2,435 research outputs found

    A tabu search procedure for generating robust project baseline schedules under stochastic resource availabilities.

    Get PDF
    The majority of research efforts in project scheduling assume a static and deterministic environment with complete information. In practice, however, these assumptions will hardly, if ever, be satisfied. Proactive scheduling aims at the generation of robust baseline schedules that are as much as possible protected against anticipated disruptions that may occur during project execution. In this paper, we focus on disruptions that may be caused by stochastic resource availabilities and aim at generating stable baseline schedules, where the solution robustness (stability) of the baseline schedule is measured by the weighted deviation between the planned and the actually realized activity starting times during project execution. We present a tabu search procedure that operates on a surrogate free slack based objective function. The effectiveness of the procedure is demonstrated by extensive computational results obtained on a set of randomly generated test instances.

    A tabu search procedure for developing robust predicitive project schedules.

    Get PDF
    Proactive scheduling aims at the generation of robust baseline schedules that are as much as possible protected against disruptions that may occur during project execution. In this paper, we focus on disruptions caused by stochastic resource availabilities and aim at generating stable baseline schedules. A schedule’s robustness (stability) is measured by the weighted deviation between the planned and the actually realized activity starting times during project execution. We present a tabu search procedure that operates on a surrogate, free slack based objective function. Its effectiveness is demonstrated by extensive computational results obtained on a set of randomly generated test instances.Project scheduling; Robustness; Proactive; Stability;

    Random Keys Genetic Algorithms Scheduling and Rescheduling Systems for Common Production Systems

    Get PDF
    The majority of scheduling research deals with problems in specific production environments with specific objective functions. However, in many cases, more than one problem type and/or objective function exists, resulting in the need for a more generic and flexible system to generate schedules. Furthermore, most of the published scheduling research focuses on creating an optimal or near optimal initial schedule during the planning phase. However, after production processes start, circumstances like machine breakdowns, urgent jobs, and other unplanned events may render the schedule suboptimal, obsolete or even infeasible resulting in a rescheduling problem, which is typically also addressed for a specific production environment, constraints, and objective functions. This dissertation introduces a generic framework consisting of models and algorithms based on Random Keys Genetic Algorithms (RKGA) to handle both the scheduling and rescheduling problems in the most common production environments and for various types of objective functions. The Scheduling system produces predictive (initial) schedules for environments including single machines, flow shops, job shops and parallel machine production systems to optimize regular objective functions such as the Makespan and the Total Tardiness as well as non-regular objective functions such as the Total Earliness and Tardiness. To deal with the rescheduling problem, and using as a basis the same RKGA, a reactive Rescheduling system capable of repairing initial schedules after the occurrence of unexpected events is introduced. The reactive Rescheduling system was designed not only to optimize regular and non-regular objective functions but also to minimize the instability, a very important aspect in rescheduling to avoid shop chaos due to disruptions. Minimizing both schedule inefficiency and instability, however, turns the problem into a multi-objective optimization problem, which is even more difficult to solve. The computational experiments for the predictive model show that it is able to produce optimal or near optimal schedules to benchmark problems for different production environments and objective functions. Additional computational experiments conducted to test the reactive Rescheduling system under two types of unexpected events, machine breakdowns and the arrival of a rush job, show that the proposed framework and algorithms are robust in handling various problem types and computationally reasonable

    Meta-heuristics for stable scheduling on a single machine.

    Get PDF
    This paper presents a model for single-machine scheduling with stability objective and a common deadline. Job durations are uncertain, and our goal is to ensure that there is little deviation between planned and actual job starting times. We propose two meta-heuristics for solving an approximate formulation of the model that assumes that exactly one job is disrupted during schedule execution, and we also present a meta-heuristic for the global problem with independent job durationsMeta-heuristics; Robustness; Single-machine scheduling; Uncertainty;

    A branch-and-bound algorithm for stable scheduling in single-machine production systems.

    Get PDF
    Robust scheduling aims at the construction of a schedule that is protected against uncertain events. A stable schedule is a robust schedule that will change little when variations in the input parameters arise. This paper proposes a branch-and-bound algorithm for optimally solving a single-machine scheduling problem with stability objective, when a single job is anticipated to be disrupted.Branch-and-bound; Construction; Event; Job; Robust scheduling; Robustness; Scheduling; Single-machine scheduling; Stability; Systems; Uncertainty;

    A Predictive-reactive Approach for JSP with Uncertain Processing Times

    Get PDF
    The paper is supported by the Asia-Link project funded by the European Commission (CN/ASIA-LINK/024 (109093)), the National Natural Science Foundation of China (50705076, 50705077), and the National Hi-Tech R&D Program of China (2007AA04Z187)JSP with discretely controllable processing times (JSP-DCPT) that are perturbed in a turbulent environment is formulated, based on which, a time-cost tradeoff based predictive-reactive scheduling approach is proposed for solving the problem. In the predictive scheduling process, on the basis of a proposed three-step decomposition approach for solving JSP-DCPT, a solution initialization algorithm is presented by incorporating a hybrid algorithm of tabu search and simulated annealing and a fast elitist non-dominated sorting genetic algorithm; in the reactive scheduling process, Pareto-optimal schedules are generated, among which every schedule that is not dominated by any initial schedule can be selected as the responding schedule so as to maintain optimality of the objective that is to minimize both the makespan and the cost. Experimental simulations demonstrate the effectiveness of the proposed approach

    An anticipative scheduling approach with controllable processing times

    Get PDF
    In practice, machine schedules are usually subject to disruptions which have to be repaired by reactive scheduling decisions. The most popular predictive approach in project management and machine scheduling literature is to leave idle times (time buffers) in schedules in coping with disruptions, i.e. the resources will be under-utilized. Therefore, preparing initial schedules by considering possible disruption times along with rescheduling objectives is critical for the performance of rescheduling decisions. In this paper, we show that if the processing times are controllable then an anticipative approach can be used to form an initial schedule so that the limited capacity of the production resources are utilized more effectively. To illustrate the anticipative scheduling idea, we consider a non-identical parallel machining environment, where processing times can be controlled at a certain compression cost. When there is a disruption during the execution of the initial schedule, a match-up time strategy is utilized such that a repaired schedule has to catch-up initial schedule at some point in future. This requires changing machine–job assignments and processing times for the rest of the schedule which implies increased manufacturing costs. We show that making anticipative job sequencing decisions, based on failure and repair time distributions and flexibility of jobs, one can repair schedules by incurring less manufacturing cost. Our computational results show that the match-up time strategy is very sensitive to initial schedule and the proposed anticipative scheduling algorithm can be very helpful to reduce rescheduling costs

    Project scheduling under undertainty – survey and research potentials.

    Get PDF
    The vast majority of the research efforts in project scheduling assume complete information about the scheduling problem to be solved and a static deterministic environment within which the pre-computed baseline schedule will be executed. However, in the real world, project activities are subject to considerable uncertainty, that is gradually resolved during project execution. In this survey we review the fundamental approaches for scheduling under uncertainty: reactive scheduling, stochastic project scheduling, stochastic GERT network scheduling, fuzzy project scheduling, robust (proactive) scheduling and sensitivity analysis. We discuss the potentials of these approaches for scheduling projects under uncertainty.Management; Project management; Robustness; Scheduling; Stability;

    A Generic Mechanism for Repairing Job Shop Schedules

    Get PDF
    Reactive repair of a disrupted schedule is a better alternative to total rescheduling, as the latter is a time consuming process and also results in shop floor nervousness. The schedule repair heuristics reported in the literature generally address only machine breakdown. This paper presents a modified Affected Operations Rescheduling (mAOR) approach, which deals with many of the disruptions that are frequently encountered in a job shop. The repair of these disruptions has been decomposed into four generic repair actions that can be applied singularly or in combination. These generic repair actions are evaluated through a simulation study with the performance measures of efficiency and stability. The results indicate the effectiveness of the mAOR heuristic in dealing with typical job shop disruptions.Singapore-MIT Alliance (SMA
    • …
    corecore