
KATHOLIEKE
UNIVERSlTEIT

LEUVEN

DEPARTEMENT TOEGEPASTE
ECONOMISCHE WETENSCHAPPEN

RESEARCH REPORT 0225

PROJECT SCHEDULING UNDER UNCERTAINTY
SURVEY AND RESEARCH POTENTIALS

by
W. HERROELEN

R. LEUS

D/2002/2376/25

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6264924?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Project Scheduling Under Uncertainty
Survey and Research Potentials§

Willy Herroelen and Roel Leus

May 2002

Operations Management Group
Department of Applied Economics

Katholieke Universiteit Leuven
Naamsestraat 69, B-3000 Leuven (Belgium)
Phones +32 16326970 and +32 16326967

Fax +32 16326732
e-mail: <firstname>.<name>@econ.kuleuven.ac.be

§ Invited paper to be published in the special issue of the European Journal of Operational Research
that will contain selected papers presented at PMS2002, the Eighth International Workshop on Project
Management and Scheduling, April 3-5, 2002, Valencia, Spain.

Project Scheduling Under Uncertainty - Survey and Research
Potentials

Willy Herroelen and Roel Leos l

ABSTRACT

2

The vast majority of the research efforts in project scheduling assume complete
information about the scheduling problem to be solved and a static deterministic
environment within which the pre-computed baseline schedule will be executed.
However, in the real world, project activities are subject to considerable uncertainty, that
is gradually resolved during project execution. In this survey we review the fundamental
approaches for scheduling under uncertainty: reactive scheduling, stochastic project
scheduling, stochastic GERT network scheduling; fuzzy project scheduling, robust
(proactive) scheduling and sensitivity analysis. We discuss the potentials of these
approaches for scheduling projects under uncertainty.

Keywords: project management and scheduling; scheduling under uncertainty;
robustness; schedule stability

I Research Assistant of the Fund for Scientific Research, Flanders (Belgium) (F.W.O.)

3

1. Introduction

The project scheduling literature largely concentrates on the generation of a
precedence and resource feasible schedule that "optimises" the scheduling objective(s)
(most often the project duration) and that should serve as a baseline schedule for
executing the project. Such a baseline schedule (also called a predictive schedule or pre­
schedule) serves very important functions (Mehta and Uzsoy, 1998). The first is to
allocate resources to the different activities to optimise some measure of performance.
The second, as also pointed out by Wu et a1. (1993), is to serve as a basis for planning
external activities such as material procurement, preventive maintenance and delivery of
orders to external or internal customers. Baseline schedules serve as a basis for
communication and coordination with external entities in the company's inbound and
outbound supply chain. Based on the baseline schedule, commitments are made to
subcontractors to deliver materials, support activities are planned (set-ups, supporting
personnel), and due dates are set for the delivery of project results. Moreover, from the
modelling viewpoint, many real-life scheduling problems such as course scheduling,
sports time-tabling, railway and airline scheduling, can be modelled as variations of
resource-constrained project scheduling problems. In these environments executing
activities according to the pre-schedule is a must that is imposed by the customer:
although "technically" possible, activities may not start prior to their scheduled starting
time.

During project execution, however, project activities are subject to considerable
uncertainty that may lead to numerous schedule disruptions. This uncertainty may stem
from a number of possible sources: activities may take more or less time than originally
estimated, resources may become unavailable, material may arrive behind schedule,
ready times and due dates may have to be changed, new activities may have to be
incorporated or activities may have to be dropped due to changes in the project scope,
weather conditions may cause severe delays, etc. A disrupted schedule incurs higher
costs due to missed due dates and deadlines, resource idleness, higher work-in-process
inventory and increased system nervousness due to frequent rescheduling. As a result,
the validity of static deterministic scheduling has been questioned and/or heavily
criticised (Goldratt, 1997).

Uncertainty lies at the very heart of project management. A baseline schedule
that is determined to be optimal with regard to some objective function prior to its
execution may be very vulnerable to minor or serious disruption. As an illustration,
consider the project shown in Figure l(a) in activity-on-the-node format (Wiest and
Levy, 1977). The project consists of eight real activities (activities 1 and 10 are dummies
with zero duration). The duration of an activity is shown above the corresponding node.
The number shown below a node is the constant per period requirement for a single
renewable resource. The precedence relations are of the finish-start type with zero time­
lag. Figure l(b) shows a minimum duration baseline schedule (the project duration
equals the critical path length) that yields a perfectly levelled resource profile with a
constant per period resource requirement of 10 units. The schedule, however, is
extremely vulnerable to uncertainty. The true optimality of the schedule can only be
ascertained in conjunction with its execution in the real world. The slightest delay in the
starting time of an activity, and/or the slightest increase in the duration of any activity, for

4

example, will lead to an immediate increase in the project makespan. The baseline
schedule, determined to be optimal prior to its execution, clearly has insufficient built-in
flexibility for dealing with unexpected events; in other words, is not "robust".

Un its

-
-
-
-
-
-
-
-

(a) Project network

3
5

6 2

4 7

8 9

1 2 3 I 4 5 I 6 I 7 8 I 9 I 10 I 11 TlRle

(b) Resource profile

Figure 1. Project network and optimal baseline schedule
(adapted from Wiest and Levy, 1977)

In general, we may distinguish between six approaches to dealing with
uncertainty in a scheduling environment: reactive scheduling, stochastic scheduling,
GERT network scheduling, scheduling under fuzziness, proactive (robust) scheduling,
and sensitivity analysis. In this paper we will discuss these approaches mainly from a
project scheduling viewpoint. In those situations where the approaches were clearly
conceived in a machine scheduling context, our aim is to reveal their potentials for
scheduling projects under uncertainty.

Reactive scheduling does not try to cope with uncertainty in creating the baseline
schedule, but revises or re-optimises the baseline schedule during project execution when
an unexpected event occurs.

Stochastic project scheduling does not create a baseline schedule but views the
problem of scheduling projects under precedence and resource constraints as a multi­
stage decision process which uses so-called scheduling policies (or scheduling strategies)
that dynamically make scheduling decisions at stochastic decision points t, based on the
observed past and the a priori knowledge about the activity processing time distributions.

5

The common objective considered in the literature is to create a policy that minimizes the
expected project duration.

Stochastic project networks (GERT networks) have been introduced to deal with
projects with stochastic evolution structure and feedback. A GERT network is an
activity-on-the-arc network where the arcs (iJ) are assigned a weight vector (Pij,Fij)'

Pij > 0 is the conditional execution probability of the corresponding activity (iJ) given

that project event i has occurred. Fij is the conditional distribution function of the non­

negative duration dij of activity (iJ) given that (iJ) is carried out. GERT networks

possess six different node types resulting from the combination of three possible entrance
sides and two exit sides of a node. Whereas the temporal analysis of GERT networks has
been studied quite extensively, GERT network scheduling, i.e. scheduling the activities in
the presence of resource (machine) constraints in order to minimize an objective function
in expectation (e.g. minimize the expected makespan) has only recently made its
appearance in the literature.

The advocates ofjuzzy project scheduling argue that probability distributions for
the activity durations are unknown due to the lack of historical data. As activity
durations are estimated by human experts, often under a non-repetitive (if not unique)
setting, project management is often confronted with judgmental statements that are
vague and imprecise. In those situations, which involve imprecision rather than
uncertainty, the fuzzy set scheduling literature recommends the use of fuzzy numbers for
modelling activity durations, rather than stochastic variables.

Proactive or robust scheduling aims at the construction of a baseline schedule
that takes into account information about the uncertainty, for instance information about
the variability in activity durations. In other words, a robust schedule is protected against
uncertain events that occur during project execution. In addition to these approaches,
recent efforts have emerged in the area of sensitivity analysiS for polynomially solvable
and intractable scheduling problems.

The paper is organised as follows. In the next section, we survey the research
efforts in the field of reactive scheduling. In Section 3 we present a classification scheme
for schedule construction techniques under uncertainty. Stochastic project scheduling is
discussed in Section 4. Section 5 focuses on GERT network scheduling. Section 6 is
devoted to fuzzy project scheduling. In Section 7 we characterize robust baseline
schedules and review various robustness/stability measures as well as methods for
generating robust and stable schedules that may have potential application for scheduling
projects under uncertainty. Sensitivity analysis is discussed in Section 8. Overall
conclusions and suggestions for further research conclude the paper.

2. Reactive scheduling

Reactive scheduling does not try to cope with uncertainty in creating the
baseline schedule, but revises or re-optimises the baseline schedule when an unexpected
event occurs. Basically most efforts concentrate on "repairing" the baseline schedule to
take into account the unexpected events that have come up. For a review of the extensive
literature in shop environments we refer to Sabuncuoglu and Bayiz (2000) and Selke and
Kerr (1994).

6

The reactive scheduling action may be based on various underlying strategies.
At one extreme, the reactive effort may rely on very simple techniques aimed at a quick
schedule consistency restoration. We shall refer to these approaches as schedule repair
actions. A typical example of such a simple control rule is the well-known right shift
rule (Sadeh et a!., 1993; Smith, 1994). This rule will move forward in time all the
activities that are affected by the schedule breakdown because they were executing on the
resource(s) causing the breakage or because of the precedence relations. It should be
clear that this strategy may lead to poor results as it does not re-sequence activities.

At the other extreme, the reactive scheduling approach may involve a full
scheduling pass of that part of the project that remains to be executed at the time the
reaction is initiated. Such an approach will be referred to as (full) rescheduling and may
use any deterministic performance measure, such as the new project makespan. In a
sense, schedule repair is a heuristic rescheduling pass. If our objective would be to
generate a new schedule that deviates from the original schedule as little as possible, we
are in the particular rescheduling case where we want to induce ex post stability (the ex
ante case will be discussed in the next section). Such a minimum perturbation strategy
may rely on the use of exact and suboptimal algorithms using as objective function the
minimization of the sum of the (weighted) absolute differences between the start time of
each activity in the repaired schedule and the original start time of that activity (El
Sakkout et aI., 1998). A related approach is to match-up with the pre-schedule at a
certain time in the future, whenever a deviation from the initial parameter values (mainly
deviations from the activity duration projections) arises (Bean et a!., 1991; Wu et a!.,
1993; Akturk and Gorgulu, 1999; Alagoz and Azizoglu, 2001).

Artigues and Roubellat (2000) study the case where, in a multi-project, multi­
mode setting with ready times and due dates, it is desired to insert a new unexpected
activity into a given baseline schedule such that the resulting impact on maximum
lateness is minimized. The authors perform a clever rescheduling pass in which they
restrict the solution to those schedules in which the resource allocation remains
unchanged. Using a resource flow network representation (see section 7.1.3.2.2) they
develop a stepwise procedure for generating a set of dominant insertion cuts for the
network. From each dominant insertion cut, they then derive the best execution mode
and valid insertion arc subset included in the dominant insertion cut. The authors have
validated their polynomial insertion algorithm on the 110 Patterson test problems
(Patterson, 1984) against complete rescheduling using the MINSLACK priority rule
within a serial schedule generation scheme. In terms of computational burden the
insertion method clearly outperforms the rescheduling method. The mean increase of the
makespan of the schedule with the inserted activity above the makespan of the baseline
schedule stays below the duration of the activity to be inserted. Moreover, the mean
makespan increase is smaller for the insertion algorithm.

3. Generating a baseline schedule

The first column of Table 1 distinguishes between three basic approaches for the
development of a baseline schedule. In the first approach, no baseline schedule is
generated. Apart from its basic functions mentioned in the introduction, a baseline
schedule will be useful when variability, for example in the activity durations, is not

7

purely stochastic but rather 'manageable' to a certain extent, such that management
actions can be undertaken to 'stick' to the schedule. This will be more applicable when
resources are human beings and/or when overtime options exist, and less when resources
are mainly machines and no activity speed-up can be enforced. In the second scheme, a
baseline schedule is developed using a deterministic scheduling method without any
anticipation of variability in the input parameters that may occur during project
execution. Single point estimates are used for parameters such as activity durations. The
third approach is to develop a baseline schedule that incorporates a degree of
anticipation of variability during project execution. This approach may use infonnation
about the particular variability characteristics (for example probability distributions for
activity durations) and/or information about the reactive scheduling approach that will be
adhered to during project execution (mostly very simple repair operations). This setting
will be referred to as proactive or robust scheduling. The special case where the baseline
objective is to minimize a function of the deviation between the baseline and the final
schedule, focuses on ex ante stability. Often the term quality robustness is used when
referring to the sensitivity of the schedule performance in terms of the objective value,
while the term stability or solution robustness is used to refer to the insensitivity of the
activity start times to changes in the input data. Robustness is closely related to flexibility
(Sorensen, 2001). A schedule is called flexible if it can be easily repaired, i.e. changed
into a new high quality schedule. The informal French association of researchers in
scheduling GOThA (Groupe de recherche en Ordonnancement Theorique et Applique -
http://www-poleia.lip6.fr/-sourd/gotha/) has established a "Flexibility working group"
that regularly reflects on how to define, measure and use flexibility and also maintains a
web page listing recent references
(http://www.loria.fr/-aloulou/pageslbiblio _gotha.html).

A second distinction can be made with regard to the way in which decisions will
be taken during project execution on how to react to disruptions and when to start new
activities. Three possibilities are listed in the second column of Table 1: (i) when a
baseline exists, we reschedule, using any of the options that were discussed in the
previous section; (ii) before the start of the project, a scheduling policy is chosen that will
determine how to act during schedule execution (when a baseline is used, we will exclude
the 'trivial' scheduling policy that corresponds with rescheduling (in any form) and
assume that a number of essential decisions are made before the start of the project), and
(iii) instead of using preset scheduling policies, project management makes decisions as
the project develops. Any combination of the approaches in the first and second column
of Table 1 may be used, except of course for rescheduling without a baseline.

Table 1. Different methods for schedule generation under uncertainty.

baseline schedule
no baseline schedule
no anticipation of variability
with antici ation of variability

durin ro "ect execution
rescheduling
scheduling policies
mana ement decisions

Apart from these methods for construction of the final schedule, algorithms have
also been devised to provide the project manager with information about allowable
deviations in project parameters, which will aid the manager in determining which parts

8

of the project require the most attention (the inherent assumption is that the sources of
uncertainty are more or less manageable). Sensitivity analysis, to be discussed in Section
8, is a clear example of such an approach.

4. Stochastic project scheduling

4.1 Stochastic resource-constrained project scheduling

The literature on stochastic project scheduling is rather sparse (for a detailed
discussion, see Chapter 9 in Demeulemeester and Herroelen (2002». Most efforts
concentrate on the so-called stochastic resource-constrained project scheduling problem,
i.e., the problem of scheduling project activities with uncertain durations in order to
minimize the expected project duration subject to zero-lag finish-start precedence
constraints and renewable resource constraints. The project is represented by an activity­
on-the-node network G=(V,E), where the set V={l,2, ... ,n} denotes the set of activities.
Activity 1 and n are dummy activities, representing the start and end of the project. The
durations of the other activities are given by a random vector d = (d2,d3 , ... ,dn_I), where
d; denotes the random duration of activity i. We denote a particular realization or sample

of d as d = (d2 ,d3 , .. ·,dn_ l) E9l:. The arcs of set E define the zero-lag finish-start

precedence relations among the activities. The renewable resources (k = 1,2, ... ,KP) are

available in constant integer amounts at. The non-dummy activities require an amount

of 'if ~ at units of renewable resource type k. Given the presence of both resource
constraints and random activity durations, schedules are generated through the
application of so-called scheduling policies or scheduling strategies, and no baseline
schedule is used.

According to the definitions given in Igelmund and Radermacher (1983ab) and
Mohring et al. (1984,1985), a scheduling policy n makes decisions at the decision points
t = 0 (the start of the project) and the completion times of activities. A decision at time t
is to start at time t a precedence and resource feasible set of activities, S(t), exploiting
only information that has become available up to time t. As soon as the activities have
been fmished, the activity durations are known yielding a realization d of activity
durations. The application of policy n leads to the creation of a schedule
IT(d) = (SI,S2"",Sn) of activity starting times and a resulting schedule makespan
Cmax (IT(d». The common objective considered in the literature is to create a policy that
minimizes the expected project duration E(Cmax (IT(d») over a class of policies.
Fernandez (1995), Fernandez et al. (1996) and Pet-Edwards et al. (1998) show how to
write the corresponding optimisation problem in its general form as a multi-stage
stochastic programming problem.

A complete characterization of all policies and corresponding subclasses can be
found in Mohring et al. (1984, 1985). A well-known class of scheduling policies is the
class of priority policies which order all activities according to a priority list and, at every
decision point t, start as many activities as possible in the order dictated by the list. The
deterministic equivalent of such a policy is often denoted as list scheduling. List
scheduling policies share a number of drawbacks. First of all, priority policies cannot

9

guarantee an optimal schedule. Moreover, they share the disadvantage that the so-called
Graham anomalies may occur. These anomalies have been described by Graham (1966)
in the context of parallel machine scheduling. For example, decreasing activity durations
may lead to a makespan increase, adding additional capacity (machines) may result in an
increase in the schedule makespan and removing precedence constraints may also lead to
a makespan increase. A large amount of research has been devoted to the development of
early start policies and pre-selective policies, which do not suffer from the undesirable
Graham anomalies.

Radermacher (1985) describes early start (ES) policies using the concept of
minimal forbidden sets. Minimal forbidden sets are inclusion minimal sets of pairwise
not precedence related activities that cannot be scheduled simultaneously because they
share limited resources. 'Inclusion minimal' means that each proper subset of a forbidden
set may be executed simultaneously without violating any resource constraints. The
number of forbidden sets may grow exponentially in the number of activities. A policy II
is an ES-policy if for each minimal forbidden set F there exists a pair (i,j), i, j E F,i * j,
such that for each sample d of activity durations,j cannot be started before i has finished.
ES-policies can easily be implemented by adding the pairs (iJ) to the original set of
precedence relations and computing the earliest activity start times as Sl =0 (starting
dummy) and Sj = max(si+di),jEV\{I}.

(i,j)eE

Igelmund and Radermacher (1983ab) introduced pre-selective (PRS) policies. A
policy II is pre-selective if for each minimal forbidden set F there exists an activity j E F
(the preselected or waiting activity), such that for each sample d of activity durations,j is
not started before some activity i E F \ {j} has finished. A selection is a sequence of
waiting activities for all minimal forbidden sets. Mohring and Stork (2000) have
introduced a very useful representation of pre-selective policies using so-called waiting
conditions. Waiting conditions can be modelled as AND/OR precedence constraints
(Gillies and Liu (1995), Mohring et al. (2000)). A waiting condition is given by a pair
(X,j), Xc V,j E V \)(, where activity j cannot be started before at least one activity
i E X has finished. Each restriction imposed by a minimal forbidden set F and its
preselected activity j can be represented by the waiting condition (F\ {j} J). Obviously,
each given precedence constraint (i, j) E E can be represented by the waiting condition
({ i} J). A set W of waiting conditions induces a digraph D which contains a node for
each activity and for each waiting condition (XJ), directed arcs (i,w) are included for each
i E X, with w the node representing (XJ), as well as an extra arc (wJ) (Stork 2000).

We alert the reader to the fact that pre-selective policies do have severe
computational limitations. First of all, the number of forbidden sets may be exponential
in the number of activities. Since a pre-selective policy is defined by a preselected
activity for each forbidden set, exponential storage space is needed for storing the
selection defining a policy. This handicap becomes a serious problem when pre-selective
policies have to be enumerated within branch-and-bound algorithms. Second, many pre­
selective policies are dominated by others, while there is no good algorithm to test
dominance among pre-selective policies. These drawbacks inspired Mohring and Stork
(2000) to define linear pre-selective policies. Linear pre-selective policies (LIN) are a
subclass of the class of pre-selective policies. The authors define a selection by a priority
ordering L of the activities (respecting the original precedence constraints) in such a way

10

that the preselected waiting activity of the minimal forbidden set F is the activity with the
smallest priority, i.e., the last activity in the list L.

A policy is job based (JBP) if it is linear pre-selective (according to some
ordering L of the activities) and if Sj ~ S j for each sample d and for i -< L j. For a given

sample d, the earliest activity start times can be computed by starting each activity in the
order imposed by L as early as possible but not earlier than the start time of some
previously started activity. Clearly, the job-based policies use an "activity based" point
of view and not a "resource based" view. As a result, job-based policies do not require
the use of the forbidden sets. This is a very efficiency gaining characteristic since
activity based policies can easily be applied to very large projects for which the number
of forbidden sets maybe exorbitant.

4.1.1 Branch-and-bound

Stork (2000) has implemented branch-and-bound algorithms to compute optimal
ES-, PRS-, LIN- and JBP-policies, using two branching schemes, lower bound calculation
and various dominance rules. He validates the algorithms on the well-known 480 test
instances generated using the problem generator ProGen (Kolisch and Sprecher, 1996).
Each instance consists of 20 activities which require at most 4 different renewable
resources. The average number of forbidden sets is roughly 70 (maximum 774). He
takes the given deterministic activity durations for each activity as expected value and
constructs uniform and triangle, as well as approximately normal, Gamma and
exponential distributions. The 200 samples d from d are then generated using standard
simulation techniques assuming independent activity durations.

The algorithms are coded in C++ and are run on a 143 MHz Sun Ultra 1
machine. 107 instances could be solved by all algorithms within 1000 seconds of CPU
time and 50 MB of main memory. The best algorithm for PRS-policies solves 390 out of
the 480 instances in an average CPU time of roughly 70 seconds for all considered types
of distributions. The enumeration of JBP-policies is extremely time intensive. Only 161
out of 480 instances were solved to optimality. Computer memory caused problems to
the ES-policies (87 instances exceeded the limit of 50 MB).

Pre-selective policies yielded the smallest expected makespan among all
considered classes of policies, which is logical because the set of PRS-policies embraces
all LIN- and JBP-policies, and clearly dominates the ES-policies. The other policy
classes yield values that are at most 0.5 worse on average (maximally 2.1%). On
average, the expected makespan was more than 4% larger than the deterministic
makespan, with the maximal percentage deviation occasionally being greater than 10%.

Restricting the running time to 100 seconds, Stork (2000) also reports on results
obtained on 480 ProGen instances with 30 and 60 activities, respectively. For LIN­
policies, 179 out of the 480 30-activity instances can be solved to optimality. Moreover,
on average over all 480 instances, the obtained LIN-policies produced the best feasible
solutions, although the optimal value for PRS will never be worse than LIN. Almost none
of the 60-activity instances were solved to optimality. If a large number of forbidden sets
makes the use of linear selective policies impossible, Stork (2000) recommends the use of
job-based policies to generate feasible solutions of acceptable quality.

II

4.1.2 Heuristic procedures

Research on heuristic procedures for solving the stochastic RCPSP is just
emerging (Pet-Edwards (1996), Golenko-Ginsburg and Gonik (1997), Tsai and Gemmill
(1996,1998)). As an illustration, we briefly discuss the procedures ofGolenko-Ginsburg
and Gonik (1997) and the tabu search procedure ofTsai and Gemmill (1998).

Golenko-Ginsburg and Gonik (1997) consider PERT type activity-on-the-arc
networks where the duration of an activity is a random variable with given density
function (beta, uniform and normal distributions are used) and where a pre-given lower
and upper bound on the activity duration is available. The activities require a constant
amount of renewable resources during their execution. The renewable resources are
available in constant amounts throughout time. The objective is to minimize the expected
project duration.

The basic logic of the algorithm is as follows. At each activity completion time
t, the algorithm computes for each unscheduled activity the probability Pj that activity j

is on the critical path when all resource conflicts occurring after time t are neglected. The
conditional probabilities P j are approximated using simulation. At each decision point t,

all the activity durations for the unscheduled activities are simulated using one of the
alternative density functions (normal, uniform, beta). Then the critical path of the
remaining network with simulated activity durations is determined. By repeating this
procedure many times, frequencies are obtained for each activity to be on the critical
path. These frequencies are taken as the P j. After obtaining the probabilities for all the

competing precedence-feasible eligible activities E at time t, a subset E'r;; E of activities

is started at t with the property that L.jeE.r!k S; af for all renewable resources k and the

sum of the activity contributions of the activities j E E' is maximized. For each activity j,
its contribution is the product of its probability Pj of lying on the critical path and its

average duration. The authors suggest to solve this multi-dimensional knapsack problem
using 0-1 programming. In addition they provide a heuristic procedure that schedules the
competing activities in descending order of their contribution (if the conditional
probabilities are zero, in descending order of the mean duration).

The authors provide computational results for an example project with 36
activities and requirements for a single renewable resource. The instance has 3730
minimal forbidden sets. They compute a feasible solution with an expected makespan of
448.85, 448.49 and 433.88 for, respectively, the normal, uniform and beta distribution
case using the 0-1 programming approach. The heuristic finds an expected makespan of
461.58, 461.35 and 447.98. The authors do not report on running times for the
procedures.

Stork (2000) reports computational results on the same instance using the
uniform distribution case. The initial activity-based priority policy yielded already an
initial upper bound of (rounded) 445 within negligible computation time. The activity­
based priority policy in combination with the precedence tree branching scheme found a
solution with an expected project duration of (rounded) 434 in less than 40 seconds. The
other algorithms were not able to improve their initial upper bound solution within a time
limit of 100 seconds.

12

Tsai and Gemmil (1998) report computational results for the well-known 110
Patterson test problems using a tabu search algorithm. They assume a beta distribution to
model activity durations and use an optimistic, most likely and pessimistic time estimate
to calculate the parameters of the beta distribution. Solutions again correspond with
activity priority lists.

Using the expected activity durations, they compute an initial feasible solution
using the minimum slack rule. The expected project duration of a feasible solution is
computed as follows: (a) a duration for each activity is drawn from the beta distribution
with the parameters calculated using the three time estimates, (b) given the feasible
sequence and the randomly generated activity durations, the project duration is computed,
(c) the calculation of the project duration is repeated 100 times and then the average
project duration for the particular feasible sequence is reported as the expected project
duration. It should be noted that this approach to estimate the expected project duration
violates the so-called non-anticipativity constraint (Fernandez et a!., 1996). The
approach implicitly assumes that all uncertainty with regard to activity durations is
resolved before the start of project execution ('anticipative'), which will only rarely be
the case. Rather, information will normally become available only gradually as time
progresses, making the use of scheduling policies, as described above, more appropriate.

The structure of the tabu search algorithm developed by the authors is classical
and rather straightforward. The procedure computes a list of candidate moves by
randomly selecting two activities to switch positions. If the generated sequence is not
feasible, two new activities are selected. The procedure is repeated until a pre-specified
number of moves are found. Each candidate move is evaluated by computing its
expected project duration. If the move yields a better expected project duration than all
other moves found admissible so far in the candidate list, the tabu status of the move is
checked. Two tabu lists are used: one containing critical activities, the other containing
non-critical activities. A move is labeled tabu restricted if the activity moved back in
time is a critical activity in the critical tabu list or the activity moved forward in time is a
non-critical activity in the non-critical tabu list. If the move is not tabu restricted it is
accepted, otherwise it is the subject of a simple aspiration test. The aspiration test used
by the authors is also straightforward: if the project duration of the new sequence is
shorter than the best project duration found thus far, the tabu status is overruled.

For the randomized Patterson test instances, the authors use the known
deterministic optimal makespan times 1.05 as an approximate lower bound (the expected
activity durations are 1.05 times the deterministic durations). Almost one-half of the
instances have their duration decreased over 10%, and some of the projects have their
duration decreased by over 20% from the initial solutions obtained using the minimum
slack heuristic. The average increase above the approximate lower bound was around 3%
with an average execution time of slightly more than 11 seconds.

4.2 Stochastic activity interruptions

Valls et a!. (1999) have studied the problem of scheduling resource-constrained
project activities that are either deterministic (i.e. have a known duration and cannot be
interrupted) or stochastic (i.e. may be interrupted for an uncertain amount of time and
resumed later). The initial processing time dj) of an activity i that may be interrupted is

13

assumed to be known with certainty, however, the length of the interruption WI and the
remaining processing time after the interruption dj2 are uncertain. An example of such a
situation may be a project in which some activities are submitted to an approval process
before they can be completed. The time to review and approve the work perfonned
during the initial processing detennines the length of the interruption, while the outcome
of the approval process may detennine the length of the final processing. Each activity
has a due date OJ and a tardiness penalty Cj • Each activity requires a constant per period
amount of a renewable resource during its execution. The renewable resource types are
available in a constant per-period amount. The two parts of an interrupted activity
require the same number of units from each resource. The processing time of the second
part d/2 of an interrupted activity i is independent of the length of the interruption Wj •

The objective is to schedule the activities subject to the zero-lag finish-start precedence
constraints and the resource constraints in order to minimize the expected total weighted
tardiness.

The authors have developed a scenario-based approach. The scenarios are
generated by specifying three time estimates both for the interruption and the second part
of each stochastic activity. The solution algorithm is a hybrid algorithm based on the
scatter search methodology. In step 1, heuristic priority rules are used in combination
with a parallel scheduling scheme to generate a starting set of solutions (so-called trial
points). A solution is obtained using a two-stage decision problem: in the first stage a
priority is assigned to each activity and in the second stage, once the uncertainty about
the interruptions is resolved, a schedule is constructed using these priorities. A subset of
the best solutions is selected to serve as reference points. In step 2, clustering strategies
that allow for diversification and intensification (Glover and Laguna, 1997) are used to
form structured combinations of subsets of the current reference points to create new
points. In step 3, a collection of the best points generated in step 2 are extracted to be
used as starting points for a new application of the heuristics in step 1. The steps are
repeated until a specified iteration limit is reached.

The authors report on computational results obtained on a set of randomly
generated test problems that demonstrate that the scatter search procedure is robust (good
solutions can be obtained using a relatively small set of scenarios) and effective (a
significant reduction is obtained in the average objective function value obtained by the
heuristics used to generate the initial population). The authors have extended the
approach to the problem of minimizing the weighted tardiness of jobs with stochastic
interruptions in a parallel machine environment (Laguna et aI., 2000).

4.3 The stochastic discrete timelcost trade-ofJproblem

The literature on the stochastic version of the discrete time/cost trade-off
problem is virtually void. Wollmer (1985) discusses a stochastic version of the
detenninistic linear time/cost trade-off problem for activity-on-the-arc networks in which
the duration of an activity can be described as Yij + ~ij' where the decision variable Ylj is

bounded from below by the activity crash duration lij and is bounded from above by the

normal duration of the activity uij. ~ij is a bounded discrete random variable, independent

14

of Yu with an expected value of O. Each activity (except dummies of course) has an

associated non-negative cost cu' which is the cost per unit decrease in Yij within the

range of lij and uij' The objective then is to detennine activity durations Yij and event

realization times which minimize the expected project completion time subject to a
budget constraint, or achieve a feasible fixed expected project completion time at
minimum cost.

Gutjahr et al. (2000) describe a stochastic branch-and-bound procedure for
solving a specific version of the stochastic discrete time/cost trade-off problem where so­
called measures (like the use of manpower, the assignment of highly-skilled labour or the
substitution of equipment) may be used to increase the probability of meeting the project
due date and thus avoiding penalty costs. The authors assume that the duration of an
activity (iJ) in an activity-on-the-arc network is modelled by a beta distributed random
variable dij' The distribution of each dij can be measured and the random variables dij

are assumed to be independent. It is assumed that the distributions of the random
variables dij might be changed by certain crashing measures m = 1, ... ,M. Typically,

measure m reduces the expected time required for one or several activities by a certain
amount. As such, the duration of activity (iJ) becomes dependent on the vector
x=(xt ,x2, ... ,XM), where x .. =1 if measure m is chosen and Xm =0 otherwise. dij(x) will

denote the duration of activity (iJ) on the condition that a measure combination described
by the vector x has been chosen (in their experiments, the authors assign each measure
randomly to an activity). Each measure m incurs an additional cost of Cm currency units.
For each x, the project duration Cmax (d(x)) can be computed on the basis of the values of
dij(x) using standard critical path calculations. Since Cmax(d(x)) depends on the

stochastic durations d(x), it is also a random variable.
It is assumed that penalty costs occur if the project is completed after its pre­

specified due date. These costs are described by a loss function A, where A(t) is the
loss occurring if the project finishes at time t. The authors assume that A is a step
function that implies that no penalty occurs if the project is completed on time. The loss
A(Cmax (d(x))) is also a random variable. The objective is to minimize the expected

overall loss, which is equal to the crashing costs and the expected penalty costs. The
authors report on computational results obtained on 33 random problem instances with
25, 50 and 100 nodes, beta distributed activity durations and 10, 15 or 20 crashing
measures. CPU time limits are set to 2, 10 and 60 minutes, respectively, on a 133 MHz
personal computer. The use of stochastic branch-and-bound in combination with
deterministic branch-and-bound for solving the sub-problems could solve all the
instances within the given runtime limit (the authors do not mention which deterministic
branch-and-bound procedure is used). The best results were obtained using the heuristic
procedure for solving the detenninistic sub-problems and replacing the straightforward
sampling with an importance sampling procedure.

4.4 Multi-mode trade-offproblems in stochastic networks

At the time of writing, the literature on the stochastic multi-mode problem was
virtually void. Jergenson (1999) and Elmaghraby (2000) focus on a dynamic stochastic

15

resource allocation problem in activity-on-the-arc networks where an activity a requires
total work content W.(k} , a random variable, of resource k = 1, ... ,K specified as
renewable or nonrenewable over the entire planning horizon. An allocation of xa(k,t}

units of resource k to activity a at time t costs ck(xa(k,t},W.(x.» per unit of time, also a
random variable. The resulting activity duration is denoted by the random variable
Yk (x.) = gk (W. (x.» . The total activity cost is then the random variable
Ck(x.}=Ck(Xa(k,t},W.(xa».gk(Wa(xa». The project is assumed to have a fixed due date
on and a penalty function p(tn -on}' where tn is the random variable denoting the time
of realization of node n. The penalty function is assumed to be linear with
proportionality constant PL; i.e. p(tn -on} = PL.max{O,t. -On}. The objective then is to
determine the resource allocation vector X. to all the project activities such that the total
expected cost is minimized. In the case of nonrenewable resources, the objective is taken
to be the minimization ofthe project duration.

Elmaghraby (2000) describes two dynamic programming models for solving the
problem and illustrates them on a problem example. A new state space is introduced
based on the concept of uniformly directed cutsets. For details, we refer the reader to
Elmaghraby (2000). At the time of writing, computational results were not yet available.

JIMgenson (1999) and Elmaghraby (2000) demonstrate that the dynamic resource
allocation approach is superior to static optimization that assumes certainty equivalents
given by expected values. Deterministic static time/cost trade-off models underestimate
the total expected project costs and neglect the value of flexibility. Updating the plans as
new information becomes available by adjusting the amount of resources to be allocated
may well lead to superior results. Computational experience in this area would be more
than welcome.

5. GERT network scheduling

While the stochastic project scheduling approaches discussed in the previous
section still assume that the evolution structure of the project network is specified in
advance - each activity is carried out exactly once during a single project execution and it
is not possible to return to previously performed activities - stochastic project networks
(GERT networks) deal with projects with stochastic evolution structure. A GERT
network is an activity-on-the-arc network with exactly one source node (the beginning
event of the project occurring at time zero) and one sink node (the terminal project
event). The network may contain cycles, allowing for the multiple execution of activities
during the execution of the project. Each arc (ij) is assigned a weight vector (Pij,Fij).

Pij > 0 is the conditional execution probability of the corresponding activity (ij) given

that project event i has occurred. Fij is the conditional distribution function of the non­

negative duration dlJ of activity (ij) given that (ij) is carried out. Pij and Fij are

assumed to be independent of the number of times that project event i has occurred or
activity (ij) has been executed before, respectively (Neumann, 1984, 1990, 1999;
Neumann and Steinhardt, 1979).

GERT networks possess six different node types resulting from the combination
of three possible entrance sides and two exit sides of a node. A node has an AND

16

entrance if during project execution the node is activated (the corresponding project event
occurs) when all incoming activities have been finished for the first time. A node has an
inclusive-or (lOR) entrance if it is activated when one of the incoming activities has been
finished for the first time. A node has an exclusive-or (EOR) entrance if it is activated
every time when an incoming activity has been finished. The exit of a node is
deterministic if all outgoing activities are carried out when the node has been activated.
If exactly one outgoing activity is executed when the node has been activated, the node
has a stochastic exit.

The treatment of GERT networks relies on several assumptions, the most
important being that the durations of the different activities and of different executions of
one and the same activity are independent. The temporal analysis ofGERT networks has
been studied quite extensively in the seventies and eighties (Neumann, 1984, 1990;
Neumann and Steinhardt, 1979). These analytic methods, however, require a great
computational effort. Therefore, simulation has been widely used for the evaluation of
GERT networks (Pritsker, 1977, 1986; Pritsker and Sigal, 1983; Whitehouse, 1973).
GERT network scheduling, the scheduling of GERT network activities in the presence of
resource (machine) constraints in order to minimize project objective functions in
expectation (such as minimising the expected makespan), has only received recent
attention. A state-of-the-art survey of GERT network scheduling can be found in
Neumann (1999). Forced by the state of the art, the author considers the resources to be
machines and reviews methods for approximately solving single machine, parallel
machine, job shop and flow shop problems with GERT network precedence constraints.
The literature on resource-constrained project scheduling with GERT networks, however,
is virtually void. The heavy computational burden of analytic treatment prohibits
practical application and forces one to rely on simulation as the vehicle of analysis.

6. Fuzzy project scheduling

The advocates of the fuzzy activity duration approach argue that probability
distributions for the activity durations are unknown due to the lack of historical data. As
activity durations have to be estimated by human experts, often in a non-repetitive or
even unique setting, project management is often confronted with judgmental statements
that are vague and imprecise, for example: 'The duration of an activity is clearly more
than 2 days and less than 5 days; about 3 days is usual'. In those situations, which
involve imprecision rather than uncertainty, the fuzzy set scheduling literature
recommends the use of fuzzy numbers for modelling activity durations, rather than
stochastic variables. Instead of probability distributions, these quantities make use of
membership jUnctions, based on possibility theory.

Afuzzy set is a function that measures the degree of membership to a set. Set A
in a base set X can be described by a membership function I-lA : X -+ {D,l} with I-lA(X) =1

if xeA and I-lA(X) = D if x~A. If it is uncertain whether or not element x belongs to set A,

the above model can be extended such that the membership function maps into the
interval [0,1]. A high value of this membership function implies a high possibility, while
a low value implies a poor possibility. This leads to the definition of aJuzzy set A in X

as a set of ordered pairs A = {(x,I-l:4(x»lx e x}, where 1-l:4(x), D:s; 1-l:4(x):s; I, is called the

17

membership function or grade of membership of x in A. In the classical case where

Jl;;(x) = 0 or 1, A is said to be a crisp set.

A fuzzy number A={(x,Jl;;(x))lxEX}, where Jl;; is the membership function of

A, is a special kind of a fuzzy set defined as a convex fuzzy subset of real line W, or
'lta,bEW, 'ltcE[a,blJl;;(c);::min(Jl;;(a),Jl;;(b)). It is also required that 3aEW:Jl;;(a) =1.

The advocates of fuzzy scheduling admit that the precise form of a fuzzy number is
difficult to describe by an expert (Hapke et aI., 1999). A practical way of getting suitable
membership functions of fuzzy data has been proposed by Rommelfanger (1990). He
recommends that the expert express hislher optimistic and pessimistic information about
parameter uncertainty on some prominent membership levels by specifying intervals on
!It: the smallest interval [m, m] for which ,u(x) = 1, meaning that x certainly belongs to the

set of possible values; a larger interval [~A ,rnA], containing ~,m], for which it holds
that values x have a good chance ;:: A of belonging to the set of possible values; and a
third interval [!!!" ,m"], containing the second, for which all values x have Jl(x) < E.

Values x with Jl(x) < E have a very small chance of belonging to the set of possible
values; i.e. the expert is willing to neglect the corresponding values of x. Using a six­
point representation, a fuzzy number if is then represented by the list of symbols
if = (!!!" ,!!!A ,!!!, m, rnA, m") as shown in Figure 2.

x

Figure 2. Fuzzy number if in six-point representation (Hapke et aI., 1999)

The output of a fuzzy scheduling pass will normally be a fuzzy schedule, which
indicates fuzzy starting and ending times for the activities. Such fuzzy time instances
may be interpreted as start or completion to a certain extent only. Lootsma (1997) gives
the example of the last milestone of a construction proj ect: during the opening of the new
building, one will often notice loose ends behind curtains or under the carpets. The day
after the opening ceremony, work is still in progress despite the official delivery, and the
concept of 'completion' can be perceived to involve a degree of vagueness. In our view,
a fuzzy schedule can also be viewed as a decision support tool rather than as a mere
description of gradual completion and start of activities. As can be conceived from,
amongst others, Dom et al. (1995), a fuzzy schedule assists in the explicit representation
of certain degrees of freedom in the predictive schedule, to represent the discretion

18

management has to start certain jobs a little earlier or later when duly propagating certain
hard and soft constraints that may be imposed. In this sense, a fuzzy schedule comprises
multiple crisp schedules.

The recent volume edited by Slowinski and Hapke (2000) gathers important
recent work in fuzzy scheduling. At the time of writing, the literature on fuzzy resource­
constrained project scheduling was in its bum-in phase (Hapke et al. (1994, 1999), Hapke
and Slowinski (1996,2000), Ozdamar and Alanya (2000), Wang (1999).

The study of a fuzzy model of resource-constrained project scheduling has been
initiated in Hapke et al. (1994) and Hapke and Slowinski (1996). They have extended the
priority rule based serial and parallel scheduling schemes to deal with fuzzy parameters.

Hapke and Slowinski (2000) discuss the application of simulated annealing for
solving the multi-objective fuzzy resource-constrained project scheduling problem. The
procedure is an adaptation of the Pareto simulated annealing procedure developed by
Czyzak and Jaskiewicz (1996) for solving crisp multi-objective combinatorial problems.
The procedure has been incorporated in an integrated software package (Hapke et aI.,
2000). For details we refer to Hapke and Slowinski (2000).

Ozdamar and Alanya (2000) study software development projects and offer a
nonlinear mixed-binary mathematical problem formulation and accompanying solution
heuristics. Their model incorporates uncertainties related to activity durations and
network topology. The first type of uncertainty is attributed to error-prone coding that
might result in elongated activity durations caused by validation and debugging sessions.
Also, in practice, macro activities are often defined in order to simplify the planning of
the project. Due to such a type of aggregation, it is more difficult to be precise on the
duration of such a macro activity. The authors mention that a fuzzy logic approach to
activity modelling will allow the project manager to be provided with a range of
scenarios rather than a single one in the pre-planning phase. As a second motivation for
using fuzzy numbers rather than stochastic variables, the authors note that we are dealing
with SUbjective evaluations of human behaviour-related quantities. The authors use a six­
point membership function, which allows for easy computation of the sum of the activity
durations on a given path. The result of the maximum operator required in calculating
early start times is approximated (overestimated) (Fortemps, 1997). Activities may be
performed in one of different modes. Each mode m for activity i has a corresponding
fuzzy duration dim' Each different d;m value has a corresponding six-point membership
function }Jim' The authors use a first set of constraints to ensure that each activity is
completed once in exactly one mode and assume that the members of the project team are
modelled by renewable resources. In addition, there is an in-company consultant who is
modelled as a continuous renewable resource who assigns part of his capacity to
particular activities as the need arises. The uncertainty related to the network topology is
due to common database design issues or program modules shared among parallel
activities in the project network. This uncertainty is modelled by start-start precedence
constraints with fuzzy time-lag. The objective function is to minimize the project
duration. Ozdamar and Alanya (2000) illustrate the use of four priority based heuristics:
the standard minimum slack rule, the latest finish time rule, the maximum number of
immediate successor rule and a minimum risk rule on a case study.

Wang (1999) has developed a fuzzy set approach to schedule product
development projects having imprecise temporal information. The project has a fuzzy

19

ready time and fuzzy deadline and the activities are assumed to have a fuzzy duration, all
described by a trapezoidal fuzzy number. The objective is to determine a start time for
each activity such that the fuzzy ready time, deadline, precedence and resource
constraints are satisfied. As the constraints are fuzzy, they are flexible in the sense that
their satisfaction depending on the choice of start times are degrees within the range
[0,1]. In addition, it may not be possible to find an acceptable schedule that 'partially'
satisfies all the constraints. The author has developed a new method based on possibility
theory to determine the satisfaction degrees for the constraints. A beam search
procedure, based on the generation of groups of activities the delay of which resolves the
resource conflicts (i.e. delaying alternatives (Demeulemeester and Herroelen, 2002), that
selects only the most promising nodes at each level of the search tree (the so-called
beam-width) for further expansion is developed to produce a set of fuzzy start times for
each activity. Then, the crisp start time of each activity is determined based on
possibility theory, to maximize the satisfaction degrees of all fuzzy constraints. This
again illustrates our statement given above that a fuzzy schedule contains multiple crisp
schedules, the choice between which is at the discretion of management. The author has
validated the procedure against a fuzzy version of the A * algorithm (Bell and Park, 1990)
on 30-, 60- and 90-activity problems taken from the PSLIB test library (Kolisch and
Sprecher, 1996).

7. Proactive (robust) project scheduling

Numerous techniques for proactive (robust) scheduling have recently been
published. The majority of publications are in the machine scheduling literature
(Davenport and Beck, 2002). Various definitions for schedule robustness have appeared
in the (machine) scheduling literature. Davenport et a1. (2001) describe a robust schedule
as a "schedule that is able to absorb some level of unexpected events without
rescheduling". Jensen (2001) defines a robust schedule as a "quality schedule expected
to still be acceptable if something unforeseen happens". Leon et a1. (1994) define a
robust schedule as "an a priori off-line schedule which maintains high performance in the
presence of disruptions". More specifically their defmition pertains to those job shop
schedules for which a right-shift control policy is used that, on the occurrence of a
disruption, maintains the scheduling sequence while delaying the unfinished jobs as much
as necessary to accommodate the disruption. Le Pape (1991) defines a robust schedule as
a "schedule with the ability to satisfy performance requirements predictably in an
uncertain environment" and as a "schedule where the violation of the assumptions on
which it is built are of no or little consequence". Daniels and Kouvelis (1995) and
Kouvelis et a1. (2000) view robust scheduling as "the determination of a schedule whose
performance (compared to the associated optimal schedule) is relatively insensitive to the
potential realizations of job processing times".

7.1 Redundancy-based techniques

A number of proactive techniques have been presented in the machine and
project scheduling literature that aim at inserting some form of redundancy (extra time

20

andlor extra resources) in the schedule to absorb the disturbances caused by unexpected
events during schedule execution.

7.1.1 Fault tolerant scheduling

Fault tolerance is a common practice in real-time pre-emptive single machine
scheduling environments. Fault tolerance can be achieved through resource redundancy
(multiple identical sets of resources kept in standby (Ghosh, 1996» or time redundancy
(scheduling of back-up tasks which simply reserve time for re-execution in the event of a
fault (Ghosh et aI., 1995». Pure resource redundancy is rather unrealistic in a project
environment: doubling the various resources would be cost prohibitive. Time
redundancy may be relevant, but a (multi-) project environment is far off from the pre­
emptive polynomially solvable single machine settings studied in a real-time
environment.

7.1.2 Temporal protection

Temporal protection (Gao, 1995) extends the duration of activities based on the
uncertainty statistics of the resources that are used for their execution. Resources that
have a non-zero probability of breakdown are called breakable resources. The durations
of activities requiring breakable resources are extended to provide extra time with which
to cope with a breakdown. The "protected" duration of activity i, assuming a single
resource R, is then obtained as its original duration plus the duration of breakdowns that

are expected to occur during its execution; i.e. d; = dj + Jl,:IR) x IIdl(R), where lI'bl(R) is

the mean time between failure and IIdl(R) is the mean downtime of resource R. The
baseline schedule is then obtained by solving the scheduling problem with protected
durations. Temporal protection will be revisited in Section 7.1.3.3.

7.1.3 Slack-based techniques

7.1.3.1 The job shop model of Leon et a1.

Leon et a1. (1994) describe a genetic algorithm for generating robust schedules
for job shops. They define the schedule robustness of a job shop schedule S as
R(S) = rxE[M(S)]+ (1-r)E[8(S)], where M(S) is a random variable denoting the actual
makespan of S in the presence of disruptions, r is a real-valued weight in the interval
[0,1], and 8(S)=M(S)-Mo(S) represents the schedule delay, defined as a random
variable expressing the difference between executed and pre-schedule makespan. Since
Mo(S) is deterministic, the expected values of M(S) and ~S) equate as

E[M(S)]=E[8(S)]+Mo(S). The authors assume a right-shift reactive policy that restarts
the disrupted operations immediately after the disruption period. They demonstrate that
schedule robustness R(S) can be computed directly for a schedule with a single
disruption. When there is more than one disruption, the authors have tested three

21

Li N slack;
surrogate robustness measures. The measure RM3(S) = Mo(S) - 'IJ" ' where Nt is

the set of activities executing on fallible machines and slack; = 1st; - est; denotes the slack

time of activity i (the difference between the latest and earliest start time of the activity),
is the simplest to compute. Simulation demonstrates that mean activity slack was as good
a predictor of E[o(S)] as the more sophisticated surrogates and that RM3(S) performs
better than the exact calculation of expected delay for the single disruption case, when
only one machine in the shop is fallible.

7.1.3.2 The pairwise float model of Herroelen and Leus

7.1.3.2.1 Abstraction of resource usage

Herroelen and Leus (2002) develop mathematical programming models for the
generation of stable baseline schedules in a project environment. The authors make
abstraction of resource usage, assuming that a proper allocation of resources has been
performed. They use the concept of pairwise float, F;j(S) = Sj(S) - I; (S), defined as the

difference between the start time of activity } and the finish time of activity i in a
schedule S. The pairwise float is only defined for activities (i,j) ETA, where TA denotes

the transitive closure of A, meaning that (i,j) E TA if and only if i and} are connected by
a path in the activity-on-the-node project network G = (N,A). The authors assign a
project deadline on and a probability of disruption P; to every activity i (i=1,2, ... ,n),

with L:I PI = 1. The dummy end node has disruption probability Pn = 0, while PI

denotes the probability that the dummy start node, i.e. the entire project, starts later than
initially anticipated. They use a random variable L/ to denote the disturbance length of
activity i ifit is disturbed, and a non-negative cost C; per unit time overrun on the start
time of activity i.

The authors propose to use as stability measure the expected weighted deviation
in start times in the realized schedule from those in the pre-schedule. In other words, the

expression they wish to minimize is L~=lc/E[sjl-s/S», with E the expectation

operator, S j (S) the start time of activity j in the pre-schedule S, and Sj a random variable

representing the actually achieved start time of activity j (after project execution). If for
all arcs (i, j) ETA, MSPFij denotes the minimal sum of pairwise floats of all edges on any

path leading from i to }, then E[sj] can be computed as

SjO(S) + '" ToP; max.{O;L/-MSPF;,} I i disturbed), where trT (j) is the set of all immediate L.l/EJr (j) "

and transitive predecessors of j. Hence, the objective can be rewritten as min

LcjP;E(max.{O;Lj -MSPFij} I i disturbed). Assuming a single disruption and all L/ to be
(i,j)eTA

discrete, with probability mass function g;(.) which associates nonzero probability with
positive values Ilk that correspond with the elements k in D;, the set of disturbance
scenarios for activity i, the authors solve the following linear programming model:

min

subject to

Si +di + Fij=sj

Sn ~ 8n

/ik - MSPFij ~ t:..ijk

Si + di + Au + MSPFij = Sj

alll1ijk, Si, Fij, MSPFij ;:: 0,

'<I (iJ) E A

'<I (iJ) ETA, '<Ik E Di

'<I (iJ) ETA

(1)

(2)

(3)

(4)

(5)

22

where l1ijk is the delay in the start time of activity j due to a disturbance according to
scenario k of activity i, and A.ij is the length of the path from i to j (not including i and j)
for which MSPFij is achieved. This linear program can be rewritten as the dual of a
minimum cost network flow problem. The authors have extended the model to cope with
mUltiple disturbances. They report on very promising computational results obtained on
a set of randomly generated test instances.

7.1.3 .2.2 Restricted resources

If the unrestricted resource availability assumption is dropped from the analysis,
Leus and Herroelen (2001) use a so-called resource flow network to represent the flow of
resources across the activities of the project network (the concept of a resource flow
network has been presented by Naegler and Schoenherr (1989), Bowers (1995) and
Artigues and Roubellat (2000)). Consider the example project and associated early start
schedule shown in Figure 3. The network is shown in Figure 3(a) in activity-on-the-node
format. Activities 1 and 6 are dummies. For each activity, the duration and per period
requirement for a single renewable resource are shown above the corresponding node.
The resource is assumed to have a constant availability of 3 units. The feasible early start
schedule shown in Figure 3(b) minimizes the proj ect duration.

2 4

5

time

(a) (b)

Figure 3. Example project and early start schedule

Figure 4(a) represents a possible resource flow network that uses all three
available resource units. The dummy start activity passes one unit of the resource to
activity 2, one unit to activity 3 and one unit to activity 5. Activity 2 passes the resource
unit it received from activity 1 to activity 4. In addition to the resource unit received

23

from the dummy start activity, activity 5 receives the resource unit released by activity 3
upon its completion. The dummy end activity 6 receives one resource unit upon
completion of activity 4 and two resource units upon completion of activity 5.

Rl W
R2 2

R3 I==:==~==--
lime

(b)

Figure 4. Resource flow network and associated early start schedule

As such the technological precedence constraints of Figure 3(a) have been
augmented with the corresponding resource links yielding a resource-unconstrained
network. The resulting partial order defines an early start policy (see Section 4.1) and
can be captured by the set of arcs A on the condition that the resource allocation is kept
fixed. Under this condition, schedule repair is trivial and the use of the pairwise float
model discussed above on the resulting network allows for the generation of an optimal
pre-schedule in polynomial time.

An interesting question is whether we can find a feasible resource allocation
corresponding with a given feasible input schedule S such that

L LCjPigi(lik)L':l.ijk:S; U, where F is the set of extra resource links. Leus (2002) has
(i,})eTAuF keD,

shown that this decision problem is NP-complete in the ordinary sense even when all
activities have a single disruption scenario, by establishing that the parallel machine
problem with weighted completion time objective (Bruno et aI., 1974) can be reduced to
it.

7.1.3.2.3 Robust resource allocation

Leus and Herroelen (2001) have studied the problem of generating a robust
resource allocation under the assumption that a feasible baseline schedule exists and that
some advance knowledge about the probability distribution of the activity durations is
available. What is meant by a robust resource allocation can again be illustrated on the
project of Figure 3. Figure 5(a) shows an alternative resource flow network with
associated early start schedule shown in Figure 5(b). The resource allocation represented
by the resource flow network of Figure 5(a) is clearly less robust than the one studied
before in Figure 4(a). In Figure 4, activity 4 has one unit of slack, while now activity 4 is
forced to pass on a resource unit to activity 5. The slightest start time delay or duration
extension of activity 4 will have an immediate impact on the makespan of the (repaired)
schedule.

24

RI

R2 2 J 4
F==~==I 5

R3 3
time

(b)

Figure 5. Resource flow network and associated early start schedule

Leus and Herroelen (2001) explore the fact that checking the feasibility of a
resource allocation can easily be done using maximal flow computations in the resource
flow network. As such, the search for an optimal allocation is reduced to the search for
an associated resource flow network with desirable robustness characteristics. The
authors propose a branch-and-bound algorithm that solves the robust resource allocation
problem in exact and approximate formulations. The procedure heavily relies on
constraint propagation during its search. The authors report on promising results
obtained on a set of problem instances generated using the problem generator RanGen
(Demeulemeester et aI., 2001).

7.1.3.3 Time window slack

The intuition behind the temporal protection technique discussed in Section
7.1.2 is that during schedule execution, the protected durations of activities scheduled
consecutively on breakable resources provide slack time that can be used in the event of
resource breakdowns. If two activities i and} are scheduled consecutively on a breakable
resource, and if the machine breaks down while i is executing, the extra time within its
protected duration can be used to absorb the breakdown. If no breakdown occurs during
the execution of activity i, then activity} can start earlier. However, it is easy to see that
this can be a mere illusion. If activity} has a predecessor k on a non-breakable resource
that finishes later than activity i, the temporal protection represented by the extended
duration of activity i is not available for activity} as} cannot start earlier than the finish
time ofk.

To avoid such situations, Davenport et aI. (2001) propose the time window slack
(TWS) approach, which does not include slack as part of the activity duration, but adds a
relation to the problem definition that specifies that schedules must have sufficient slack
for each activity. If AR denotes the set of activities that require resource R, the required

slack for activity i E AR is defined to be at least ~;~~J x JJd,(R), where JJ'bf(R) is the

mean time between failure and JJd,(R) is the mean down time of resource R. It should be
noted that the required slack for an activity under TWS is considerably larger than the
duration extension in the temporal protection technique of Section 7.1.2: the amount of
slack on each activity is equal to the sum of the durations of all the expected breakdowns
on the resource. The use of mean time between failure and mean downtime data make

25

the approach less applicable in a project setting, where most renewable resources are
human beings.

A disadvantage of the temporal protection and time window slack technique is
that the placement of activities on the scheduling horizon is not taken into account.
Davenport et al. (2001) therefore suggest to use focused time window slack (FTWS)
which uses the uncertainty statistics to concentrate the slack in areas of the schedule
horizon that are more likely to need it to deal with a breakdown. The intuition is that the
later in a schedule an activity is executed, the more likely it is to have a disruptive event
occur before its execution, and therefore, the more slack is needed. The slack for an
activity is computed as a function of the probability that a breakdown will occur before or
during the execution of the activity and of the expected breakdown duration. The amount
of slack time required for an activity executing at a particular point t on resource R should

be at least equal to L:=IP(N(p(nb),a(nb»:'!.t)XPdt(R), where

p(nb)=(nbxPtbj(R»+«nb-l)xPdt(R» denotes the expected time that the nb-th

breakdown will occur, and

P(N(p(nb),a(nb»:'!. t denotes the probability that nb breakdowns will occur before a
particular time t.

Simulation results obtained on a number of randomly generated job shop
instances revealed the superiority of TWS and FTWS over temporal protection both in
producing schedules with low simulated tardiness and in producing schedules that better
predict the level of simulated tardiness. Again, the use of breakdown probabilities make
the approach less applicable in a project setting.

7.1.3.4 The float factor approach

Tavares et al. (1998) study the risk of a project as a function of the uncertainty
of the duration and the cost of each activity and the adopted schedule. The adoption of an
early (late) start schedule reduces (increases) the risk of an overall delay but increases
(decreases) the project's discounted cost which calls for the difficult determination of an
optimal compromise. The authors suggest that the start time of each activity i be set
equal to Sj(a) = eSj +a(lsj -esj) , where eSj and ISj denote the earliest, respectively, latest
start time of activity i given project deadline On' and a, o:'!. a:'!. 1, denotes the so-called
float factor. The late start (early start) schedule is obtained with a = 1 (a = 0). The
authors prove that the use of sj(a) yields a feasible schedule.

Herroelen and Leus (2002) have adapted the float factor model allowing the
float factor to vary among the project activities, in order to pursue stability in the
schedule. Using the same notation as in Section 7.1.3.2 and defining, for each activity i,
aT (i) as the set of all its immediate and transitive successors, the authors define the

quantities f3(i) = L(k'/)EA: PkC!, the sum of weights of all arcs that precede i in the
IEllU)V{ij

network, and ¢(i) = L(kJ)EA: hC!, the sum of the weights of all arcs that succeed i in the
kEUT(j)U{j)

network. They then define for each activity i an activity-dependent float factor

26

tp(i) = P(~~~(i)' Logically tp(1) = ° and tp(n) = 1. If P(i) = ¢lei) = 0, they choose tp(i) = 0.5

(except for i = 1 or n). Otherwise, tp(i) = (1 + ¢(i)/ p(i))-l, such that tp(i) 5, tp(j) if
(i,j) E TA, so the resulting schedule will be feasible.

Results obtained on a dataset consisting of 300 instances generated using the
problem generator RanGen (Demeulemeester et aI., 2001) demonstrate that this activity­
dependent float factor-based model is clearly outperformed by the model given earlier in
Eqs. (1)-(5). For a single disruption the model yields an expected weighted deviation in
starting times that is over 100% (119.95%) above the values obtained by the model of
Eqs. (1)-(5), while this percentage stiII amounts to 31.45% when 2 out of every 3
activities are disrupted.

7.1.4 Idle time insertion

Mehta and Uzsoy (1998, 1999) insert additional idle time into the predictive
schedule to absorb the impact of machine breakdowns. Mehta and Uzsoy (1999)
consider the problem of minimizing total tardiness on a single machine with dynamic job
arrival and random breakdowns. They compute an initial sequence by a heuristic and
then insert additional idle times into the schedule. Mehta and Uzsoy (1998) study the
problem of minimizing the maximum lateness in a job shop subject to machine
breakdowns. Assuming the distributions of the time between breakdowns and the time to
repair for the machines to be available, they generate a· baseline schedule using the
shifting bottleneck heuristic (Adams et aI., 1988). They invoke earliness and lateness
penalties whenever the last operation of a job ends sooner or later than planned. They
use two heuristics to insert idle time to minimize expected job completion time
deviations. In the "linear programming based heuristic" (LPH), the idea is to develop a
schedule with expected durations for all the activities, and minimize the summed
deviation of the pre-schedule from this 'blown up schedule'.

Herroelen and Leus (2002) have adapted the model of Mehta and Uzsoy to a
project environment. As in Section 7.1.3.2.1, abstraction is made of resource usage. All
definitions and symbols correspond with the referred Section. nCr) denotes the earliest
start schedule when dj , the planned duration of activity i, is replaced by
d; = d j + J'IIpjE[Li } E denotes the expectation operator and r measures the degree in
which the expected values of disruptions are propagated throughout the network (J'II is
used to make the parameter independent of the number of activities n, the average
probability being lin). L1j denotes the amount by which the starting time Sj of activity i
in the generously protected schedule nCr) exceeds the pre-schedule. The authors then
generate a pre-schedule according to the output of the following linear programming
model:

(LPH)

subject to

min

Sj + dj 5, Sj

Sn 5, On

\;j (iJ) E A

(6)

(7)

(8)

slD(n) = Sj + /'J.j
all /'J.j, Sj;::: 0

(9)

27

The authors demonstrate that (LPH) corresponds to the dual of a minimal cost network
flow problem. Results obtained on a dataset consisting of 300 instances generated using
the problem generator RanGen (Demeulemeester et aI., 2001) demonstrate that this LPH­
based model is clearly outperformed by the model given earlier in Eqs. (1)-(5). For a
single disruption the model yields an expected weighted deviation in starting times that is
158.94% above the values obtained by the model of Eqs. (1)-(5), while for 20
disturbances this percentage still amounts 34.4%.

7.1.5 Buffer insertion (critical chain)

Critical Chain Scheduling/Buffer Management (Cc/BM) - the direct application
of the Theory of Constraints (TOC) to project management (Goldratt, 1997) - has
received a lot of attention in the project management literature. The fundamentals of
CClBM are summarized in Table 2 (Herroelen et aI., 2002).

Table 2. Cc/BM fundamentals
50% probability activity duration estimates
No activity due dates
No project milestones
No multi-tasking
Scheduling objectives - minimize makespan; minimize WIP
Determine a precedence and resource feasible baseline schedule
Identify the critical chain
Aggregate uncertainty allowances into buffers
Keep the baseline schedule and the critical chain fixed during project execution
Determine an early start based unbuffered projected schedule and report early completions (apply the
roadrunner mentality)
Use the buffers as a proactive warning mechanism during schedule execution

CClBM builds a baseline schedule using activity duration estimates based on a
50% confidence level. Activity due dates and project milestones are eliminated and
multi-tasking is to be avoided. In order to minimize work-in-progress (WIP), a
precedence feasible schedule is constructed by scheduling activities at their latest start
times based on critical path calculations. If resource conflicts occur, they are resolved by
moving activities earlier in time. The critical chain is then defined as that chain of
precedence and resource dependent activities which determines the overall duration of a
project. If there is more than one critical chain, just select one. The safety associated
with the critical chain activities that was cut away by selecting aggressive duration
estimates is shifted to the end of the critical chain in the form of a project buffer (PB).
This project buffer should protect the project due date promised to the customer from
variability in the critical chain activities. Feeding buffers (FB) are inserted whenever a
non-critical chain activity joins the critical chain. Their aim is to protect the critical chain
from disruptions on the activities feeding it, and to allow critical chain activities to start
early in case things go well. Although more detailed methods can be used for sizing the

28

buffers (Newbold, 1998; Product Development Institute, 1999), the default procedure is
to use the 50% buffer sizing rule, i.e., to use a project buffer of half the project duration
and to set the size of a feeding buffer to half the duration of the longest non-critical chain
path leading into it. Resource buffers (RB), usually in the form of an advance warning,
are placed whenever a resource has to perform an activity on the critical chain, and the
previous critical chain activity is done by a different resource.

The CCIBM baseline schedule for the project of Figure 1 would allow for the
identification of 16 critical chains. ProChain®, one of the best-known software packages
that can be used for implementing CClBM, would select the critical chain 4-7-8-9. Using
the 50% buffer rule, the buffered baseline schedule of Figure 6, generated by ProChain®,
would have a two-period feeding buffer to protect the project buffer (!) from variation in
activity 2, a three-period feeding buffer to protect critical chain activity 9 from variation
in the path 3-6, and a one-period feeding buffer to protect critical chain activity 8 from
variation in activity 5. The reader will observe the rather surprising phenomenon that the
critical chain is broken, i.e., it is no longer a contiguous chain that determines the project
duration since it contains gaps. Moreover, there is no apparent reason why the "critical
chain" would have a one-period gap between activity 7 and 8 and activities 8 and 9. The
feeding buffer in front of activity 8 is redundant, given the preceding two-period gap in
the schedule. The software inserts a resource buffer in front of activity 7 to give a
warning signal to the extra resource unit needed for the execution of critical chain activity
7. In this way a warning signal is given to a resource used for the execution of a critical
chain activity that no longer determines the project duration.

CZ1ru
\3\ 6 bu

5 ~

W [9JI----,P=B'--'

I 2 3 4 5 6 7 8 9 10 11 12 13 1415 16 17 18 19 20

Figure 6. Buffered baseline schedule for the project of Figure 1

Herroelen and Leus (2001) have validated the working principles of CCIBM
through a full factorial computational experiment using the well-known 110 Patterson
test problems (Patterson, 1984). Contrary to CClBM belief, they reach the conclusion
that (a) updating the baseline schedule and the critical chain at each decision point
provides the best intermediate estimates of the final project duration and yields the
smallest final project duration, (b) using a clever project scheduling mechanism such as
branch-and-bound has a beneficiary effect on the final makespan, the percentage
deviation from the optimal final makespan obtainable if information would be perfect,
and the work-in-progress, (c) using the 50% rule for buffer sizing may lead to a serious
overestimation of the project buffer size, (d) the beneficiary effect of computing the

29

buffer sizes using the root-square-error method increases with problem size, (e) keeping
the critical chain activities in series is harmful to the final project makespan, and (f)
recomputing the baseline schedule at each decision point has a strong beneficiary impact
on the final project duration.

7.2 Quality robust schedules

7.2.1 Min-max regret techniques

Min-max regret techniques view schedule robustness as the determination of the
schedule with the best worst-case performance compared to the corresponding optimal
solution over all potential realizations of job processing times. The approach assumes a
set of discrete processing time scenarios each of which specifies the processing time of
each job (Kouvelis and Yu, 1997). Using scenarios to structure variability allows the
decision maker to describe the relationship between uncertain factors in the scheduling
environment and corresponding job processing times in the most appropriate manner
based on internal knowledge and experience. In this manner correlation among major
factors that affect job processing times can be easily accommodated. The generation of
processing time scenarios also provides insight into the nature of the scheduling
environment by requiring the decision maker to identify events that have occurred, or
almost certainly will occur, but whose consequences have yet to unfold, and to formalize
the perceived connections among events and forces that drive the scheduling environment
(Daniels and Kouvelis, 1995).

Daniels and Kouvelis (1995) study the single machine problem under the total
flow time objective, while Kouvelis et al. (2000) focus on the two-machine flow shop
environment. Their objective is to minimize the maximum possible regret associated with
a schedule. For a given schedule and a set of processing times for the single machine
problem, the regret is measured as the absolute difference between the total flow time of
the schedule for that scenario and the flow time obtained using the (optimal) shortest
processing time rule. For the two-machine flow shop problem the deviation is computed
between the makespan of the schedule for a scenario and the makespan of the (optimal)
Johnson schedule for that scenario. The authors develop branch-and-bound algorithms
and heuristics for determining robust schedules.

7.2.2 Quality-robust evaluation functions

The min-max regret approach requires advance knowledge of all possible
execution scenarios and advance knowledge of the optimal solution for each scenario.
Sevaux and Sorensen (2002) study the single machine scheduling problem with ready
times under the objective of minimizing the weighted number oflate jobs. They rely on a
genetic algorithm for generating quality robust schedules, i.e., schedules whose quality
does not change when the input data (i.e., the ready times) change. The authors use a

robust evaluation function fr(x) = ~ f wJ(x + OJ). This evaluation function adds some
i=1

noise OJ to the current solution x before an evaluation; the final evaluation is the average
over m disrupted solutions. A disruption amounts to a modification of the ready time (by

30

adding a random value ,sj between 0 and ,smax) of between 0 and 20% of the total number
of jobs. The authors fix the number of evaluations m at 10 and conclude that the value of
the objective function remains high when small variations in some ready times occur.

7.2.3 ,B-robust schedules

Consistent with the min-max regret philosophy, Daniels and Carrillo (1997) opt
for a scheduling approach that considers both average system performance and
performance variability in determining the optimal schedule. Focusing on a single
machine environment and a set of activity processing time scenarios, their scheduling
objective is to determine a ,B-robust schedule, i.e., the schedule with the maximum
likelihood of achieving flow time performance no greater than a particular target level.
Having established NP-hardness of the problem, the authors offer a branch-and-bound
procedure and a heuristic. They also extend the analysis to those situations where a
single resource, available in limited supply, can be applied to individual jobs to linearly
decrease the associated processing time variance. Computational experience indicated
that ,B-robust schedules provide effective hedges against processing time uncertainty
while maintaining near-optimal performance with respect to expected flow time.

7.3 Multiple schedules (contingent scheduling)

The contingent scheduling approach is based on the idea to generate multiple
baseline schedules (or baseline schedule fragments) which optimally respond to
anticipated disruptive events. Responding to unexpected but anticipated events during
schedule execution is then simply done by switching to the schedule (fragment) that
corresponds to the events that have occurred.

7.3.1 Just-in-Case Scheduling

Bresina et al. (1994) have developed the technique of just-in-case scheduling in
the domain of telescope observation scheduling. The technique is based on the
identification of high probability schedule breaks and the generation of an alternative
schedule for each break, just in case the break occurs during execution. In overview, the
algorithm accepts a schedule as input and using a model of how durations can vary, the
temporal uncertainty at each step in the schedule is estimated. The most probable break
during this uncertainty is determined and the break point is split into two cases: one in
which the schedule breaks and one in which it does not. The scheduler is then invoked
on a new scheduling sub-problem to produce an alternative schedule for the break case.
This alternative schedule is integrated with the initial schedule.

The authors report computational experience on real telescope scheduling data,
involving one machine and fewer than 20 schedule breaks. As already observed by
Davenport and Beck (2002), this approach runs into combinatorial problems when more
than one resource is involved.

31

7.3.2 Group sequences

Billaut and Roubellat (I996a) suggest to generate for every resource a so-called
group sequence, i.e. a totally or partially ordered set of groups of operations, and to
consider all the schedules obtained by an arbitrary choice of the ordering of the
operations inside each group. Maugiere et al. (2002) and Aloulou et al. (2002) explore
this sequence flexibility idea in the context of single machine scheduling.

The gist of the approach can be sketched using the 4 job-2 machine example
borrowed from Billaut and Roubellat (l996a). The four jobs are subject to ready times
PI == 1, P2 == P3 == P4 == 0 and due dates 02 == 4, °1 == 03 == °4 == 5. Additional data are shown
in Table 3. The notation (iJ) refers to operationj of job i. Consider the following group
sequence:
Resource 1: group 1: {(I,I),(2,I)} group 2: {(3,2),(4,2)}
Resource 2: group 1: {(3,I),(4,I)} group 2: {(I,2),(2,2)}
Table 4 enumerates the 16 schedules that can be generated from this group sequence by
choosing an arbitrary processing order for the operations inside each group (a -< b means
a strictly precedes b). All sixteen schedules are feasible. In this way the decision maker
is not only provided with one feasible schedule but several ones. The hope is that during
the real-time execution of the schedule, it becomes possible to switch from one solution
to the other in the presence of a disruption without any loss of performance.

Table 3. Data for the 4 job-2 resource problem

Gob/operation) (1,1) (1,2) (2,1) (2,2) (3,1) (3,2) (4,1) (4,2)
machine 1 2 1 2 2 1 2 1
processing time 1 1 1 1 1 1 1 1

Table 4. Set of schedules (Billaut and Roubellat (I996a)

Resource I Resource 2
(1,1)-< (2,1)-< (3,2)-< (4,2) (3,1) -< 4,1 -< (1,2) -< 2,2
(2,1)-< (1,1)-< (3,2)-< (4,2) (3,1)-< (4,1)-< (1,2)-< (2,2)
(1,1) -< (2,1 -< 4,2 -< 3,2 3,1 -< 4,1 -< 1,2 -< (2,2)
(2,1) -< (1,1) -< (4,2) -< (3,2) (3,1)-< (4,1)-< (1,2)-< (2,2)
(1,1) -< (2,1) -< (3,2)-< (4,2) (4,1) -< (3,1) -< (1,2) -< (2,2)
(2,1) -< (1,1) -< (3,2) -< (4,2) (4,1)-< (3,1)-< (1,2)-< (2,2)
(1,1) -< (2,1) -< (4,2)-< (3,2) (4,1) -< (3,1)-< (1,2) -< (2,2)
(2,1) -< (1,1) -< (4,2) -< (3,2) (4,1)-< (3,1)-< (1,2)-< (2,2)
(1,1)-< (2,1)-< (3,2)-< (4,2) (3,1) -< (4,1) -< (2,2) -< (1,2)
(2,1) -< (1,1) -< (3,2) -< (4,2) (3,1)-< (4,1)-< (2,2)-< (1,2)
(1,1) -< (2,1) -< (4,2) -< (3,2) (3,1)-< (4,1) -< (2,2) -< (1,2)
(2,1) -< (1,1) -< (4,2)-< (3,2) (3,1)-< (4,1)-< (2,2)-< (1,2)
(1,1)-< (2,1)-< (3,2)-< (4,2) (4,1) -< (3,1) -< (2,2) -< (1,2)

. (2,1) -< (1,1) -< (3,2)-< (4,2) (4,1)-< (3,1)-< (2,2)-< (1,2)
(1,1)-< (2,1)-< (4,2)-< (3,2) (4,1)-< (3,1)-< (2,2)-< (1,2)
(2,1)-< (1,1)-< (4,2)-< (3,2) (4,1) -< (3,1) -< (2,2) -< (1,2)

Billaut and Roubellat (I996ab) extend the group sequence concept to the
multiple renewable resource case by adding the condition that the operations in a group
should use the same amount of a resource type, and the operations in a group are assigned
to the same subset of units of the resource type. Briand et al. (2002) extend the

32

methodology used by BiIIaut and Roubellat (1996b) to the case of multi-mode scheduling
with minimal and maximal time-lags.

Artigues et al. (1999) study multi-mode project scheduling problems where the
projects have a release date and a due date. They propose a generation procedure for
finding group sequences based on a new priority rule. They also propose and test an
efficient local search procedure to improve the feasibility of a group sequence. The
procedures are integrated in a commercial real-time scheduling package (ORDO®).

8. Sensitivity analysis

A number of recent research efforts focus on the sensitivity analysis of machine
scheduling problems (Hall and Posner, 2000ab). Sensitivity analysis addresses "What
if ... ?" types of questions that arise from parameter changes. The authors study
polynomially solvable and intractable machine scheduling problems and try to provide
answers to a number of fundamental questions such as (a) what are the limits to the
change of a parameter such that the solution remains optimal?, (b) given a specific
change of a parameter, what is the new optimal cost?, (c) given a specific change of a
parameter, what is a new optimal solution?, (d) when does a baseline schedule remain
optimal?, (e) when does the objective function value remain optimal?, (f) what types of
sensitivity analysis are useful to evaluate the robustness of optimal solutions?, (g) what
types of sensitivity analysis can be performed without using the full details of the
solution?, etc. An interesting area of future research is to pose and answer similar
questions in a project scheduling setting. An additional interesting and as yet unexplored
research topic is to determine what parameter changes are allowed to guarantee full
rescheduling optimality by means of a 'simple' repair action (e.g. right shift).

Bums et al. (1997) use sensitivity analysis in combination with schedulability
analysis to establish the maximum fault frequency that a single processor system on
which a finite number of tasks must be repeatedly executed can tolerate. Each task has a
minimum inter-arrival time, a worst-case execution time and a deadline. The problem is
to define a policy that guarantees that each instance of each task will finish by its
deadline. The authors use sensitivity analysis to find the minimum value of the minimum
fault inter-arrival time such that all tasks meet their deadlines. The authors do not
provide computational results.

Penz et aI. (2001) determine the sensitivity guarantee of off-line scheduling
algorithms for single and parallel machine scheduling problems where the actual duration
of a task i is equal to (1 + Ei)dp with Ei E }-l,+ao[representing the percentage of
confidence we have on the corresponding estimated duration. Values 1 + Ei are the
components of the perturbation vector ii. The sensitivity guarantee of an off-line
algorithm ALG is a function s ALG(E) such that for any off-line instance .3 and any e-

perturbation ii, SALG(E) is the smallest real value verifying P~LG(.3)~SALG(E)PALG(.3). In
this expression, PALd.3) = fALG(3) I foPT(.3) denotes the theoretical or off-line

performance ratio of algorithm ALG for which fALG (.3) denotes the objective value
achieved by algorithm ALG on .3 and fOPT(.3) denotes the optimal objective value for the

instance. P~LG(3) = fJLG(.3) I fJPT(3) denotes the effective performance ratio, i.e.
obtained after execution. The numerator and denominator in the right-hand side of the

33

expression represent the objective value of the ALG schedule for 3, applied to 3
perturbed by 8, and the optimal value ex post, with perfect knowledge, respectively.

9. Conclusions and suggestions for further research

The majority of research efforts in project scheduling assume complete
information about the scheduling problem to be solved and assume a static deterministic
environment. Basically the research efforts aim at the generation of feasible baseline
schedules that 'satisfice' or optimize single or multiple objective functions. The
literature on project scheduling under risk and uncertainty is rather sparse. In this paper
we offer a review of the major approaches to deal with scheduling risk and uncertainty,
many of which have been mainly or solely studied in a machine scheduling environment.

The methodologies for stochastic project scheduling basically view the project
scheduling problem as a multi-stage decision process. Scheduling policies are used that
define which activities are to be started at random decision points through time, based on
the observed past and the a priori knowledge about the processing time distributions. As
such they share the disadvantage that they do not explicitly generate a pre-schedule that
can be used as the baseline plan for making advance commitments to both subcontractors
and customers. The dynamic programming approaches developed to tackle the stochastic
multi-mode problem determine the resource allocation vectors for the project activities in
order to minimize total expected cost and rely on the assumption that the uncertainty
resides in the work content of the activities and not in their duration.

The temporal analysis of GERT networks has been widely studied. The
problem, however, are the heavy computational requirements forcing the use of
simulation techniques. GERT network scheduling has only received recent attention.
Virtually all the models assume the resources to be machines. Again the heavy
computational burden prohibits the practical use of analytical approaches.

The Juzzy project scheduling approach rejects the use of probability distributions
for the activity durations but relies on membership functions that may be as difficult to
generate. As such uncertainty is captured by the notion of "belonging" rather than in
terms of "frequency" of occurrence. The literature is still in its bum-in phase.

Research in proactive (robust) scheduling has widely prospered in the field of
machine scheduling. Redundancy-based techniques have already found their way to the
field of project scheduling. The buffer insertion approach, the fundamental ingredient of
Goldratt's critical chain methodology, is gaining increasing popUlarity among project
management practitioners. While this methodology has acted as an important eye­
opener, its pitfalls, mainly due to severe oversimplifications, have been revealed recently.
The generation of robust multi-resource baseline schedules in combination with efficient
and effective reactive schedule repair mechanisms constitutes a viable area of future
research. Whereas numerous reactive scheduling mechanisms have been developed and
tested in real-time machine scheduling environments, the field is in need for further
research aimed at their implementation and validation in a project scheduling
environment.

Research on sensitivity analysis has just emerged in the area of machine
scheduling. Efforts to seek answers to the various types of "what if ... " questions in a

34

project setting still need to be initiated, and would offer useful infonnation to project
management.

References

Adams, J., E. Balas and D. Zawack, 1988, The Shifting Bottleneck Procedure for
Job Shop Scheduling, Management Science, 34, 391-401.

Akturk, M.S. and E. Gorgulu, 1999, Match-up Scheduling Under a Machine
Breakdown, European Journal of Operational Research, 112, 81-97.

Alagoz, O. and M. Azizoglu, 2001, Rescheduling Under Machine Eligibility
Constraints, Paper presented at the INFORMS 2001 Annual Meeting, Miami Beach,
November 4-7.

Aloulou, M.A., M.-C. Portmann and A. Vignier, 2002, Predictive-Reactive
Scheduling for the Single Machine Problem, Paper presented at the 8th Workshop on
Project Management and Scheduling, Valencia, 3-5 April.

Artigues, C. and F. Roubellat, 2000, A Polynomial Activity Insertion Algorithm in
a Multi-Resource Schedule with Cumulative Constraints and Multiple Modes, European
Journal of Operational Research, 127, 297-316.

Artigues, C., F. Roubellat and l-C. Billaut, 1999, Characterization of a Set of
Schedules in a Resource-Constrained Multi-Project Scheduling Problem with Multiple
Modes, International Journal of Industrial Engineering - Theory Applications and
Practice, 6(2), 112-122.

Bean, J.C., J.R. Birge, J. Mittenthal and C.E. Noon, 1991, Match-up Scheduling
with Multiple Resources, Release Dates and Disruptions, Operations Research, 39(3),
470-483.

Bell, C.E. and K. Park, 1990, Solving Resource-Constrained Project Scheduling
Problems by A * Search, Naval Research Logistics, 37, 61-84.

Billaut, lC. and F. Roubellat, 1996a, A New Method for Workshop Real Time
Scheduling, International Journal of Production Research, 34(6), 1555-1579.

Billaut, J.C. and F. Roubellat, 1996b, Characterization of a Set of Schedules in a
Multiple Resource Context, Journal of Decision Systems, 5(1-2), 95-109.

Bowers, J.A., 1995, Criticality in Resource Constrained Networks, Journal of the
Operational Research Society, 46, 80-9l.

Bresina, J., M. Drummond and K. Swanson, 1994, Managing Action Duration
Uncertainty with Just-In-Case Scheduling, Proceedings of the 1994 AAAI Spring
Symposium on Decision Theoretic Planning, AAAI Press, Stanford, CA.

Briand, C., E. Despontin and F. Roubellat, 2002, Scheduling with Time Lags and
Preferences: A Heuristic, Paper presented at the 8th Workshop on Project Management
and Scheduling, Valencia, 3-5 April.

Bruno, J., E.GJr. Coffman and R. Sethi, 1974, Scheduling Independent Tasks to
Reduce Mean Finishing Time, Communications of the ACM, 17(7),382-387.

Bums, A., S. Punnekkat, B. Littlewood and D.R. Wright, 1997, Probabilistic
Guarantees for Fault-Tolerant Real-Time Systems, Technical Report DeVa TR NO 44,
Design for Validation, Esprit Long Tenn Research Project, NO 20072.

Czyzak, P. and A. Jaskievicz, 1996, Metaheuristic Technique for Solving
Multiobjective Investment Planning Problem, Control and Cybernetics, 25, 177-187.

35

Daniels, R.L. and J.E. Carrillo, 1997, f3-Robust Scheduling for Single-Machine
Systems with Uncertain Processing Times, IIE Transactions, 29, 977-985.

Daniels, R.L. and P. Kouvelis, 1995, Robust Scheduling to Hedge Against
Processing Time Uncertainty in Single-stage Production, Management Science, 41(2),
363-376.

Davenport, A.J. and J.C. Beck, 2002, A Survey of Techniques for Scheduling with
Uncertainty, unpublished manuscript, available at
http://www.eil.utoronto.calprofiles/chris/gzluncertainty-survey.ps.

Davenport, A.J., C. Gefflot and J.e. Beck, 2001, Slack-based Techniques for
Robust Schedules, Paper presented at the Constraints and Uncertainty Workshop,
Seventh International Conference on Principles and Practice of Constraint Programming,
November 26 - December 1, Paphos, Cyprus.

Demeulemeester, E., Vanhoucke, M. and W. Herroelen, 2001, A Random
Generator for Activity-on-the-node Networks, Journal of Scheduling, to appear.

Demeulemeester, E.L. and W.S. Herroelen, 2002, Project Scheduling - A Research
Handbook, Kluwer Academic Publishers, Boston.

Dorn, J., R. Kerr and G. Thalhammer, 1995, Reactive Scheduling: Improving
Robustness of Schedules and Restricting the Effects of Shop Floor Disturbances by
Fuzzy Reasoning, International Journal of Human-Computer Studies, 42, 687-704.

Elmaghraby, S.E.E., 2000, Optimal Resource Allocation and Budget Estimation in
Multimodal Activity Networks, Research Paper, North Carolina State University at
Raleigh, North Carolina, U.S.A.

El Sakkout, H., T. Richards and M. Wallace, 1998, Minimal Perturbance in
Dynamic Scheduling, Proceedings of the Thirteenth European Conference on Artificial
Intelligence (ECAI-98).

Fernandez, A.A., 1995, The Optimal Solution to the Resource-Constrained Project
Scheduling Problem with Stochastic Task Durations, Unpublished Doctoral Dissertation,
University of Central Florida.

Fernandez, A.A., R.L. Armacost and J. Pet-Edwards, 1996, The Role of the Non­
Anticipativity Constraint in Commercial Software for Stochastic Project Scheduling,
Computers and Industrial Engineering, 31, 233-236.

Fernandez, A.A., R.L. Armacost and J. Pet-Edwards, 1998, Understanding
Simulation Solutions to Resource-Constrained Project Scheduling Problems with
Stochastic Task Durations, Engineering Management Journal, 10,5-13.

Fortemps, P., 1997, Fuzzy Sets for Modelling and Handling Imprecision and
Flexibility, PhD Dissertation, Faculte Polytechnique de Mons, Belgium.

Gao, H., 1995, Building Robust Schedules Using Temporal Protection - An
Empirical Study of Constraint Based Scheduling Under Machine Failure Uncertainty,
Master's Thesis, Department ofIndustrial Engineering, University of Toronto.

Ghosh, S., 1996, Guaranteeing Fault Tolerance through Scheduling in Real-Time
Systems, Ph.D. Thesis, University of Pittsburgh.

Ghosh, S., R. Melhem and D. Mosse, 1995, Enhancing Real-Time Schedules to
Tolerate Transient Faults, Real-Time Systems Symposium.

Gillies, D.W. and J.W.S. Liu, 1995, Scheduling Tasks with AND/OR Precedence
Constraints, SIAM Journal on Computing, 24, 797-810.

36

Glover, F. and M. Laguna, 1997, Tabu Search, Kluwer Academic Publishers,
Boston.

Goldratt, E., 1997, Critical Chain, The North River Press.
Golenko-Ginsburg, D. and A. Ganik, 1997, Stochastic Network Project Scheduling

with Non-Consumable Limited Resources, International Journal of Production
Economics, 48, 29-37.

Graham, R.L., 1966, Bounds on Multiprocessing Timing Anomalies, Bell System
Technical Journal, 45, 1563-1581.

Gutjahr, W.J., C. Strauss and E. Wagner, 2000, A Stochastic Branch-and-Bound
Approach to Activity Crashing in Project Management, INFORMS Journal on
Computing, 12(2), 125-135.

Hall, N. and M. Posner, 2000a, Sensitivity Analysis for Intractable Scheduling
Problems, Research paper, The Ohio State University.

Hall, N. and M. Posner, 2000b, Sensitivity Analysis for Efficiently Solvable
Scheduling Problems, Research paper, The Ohio State University.

Hapke, M., A. Jaskievicz and R. Slowinski, 1994, Fuzzy Project Scheduling
System for Software Development, Fuzzy Sets and Systems, 21,101-117.

Hapke, M., A. Jaskievicz and R. Slowinski, 1999, Fuzzy Multi-Mode Resource­
Constrained Project Scheduling with Multiple Objectives, Chapter 16 in Weglarz, J. (ed.),
Project Scheduling - Recent Models, Algorithms and Applications, Kluwer Academic
Publishers, 355-382.

Hapke, M. and R. Slowinski, 1996, Fuzzy Priority Heuristics for Project
Scheduling, Fuzzy Sets and Systems, 83,291-299.

Hapke, M. and R. Slowinski, 2000, Fuzzy Set Approach to Multi-Objective and
Multi-Mode Project Scheduling Under Uncertainty, Chapter 9 in Slowinski, R. and M.
Hapke (eds.), 2000, Scheduling Under Fuzziness, Physica-Verlag, Heidelberg, 197-221.

Herroelen, W. and R. Leus, 2001, On the Merits and Pitfalls of Critical Chain
Scheduling, Journal o/Operations Management, 19,559-577.

Herroelen, W. and R. Leus, 2002, On the Construction of Stable Project Baseline
Schedules, Research Report 0220, Department of Applied Economics, Katholieke
Universiteit Leuven, Belgium.

Herroelen, W., R. Leus and E. Demeulemeester, 2002, Critical Chain Project
Scheduling: Do Not Oversimplify, Project Management Journal, to appear.

Igelmund, G. and F.J. Radermacher, 1983a, Preselective Strategies for the
Optimization of Stochastic Project Networks under Resource Constraints, Networks, 13,
1-28.

Igelmund, G. and F.J. Radermacher, 1983b, Algorithmic Approaches to
Preselective Strategies for Stochastic Scheduling Problems, Networks, 13, 29-48.

Jensen, M.T., 2001, Improving Robustness and Flexibility of Tardiness and Total
Flow-time Job Shops Using Robustness Measures, Applied Soft Computing, 1,35-52.

Jergenson, T., 1999, Project Scheduling - A Stochastic Dynamic Decision Problem,
Doctoral Dissertation, Norwegian University of Science and Technology, Trondheim,
Norway.

Kolisch, R. and A. Sprecher, 1996, PSPLIB - A Project Scheduling Library,
European Journal 0/ Operational Research, 96, 205-216.

37

Kouvelis, P., R.L. Daniels and G. Vairaktarakis, 2000, Robust Scheduling of a
Two-Machine Flow Shop with Uncertain Processing Times, lIE Transactions, 32, 421-
432.

Kouvelis, P. and G. Yu, 1997, Robust Discrete Optimization and Its Applications,
Kluwer Academic Publishers, Boston.

Laguna, M., P. Lino, A. Perez, S. Quintanilla and V. Valls, 2000, Minimizing
Weighted Tardiness of Jobs with Stochastic Interruptions in Parallel Machines, European
Journal of Operational Research, 127,444-457.

Leon, V.J., S.D. Wu and R.H. Storer, 1994, Robustness Measures and Robust
Scheduling for Job Shops, IIE Transactions, 26(5), 32-43.

Le Pape, C., 1991, Constraint Propagation in Planning and Scheduling, CIFE
Technical Report, Robotics Laboratory, Department of Computer Science, Stanford
University.

Leus, R., 2002, unpublished note.
Leus, R. and W. Herroelen, 2001, Models for Robust Resource Allocation in

Project Scheduling, Research Report 0128, Department of Applied Economics,
Katholieke Universiteit Leuven, Belgium.

Lootsma, F.A., 1997, Fuzzy Logic for Planning and Decision Making, Kluwer
Academic Publishers, Dordrecht.

Mauguiere, P., J.-C. Billaut and C. Artigues, 2002, Grouping Jobs on a Single
Machine with Heads and Tails to Represent a Family of Dominant Schedules, Paper
presented at the 8th Workshop on Project Management and Scheduling, Valencia, 3-5
April.

Mehta, S.V. and R.M. Uzsoy, 1998, Predictable Scheduling of a Job Shop Subject
to Breakdowns, IEEE Transactions on Robotics and Automation, 14(3),365-378.

Mehta, S.V. and R. Uzsoy, 1999, Predictive Scheduling of a Single Machine
Subject to Breakdowns, International Journal of Computer Integrated Manufacturing,
12, 1, 15-38.

Mohring, R.H., FJ. Radermacher and G. Weiss, 1984, Stochastic Scheduling
Problems I - General Strategies, ZOR - Zeitschriji for Operations Research, 28, 193-260.

Mohring, R.H., FJ. Radermacher and G. Weiss, 1985, Stochastic Scheduling
Problems II - Set Strategies, ZOR - Zeitschriji fur Operations Research, 29, 65-104.

Mohring, R.H., M. Skutella and F. Stork, 2000, Scheduling with AND/OR
Precedence Constraints, Technical Report 689/2000, Technische Universitat Berlin,
Department of Mathematics, Germany.

Mohring, R.H. and F. Stork, 2000, Linear Preselective Policies for Stochastic
Project Scheduling, Mathematical Methods of Operations Research, 52, 501-515.

Naegler, G. and S. Schoenherr, S., 1989, Resource Allocation in a Network Model
- The Leinet System, in Slowinski, R. and J. Weglarz (eds.), Advances in Project
Scheduling, Elsevier.

Neumann, K., 1984, Recent Developments in Stochastic Activity Networks,
INFOR, 22(3), 219-248.

Neumann, K., 1990, Stochastic Project Networks, Lecture Notes in Economics and
Mathematical Systems, Vol. 344, Springer, Berlin.

38

Neumann, K., 1999, Scheduling of Projects with Stochastic Evolution Structure,
Chapter 14 in Weglarz, J. (ed.), Project Scheduling - Recent Models, Algorithms and
Applications, Kluwer Academic publishers, Boston, 309-332.

Neumann, K. and U. Steinhardt, 1979, GERT Networks and the Time-Oriented
Evaluation 0/ Projects, Lecture Notes in Economics and Mathematical Systems, Vol.
172, Springer, Berlin.

Newbold, R.C., 1998, Project Management in the Fast Lane - Applying the Theory
of Constraints, The St. Lucie Press, Cambridge.

Ozdamar, L. and E. Alanya, 2000, Uncertainty Modelling in Software Development
Projects (with case study), Annals o/Operations Research, 102, 157-178.

Patterson, J.H., 1984, A Comparison of Exact Procedures for Solving the Multiple
Constrained Resource Project Scheduling Problem, Management Science, 30, 854-867.

Penz, B., C. Rapine and D. Trystram, 2001, Sensitivity Analysis of Scheduling
Algorithms, European Journal o/Operational Research, 134,606-615.

Pet-Edwards, J., 1996, A Simulation and Genetic Algorithm Approach to
Stochastic Resource-Constrained Project Scheduling, Southcon Conference Record 1996,
IEEE, Pascataway, NJ, 333-338.

Pet-Edwards, J., B. Selim, R.L. Annacost and A. Fernandez, 1998, Minimizing
Risk in Stochastic Resource-Constrained Project Scheduling, Paper presented at the
INFORMS Fall Meeting, Seattle, October 25-28.

Pritsker, A.A.B., 1977, Modeling and Analysis Using Q-GERT Networks, John
Wiley & Sons, New York.

Pritsker, A.A.B., 1986, Introduction to Simulation and SLAM II, John Wiley &
Sons, New York.

Pritsker, A.A.B. and C.E. Sigal, 1983, Management Decision Making - A Network
Simulation Approach, Prentice-Hall, Inc., Englewood Cliffs, N.J.

Product Development Institute, 1999, Tutorial: Goldratt's Critical Chain Method, A
One-Project Solution, http://www.pdinstitute.comltutorialintro.html.

Radennacher, F.J., 1985, Scheduling of Project Networks, Annals of Operations
Research, 4, 227-252.

Romme1fanger, H., 1990, FULPAL: An Interactive Method for Solving
(Multiobjective) Fuzzy Linear Programming Problems, Section 5 in, Slowinski, R. and J.
Teghem (eds.), Stochastic Versus Fuzzy Approaches to Multiobjective Mathematical
Programming Under Uncertainty, Kluwer Academic Publishers, Dordrecht, 279-299.

Sabuncuoglu, I. and M. Bayiz, 2000, Analysis of Reactive Scheduling Problems in
a Job Shop Environment, European Journal o/Operational Research, 126, 567-586.

Sadeh, N., S. Otsuka and R. Schelback, 1993, Predictive and Reactive Scheduling
with the MicroBoss Production Scheduling and Control System, Proceedings of the
IJCAI-93 Workshop on Knowledge-Based Production Planning, Scheduling and Control,
293-306.

Selke, E. and R.M. Kerr, 1994, Knowledge-based Reactive Scheduling, Production
Planning and Control, 5(2), 124-145.

Sevaux, M. and K. Sorensen, 2002, A Genetic Algorithm for Robust Schedules,
Paper presented at the 8th International Workshop on Project Management and
Scheduling, Valencia, April 3-5.

39

Slowinski, R. and M. Hapke (eds.), 2000, Scheduling Under Fuzziness, Physica­
Verlag, Heidelberg.

Smith, S.S., 1994, Reactive Scheduling Systems, in Brown, D. E. and W. T.
Scherer, Intelligent Scheduling Systems, Kluwer.

Sorensen, K., 2001, Tabu Searching for Robust Solutions, Proceedings of the 4th
Metaheuristics International Conference, July 16-20, Porto, Portugal, 707-712.

Stork, F., 2000, Branch-and-Bound Algorithms for Stochastic Resource­
Constrained Project Scheduling, Research Report No. 702/2000, Technische Universitat
Berlin.

Stork, F., 2001, Stochastic Resource-Constrained Project Scheduling, Ph.D. Thesis,
Technische Universitat Berlin.

Tavares, L.V., J.A.A. Ferreira and J.S. Coelho, 1998, On the Optimal Management
of Project Risk, European Journal o/Operational Research, 107,451-469.

Tsai, Y.W. and D.D. Gemmil, 1996, Using a Simulated Annealing Algorithm to
Schedule Activities of Resource-Constrained Projects, Working Paper No. 96-124, Iowa
State University.

Tsai, Y.W. and D.D. Gemmil, 1998, Using Tabu Search to Schedule Activities of
Stochastic Resource-Constrained Projects, European Journal 0/ Operational Research,
111,129-141.

Valls, V., M. Laguna, P. Lino, A. Perez and S. Quintanilla, 1999, Project
Scheduling with Stochastic Activity Interruptions, Chapter 15 in Weglarz, 1. (editor),
Project Scheduling - Recent Models, Algorithms and Applications, Kluwer Academic
Publishers, 333-353.

Wang, J.R., 1999, A Fuzzy Set Approach to Activity Scheduling for Product
Development, Journal of the Operational Research Society, 50,1217-1228.

Whitehouse, G.E., 1973, Systems Analysis and Design Using Network Techniques,
Prentice-Hall, Inc., Englewood Cliffs, N.J.

Wiest, J.D. and F.K. Levy, 1977, A Management Guide to PERTICPM: with
GERTIPDMICPM and Other Networks, Prentice-Hall, Inc., Englewood Cliffs, N.J.

Wollmer, R.D., 1985, Critical Path Planning under Uncertainty, Mathematical
Programming Study, 25, 164-171.

Wu, S.D., R.H. Storer and P.C. Chang, 1993, One Machine Rescheduling
Heuristics with Efficiency and Stability as Criteria, Computers and Operations Research,
20,1-14.

