (CSI). It exploits a combination of forced and natural commutation imposed by the co-existence of an insulated gate bipolar transistor in series with a diode in a three phase current source inverter, to determine device dwell times and switching sequence selection. The DRSPWM strategy reduces switching frequency per device in a CSI by suspending each phase for 60°, similar to VSI dead-band, thus low switching losses are expected. Other benefits include simple digital platform implementation and more flexible switching sequence selection and pulse placement than with space vector modulation. The validity of the DRSPWM is confirmed using simulations and experimentation. This thesis also presents a new dc current offset compensation technique used to facilitate islanding or grid operation of inverter based distributed generation, with a reduced number of interfacing transformers. The proposed technique will enable transformerless operation of all inverters within the solar farm, and uses only one power transformer at the point of common coupling. The validity of the presented modulation strategies and dc current offset compensation technique are substantiated using simulations and experimentation.This thesis considers the use of three-phase voltage and current source inverters as interfacing units for renewable power, specifically photovoltaic (PV) into the ac grid. This thesis presented two modulation strategies that offer the possibility of operating PV inverters in grid and islanding modes, with reduced switching losses. The first modulation strategy is for the voltage source inverter (VSI), and exploits 3rd harmonic injection with selective harmonic elimination (SHE) to improve performance at low and high modulation indices, where the traditional SHE implementation experiences difficulties due to pulse dropping. The simulations and experimentation presented show that the proposed SHE allows grid PV inverters to be operated with less than a 1kHz effective switching frequency per device. This is vital in power generation, especially in medium and high power applications. Pulse dropping is avoided as the proposed modified SHE spreads the switching angles over 90°, in addition increasing the modulation index. The second proposed modulation strategy, called direct regular sampled pulse width modulation (DRSPWM), is for the current source inverter (CSI). It exploits a combination of forced and natural commutation imposed by the co-existence of an insulated gate bipolar transistor in series with a diode in a three phase current source inverter, to determine device dwell times and switching sequence selection. The DRSPWM strategy reduces switching frequency per device in a CSI by suspending each phase for 60°, similar to VSI dead-band, thus low switching losses are expected. Other benefits include simple digital platform implementation and more flexible switching sequence selection and pulse placement than with space vector modulation. The validity of the DRSPWM is confirmed using simulations and experimentation. This thesis also presents a new dc current offset compensation technique used to facilitate islanding or grid operation of inverter based distributed generation, with a reduced number of interfacing transformers. The proposed technique will enable transformerless operation of all inverters within the solar farm, and uses only one power transformer at the point of common coupling. The validity of the presented modulation strategies and dc current offset compensation technique are substantiated using simulations and experimentation

    Summary of State-of-the-Art Power Conversion Systems for Energy Storage Applications

    Full text link

    Analysis and design of matrix converters for adjustable speed drives and distributed power sources

    Get PDF
    Recently, matrix converter has received considerable interest as a viable alternative to the conventional back-to-back PWM (Pulse Width Modulation) converter in the ac/ac conversion. This direct ac/ac converter provides some attractive characteristics such as: inherent four-quadrant operation; absence of bulky dc-link electrolytic capacitors; clean input power characteristics and increased power density. However, industrial application of the converter is still limited because of some practical issues such as common mode voltage effects, high susceptibility to input power disturbances and low voltage transfer ratio. This dissertation proposes several new matrix converter topologies together with control strategies to provide a solution about the above issues. In this dissertation, a new modulation method which reduces the common mode voltage at the matrix converter is first proposed. The new method utilizes the proper zero vector selection and placement within a sampling period and results in the reduction of the common mode voltage, square rms of ripple components of input current and switching losses. Due to the absence of a dc-link, matrix converter powered ac drivers suffer from input voltage disturbances. This dissertation proposes a new ride-through approach to improve robustness for input voltage disturbances. The conventional matrix converter is modified with the addition of ride-through module and the add-on module provides ride-through capability for matrix converter fed adjustable speed drivers. In order to increase the inherent low voltage transfer ratio of the matrix converter, a new three-phase high-frequency link matrix converter is proposed, where a dual bridge matrix converter is modified by adding a high-frequency transformer into dc-link. The new converter provides flexible voltage transfer ratio and galvanic isolation between input and output ac sources. Finally, the matrix converter concept is extended to dc/ac conversion from ac/ac conversion. The new dc/ac direct converter consists of soft switching full bridge dc/dc converter and three phase voltage source inverter without dc link capacitors. Both converters are synchronized for zero current/voltage switching and result in higher efficiency and lower EMI (Electro Magnetic Interference) throughout the whole load range. Analysis, design example and experimental results are detailed for each proposed topology

    Real-time Modelling, Diagnostics and Optimised MPPT for Residential PV Systems

    Get PDF
    The work documented in the thesis has been focused into two main sections. The first part is centred around Maximum Power Point Tracking (MPPT) techniques for photovoltaic arrays, optimised for fast-changing environmental conditions, and is described in Chapter 2. The second part is dedicated to diagnostic functions as an additional tool to maximise the energy yield of photovoltaic arrays (Chapter 4). Furthermore, mathematical models of PV panels and arrays have been developed and built (detailed in Chapter 3) for testing MPPT algorithms, and for diagnostic purposes.In Chapter 2 an overview of the today’s most popular MPPT algorithms is given, and, considering their difficulty in tracking under variable conditions, a simple technique is proposed to overcome this drawback. The method separates the MPPT perturbation effects from environmental changes and provides correct information to the tracker, which is therefore not affected by the environmental fluctuations. The method has been implemented based on the Perturb and Observe (P&O), and the experimental results demonstrate that it preserves the advantages of the existing tracker in being highly efficient during stable conditions, having a simple and generic nature, and has the benefit of also being efficient in fast-changing conditions. Furthermore, the algorithm has been successfully implemented on a commercial PV inverter, currently on the market. In Chapter 3, an overview of the existing mathematical models used to describe the electrical behaviour of PV panels is given, followed by the parameter determination for the five-parameter single-exponential model based on datasheet values, which has been used for the implementation of a PV simulator taking in account the shape, size ant intensity of partial shadow in respect to bypass diodes.In order to eliminate the iterative calculations for parameter determinations, a simplified three-parameter model is used throughout Chapter 4, dedicated to diagnostic functions of PV panels. Simple analytic expressions for the model important parameters, which could reflect deviations from the normal (e.g. from datasheet or reference measurement) I −V characteristic, is proposed.A considerable part of the thesis is dedicated to the diagnostic functions of crystalline photovoltaic panels, aimed to detect failures related to increased series resistance and partial shadowing, the two major factors responsible for yield-reduction of residential photovoltaic systems.Combining the model calculations with measurements, a method to detect changes in the panels’ series resistance based on the slope of the I − V curve in the vicinity of open-circuit conditions and scaled to Standard Test Conditions (STC) , is proposed. The results confirm the benefits of the proposed method in terms of robustness to irradiance changes and to partial shadows.In order to detect partial shadows on PV panels, a method based on equivalent thermal voltage (Vt) monitoring is proposed. Vt is calculated using the simplified three-parameter model, based on experimental curve. The main advantages of the method are the simple expression for Vt, high sensitivity to even a relatively small area of partial shadow and very good robustness against changes in series resistance.Finally, in order to quantify power losses due to different failures, e.g. partial shadows or increased series resistance, a model based approach has been proposed to estimate the panel rated power (in STC). Although it is known that the single-exponential model has low approximation precision at low irradiation conditions, using the previously determined parameters it was possible to achieve relatively good accuracy. The main advantage of the method is that it relies on already determined parameters (Rsm, Vt) based on measurements, therefore reducing the errors introduced by the limitation of the single-exponential model especially at low irradiation conditions

    On the development of power drive trains for hydrogen fuel cell electric vehicles

    Get PDF
    PhD ThesisThe world faces a major problem. Fossil fuel sources are finite and the economic and environmental cost of those that actually remain make finding an alternative one of the great technological challenges of our age. Nearly 70% of refined oil is used for transportation making it one of the key sectors where change could yield large-scale global benefits. Combustion engine passenger vehicle technology is after a long period of stagnation progressing at a pace. Hybrid electric vehicles (HEVs) and battery electric vehicles (BEVs) are also starting to penetrate the mass market. Unfortunately, HEVs do not remove our dependency on oil and the prospects of battery technology advancing sufficiently to allow BEVs to progressively replace the entire oil fuelled vehicles are currently slim. Their limited range and long recharge times prohibit them being useful for most modes of driving. One solution to the problem may be hydrogen fuel cell electric vehicles (H2FCEVs) as they offer great promise, but realistically face many challenges. The fuel cell allowed man to voyage to the moon in the 1960s and recent material advances have enabled them to be packaged into motor vehicles, so providing a zero emission replacement for the internal combustion engine. However, substantial infrastructure and geopolitical changes are required to make hydrogen production and delivery economic but this gas potentially offers a clean and sustainable energy pathway to entirely replace fossil fuels in motor vehicles. Few reported studies have comprehensively examined the optimal method of building power drive train subsystems and integrating them into an architecture that delivers energy from a fuel cell into driven road wheels. This project investigated the optimisation on the most efficient drive train topology using critical analysis and computer modeling to determine a practical system. No single drivetrain was found suitable for all driving modes and worldwide markets as the current ones typically offered either optimal performance or optimal efficiency. Consequently, a new drivetrain topology was proposed, developed, tested with a simulation environment that yielded efficiency and performance gains over existing systems. Also analysed was the effect of wider vehicle design optimisation to the development of sustainable hydrogen powered passenger vehicles and this was set against the wider social, scientific and engineering challenges that fuel cell adoption will face

    Energy: A continuing bibliography with indexes, issue 34

    Get PDF
    This bibliography lists 1015 reports, articles, and other documents introduced into the NASA scientific and technical information system from April 1, 1981 through June 30, 1981
    corecore