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Abstract

Proactive scheduling aims at the generation of robust baseline schedules that are

as much as possible protected against disruptions that may occur during project

execution. In this paper, we focus on disruptions caused by stochastic resource avail-

abilities and aim at generating stable baseline schedules. A schedule’s robustness

(stability) is measured by the weighted deviation between the planned and the ac-

tually realized activity starting times during project execution. We present a tabu

search procedure that operates on a surrogate, free slack based objective function.

Its effectiveness is demonstrated by extensive computational results obtained on a

set of randomly generated test instances.

Key words: project scheduling, robustness, proactive, stability

Preprint submitted to Elsevier Science 12 April 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6362854?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

In traditional scheduling it is common practice to assume that the environment

in which the production or project schedule will be executed is deterministic

and static so that all parameter values are known in advance and do not

change during schedule execution. The literature on the construction of (op-

timal) schedules in such an environment is vast (excellent machine scheduling

references are Pinedo (1995) and Brucker (2004); for project scheduling we

refer the interested reader to Herroelen et al. (1998), Brucker et al. (1999) and

Demeulemeester and Herroelen (2002)). Unfortunately, these underlying as-

sumptions simply do not hold in practice. In the real world, a plant or project

manager has to deal with a stochastic and dynamic scheduling environment.

Construction projects, for instance, are amongst others subject to disruptions

caused by accidents, resource breakdowns, bad weather conditions, unreliable

deliveries and unreliable subcontractors. Therefore, in practice, the probabil-

ity that a pre-computed schedule will be executed exactly as planned is very

small and the so-called ’optimal’ schedule will seldom be feasible, let alone be

optimal, in practice.

Stochastic scheduling, on the other hand, uses all information that is available

regarding potential uncertainties while building and/or executing the schedule.

In their excellent overview paper on scheduling under uncertainty, Davenport
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and Beck (2002) distinguish between proactive and reactive scheduling. Proac-

tive scheduling focuses on the construction of predictive schedules that use

statistical knowledge of the uncertainties with the aim of increasing schedule

robustness. A schedule is considered to be robust if it can absorb anticipated

disruptions without affecting planned external activities while maintaining

high shop performance (O’Donovan et al., 1999). Approaches to build such

a robust schedule can be based on redundancy, probabilistic techniques or

contingent scheduling. In this paper we focus on the construction of robust

project schedules based on redundancy. This implies the reservation of extra

time and/or resource capacity so that unexpected events during execution can

be absorbed by these time and/or resource buffers. Unfortunately, no matter

how much care is taken in constructing a proactive schedule, disruptions can

never be totally prevented.

In case an activity is delayed due to an unforeseen resource breakdown or a du-

ration increase of one of its predecessors, for example, the schedule may become

infeasible. A reactive procedure must then be used to repair the schedule. The

aim of this reactive procedure will usually be twofold. First of all, schedule fea-

sibility needs to be restored in order to be able to continue project execution.

Secondly, the procedure usually tries to restore feasibility in such a way that

the initial scheduling objective (e.g. makespan minimization, net present value

maximization, etc.) or a new objective (e.g. minimizing the weighted deviation

between the original and the new schedule) is optimized. Reactive scheduling

can either be combined with a baseline schedule that is constructed before

the project starts and repaired as indicated by the reactive strategy when a

disruption occurs (predictive (proactive)-reactive scheduling), or it can be used

as a stand-alone strategy. In the latter case, one forgoes the construction of a
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baseline schedule and uses scheduling policies to decide dynamically over time

which activity to execute next (see Pinedo (1995) for machine scheduling and

Stork (2001) for project scheduling). Note that this approach can be compared

with the well-known job dispatching rules that are often used in a machine

scheduling environment.

In this paper, we focus on predictive-reactive scheduling because of the high

importance of the baseline schedule in real-life applications. The baseline

schedule’s core use is to allocate resources to competing activities to opti-

mize some performance measure. Besides that, it is invaluable for verifying

the feasibility of executing the given tasks within a certain timeframe, pro-

viding visibility of future actions for internal and external parties, offering

degrees of freedom for reactive scheduling, evaluating performance, providing

visibility of potential future problems so they can be avoided, and determining

whether promises to customers can be met (for an extensive justification of

baseline scheduling, we refer to Aytug et al. (2005), Mehta and Uzsoy (1998),

Vieira et al. (2003) and O’Donovan et al. (1999)).

The objective of this paper is to develop a proactive/reactive scheduling meta-

heuristic for generating stable baseline schedules in the presence of uncertain

renewable resource availabilities. The paper is organized as follows. In Section

2, we present a mathematical formulation of the problem. Section 3 is devoted

to the development of a new free slack based robustness measure. In Section 4,

we describe a tabu search procedure for generating stable baseline schedules

that are protected against resource disruptions. In Section 5, the efficiency

and effectiveness of the procedure are demonstrated through the results of an

extensive computational experiment performed on a set of test problems. Fi-

nally, we present our conclusions and some ideas for further research in Section
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6.

2 Problem statement

This paper deals with the generation of robust project baseline schedules. Van

de Vonder et al. (2005b) distinguish between quality robustness and solution

robustness. Quality robustness is defined as the probability that the project

ends within the projected deadline, whereas solution robustness (or stability) is

measured as the sum of the weighted absolute deviations between the expected

real activity starting times si and the planned activity starting times si:

∑
i∈N

wi|E(si)− si| (1)

A comparable definition of solution robustness has been used by O’Donovan

et al. (1999), Abumaizar and Svestka (1997) and Herroelen and Leus (2005).

The weight wi, allocated to each activity i, denotes the marginal cost of devi-

ating the starting time of activity i during project execution from its planned

starting time in the baseline schedule. The weights can be seen as a penalty

incurred for having subcontractors start later than originally agreed or as an

extra inventory holding cost for storing raw material longer than originally

planned. Minimizing instability then means that we are looking for the sched-

ule that is least likely to get severely disrupted, i.e. a solution robust schedule

that satisfies the precedence and resource constraints and does not exceed the

due date set by the project’s client. Not exceeding this due date during project

execution is encouraged by giving the last activity, signaling the end of the

project, a heavy instability weight.

Recent research (Leus and Herroelen (2004) and Van de Vonder et al. (2005b))
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study the solution robustness objective function for the case of project schedul-

ing with stochastic activity durations. We focus on schedule disruptions caused

by resource unavailabilities. In predictive machine scheduling, coping with ran-

dom machine breakdowns has been well studied for the single machine (Mehta

and Uzsoy, 1999) and the job shop case (Mehta and Uzsoy (1998) and Leon

et al. (1994)). The literature on proactive project scheduling under resource

uncertainties is virtually void. Drezet (2005) considers the problem of project

planning subject to human resource constraints which have to do with job

competences, working hour limits, vacation periods and unavailability of em-

ployees. A mathematical model as well as dedicated algorithms are presented

for robust schedule generation and schedule repair. Yu and Qi (2004) present

an ILP model for a multi-mode resource-constrained project scheduling prob-

lem where resource availabilities in certain time periods may decrease by a

known amount. They report on computational results obtained with a hybrid

mixed integer programming/constraint propagation approach for a disruption

in the duration of a single activity.

The problem studied in this paper can be formulated as follows:

minimize∑
i∈N

wi|E(si)− si| (2)

subject to

si + di 6 sj ∀(i, j) ∈ A (3)∑
i:i∈St

rik 6 ak ∀t,∀k (4)

sn 6 δn (5)

The objective function (2) is to maximize the solution robustness, which boils
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down to minimizing the weighted instability, defined as the weighted sum of

the absolute deviations between the planned and the realized activity starting

times. The decision variables si represent the planned starting times for each

activity i (i : 1 → n) in the baseline schedule represented by the vector

S = (s1, s2, ..., sn). The realized starting times during project execution are

stochastic variables that can be represented by the stochastic vector S =

(s1, s2, ..., sn). The weights wi represent the disruption cost of activity i per

time unit, i.e. the non-negative cost per unit time overrun or underrun of the

starting time of activity i.

The project is represented in activity-on-the-node format (Demeulemeester

and Herroelen, 2002) by means of a digraph G = (N, A), where the set of

nodes N represents the activities and the set of arcs A the finish-start, zero-

lag precedence relations. When (i, j) ∈ A we say that activity i is an immediate

predecessor of activity j, implying that activity j may not start before activity

i has finished. Precedence feasibility is enforced by constraint (3), where di is

the deterministic duration of activity i. Constraint (4) enforces the renewable

resource constraints. They imply that there does not exist a time period t and

a resource type k for which the cumulative resource requirements of the active

activities exceed the stochastic per-period availability ak for the considered

resource type. Here rik denotes the number of resource units of resource type

k required by non-preemptable activity i during each of its execution periods,

and St is the set of activities that are in progress at time t. The last constraint

(5) imposes the due date restriction.

Using the classification scheme of Herroelen et al. (2000), the problem can

be classified as m, 1,va|cpm, δn|
∑

wi|E(si) − si|. The field m, 1,va specifies

the resource characteristics: an arbitrary number of renewable resource types,
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each with stochastic availability ak that varies over time. The second field

indicates the use of finish-start, zero-lag precedence constraints and a deter-

ministic project due date. The last field shows the objective function, here

the expected weighted instability cost. The deterministic resource-constrained

project scheduling problem under the minimum makespan objective is known

to be strongly NP-hard (Blazewicz et al., 1983). Allowing for stochastic re-

source availabilities complicates the problem. Assuming that during project

execution activities are never started before their planned starting time, Lam-

brechts et al. (2007) develop and evaluate eight proactive and three reactive

scheduling procedures for the problem described above.

The analytic evaluation of the objective function is computationally very cum-

bersome so that Lambrechts et al. (2007) rely on simulation. Furthermore, as

argued by Leon et al. (1994), the performance measure is affected by both

the initial baseline schedule, the disruption scenario and the reactive policy

that is used to resolve infeasibilities. One way to make the problem workable

is to replace the objective function with a surrogate measure that gives a

good estimate of the magnitude of the corresponding instability performance

measure but is easy and quick to calculate. Such a surrogate measure will be

presented in Section 3. For an overview of comparable surrogate measures in

a machine scheduling environment for a problem with unit-weight tardiness

costs we would like to refer the interested reader to Mehta and Uzsoy (1998)

and Mehta and Uzsoy (1999).
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3 Surrogate robustness measures

3.1 Sum of free activity slacks

Al-Fawzan and Haouari (2005) have developed a bi-objective model for robust

resource-constrained project scheduling when no information regarding the

nature or size of the uncertain events is available. Their model differs from the

one proposed in Section 2 insofar that a different objective function is used, no

due date constraint is imposed, resource availabilities are fixed and protection

is sought against disturbances caused by activity duration variability. Whereas

we try to maximize schedule robustness within a certain given due date, Al-

Fawzan and Haouari (2005) aim at the generation of a set of schedules with

a high robustness zR and a low makespan zM . An aggregation function is

introduced to allow the user to trade-off between robustness and makespan:

zλ = λzM − (1− λ)zR, 0 ≤ λ ≤ 1 (6)

The authors run a single-objective tabu search procedure for different values

of λ allowing them to generate an approximate set of efficient solutions for the

bi-objective problem.

The authors measure schedule robustness zR as the sum of the free slacks over

all activities. The free slack FSi of activity i is defined as the total amount

of time activity i can be delayed without causing any precedence or resource

constraint violations. Note that, in contrast to the traditional free float metric,

this measure does not only take precedence but also resource constraints into

account.

The computation of the free slack for a given schedule can then go as indicated
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in algorithm 1. We assume that an activity can never start before its baseline

starting time. Therefore, the earliest allowable starting time of activity i, se
i ,

is equal to its baseline starting time si and likewise, the earliest allowable

completion time, ce
i , is equal to the baseline completion time ci = si + di.

Let sl
i and cl

i respectively be the latest allowable starting time and the latest

allowable completion time of activity i given the due date, the precedence

constraints and the resource constraints and let L′ be the list of activities

ordered according to non-increasing earliest completion times ce
i (tiebreaker is

highest activity number). The free slack of activity i can then be calculated as

FSi = sl
i−se

i . The latest allowable completion times cl
i are computed in such a

way that during the time interval between the earliest possible starting time of

activity i, si, and its latest possible completion time, cl
i, the required amount

of resource units is continuously available. Furthermore, it should be possible

to complete activity i up to its latest feasible completion time cl
i without

delaying the planned start of the immediate successors. This basically means

that the start time of an activity can be shifted within the interval [se
i , s

l
i]

without jeopardizing the feasibility of the schedule.

Based on the desired properties of the latest feasible activity completion times,

the backward procedure schedules activities in the order of list L′ while re-

specting both properties as well as the precedence and resource constraints.

L′
(i) denotes the activity in position i of the ordered list L′, SL′

(i)
denotes the

immediate successors of the activity in position i of the list, and St denotes

the activities in progress at time t.

Consider the example network in figure 1. Above each of the 10 activity nodes,

we indicate the activity’s duration, its resource requirement of a single renew-

able resource type with a per period availability of 8 units and its instability
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Algorithm 1 Free slack calculation

1: sl
n = cl

n = sn

2: for i = 2 to n do

3: cl
L′

(i)
= min{se

j | j ∈ SL′
(i)
}

4: sl
L′

(i)
= cl

L′
(i)
− dL′

(i)

5: while ∃k, t :
∑

j∈St

rj,k > ak (k = 1, ...,m and t = se
L′

(i)
, ..., cl

L′
(i)

) do

6: sl
L′

(i)
= sl

L′
(i)
− 1 , cl

L′
(i)

= cl
L′

(i)
− 1

7: FSL′(i) = sl
L′(i) − se

L′(i)

weight. Activities 1 and 10 are dummy activities (with a duration and a re-

source usage of 0) that are used to indicate the start and end of the project.

The instability weight for activity 10 is much larger than the other instability

weights in order to reflect the fact that in practice meeting the project due

date is often deemed far more important than meeting planned activity start-

ing times. In this example we assume a project due date of 18. The baseline

starting time of the dummy start activity is then set to the release date of

the project (time period 0) whereas the dummy end activity is assumed to

end at the project due date. Note that for ease of notation and illustration

only one resource type is considered, but an extension to multiple types is

straightforward. Imagine that we calculate the minimal makespan schedule,

depicted in figure 2, for this project. Given a project deadline of 18, it is easy

to see that this schedule has a total free slack of 6. None of the activities can

be shifted to the right except for activities 6 and 9. Of these two, each can

be postponed for at most 3 time units, yielding a total free slack equal to 6.

However, this value can easily be improved. If we take the schedule in figure

3 we see that activity 6 has a free slack of 5, activity 7 a free slack of 7 and

activity 9 a free slack of 1 time unit. This sums up to an improvement of 7

over the total free slack of the minimal makespan schedule.
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Fig. 1. Example project network

Fig. 2. Minimal makespan schedule

Fig. 3. Improved Schedule

3.2 A new free slack based objective function

In the next Section we will describe a tabu search procedure for building

robust project baseline schedules that avoids the use of simulation by using
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a surrogate objective function instead of the objective function of equation 2.

We would like to obtain a schedule in which the start times of activities with a

high impact on the total weighted instability are protected as well as possible.

Simply minimizing the sum of free activity slacks as a surrogate stability

objective function would assume the contribution of free slack values to the

objective function to be equivalent for each activity whereas our real objec-

tive function consists of a weighted sum. Therefore, we suggest the following

surrogate objective function:

maximize (
n∑

i=1

CIWi

FSi∑
j=1

e−j)− itnoimprove×max(0, sn − δn). (7)

Instead of taking the sum of free slacks over all activities, we use a free slack

utility function for each activity with diminishing returns per extra unit of free

slack that is allocated to that activity. If for example the solution procedure

has the choice between allocating a unit of free slack to activity a, having a

free slack of 3 units, or to activity b, having a free slack of 0, it would select

b since this would correspond to an increase in the transformed free slack of

e−1 = 0.36788 whereas this would only be e−4 = 0.018316 for activity a.

Furthermore, we multiply the modified free slack values of each activity i

with its cumulative instability weight CIWi which is calculated by adding the

instability weight of activity i to the instability weights of all of its immediate

and transitive successors:

CIWi = wi +
∑

j:j∈S∗
i

wj (8)

where S∗
i denotes the set of direct and indirect successors of activity i. The idea

is that if activity i gets delayed by one time unit, we will for sure experience

a cost of wi. The impact of such a delay on the rest of the schedule is harder
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to predict but it can be approximated by assuming that all of its successors

will also be postponed with one time unit (this would indeed be the case if we

assume right-shift rescheduling and if there would be no idle-time between any

of the successors). Observe the similarity with the ranked positional weight

heuristic that is used in assembly line balancing (Helgeson and Birnie, 1961).

The main difference is that now weights are used instead of durations. The level

of those activity weights should be set by the project manager depending on an

activity’s flexibility. Flexible activities can be delayed without entailing very

high penalties which implies low weights. The opposite is true for inflexible

(e.g. outsourced) activities. A more in-depth treatment of this issue can be

found in Schatteman et al. (2006).

Finally, we penalize the objective function for the extent to which the due date

constraint is violated, weighted with the number of iterations itnoimprove

used by the tabu search procedure since the last major improvement was

found. The reason for this is that temporarily allowing infeasible moves allows

for the exploration of a far larger search space. Also note that we decided to

assume a given due date δn instead of generating a set of schedules with a high

robustness and a low makespan. The reason is that in practice the project’s

client will usually set a due date the project manager has to stick to.

4 Solution procedure

We use tabu search (Glover and Laguna, 1993) as the basis for our solution ap-

proach. The reasons are twofold. First of all, tabu search has been applied with

success for solving the deterministic RCPSP (Pinson et al. (1994), Nonobe and

Ibaraki (2002)). Secondly, it is a metaheuristic that is relatively straightfor-
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ward to implement and for which not too much parameter-tuning is needed

in order to obtain good results.

Tabu search is a metaheuristic that aims at overcoming the limitations of

traditional local search techniques. Tabu search as well as local search are

both improvement heuristics that start from an initial solution that is then

iteratively improved by performing moves defined on the level of the solution

representation. The main difference is that local search only allows improving

moves whereas tabu search contains a mechanism for exploring a wider area

of the search space. Because local search does not try to reach other regions of

the search space for which non-improving moves would be necessary, it usually

ends up in a local optimum from which it will be impossible to escape, forcing

the procedure to terminate prematurely. Various methods have been proposed

to avoid getting stuck in such a local optimum. First of all, one can use sev-

eral different starting solutions (iterative local search). Another possibility is

to allow non-improving moves with a certain probability that gradually de-

creases as the procedure comes to its end (simulated annealing) or to use a

pool of solutions that are combined so that new solutions are formed (genetic

algorithms). Tabu search, on the other hand, tries to overcome the traditional

drawback of local search by systematically imposing and releasing constraints

in order to allow for the exploration of regions in the search space that would

otherwise not be explored. More specifically, a tabu list is used in which moves

are stored that are forbidden for a number of iterations. The underlying idea

is that one wishes to avoid cycling in order to guide the search process to ex-

plore otherwise difficult regions and this can be realized by forbidding moves

that revert to prior solutions for a certain time period. For further details on

tabu search, however, we refer to Glover and Laguna (1993). In this Section
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we will give the exact details of our tabu search algorithm and illustrate the

procedure by means of pseudocode and an example.

4.1 Solution Representation

As we stated in Section 2, a solution for the robustness problem can be rep-

resented by means of a vector S = (s1, s2, ..., sn) containing the starting times

si for each activity i. However, such a representation suffers from the draw-

back that every time the starting time of one or more activities is changed, we

will need to check the feasibility of the schedule by evaluating each individ-

ual precedence and resource constraint. This would lead to a computationally

very costly move evaluation. A better alternative would be to use a shift vec-

tor (Sampson and Weiss, 1993), indicating how many time units an activity

is started beyond its earliest precedence feasible starting time. Unfortunately,

while avoiding the precedence constraint checking, we are still stuck with the

resource constraints. Therefore, we use the well-known priority list represen-

tation.

In the priority list representation a solution is represented by means of an

ordered list of activities L. This ordering has to be precedence feasible, which

means that no activity appears earlier in the list than its predecessors. The

list can be decoded into a feasible schedule by means of a schedule gener-

ation scheme. Usually the serial schedule generation scheme is used (Kelley,

1963). This implies that activities are scheduled in time according to the order

dictated by the priority list. Each activity is scheduled at its earliest possi-

ble starting time so that no resource or precedence constraints are violated.

However, this approach greatly restricts the search space because only active
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schedules can be considered. Active schedules are schedules in which no local

or global left shift can be performed (Demeulemeester and Herroelen, 2002).

Local left shifts are possible when we can schedule an activity a number of

periods earlier in time and if every intermediate schedule (obtained by repet-

itively decreasing the starting time of the considered activity with one time

unit) is feasible. Global left shifts, on the other hand, are comparable but

here at least one intermediate schedule violates the resource constraints. All

of this implies that a serial schedule generation scheme based on a priority

list representation does not allow for the generation of schedules with inserted

idle time.

Inserting slack into a baseline schedule offers protection against anticipated

disruptions during project execution such as resource breakdowns (Lambrechts

et al., 2007). Therefore, we present a new approach extending the traditional

priority list representation by including a buffer list representation. The buffer

list B indicates which activities should be buffered and by how much their

starting times should be extended beyond their earliest starting time as dic-

tated by the serial schedule generation scheme. The decoding approach to

transform a solution represented by the combination of a priority list and a

buffer list into a feasible schedule is an extension of the serial schedule gen-

eration scheme and is described in algorithm 2 in which the subscript L(p)

denotes the activity in the pth position of list L, and PL(p)
represents the set

of immediate predecessors of the activity in the pth position of list L.
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Algorithm 2 Decoding procedure
1: sL(1)

= s0 = 0

2: for p = 2 to n− 1 do

3: sL(p)
= maxj∈PL(p)

(sj + dj)

4: while ∃k, t :
∑

j∈St

rj,k > ak do

5: sL(p)
= sL(p)

+ 1

6: sL(p)
= sL(p)

+ BL(p)

7: while ∃k, t :
∑

j∈St

rj,k > ak do

8: sL(p)
= sL(p)

+ 1

9: sn = max(sn, δn)

4.2 Solution space

The neighbourhood N(x, σ) of a solution x can be defined as the set of solu-

tions that can be reached from x by means of an operation σ, called a move.

In traditional steepest-descent local search, the neighbour with the best objec-

tive function value will be chosen. In case no neighbour can be found with an

objective function value that is better than the current solution x, we call x a

local optimum with respect to the neighbourhood structure N(x, σ) (Glover

and Laguna, 1993). Of course, the moves that can be performed on a solu-

tion, and therefore the neighbourhood structure, will depend on the solution

representation.

As we stated in Section 4.1, we use a priority list L coupled with a buffer

list B. Two neighbourhoods will be defined, one for each list representation.

For the priority list we use the commonly used precedence feasible swap. The

precedence feasible swap will evaluate the interchange of any two positions i

and j in list L (i < j) while respecting the precedence feasibility of the list.
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For the buffer list, we consider an increase of the buffer length Bi for each

activity with a discrete value between −∆ and +∆. Because we cannot buffer

an activity with a negative length, we require that Bi > 0. Note that we

allow ∆ to vary as the procedure evolves. Normally, we set ∆ = 1 but after

a large number of iterations with no improvement, it might be better to use

a higher value for ∆. Therefore, we set ∆ = 3 after 5 iterations without an

improvement and ∆ = 5 after 10 iterations in which no better solution was

found.

Because it would be computationally very cumbersome to analyze every com-

bination of each priority list move and each buffer list move in each iteration,

we work with separate iterations. In iteration type I we consider moves in the

priority list neighbourhood whereas in iteration type II we consider moves in

the buffer list neighbourhood. We alternate the iterations in which we con-

sider each iteration type. First, we consider nI iterations of type I, then nII

iterations of type II. When the set of nI + nII iterations is finished, we start

again with an iteration of type I.

4.3 Selection scheme

In each iteration we select the neighbour solution with the best objective

function value. Note that in case the move leading to this solution would

belong to the tabu list, this move will be overridden. An exception is made

when the improving move is tabu but would lead to a better solution than

the best solution that has been found so far. This exception is called the

aspiration criterion and results in overriding the tabu classification for the

considered move. After performing the chosen move, we will label it as tabu,
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our aim being that the solution procedure does not return too quickly to the

last visited solution. Therefore, when considering an iteration of type I, we

classify those moves as tabu that result in starting activity i at time si and

activity j at time sj. More specifically, this means that if we just executed the

precedence feasible swap of activity in position i in list L (denoted as L(i)) with

the activity in position j of list L (L(j)) then we store the iteration up to which

moves resulting in activity L(i) starting at time sL(i)
and activity L(j) starting

at time sL(j)
are forbidden in the variables tabuL(i),sL(i)

and tabuL(j),sL(j)
. On

the other hand, when considering an iteration of type II, we add the move

that returns to a buffer length Bi for activity i to the tabu list represented by

the variables tabui,Bi
.

Note that in order not to overly restrict the search space, the due date con-

straint is transformed into a soft constraint that penalizes the objective func-

tion for the amount by which the due date is exceeded, multiplied with a factor

accounting for the number of iterations that no improving solution was found

(see Section 3). Therefore, all precedence feasible, non-tabu swaps as well as

all non-tabu buffer size changes that correspond to positive buffer values can

be considered without constantly having to check due date feasibility.

4.4 Pseudocode

In algorithm 3 we give the pseudocode for our tabu search algorithm. Note

that we use the minimal makespan schedule as the starting solution. This

schedule is then encoded using the priority list representation and stored in

list L. L is obtained by sorting the activities according to increasing starting

times, as a tie-breaker we use the lowest activity number. The corresponding
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Fig. 4. L=(1,2,3,5,4,6,7,8,9,10) & B=(0,0,0,0,0,0,0,0,0,0)

buffer list B is set equal to the minimal buffer list, implying a zero buffer

length for every activity. The corresponding value of the objective function is

obtained by using the function f(L, B) and is stored in O. The vectors L∗and

B∗ are used to indicate the solution leading to the best objective function value

O∗ obtained so far. L′ and B′, on the other hand, correspond to the solution

yielding the best objective function value O′ found in the current iteration.

The tabu tenure T , the current iteration it and the number of iterations since

the last improvement of O∗ are initialized at the beginning of the algorithm.

The procedure sequentially searches in neighbourhoods of type I and type

II as indicated by the user-defined values nI and nII , it is terminated after

having been executed for a preset time period tMAX .

4.5 Example

It might be illustrative to look at two iterations (one of each type) of the

algorithm applied to the problem instance we introduced in figure 1. The

starting schedule depicted in figure 4 was constructed using the priority list

L=(1,2,3,5,4,6,7,8,9,10) and an empty buffer list.

The corresponding objective function value is equal to 41.1 and was calculated
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Algorithm 3 TS heuristic for generating robust baseline schedules
1: set L∗ = L, B∗ = B, O∗ = O, T = n, it = 0, itnoimprove = 0

2: while (duration < tMAX) do

3: for n = 1 to nI do

4: set O′ = −999999, it = it + 1

5: for i = 2 to n− 2 , for j = i + 1 to n− 1 do

6: swap L(i) and L(j) if precedence feasible

7: if (O > O∗ & sn 6 δn) OR (O = f(B, L) > O′ & it > tabuL(i),sL(i)

& it > tabuL(j),sL(j)
) then store i → i′ , j → j′ , O → O′

8: undo swap

9: if ∃i′ & ∃j′ then

10: swap L(i′) and L(j′), tabuL(i′),sL(i′)
= tabuL(j′),sL(j′)

= it + T

11: if O′ > O∗ & sn < δn then O∗ = O′ , L∗ = L , itnoimprove = 0

else itnoimprove = itnoimprove + 1

12: for n = 1 to nII do

13: set O′ = −999999, it = it + 1, ∆ based on itnoimprove

14: for i = 2 to n− 1 , for b = −∆ to ∆ do

15: increase Bi with b if Bi + b > 0

16: if (O > O∗ & sn 6 δn) OR (O = f(B, L) > O′ & it > tabui,Bi
)

then store i → i′ , b → b′ ,O → O′

17: undo move

18: if ∃i′ & ∃b′ then

19: Bi = Bi + b′, tabui′,Bi
= it + T

20: if O′ > O∗ & sn < δn then O∗ = O′ , B∗ = B , itnoimprove = 0

else itnoimprove = itnoimprove + 1
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Table 1

Calculation of the modified objective function
activity FS

∑
e−FS CIW CIW ∗

∑
e−FS

1 0 0 102 0
2 0 0 73 0
3 0 0 54 0
4 0 0 58 0
5 0 0 57 0
6 1 0.37 47 17.3
7 0 0 39 0
8 0 0 44 0
9 3 0.55 43 23.8
10 0 0 38 0

41.1

Fig. 5. L=(1,2,3,4,5,6,7,8,9,10) & B=(0,0,0,0,0,0,0,0,0,0)

as shown in table 1.

In iteration I we try to find out if there exists a non-tabu precedence fea-

sible swap in list L resulting in an improvement of the objective function.

Apparently swapping activities 4 and 5 allows us to obtain this improvement

resulting in the schedule in figure 5 with an objective function value equal to

59.5 (calculated as above).

Besides swapping activities in the priority list L it is also possible to manipu-

late the buffer list. This is exactly what happens in iteration type II. Consider

for example an increase of the buffer length assigned to activity 4 with one

unit. We obtain the schedule in figure 6 with an improved solution value of

78.5.
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Fig. 6. L =(1,2,3,4,5,6,7,8,9,10) & B=(0,0,0,1,0,0,0,0,0,0)

5 Results

5.1 Experiment

We implemented the algorithms in Microsoft Visual C++ 6.0 and executed

them on a Dell Optiplex GX270 workstation. Simulation was used in order

to evaluate the weighted instability objective function
∑

i∈N
wi|E(si)− si|. The

aim of our experiment is not only to compare the impact of the surrogate

objective functions - i.e., the sum of free activity slacks and the modified

sum of free activity slacks - and the impact of the solution representation -

i.e., the priority list and the priority and buffer list, but also to validate the

performance of the metaheuristic approach developed in this paper against

the dedicated algorithms developed by Lambrechts et al. (2007).

The dedicated algorithms of Lambrechts et al. (2007) are based on a proactive

baseline generation process in which three choices need to be made. First of

all, one has to decide whether to start from a minimal makespan schedule

that is short but usually also very dense and therefore prone to disruption

or alternatively, from a schedule in which activities with a high impact on

total project instability are scheduled as early as possible in time (’largest
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CIW first ’) in order to decrease the probability that these activities get dis-

rupted due to the disruption of an activity earlier in the schedule. Secondly,

it has to be decided whether to apply resource buffering to this initial sched-

ule. Resource buffering boils down to planning the project using a resource

availability that is lower than the actual resource availability. Since we assume

that uncertainty is modeled by means of resources that are subject to random

breakdowns, using less resources per time unit than the maximal availability

can prevent the negative impact of these breakdowns. Finally, time buffering

can be added. This implies that we explicitly insert idle time into the sched-

ule based on the estimated size and impact of activity disturbances on the

objective function. In the end, this gives us a total of 23 different strategies.

It can be expected that resource buffering and time buffering will outperform

our metaheuristic because both approaches use specific information regarding

uncertainties that can be encountered during project execution. More specifi-

cally, they exploit the information that resource breakdowns are modeled using

exponential distributions for the time between failures and the time between

resource repairs. Using exponential distributions for resource breakdowns is

correct (Lambrechts et al., 2007) but also practical because the distributions

are fully specified for each resource type k by means of respectively the mean

time to failure (MTTFk) and the mean time to repair (MTTRk).

As we indicated in Section 1, we also need to specify the type of reactive

policy used when the schedule breaks. Those policies are then used in the sim-

ulation experiment to guide schedule execution. Three reactive strategies are

suggested that rely on activity lists that are decoded into feasible schedules us-

ing an adapted version of the serial scheduling scheme that takes non-constant

resource availabilities into account. The first reactive strategy is based on a
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random list, the second one is based on the list that corresponds to the initial

baseline schedule and the third is based on the same list after applying a tabu

search based improvement heuristic to it in order to obtain a schedule that

is closer to the baseline schedule. For a detailed explanation of these reactive

strategies, we again refer the reader to Lambrechts et al. (2007). It is also im-

portant to observe that we assume railway scheduling in our experiment. This

means that an activity is never started earlier than its planned baseline start

time, even when the possibility to do so surfaces. This decision can be justified

because schedule stability is often very important in practice. Starting activ-

ities earlier than planned complicates agreements that were made in advance

with suppliers or subcontractors and decreases insight in the execution of the

project by employees.

As a test set for assessing the effectiveness of all these strategies, we use the

480 30-activity RCPSP instances of the well-known PSPLIB set of test prob-

lems (Kolisch and Sprecher, 1997). Each combination of a proactive policy

and a reactive policy was tested using 10 replications for each problem in-

stance. We set the maximum search length of the tabu search procedure used

for generating a robust schedule to 10 seconds. The instability weights wi for

all non-dummy activities are drawn from a discrete, triangularly shaped dis-

tribution between 1 and 10 with P (wi = x) = 0.21− 0.02x. Corresponding to

what can be expected in real-life projects, most activities will have a low in-

stability weight whereas only a minority are more heavily penalized for being

started later than planned. The instability weight of the dummy end activity

represents the importance of meeting the projected due date and is set equal

to β times the average of the instability weight distribution function, which

is 3.85 for P (wi = x). Because usually meeting the project due date is far
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more critical than starting each activity at the planned starting time, we set

β = 10 for our experiment. The project due date is derived from the minimal

makespan schedule obtained using the branch-and-bound algorithm developed

by Demeulemeester and Herroelen (1992, 1997). In a static and deterministic

environment, this lower bound on the makespan (CRCPSP
max ) corresponds to the

length of the minimum duration schedule obtained when optimally solving the

RCPSP. It seems reasonable to assume that the project manager will prefer a

makespan that does not deviate too much from this lower bound. Therefore,

we set the due date of the robust schedule at CRCPSP
max (1 + α), where the due

date factor α is a parameter chosen by the project manager that constitutes

the trade-off between project stability and project duration (Van de Vonder

et al., 2005a). Finally, we draw the MTTRk values from a uniform discrete dis-

tribution between 1 and 5. The values for MTTFk are drawn from a uniform

discrete distribution between 50% and 150% of CRCPSP
max .

5.2 Computational Results

The results in Tables 2, 3 and 4 provide an overview of the relative performance

of the algorithms. The results were obtained for a due date setting α = 30%

and terminating the tabu search procedure for generating robust schedules

after 10 seconds. Table 2 represents the average weighted instability objective

function values obtained over all projects and MTTF-MTTR scenarios for

the proactive scheduling strategies (time buffering (T) or not (NT), resource

buffering (R) or not (NR), in combination with a minimum makespan schedule

(Cmax) or a schedule obtained using the ’largest CIW first ’ rule (CIW), or

alternatively the algorithms based on surrogate measures (FS or modified) that
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were proposed in this paper) in combination with the three reactive procedures

(random list scheduling, scheduled order list scheduling and tabu search). The

numbers shown in italic in the last column give the average weighted instability

cost values for each of the proactive scheduling rules, the italic numbers in

the bottom row represent the average instability cost values for each of the

reactive procedures. The first eight rows then represent the results of the

eight dedicated proactive strategies described in Lambrechts et al. (2007).

The last eight rows represent the results of the strategies described in this

paper. Likewise, Table 3 represents the average of the worst case performances

obtained over all scenarios for each project instance. Finally, Table 4 represents

the average of the median performances obtained over all scenarios for each

project instance.

Let us first have a look at the results for the proactive procedures detailed

in this paper. The approach 1− 0 (meaning one iteration of type I and none

of type II ) is, on average, outperformed by an approach in which the same

objective function is used but exploring type II neighbourhoods is encour-

aged (1−1): an average improvement of 13% was obtained for the sum of free

slacks objective function and one of 25% for our modified objective function.

A slightly lower improvement is obtained when considering worst case perfor-

mance (9% versus 14%), whereas a higher improvement is obtained for the

median performance (16% versus 33%).

Simply changing the objective function from sum of free slacks to our modified

objective function without allowing for the exploration of type II neighbour-

hoods, hardly seems to change the weighted instability performance criterion.

This is no doubt due to the fact that inserting idle time in front of specific

activities cannot be directly encouraged without the use of type II neighbour-
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hoods.

On the other hand, combining the modified free slack objective function and

the use of type II neighbourhoods yields a far better weighted instability

value than any of these measures alone. An improvement of 22% (14% and

29% for the worst-case and the median respectively) was possible compared

with using sum of free slacks and only type I neighbourhoods. Further tuning

the relative frequency of type I and type II neighbourhood explorations did

not give improved results.

The best of these approaches, the combination of the modified slack objective

function with a one-per-one exploration of type I and type II neighbourhoods,

can now be compared with the dedicated algorithms presented in Lambrechts

et al. (2007). Simple approaches omitting resource and time buffering are

easily outperformed by our new algorithm. Even when time buffering is al-

lowed without resource buffering, the dedicated approaches can hardly match

the performance of the free slack-approach. The addition of resource buffer-

ing however, turns the tide in favour of the dedicated approaches. The best

dedicated approach, being ’minimal makespan’ with time as well as resource

buffering, performs far better than the new algorithm we presented in this

paper. However, this is by no means a discouraging result since the dedicated

approach requires the knowledge of MTTF and MTTR data for all resources

used by the activities constituting the project. Whereas this knowledge is of-

ten available in companies that reuse equipment for multiple projects, this

is not always the case for specialized equipment that is bought or manufac-

tured specifically for a certain project. For those project settings, dedicated

approaches cannot be used and the algorithm we present in this paper can

offer a good base for constructing a robust schedule.
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Table 2

Average weighted instability values
random list sched order tabu search

NT

NR
Cmax 1255.99 438.14 335.89 676.67

CIW 1162.57 380.17 292.78 611.84

R
Cmax 604.82 203.28 174.93 327.68

CIW 654.48 219.72 183.84 352.68

T

NR
Cmax 1034.67 326.91 255.16 538.91

CIW 989.29 294.50 233.55 505.78

R
Cmax 526.45 168.19 146.84 280.49

CIW 579.59 189.19 160.03 309.60

surrog

mea-

sures

∑
FS

1-0 1045.95 363.80 240.69 550.15

1-1 916.20 306.34 217.56 480.03

modified

1-0 1087.28 375.62 241.91 568.27

1-1 918.11 239.95 187.55 448.54

1-2 940.49 246.06 192.88 459.81

2-1 909.23 230.77 186.41 442.14

1-4 932.16 239.97 192.47 454.87

4-1 910.21 234.90 186.02 443.71

904.22 278.59 214.28

When looking at the impact of the reactive strategies, the results are hardly

surprising. As Lambrechts et al. (2007) already concluded, a significant per-

formance gain is possible when using the more intelligent scheduled order rule

instead of the random list strategy. These results can be further improved by

superimposing a tabu search on the scheduled ordered list.

It is also interesting to have a look at the impact of the problem characteristics

on the performance of the algorithms.

A first measure is order strength. Order strength is defined as the number

of precedence relations in the project network (including transitive ones) di-

vided by the theoretical maximum number of precedence relations. In Figure

7 we plot the average instability weight over all instances and over all scenar-
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Table 3

Average worst case performance
random list sched order tabu search

NT

NR
Cmax 3153.95 1092.39 919.69 1722.01

CIW 2789.23 1010.00 852.27 1550.50

R
Cmax 2036.67 788.31 705.38 1176.79

CIW 2122.92 794.29 716.00 1211.07

T

NR
Cmax 2745.96 946.28 796.11 1496.11

CIW 2611.71 875.15 755.08 1413.98

R
Cmax 1915.63 714.57 645.62 1091.94

CIW 1878.35 732.22 658.96 1089.84

surrog

mea-

sures

∑
FS

1-0 2817.40 1027.66 784.88 1543.31

1-1 2420.81 944.05 738.58 1367.81

modified

1-0 2778.09 1061.45 786.83 1542.12

1-1 2564.75 815.85 690.00 1356.87

1-2 2584.01 818.96 686.96 1363.31

2-1 2558.10 791.21 675.92 1341.74

1-4 2588.44 817.11 688.81 1364.79

4-1 2497.73 803.95 682.68 1328.12

2503.98 877.09 736.48

ios when using the tabu search-based reactive procedure. On the horizontal

axis, the various proactive strategies are shown. The average performance is

then shown on the vertical axis. A graph is given for each setting of the or-

der strength (0.3, 0.4, 0.5 and 0.6). We can observe that the order strength

has little impact on the relative performance of the algorithms. However, it

immediately becomes apparent that a lower order strength usually means a

better instability performance. This result is not surprising as fewer prece-

dence relations imply more scheduling and rescheduling flexibility and thus

better instability performance.

Finally, we also study the impact of resource constrainedness on the algorithm

performance. Resource constrainedness is a measure of the average percent-

age of resource availability used over all activities and all resource types. It
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Table 4

Average median performance
random list sched order tabu search

NT

NR
Cmax 1040.57 366.56 264.67 557.26

CIW 972.26 299.74 218.43 496.81

R
Cmax 399.20 114.42 93.72 202.45

CIW 431.48 130.15 100.90 220.84

T

R
Cmax 835.16 248.48 182.66 422.10

CIW 785.37 215.68 158.22 386.42

NR
Cmax 320.41 84.92 72.03 159.12

CIW 378.26 103.34 80.63 187.41

surrog

mea-

sures

∑
FS

1-0 827.99 280.38 166.64 425.00

1-1 726.32 222.19 143.36 363.96

modified

1-0 905.54 293.22 168.10 455.62

1-1 714.12 158.76 114.42 329.10

1-2 730.17 165.74 121.12 339.01

2-1 703.92 150.44 114.23 322.86

1-4 726.50 157.77 120.32 334.87

4-1 706.76 156.85 114.83 326.14

700.25 196.79 139.64

measures to what extent the scheduling flexibility is constrained by the re-

source availability. The results are shown in Figure 8. The interpretation of

this graph is similar to the one introduced before, but now we also indicated a

95% confidence interval for each data point. We can conclude that the tighter

the resource constraints are, the worse the instability performance becomes.

The reason is similar to that used for explaining the impact of OS insofar that

a high resource constrainedness implies a loss of scheduling and rescheduling

flexibility. Furthermore, the higher the resource constrainedness, the smaller

the impact of resource buffering. This immediately becomes apparent when

we consider an RC = 0.3 or 0.4 compared with an RC = 0.5 or 0.6. In the

first case, the dip in the curve when introducing resource buffering is far more

pronounced than in the second case.
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Fig. 7. Impact of order strength on instability

Fig. 8. Impact of resource constrainedness on instability
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6 Conclusion

In this paper we presented an approach for building robust project baseline

schedules when information regarding the nature and size of uncertain occur-

rences during project execution is costly or impossible to obtain. Constructing

robust schedules is critical in a practical setting because often work is subcon-

tracted or promises towards clients need to be met implying that it is impor-

tant that the realized schedule does not differ too much from the originally

planned schedule.

Our procedure is based on the tabu search framework and uses a double neigh-

bourhood structure to allow for the generation of feasible project schedules

that respect precedence, resource and due date constraints and include explic-

itly inserted idle time for protecting activities that have a high impact on the

weighted sum of absolute deviations between planned and observed activity

starting times.

By means of a computational simulation experiment it was shown that our

procedure performs very well for the weighted instability objective function.

A comparable approach using a more traditional objective function and not

allowing explicitly inserted idle time is easily outperformed. Furthermore, even

when compared with dedicated approaches that use a simple time buffering

heuristic, our procedure seems to hold up solidly.

An interesting direction for further research would be the development of

an exact algorithm for proactive/reactive project scheduling under resource

uncertainties.
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