
Meta-heuristics for stable scheduling on a single machine
m

Francisco Ballestin and Roel Leus

DEPARTMENT OF DECISION SCIENCES AND INFORMATION MANAGEMENT (KBI)

Faculty of Economics and Applied Economics

KBI 0607

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6468971?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Meta-heuristics for stable scheduling

on a single machine

Francisco Ballest́ın1 • Roel Leus2,∗

1 Department of Statistics and Operations Research
Universidad Pública de Navarra, Spain

Francisco.Ballestin@unavarra.es

2 Department of Decision Sciences and Information Management
Katholieke Universiteit Leuven, Belgium

Roel.Leus@econ.kuleuven.be

This paper presents a model for single-machine scheduling with stability objective and
a common deadline. Job durations are uncertain, and our goal is to ensure that there is
little deviation between planned and actual job starting times. We propose two meta-
heuristics for solving an approximate formulation of the model that assumes that exactly
one job is disrupted during schedule execution, and we also present a meta-heuristic for
the global problem with independent job durations.

Keywords: single-machine scheduling; uncertainty; robustness; meta-heuristics.

1. Introduction

This paper is concerned with the development of a single-machine schedule in an environment

with uncertain job durations. Our goal is to ensure that there is little deviation between

planned and actual job starting times. The set of jobs to be performed is known at the start

of the scheduling horizon and is entirely included into the schedule. This schedule is set up

before any job processing takes place, which positions this article within the discipline of

static scheduling, as opposed to the research in dynamic scheduling, where jobs are gradu-

ally selected for processing as reality unfolds and information on job-duration realizations

becomes available. Slightly different but comparable definitions appear in [10] and [26].

Obviously, in order to produce a schedule, the scheduler needs deterministic job dura-

tions, well knowing that deviations from these values will inevitably occur when the schedule

is actually implemented. We call the resulting plan a baseline schedule or predictive schedule.

The benefits of adopting such a deterministic predictive schedule in spite of the uncertainty

inherent to the environment are twofold. On the one hand, in many production shops, auxil-

iary resources such as tooling or staffing need to be reserved ahead of time, and the baseline

∗Corresponding author

1

provides time windows for these ‘bookings’. On the other hand, and in much the same way,

the baseline schedule is also the starting point for communication and coordination with

external entities in the company’s inbound and outbound supply chain: it constitutes the

basis for agreements with suppliers and subcontractors (e.g. for planning external activities

such as material procurement and preventive maintenance), as well as for commitments to

customers (delivery dates). The usefulness of a predictive schedule is further discussed in

[2, 17, 20, 29].

When disruptions take place during schedule execution (a disruption being the receipt

of information that a particular job duration was estimated wrongly in the baseline), the

baseline schedule needs to be repaired (these computations are sometimes also called reac-

tive scheduling or rescheduling in the literature). If the scheduler wishes to safeguard the

advantages of the baseline schedule as cited above then the actual start of each job should

take place as closely as possible to its baseline starting time. This property is referred to as

stability. A number of sources in the literature have examined how to repair a schedule with

a stability objective, e.g. [1, 5, 7, 23, 24, 29].

The current article is concerned with the incorporation into the baseline schedule of

advance protection against disruptions. In this way, it classifies under the header of robust

scheduling, which is a field of scheduling theory that is receiving increasing attention, see

e.g. [6, 16]. More particularly, our goal is to introduce stability into the baseline. Previous

examples with similar objectives are [20] (in a job-shop environment), [22] (on a single

machine) and [28] (for resource-constrained project scheduling). This article is a continuation

of the research of Leus and Herroelen ([17]), who analyze the complexity status of a particular

single-machine problem (see Section 2 for details) and propose an exact algorithm that is

able to produce optimal solutions for small problem instances. The purpose of this paper is

to develop sub-optimal algorithms that yield high-quality schedules for large instances. Our

contributions are the following: we propose two meta-heuristics for solving an approximate

formulation of the model that assumes that exactly one job is disrupted during schedule

execution, and we also present a meta-heuristic for the global problem with independent job

durations. We show that the easier approximate problem is useful, and can even outperform

the correct formulation when both are solved heuristically and variability is low.

In the following section we provide the necessary notation and a formal statement of

the two problems that are studied. All of the proposed algorithms follow the same global

structure, which is described in Section 3. Section 4 presents two meta-heuristics for the

2

approximate formulation (named SWOD). Section 5 deals with the generation of good solu-

tions for the problem with independent job durations. Extensive computational results are

included within each section. Finally, a number of conclusions are formulated in Section 6.

2. Notation and problem statement

2.1 Definitions and objective function

A set of jobs N = {1, 2, . . . , n} with deterministic baseline durations di (i ∈ N) is to be

scheduled on a single machine; all jobs are available for processing at the beginning of the

planning period. A baseline schedule is an n-vector s, which specifies a starting time si for

each job i. There is a common deadline ω for all the jobs (e.g. one day’s production-shift

length): si + di ≤ ω, ∀i ∈ N . The actual duration of i is a stochastic variable Di, which

need not always equal di. The actual starting time Si(s) of job i is a random variable that is

dependent on s (see below). A non-negative integer cost ci is incurred per unit-time deviation

in the start time of job i, as a penalty for the resulting system nervousness, shop-coordination

difficulties and the delivery delay to the customer. The expected weighted deviation between

actual and planned job starting times is the stability measure for schedule s: we minimize

objective function
∑

i∈N ci|E[Si(s)] − si|, where E[·] is the expectation operator. In the

remainder of the article, we omit the argument s when there is no danger of confusion.

Stochastic job duration Di is modeled by means of discrete scenarios: let random variable

Li denote the increase in di if i is ‘disrupted’, which takes place with probability πi; Di equals

the baseline duration di with probability (1−πi). Li is discrete with probability-mass function

gi(·), which associates non-zero probability with positive values lik ∈ Ψi, where Ψi denotes

the set of disruption scenarios for the duration of job i.
∑

k∈Ψi
gi(lik) = 1 and gik is used as

shorthand for gi(lik); the disruption lengths lik are indexed from small to large for given i.

Values lik are assumed to be integer and the Di for different jobs i are independent.

Sequencing decisions are represented by a bijection L : {1, . . . , n} → N , where L(p) is the

index of the job in position p in the sequence (L represents a job list). Each such bijection

is in one-to-one correspondence with a total order on set N . Λ denotes the set of all job

lists. A schedule s is unequivocally determined by a job list, representing the sequencing

decisions, together with the following set of decision variables:

Fp = amount of idle time inserted immediately after L(p) (p = 1, . . . , n).

3

Inserted idle time can be envisaged as buffer time used to cushion the propagation of a

disruption towards the (machine) successors of the disrupted job. Quantities Fp are collected

in n-vector f . The values in f are valid if

n∑
p=1

Fp = ω −
n∑

i=1

di.

Φ is the set of all valid buffer-size vectors; we restrict our search to integral buffer sizes.

A pairwise-interchange argument shows that for any two consecutive jobs L(p) = i and

L(p + 1) = j (p = 1, . . . , n − 1) in an optimal solution either πiEi[Li]cj ≤ πjEj[Lj]ci or

Fp > 0, otherwise the solution is dominated, with Ei[·] the expectation operator with respect

to Li. A combination of sequencing decisions L and buffer sizes f completely determines a

baseline schedule s(L, f) in the following way:

si(L, f) =

L−1(i)−1∑
p=1

(
dL(p) + Fp

)
i = 1, . . . , n. (1)

Note that implicitly sL(1) = 0.

We assume that jobs are never started earlier than their baseline starting time: si ≤ Si,

∀i ∈ N , which guarantees that actual production will strictly copy the baseline if no dis-

ruptions occur. In effect, the baseline starting times become ‘release dates’ for schedule

execution. A motivation for this approach is given in [17]. The realization of Di becomes

known when job i is executed; the exact timing of this information is not important since

we reschedule by right-shifting the remaining jobs without re-sequencing:
{

SL(1) = sL(1)

SL(p) = max{sL(p); SL(p−1) + DL(p−1)}, p = 2, . . . , n.

The resulting problem with independent job durations and objective function

min
L∈Λ,f∈Φ

g(s(L, f)) =
n∑

i=1

ci(E[Si]− si) (2)

is called STABILITY.

2.2 One-disruption model

To evaluate the objective function for STABILITY for a feasible solution s, little less is

possible than to evaluate all
∏

i∈N(|Ψi| + 1) possible combinations of duration disruptions.

A pseudo-polynomial time algorithm can be used but remains computationally unattractive.

4

Efficiently producing optimal scheduling solutions to STABILITY therefore seems illusory.

This was the motivation in [17] to develop a model that focuses only on the main effects of the

separate disruption of each of the n jobs rather than on all possible disruption interactions.

Define Ii to be the indicator variable that is 1 if job i is disrupted, 0 otherwise, so

K :=
∑

i∈N Ii is the number of disrupted jobs. The objective function (2) is altered as

follows, yielding problem STABILITY WITH ONE DISRUPTION (SWOD):

min
L∈Λ,f∈Φ

h(s(L, f)) =
n∑

i=1

ci(E[Si|K = 1]− si). (3)

The model assumes that exactly one job suffers a disruption from its baseline duration. The

resulting restricted model is useful when disruptions are sparse and spread over time so that

the number of interactions is limited. Computational results show that the model is quite

robust to variations in the expected number of disrupted jobs E[K] =
∑

i∈N πi and performs

best for low E[K]. Stand-alone evaluation of h() requires O(n2Ψmax) time.

We let pi = Pr[Ii = 1|K = 1] represent the probability that job i is the unique disrupted

job, conditional on exactly one job being disrupted. Objective function (3) can then be

rewritten as

min
n∑

i=1

n∑
j=1

|Ψi|∑

k=1

αijk∆ijk. (4)

In this expression, αijk = pigikcj and

∆ijk = max

0 ; lik −

L−1(j)−1∑

p=L−1(i)

Fp

 , i, j = 1, . . . , n; k = 1, . . . , |Ψi| ,

the delay in the start time of job j due to a disruption according to scenario k of job i

when K = 1. ∆ijk is equal to zero or to the disruption length of i minus the buffer size in

place between the positions of jobs i and j, whichever is larger. In (4), the expected value

of the starting-time delay of job j is computed by summing the values ∆ijk weighted with

probability pigik and cost cj.

The scheduling problem SWOD as set out above has been shown to be NP-hard in the

ordinary sense in [19], even if all |Ψi| = 1. A similar proof can be set up to show strong

NP-hardness ([17]). However, determination of optimal idle times f for a given sequence L

can be performed in polynomial time using network-flow techniques (see [15, 17]). In [17] the

intractability of STABILITY is also discussed and it is shown that, without loss of generality,

we can set all job durations equal to zero if we accordingly subtract
∑n

i=1 di from ω. This

5

Figure 1: Schedule for the example problem when ω = 9.

operation is assumed to have been applied to all input instances in our computations, except

for the computational illustration in Section 2.3, where we consider unit durations for ease

of exposition. When the available float is zero, i.e. for the case ω =
∑n

i=1 di, ordering the

jobs in non-decreasing expected weighted disruption length piEi[Li]/ci leads to an optimal

schedule for SWOD, which can be shown by an adjacent-interchange argument. The same

holds for STABILITY for quantity πiEi[Li]/ci. We refer to this rule as the EWDL-rule (for

expected weighted disruption length); the rule always leads to the same sequence(s) for the

two problems.

2.3 Illustration

We illustrate the problem setting by means of a brief example. Consider a problem instance

with n = 6 jobs where all jobs have equal duration di = 1, and a time horizon of ω = 9 time

units is allotted to the set of jobs. Consequently, we have three spare units of time that can

serve as a buffer. Tasks indexed 5 and 6 are considered to be of high importance, the cost of

delay in their starting times is c5 = c6 = 4; the other jobs i 6= 5, 6 have ci = 1. Further data

are provided in Table 1. Job 1, for instance, has a probability of three out ten of suffering a

duration disruption, and if this occurs, it will be an increase of either one or two time units,

both equally likely.

job i 1 2 3 4 5 6
πi 0.3 0.05 0.3 0.1 0.25 0.1
|Ψi| 2 2 1 2 2 1

li1(gi1) 1 (0.5) 1 (0.7) 2 (1) 2 (0.5) 1 (0.5) 2 (1)
li2(gi2) 2 (0.5) 2 (0.3) - 4 (0.5) 2 (0.5) -

pi 0.292474 0.035918 0.292474 0.075827 0.22748 0.075827
πiEi[Li]/ci 0.45 0.065 0.6 0.3 0.09375 0.05
piEi[Li]/ci 0.438712 0.046693 0.584949 0.22748 0.085305 0.037913

Table 1: Disruption data for the example problem.

6

An optimal solution to the corresponding instance of SWOD is depicted in Figure 1, its

objective-function value is 0.805. In this schedule the starting time of job 5 is protected from

a disruption of up to two time units in the duration of jobs 1, 2 or 6. The available idle time

is put to good use: if we reduce ω to 6 (no idle time anymore), the optimal solution attains

an associated cost of 3.4574 for job sequence 6-2-5-4-1-3. Sequence 6-2-1-5-4-3 (optimal for

ω = 9) corresponds with a cost of 5.0823 when ω = 6, whereas 6-2-5-4-1-3 leads to a cost of

at least 1.2509 when the scheduling horizon is nine time units.

Multiple sets of values πi exist corresponding with the same values pi: the dependent

durations have one less ‘degree of freedom’ (for details we again refer to [17]). For increasing

E[K], corresponding with more variability in the system, Table 2 computes the appropriate

πi-values for the dependent durations in the example (where E[K] = 1.1) and also gives

the objective-function values for sSWOD, the optimal SWOD-schedule (which is the same for

each line of the table), as well as for sSTAB, the schedule that is produced by the heuristic

procedure for solving STABILITY that we present in Section 5. The objective function is

evaluated using simulation. Notice that pi 6= πi, i = 1, . . . , 6, even for E[K] = 1.

sSTAB is consistently better than sSWOD, which is expectable since the latter is a heuristic

solution for STABILITY. We also observe that the difference increases with E[K], which is

in line with our remark that SWOD is most useful for a low number of disrupted jobs.

However, the remainder of this paper will show that, for heuristic purposes and with the

same time limit, an algorithm for SWOD can search many more solutions than an algorithm

for STABILITY, which will enable it to produce better solutions in some cases.

E[K] π1 π2 π3 π4 π5 π6 g(sSWOD) g(sSTAB) difference
0.5 0.14 0.0196 0.14 0.0405 0.1124 0.0405 0.477 0.461 3.52%
1 0.2726 0.044 0.2726 0.0885 0.2257 0.0885 1.149 1.063 8.07%

1.5 0.3963 0.0746 0.3963 0.1455 0.338 0.1455 2.068 1.824 13.40%
2 0.508 0.1125 0.508 0.2112 0.4454 0.2112 3.271 2.747 19.07%

2.5 0.6081 0.1601 0.6081 0.2869 0.5469 0.2869 4.802 3.851 24.72%
3 0.6962 0.2196 0.6962 0.3727 0.6406 0.3727 6.711 5.023 33.60%
4 0.8361 0.3851 0.8361 0.5694 0.7986 0.5694 11.712 7.285 60.77%
5 0.9346 0.6372 0.9346 0.7876 0.9175 0.7876 18.272 8.994 103.16%
6 1 1 1 1 1 1 26.107 10.904 139.43%

Table 2: Comparison of STABILITY and SWOD for different values of E[K].
‘difference’ = [g(sSWOD)− g(sSTAB)]/g(sSTAB).

7

2.4 Implementation and data generation

The performance of the algorithms presented in the next sections is examined by means of

computational experiments using randomly generated datasets. The coding was performed

in C using the Microsoft Visual C++ 6.0 programming environment, and the experiments

were run on a Samsung X15 Plus portable computer with Pentium M processor with 1,400

MHz clock speed and 512 MB RAM, equipped with Windows XP.

The experimental design adopted for this study consists of datasets of 25 problem in-

stances per value of n; we consider n = 10, 20 and 50 jobs. For each job i in each instance of

each dataset, we directly generate pi-values rather than πi. All job durations are uncertain:

for each job i, a value qi is selected from the discrete domain [1; 10] and these values are

normalized to probabilities pi. Cost coefficients ci are integer values randomly selected from

[1; 5]. The disruption length Li is a discrete random variable for which gi is a discretization

of the linear function Gi(x) = 2(1/Ci−x/C2
i), for which the intercept Ci with the abscissa is

a realization of a discrete uniform random variable with support [2; 25]. Scenarios k ∈ Ψi are

determined as follows: li1 is randomly selected from the discrete values in [1; min{4, Ci− 1}]
and additional scenarios lik = li,k−1+5 are added while lik ≤ Ci−1. These choices are largely

the same as those made in [17]. As for ω, we consider three settings, which are dependent

on the number of jobs: ω =
√

n (low sum of buffer sizes), ω = 2
√

n (medium protection),

and ω = 4
√

n (high cumulative buffers), each time rounded to the nearest integer.

Jobs with zero cost coefficient can be sequenced last: this is always a dominant decision.

Similarly, jobs i with zero piEi[Li] can be scheduled first on the machine without loss of

better solutions. Such instances are actually never encountered in our experiments because

of the way in which the data are generated. In the following we also work with f as an

(n− 1)-vector (instead of dimension n): without loss of better solutions, we assume Fn = 0.

3. Global algorithmic structure

The three algorithms that will be presented in this article follow the same overall logic

structure represented in pseudocode as Algorithm 1. Deviation from this framework might

allow for even more efficient or effective solution approaches, but we have decided to adhere

to the same structure so that the intrinsic underlying solution ‘philosophy’, which differs

between the three algorithms, is put into perspective: we examine one algorithm (SW1) for

the approximate formulation SWOD, which adopts a hierarchic treatment of sequencing and

8

timing decisions; one algorithm (SW2) for SWOD with more monolithic treatment of the

same two decisions; and one solution approach for the exact problem formulation (STAB).

The algorithms manipulate a collection of solutions (called ‘population’) of constant size

popsize rather than a single solution at each stage, and fit within the general framework of

‘adaptive memory programming’ ([27]). The discussion in the following sections will highlight

the implementation of each of the main elements of this code separately. Simple common

components are the following:

• The termination criterion for the procedures is the reaching of a bound on the running

time.

• The better a job list, the more likely it will be chosen by select as father or mother.

This procedure uses regret-based biased random sampling (cfr. [8]).

• ‘Bernoulli(pbin)’ stands for a realization of a Bernoulli-distributed random variable with

parameter (success probability) equal to pbin. Obviously, evaluate and fast descent are

applied to the daughter only if a daughter is actually constructed, so if the Bernoulli

variable is 1.

• At the end of each iteration, insert checks for son and daughter separately whether it

is better than the worst individual in the current population, and if so, replaces the

latter by the new solution.

Algorithm 1 Global algorithmic structure

construct initial population
while termination criterion not met do

select two solutions father and mother from population
if Bernoulli(pbin) = 1 then

obtain son, daughter from binary operator(father, mother)
son = mutate(son); daughter = mutate(daughter)

else
son = unary operator(father)

end if
evaluate(son); evaluate(daughter)
son = fast descent(son); daughter = fast descent(daughter)
evaluate(son); evaluate(daughter)
insert son and/or daughter into population if they are better than current worst solution

end while

9

4. Stability with one disruption (SWOD)

In this section we propose two meta-heuristics for solving problem SWOD. The two algo-

rithms differ considerably from each other, in that the buffer sizes (values f) are determined

optimally by a subroutine that functions as a black box in the first algorithm (which we

have named algorithm ‘SW1’), while in the second algorithm (which is referred to as ‘SW2’),

buffer sizes and sequencing decisions, i.e. the two elements that jointly completely deter-

mine a schedule, are both decided on by the meta-heuristic search. The two algorithms are

presented in Sections 4.1 and 4.2, respectively.

4.1 Algorithm SW1: separation of sequencing and scheduling

The solution representation of our first algorithm SW1 is a job list L. This gives rise to a

close resemblance between SW1 and meta-heuristics for scheduling problems for which the

search space can be restricted to active schedules, since job lists are often a preferred solution

representation for the latter type of problems (see, for instance, [14]). The meta-heuristic

attempts to find a job list L∗ = arg minL∈Λ {minf∈Φ h(s(f , L))}. Below we elaborate on

the implementation in SW1 of some of the functions appearing in the global algorithmic

framework that was described in Section 3.

4.1.1 evaluate

The objective-function value h(s(f∗(L), L)) for a given value of L is established by means

of (polynomial-time) network-flow techniques (referenced in Section 2.2), which implicitly

determine associated optimal buffer sizes f∗(L). More specifically, for solving the encountered

minimum-cost flow problems, we use CS21, version 3.9, a practical implementation of a

scaling push-relabel method ([11]), which is called as a subroutine. The code was slightly

adapted to run under Windows and to guarantee convenient memory management, the

algorithm itself was kept unchanged. CS2 take all integer inputs; since quantities pi and

gik may be fractional, values αijk are multiplied by factor 100,000 and rounded to the lower

integer.

1Copyright c© 1995-1999 IG Systems, Inc. Commercial use of CS2 requires a license; cfr. website
http://www.igsystems.com/cs2/

10

4.1.2 construct

In order to compose an initial job list we can use one or more priority rules. We order

the jobs of N in decreasing value of ci, 1/pi, 1/Ei[Li] and ci/(piEi[Li]) (the denominator of

these fractions is non-zero, cfr. Section 2.4). If we follow this approach deterministically (ties

broken by job number), we obtain one job list for each rule. Computational experiments show

that the best rule is ci/(piEi[Li]) for all values of ω, with the largest differences corresponding

with low ω – cfr. Section 4.1.8, where a random order is also included. In order to introduce

randomness into the ordering process, we generate multiple different solutions starting from

the same priority rule. More specifically, nr changes jobs in each list are selected and inserted

elsewhere in the list. The initial population is constructed in this way, using each of the

foregoing five priority rules for 20% of the population members (all lists resulting from the

random rule are independently generated, and the job insertion is not applied).

4.1.3 binary operator

This part of SW1 has been borrowed from the literature on genetic algorithms (GA) (see

[12] for general information on GAs). We use a two-point crossover to combine father and

mother into son and daughter. This crossover has proved to work well in a range of different

scheduling environments, including scheduling under uncertainty (see e.g. [3, 4, 9, 13]).

Therefore, we consider case pbin = 1 as a ‘touchstone’ version of SW1. Let job lists LF

and LM represent father and mother, respectively. For a two-point crossover we draw two

random integers q1 and q2 with 1 ≤ q1 < q2 ≤ n. The daughter’s job list LD is determined

as follows:

LD(p) = LM(p), p = 1, . . . , q1;

LD(p) = arg min
k∈N

{L−1
F (k)|k /∈ {LD(1), . . . , LD(p− 1)}}, p = q1 + 1, . . . , q2;

LD(p) = arg min
k∈N

{L−1
M (k)|k /∈ {LD(1), . . . , LD(p− 1)}}, p = q2 + 1, . . . , n.

The first part of the daughter is determined by the mother, the next set of positions is derived

from the father but already selected jobs may not be included again. The last positions are

again supplied by the mother. The son is constructed similarly by exchanging the role of

father and mother.

11

4.1.4 unary operator

We employ a steepest-descent algorithm as unary operator for SW1; an overview is provided

as Algorithm 2. Since calls to the network solver are highly costly as far as time consump-

tion is concerned, this part of SW1 leaves the implicit buffer sizes, which were optimal for

the input job list, unchanged. With each outer iteration of Algorithm 2, the best found

neighborhood solution is retained, even if this is not an improving move; this makes the

algorithm of the type steepest-descent/shallowest-ascent, which adds to the diversification

of the overall search procedure. Only after the final iteration (in the subsequent call to eval-

uate) is the output job list passed to the network solver to obtain new optimal buffer sizes.

It is important to note that this evaluation may actually lead to a better objective-function

value than the combination of job list and buffers we started with.

The last line of Algorithm 2 is a call to function EWDL reordering. This function re-

arranges its input list L so that each subset of jobs that are adjacent in L and have zero

intermediate buffers in input vector f0 are reordered in EWDL-order, which is optimal for

fixed buffer sizes.

Algorithm 2 unary operator for SW1

Input: job list L, buffer sizes f0 (with normally f0 = f∗(L))
g0 = g(s(L, f0)); betterfound = false
for i = 1 to nr iter do

for j = 1 to nr pairs do
randomly select {a1, a2} ⊂ N (all pairs for the same i are different)
L′ = L; exchange the positions of a1 and a2 in L′

if g(s(L′, f0)) < g0 then
betterfound = true; Lbetter = L′; g0 = g(s(L′, f0))

end if
remember g(s(L′, f0))

end for
set L equal to the list L′ with best value g encountered for the current value of i
L=EWDL reordering(L,f0)

end for
if betterfound then

return Lbetter

else
return L

end if

12

4.1.5 mutate

Mutation is applied to the son and daughter in order to increase the diversity of the popula-

tion; this function is not guided by the impact on the objective function. We have considered

three mutation procedures for SW1, applied to an input job list. Each of these three proce-

dures takes a value pmut ∈ [0; 1] as parameter.

1. Interchange of pairs of adjacent jobs. For each job pair (L(p), L(p + 1)) separately

(p < n), pmut represents the probability that the mutation is applied: with probability

(1− pmut), nothing happens (with L the input list to mutate).

2. Interchange of pairs of jobs, not necessarily adjacent. We compute nmut = n × pmut

and arbitrarily select nmut different pairs (i, j), i 6= j, for interchange.

3. For each position p separately, with probability pmut, we insert job L(p) into a randomly

chosen position q 6= p by appropriately ‘shifting’ the other jobs.

Preliminary experiments have shown that 1. actually performs best, and the mutation in the

final version of SW1 is therefore based on this (simplest) setting.

4.1.6 fast descent

This local-search procedure is based on calculating the difference in objective function if two

adjacent jobs in a list L are switched (without changing the intermediate buffers). If an

improvement is made we continue the procedure with the new job list. As was the case for

unary operator, new optimal buffer sizes for the resulting job list are produced by means of

network-flow computations after the end of the procedure.

Interchange of adjacent jobs is computationally attractive because the impact on the ob-

jective function is easily computed. The change in the objective function when we exchange

the positions of jobs i = L(p) and j = L(p+1) is equal to cipjEj[Lj]−cjpiEi[Li] if the buffer

Fp = 0. For Fp > 0, we still only need to recompute ∆ixk and ∆jxk, ∀x ∈ N : p ≤ L−1(x),

and ∆xik and ∆xjk, ∀x ∈ N : L−1(x) ≤ p, for all relevant scenarios k. Note that jobs that

are swapped in unary operator are not necessarily adjacent in the input list. Although it is

still not unavoidable to recompute the objective function ‘from scratch’ after each move in

the latter case, repeated evaluation nevertheless turns out to be overly costly, which is why

we only consider adjacent jobs in fast descent.

13

Various approaches are possible to exchanging the positions of adjacent jobs. We have

tested three, the main distinction being the order in which the switches are made. Prelimi-

nary testing has indicated that setting 2. performs best.

1. For p = 1 to (n− 1), we investigate the exchange of jobs L(p) and L(p + 1).

2. (n−1) trials to switch jobs L(p) and L(p+1), once for each value of p ∈ {1, 2, . . . , n−1},
but values are selected in random order.

3. The third version of fast descent performs an unpredictable number of iterations ac-

cording to the code description titled ‘Fastest descent version 3’, which iteratively looks

for local improvements.

Algorithm 3 Fastest descent version 3

Eligible = {1, 2, . . . , n− 1}
while Eligible not empty do

select and remove a position p from Eligible
investigate the switch of positions p and (p + 1)
if improving then

implement the switch
if (p− 1) > 0 and (p− 1) /∈ Eligible then add (p− 1) to Eligible
if (p + 1) < n and (p + 1) /∈ Eligible then add (p + 1) to Eligible

end if
end while

4.1.7 Different versions of the algorithm

For the dataset with n = 50, we compare the computational results of algorithm SW1 for

various parameter settings; the time limit is n seconds. The reference setting is pbin = 0,

pmut = 0.2, popsize = 10, nr changes = 3, nr iter = 1, nr pairs = 20. For each version of the

algorithm we report the increase in objective function on changing from the reference to the

setting under examination, expressed as a percentage of the reference (each time averaged

over the dataset).

Table 3 contains the results for a number of different choices with respect to the con-

struction of the initial population. The reference setting comes out best overall, although for

ω = 7 it is not superior. These figures also show that SW1 is robust: it is very little sensitive

to changes in parameter choices, which follows from the fact that the absolute value of each

of the deviations is below 1%. Our final choice popsize = 10 is rather low compared with

the existing literature on population-based search but turns out to lead to the best results.

14

popsize nr changes
ω 5 25 0 1 5
7 −0.09% −0.13% −0.02% −0.20% −0.03%

14 0.34% 1.38% 0.55% 0.45% 0.38%
28 0.11% 1.47% −0.12% 0.14% −0.15%

avg 0.12% 0.91% 0.14% 0.13% 0.07%

Table 3: Computational results for SW1 for different settings for the initial population.

pbin nr iter = 2 nr iter = 2
ω 0.1 0.25 0.5 1.0 nr pairs = 20 nr pairs = 10
7 −0.03% 0.16% 1.09% 4.94% 0.19% 0.10%

14 0.10% 1.12% 1.81% 5.50% 1.49% 0.51%
28 0.55% 0.82% 1.86% 5.29% 1.70% 1.17%

avg 0.21% 0.70% 1.59% 5.24% 1.13% 0.59%

Table 4: Computational results for SW1 for additional parameter values.

Choices for other parameters are examined in Table 4. It turns out that the choice

pbin = 0 is best, which effectively means that the binary operator is never invoked and the

steepest descent algorithm is always selected. A rather large difference can be observed

between the final variant of SW1 and the touchstone version using the two-point crossover

(for which pbin = 1). We also conclude from the final columns in the table (as well as from

additional experiments, the computational results of which are not included) that SW1 is

relatively insensitive to changes in the values of nr iter and nr pairs, but that, overall, the

choices made in the reference setting are preferable.

4.1.8 Objective-function comparisons

For n = 10, the deviations from the optimal solutions produced by the branch-and-bound

(B&B) algorithm described in [17] are given in Table 5, for SW1 and for the truncated B&B;

for n = 20 we compare the truncated B&B and SW1. We base our comparisons on the

objective function as it is computed by CS2 (cfr. Section 4.1.1). The time limit for SW1

is still n seconds, the B&B is truncated after 10n seconds (we allot more time to B&B

because the algorithm was never actually designed to be interrupted). We observe that the

truncated B&B and SW1 exhibit a comparable heuristic performance for n = 10, and only

fail to produce all optimal solutions for high ω (=13), where for three out of the 25 instances

both heuristics do not find a global optimum. For n = 20, SW1 significantly outperforms

the truncated variant of the B&B algorithm.

15

n = 10 n = 20
time truncated

ω full B&B SW1 B&B SW1
low 194.01s 0.00% 0.00% −6.37%

medium 418.99s 0.00% 0.00% −7.48%
high 786.70s 0.15% 0.15% −9.10%

Table 5: Objective-function comparison with optimal solutions for n = 10 and with the
truncated B&B for n = 20.

ω rule 1 rule 2 rule 3 rule 4 random trunc. B&B
7 16.51% 69.42% 61.08% 38.94% 117.38% 10.07%

14 21.17% 68.96% 60.83% 36.62% 104.51% 13.52%
28 24.97% 64.70% 57.51% 32.44% 87.00% 15.95%

avg 20.88% 67.70% 59.81% 36.00% 102.96% 13.18%

Table 6: Performance of the priority rules and the truncated B&B for SWOD compared
with the reference setting for SW1; n = 50.

We have examined the performance of the different priority rules that are used in the

composition of the initial population as a stand-alone heuristic for SWOD when they are

combined with optimal buffer insertion (again carried out by CS2); these results are provided

in Table 6 and pertain to n = 50. The numbering of the four rules follows the order in which

they are listed in Section 4.1.2. Even the best priority rule exhibits over 20% deviation from

the SW1 solution on average. A comparison of SW1 with truncated B&B is also included;

we observe that SW1 outperforms the latter algorithm by 10% to 15% on average.

4.2 Algorithm SW2: integration of sequencing and scheduling

Contrary to the approach discussed in Section 4.1, algorithm SW2 takes active control of

both job sequencing (under the form of a list of the jobs in N) and of buffer sizes between

consecutive pairs of jobs. This integration of the two decisions to be made constitutes the

innovative character of SW2: up till now, similar studies ([17, 20, 22, 28]) have always

adhered to a hierarchical bi-level approach, where resource allocation (sequencing, in our

context) is performed in the first stage and timing decisions (buffer insertion) are made in

the second stage. The solution representation for SW2 is a combination of a job list L and

an (n−1)-vector f of buffer sizes. Concurrently, we also maintain a set of associated starting

times based on Equation (1). In SW2, buffer sizes are computed heuristically rather than

optimally but we avoid the time-expensive calls to CS2 (see the discussion in Section 4.2.1).

16

4.2.1 evaluate

An optimal assignment of buffers to a job list can be established in polynomial time. Nev-

ertheless, this procedure (cfr. Section 4.1.1) still consumes a lot of time when the number

of jobs is ten or higher, since it is invoked very frequently. This is the main reason why

we have decided to create SW2. In SW1, the determination of optimal buffers was part of

the calculation of the objective function. The computational cost of evaluating a solution is

drastically decreased for SW2 since starting times are easily derived from the solution codifi-

cation. As a consequence, we are able to examine more solutions within the same time. The

population size is therefore also significantly increased compared to SW1. Still, it should be

pointed out that SW1 scans only a dominant set of solutions, namely job lists with optimal

associated buffers (most of the time). This is no longer true for SW2, whose search space is

larger and contains a whole range of dominated solutions (since we are usually not working

with optimal buffers).

4.2.2 construct

We have tested three algorithms for creating initial solutions for SW2 (which are actually

stand-alone heuristics for SWOD).

1. Sequential job list and buffer insertion: we create the job lists exactly as in SW1.

However, instead of using an exact algorithm for inserting the buffers we use ADFF, a

simple heuristic described in [17].

2. Minimization of the cost of inserting a job in a given position. The structure of this

function is presented as Algorithm 4. From back to front of the machine, we fill one

job position and buffer per iteration. Rather than simply selecting the job leading to

(locally) smallest cost (see below), we again introduce randomness. More specifically,

Fp is selected as follows: let ωmax be a random integer in [ω/2, ω]. Fp is non-zero with

probability P ; in this case it is a random integer in [0; min{ωr, ωmax}], so that the

average buffer size if non-zero will be min{ωr, ωmax}/2. At the start of the procedure,

we wish to spread out the buffers with equal treatment of all positions on the machine,

so our desire is for values Fp to follow a multinomial distribution with sum ω and equal

probabilities. The expected value of each Fp in this case would be ω/(n − 1). More

generally, at an arbitrary stage of the procedure, we wish the expected value of Fp to

17

equal ωr/(e− 1), with e = |Eligible|. This is achieved by selecting

P =
2ωr

(e− 1) min{ωr, ωmax} .

The cost of placing job k in position p is calculated as the cost of the (possible) delay

of successor jobs if k is disrupted. This can be calculated exactly since we know all

jobs and buffers after L(p).

Algorithm 4 Initial solutions for SW2 version 2

L(n) = arg maxi∈N piEi[Li]/ci; Eligible = N\{L(n)}; ωr = ω
for p = (n− 1) to 2 do

compute buffer size Fp; ωr = ωr − Fp

j = arg mink∈Eligible{cost of insertion of k at position p}
L(p) = j; remove j from Eligible

end for
F1 = ωr; L(1) = the single remaining job in Eligible

3. Minimization of the cost of insertion of a job or buffer in any position. We construct

job lists Lk and buffer sizes fk for increasing number of jobs k (k = 2, . . . , n): see

Algorithm 5, where ‘Uniform(0;1)’ stands for a realization of a continuous uniformly

distributed random variable on [0; 1], and again e = |Eligible|. Function prior yields the

job with highest priority in |Eligible| according to one of the priority rules discussed

for SW1.

In order to compute where to place a unit of buffer in the solution, we analyze ev-

ery possibility. In this process it is not necessary to re-calculate the entire objective

function for each candidate position: the values for adjacent positions are interrelated.

With respect to insertion of a job j, we split the partial solution into sublists where the

jobs share the same starting time (zero intermediate buffers). We need only consider

allocation of j to each of the sublists.

4.2.3 binary operator

Let sM , sF , sD and sS represent the starting-time vectors for mother, father, daughter and

son, respectively. For i = 1, . . . , n, we compute (sD)i as the integer closest to α(sM)i+

(1 − α)(sF)i, with α a random number in [0; 1]. LD orders the jobs in increasing (sD)i; in

case of ties, the same order as LM is adopted. The son is created symmetrically. In both

cases buffers are implicit from the starting times.

18

Algorithm 5 Initial solutions for SW2 version 3

Eligible = N ; ωr = ω; f2 = 0
i=prior; remove i from Eligible; j=prior; remove j from Eligible
if piEi[Li]cj ≤ pjEj[Lj]ci then

L2(1) = i; L2(2) = j
else

L2(1) = j; L2(2) = i
end if
while e > 0 or ωr > 0 do

if Uniform(0;1) <
(

ωr

ωr+e

)
then

increase by one the buffer in fn−e with best change in objective function; ωr = ω − 1
else

j = prior
construct Ln−e+1 and fn−e+1 by inserting j into Ln−e in the best position
remove j from Eligible

end if
end while
return Ln and fn

4.2.4 unary operator

This procedure is the same as the one described in Section 4.1.4, so without attention to

buffers. We underline that this is a deliberate choice: preparatory tests with operators

manipulating buffers and job lists at the same time did not lead to improved results.

4.2.5 mutate

The mutation of the job list for SW2 is the same as for SW1. As for the buffers, a parameter

pmut ∈ [0; 1] is chosen (pmut = 0.1 in our computations). For each Fp separately, p =

1, . . . , n − 1, mutation takes place with probability pmut. If that happens, one of three

operations is applied, each equally likely (in all cases, position q is chosen randomly):

1. exchange of Fp with buffer Fq, p 6= q, Fp 6= Fq.

2. transfer of a random number of time units from buffer Fq > 0, p 6= q, to Fp.

3. transfer of a random number of time units from Fp to buffer Fq, p 6= q, if Fp > 0.

4.2.6 fast descent

We first apply fast descent for job lists as it is described in Section 4.1.6. Afterwards, local

search is applied for the buffer sizes. A number of different moves are investigated. We

19

differentiate between zero and non-zero buffers and work again with sublists (cfr. Section

4.2.2). The first four moves constitute changes within a sublist; if an improving movement

is found, we implement it before going to the next sublist. Each of the following moves is

examined for a non-zero buffer Fp:

• FD1fw: Exchange Fp with zero Fq for which p < q ≤ n and @Fr > 0 : p < r < q.

• FD1bw: Exchange Fp with zero Fq for which 1 ≤ q < p and @Fr > 0 : q < r < p.

• FD2fw: Subtract a random integer quantity Q ∈ {1, 2, . . . , Fp− 1} from Fp and add Q

to zero Fq for which p < q ≤ n and @Fr > 0 : p < r < q.

• FD2bw: Subtract a random integer quantity Q ∈ {1, 2, . . . , Fp − 1} from Fp and add

Q to zero Fq for which 1 ≤ q < p and @Fr > 0 : q < r < p.

Additionally, we investigate the following moves, which maintain the sublists:

• FD3fw: Subtract a random integer quantity Q ∈ {1, 2, . . . , Fp − 1} from Fp > 0 and

add Q to non-zero Fq, with p < q ≤ n.

• FD3bw: Subtract a random integer quantity Q ∈ {1, 2, . . . , Fp − 1} from Fp > 0 and

add Q to non-zero Fq, with 1 ≤ q < p.

Again, there is no need for re-computation of the entire objective function for every move:

we extensively exploit previous computations. The six moves are applied one after the other

in the order of description.

4.2.7 Computational results

We have selected pbin = 0.5 and method 2 for the construction of the initial population as

the best setting for SW2. Table 7 compiles some comparisons of this reference setting with

different parameter choices; all results pertain to the dataset with n = 50 and a time limit of

n/4 seconds. The table shows that the parameter choices for the reference setting lead to the

best results. Contrary to what was found for SW1, binary operator is useful in SW2: pbin > 0

is preferable – although (based on the bad performance of pbin = 1) the unary operator still

contributes most to the search procedure (we restrict the examined pbin values to 0, 0.5 and

1 since we do not want to ‘finetune’ the parameters too much). In the table, methods 1, 2

20

construct fast descent
ω pbin = 0 pbin = 1 method 1 method 3 1, 2 and 3 only for job lists
7 0.95% 47.37% 1.23% 0.87% 1.05% 1.08%

14 0.80% 42.10% 1.15% 1.43% 1.83% 0.50%
28 −0.04% 31.53% 0.93% 1.07% 0.81% 1.00%

avg 0.57% 40.34% 1.10% 1.12% 1.23% 0.86%

Table 7: Computational results for different versions of SW2: we report the percentage
increase in the objective function compared with the reference setting.

and 3 together for construct refers to the algorithm where the three methods are invoked in

equal proportions.

The results in Table 8 demonstrate that, compared with SW1, the allotted computation

times can be brought down for SW2 while at the same time higher-quality schedules can be

obtained. Specifically, a time limit of n/4 seconds is imposed on SW2, which is only one

fourth of the time accorded to SW1. A large gain in CPU-time is achieved by not invoking

CS2, as explained in Section 4.2.1, and this more than offsets the disadvantage of not working

with optimal buffer sizes.

ω = 7 14 28 avg
1.77% 2.57% 2.34% 2.22%

Table 8: The improvement in the objective function by using SW2 rather than SW1,
for n = 50.

5. Stability with independent job durations

The meta-heuristic that we propose and which works with independent job durations is

called ‘STAB’ for short. STAB adopts the same algorithmic framework as SW1 and SW2,

which was outlined in Algorithm 1. Additionally, STAB also shares with SW2 its solution

representation and the functions binary operator and mutate.

5.1 evaluate

We have mentioned in Section 2.2 that exact evaluation of the STABILITY objective function

is overly time-consuming, which is why we approximate the objective-function values by

means of simulation. Similar decisions in the context of scheduling under uncertainty have

been made by [3, 18, 21, 25], among others. We define a ‘replication’ as a set of values

21

(λ1, . . . , λn) ∈ ×i∈N{Ψi ∪ {0}} representing realizations of disruption lengths for all jobs

(with zero included). Computation of the objective function g() of a given solution is done

by averaging the summed weighted deviation for each of the replications. The number of

replications nr rep is a parameter of STAB. The same set of replications is maintained for

different calls to evaluate, which leads to better results than the case where new replications

are sampled at each call, as will be confirmed by the computational results (Table 9).

In order to compare algorithms, we produce a better approximation of the objective-

function value of the output schedule of STAB by means of a larger set of one million

replications (which is the same for all algorithms included in the comparison); these repli-

cations are independent from the initial set of replications used in evaluate. The foregoing

approach to handling replications has been borrowed from [3].

Efficiency gains are obtained as follows: since the events K = 1, K = 2, . . . and K = n

are disjoint and jointly exhaustive, we see (from the law of total expectation) that, for a

schedule s,

g(s) =
n∑

k=0

n∑
i=1

ci(E[Si|K = k]− si).

Since Si = si for all i ∈ N when K = 0, we can dismiss all replications that are zero vectors

and afterwards multiply our estimate with coefficient (1− Pr[K = 0]), where Pr[K = 0] =
∏

i∈N(1− πi). This technique is especially useful when E[K] is low.

5.2 construct

For the construction of the initial population, we create the job list exactly as in SW1.

Instead of an exact algorithm for inserting the buffers, however, we use the following heuristic.

We distribute ω1 time units among the buffers that separate job pairs {i, j} that are not in

EWDL-order (ω1 being a parameter to STAB); priority is given to pairs {i, j} with high value

|pjEj[Lj]/cj−piEi[Li]/ci|. Only afterwards (since repeated evaluation would computationally

be overly expensive), the STABILITY objective g() is computed, leading to an estimate of

the cost cj(E[Sj]− sj) associated to each job j. Subsequently, the remaining (ω − ω1) units

of idle time are randomly spread across the scheduling horizon, with a bias towards positions

in front of the jobs with higher cost.

22

5.3 unary operator

Based on estimates of the contribution of each job to the objective function (cfr. Section

5.2), nr moves jobs are selected in unary operator, with a bias towards jobs with higher cost.

Each thus selected job is advanced in the list a (random) number of positions. The buffer

sizes are kept unaltered.

5.4 fast descent

If E[K] ≤ 3, the fast descent-implementation of SW2 is applied for the SWOD objective

function h(). The schedule that is obtained replaces the original solution if its score on

objective function g() is better than the old solution, otherwise it is discarded. When

E[K] > 3 we only apply function EWDL reordering (see Section 4.1.4) and leave the buffer

sizes unchanged.

5.5 Computational results

All results in this section were obtained for the dataset with n = 50; a time limit of n/4

seconds is imposed (the same as for SW2). The parameter values that are retained for the

final version of STAB (called ‘reference setting’) are pbin = 0.5 and nr rep = 1000.

Table 9 provides a comparison of the performance of different versions of STAB; devia-

tions are always expressed as a percentage of the objective-function value for the reference

setting. The results are described for different amounts of available idle time (represented

by ω) and for different degrees of variability in the system (measured by E[K]). The table

provides (rudimentary) numerical ground for the parameter choices in the reference setting

as well as for the inclusion of fast descent; it also substantiates our earlier remarks with

respect to the implementation of function evaluate (made in Section 5.1). In Table 9, ‘no

fast descent’ means that function fast descent is not invoked; comparisons are only useful

for E[K] ≤ 3. ‘new replic’ refers to the setting where new replications are used for each

new call to evaluate. ‘include zero’ indicates that replications equal to the zero vector are

not dismissed from the computations (see Section 5.1); comparisons are only useful for low

values of E[K]. Contrary to what was found for SW2 (and even more so for SW1), the

binary operator is more useful than the unary operator.

Table 10 contains objective-function comparisons between SW2 and STAB (the reference

is STAB). We pointed out in Section 2.2 that the SWOD-formulation is most valuable for low

23

ω E[K] nr rep nr rep pbin = 0 pbin = 1 no fast new include
= 500 = 5000 descent replic zero

7 1 1.67% 0.35% 1.42% 0.74% 0.75% 5.61% 1.34%
10 0.15% 0.34% 4.24% 0.19% 1.79%
20 −0.01% 0.20% 5.46% 0.05% 1.10%

14 1 2.06% 0.67% 1.99% 0.49% 1.79% 7.32% 1.14%
10 0.05% 1.06% 8.17% 0.52% 3.04%
20 0.03% 0.59% 10.71% 0.42% 2.12%

28 1 0.95% 0.19% 1.57% −0.03% 4.40% 7.25% 0.86%
10 −0.07% 2.02% 10.78% 0.55% 4.41%
20 −0.07% 1.92% 18.53% 1.06% 3.97%

avg 0.53% 0.82% 6.99% 0.44% 2.31% 4.07% 1.11%

Table 9: Computational results for different versions of STAB: we report the percentage
increase in the objective function compared with the reference setting.

E[K]
ω 0.5 1 1.5 2 3 4
7 −3.17% −1.78% 0.48% 2.52% 5.83% 9.91%

14 −4.06% −2.17% 2.10% 4.88% 10.78% 17.84%
28 −5.81% −4.29% −1.41% 1.06% 7.03% 11.55%

avg −4.35% −2.75% 0.39% 2.82% 7.88% 13.10%

Table 10: Comparison between SW2 and STAB (deviation of SW2 from STAB, as a per-
centage of the STAB objective function).

values of E[K], which is confirmed here. Additionally, we arrive at the new observation that,

when both the formulations STABILITY and SWOD are solved sub-optimally, heuristics

that solve the latter (easier) problem can even outperform algorithms that tackle the exact

problem statement – but only when there is little variability in the system (as measured by

E[K]). As E[K] increases, the quality of the solution provided by SW2 becomes increasingly

poorer compared to the one obtained by STAB.

6. Summary and conclusions

In this article we have examined a single-machine scheduling problem with variable job

durations; our goal was to ensure that little deviation occurs between planned and actual

job starting times. Earlier studies have shown that the problem is hard and that exact

solutions can only be found for small instances. We have developed three meta-heuristic

algorithms that yield high-quality schedules for large instances. The algorithms follow the

24

same overall logic structure, which has allowed us to bring into focus the intrinsic differences

between the solution approaches that underlie each of the algorithms. In particular, we

have examined one algorithm (SW1) with hierarchic treatment of sequencing and timing

decisions for an approximate formulation called SWOD, in which it is assumed that exactly

one job is disrupted during schedule execution; one algorithm (SW2) with more monolithic

treatment of the same two decisions for SWOD; and one solution approach (STAB) for the

exact problem formulation. The algorithm STAB is also easily adaptable to other modeling

choices for the job durations (e.g. when these are continuous and/or dependent random

variables) since its objective-function evaluation is based on simulation.

Our conclusions are the following: (1) SW1 is a meta-heuristic that delivers higher-quality

schedules than a truncated B&B-algorithm for the problem SWOD; (2) SW2 is an algorithm

that attempts to integrate the decisions of resource allocation and timing of the jobs to be

performed, and it outperforms SW1, which follows a (more classical) hierarchic approach to

these decisions; (3) the approximate formulation SWOD is useful and can even lead to better

results than the exact problem formulation in the case where meta-heuristics are used to solve

both problems and when there is little variability in the system; and (4) when the chances

of individual activity disruption are higher, it is necessary to apply a specialized algorithm

for the problem in order to obtain good-quality solutions, e.g. our algorithm STAB.

Acknowledgments

This research was partially supported by the Ministerio de Ciencia y Tecnoloǵıa (Spain) un-

der contract TIC2002-02510 and the Agencia Valenciana de Ciencia y Tecnoloǵıa,

GRUPOS03/174. Roel Leus is partly funded as Postdoctoral Fellow of the Research Foun-

dation – Flanders (Belgium). This work was done during a stay of the first author at the

Katholieke Universiteit Leuven.

References

[1] M.S. Akturk and E. Gorgulu. Match-up scheduling under a machine breakdown. Euro-

pean Journal of Operational Research, 112:81–97, 1999.

[2] H. Aytug, M.A. Lawley, K. McKay, S. Mohan, and R. Uzsoy. Executing production

25

schedules in the face of uncertainties: A review and some future directions. European

Journal of Operational Research, 161:86–110, 2004.

[3] F. Ballest́ın. When it is worthwile to work with the stochastic RCPSP? Journal of

Scheduling. To appear.

[4] F. Ballest́ın, V. Valls, and S. Quintanilla. Due dates and RCPSP. In J. Jozefowska and

J. Weglarz, editors, Perspectives in Modern Project Scheduling. Kluwer.

[5] J.C. Bean, J.R. Birge, J. Mittenthal, and C.E. Noon. Match-up scheduling with multiple

resources, release dates and disruptions. Operations Research, 39:470–483, 1991.

[6] L. Bölöni and D.C. Marinescu. Robust scheduling of metaprograms. Journal of Schedul-

ing, 5:395–412, 2002.

[7] K.M. Calhoun, R.F. Deckro, J.T. Moore, J.W. Chrissis, and J.C. Van Hove. Planning

and re-planning in project and production planning. Omega, 30:155–170, 2002.

[8] A. Drexl. Scheduling of project networks by job assignment. Management Science,

37:1590–1602, 1991.

[9] B. Franck, K. Neumann, and C. Schwindt. Truncated branch-and-bound, schedule-

construction, and schedule-improvement procedures for resource-constrained project

scheduling. OR Spektrum, 23:297–324, 2001.

[10] K. Gary, R. Uzsoy, S.P. Smith, and K. Kempf. Measuring the quality of manufacturing

schedules. In D.E. Brown and W.T. Scherer, editors, Intelligent scheduling systems,

pages 211–369. Kluwer, 1994.

[11] A.V. Goldberg. An efficient implementation of a scaling minimum-cost flow algorithm.

Journal of Algorithms, 22:1–29, 1997.

[12] D.E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.

Addison-Wesley, 1989.

[13] S. Hartmann. A self-adapting genetic algorithm for project scheduling under resource

constraints. Naval Research Logistics, 49:433–448, 2002.

26

[14] S. Hartmann and R. Kolisch. Experimental evaluation of state-of-the-art heuristics

for resource-constrained project scheduling problem. European Journal of Operational

Research, 127:394–407, 2000.

[15] W. Herroelen and R. Leus. The construction of stable project baseline schedules. Eu-

ropean Journal of Operational Research, 156:550–565, 2004.

[16] P. Kouvelis and G. Yu. Robust Discrete Optimization and its Applications. Kluwer

Academic Publishers, 1997.

[17] R. Leus and W. Herroelen. Scheduling for stability in single-machine production sys-

tems. Journal of Scheduling. To appear.

[18] R. Leus and W. Herroelen. Stability and resource allocation in project planning. IIE

Transactions, 36:667–682, 2004.

[19] R. Leus and W. Herroelen. The complexity of machine scheduling for stability with a

single disrupted job. Operations Research Letters, 33:151–156, 2005.

[20] S.V. Mehta and R.M. Uzsoy. Predictable scheduling of a job shop subject to breakdowns.

IEEE Transactions on Robotics and Automation, 14:365–378, 1998.

[21] R.H. Möhring and F.J. Radermacher. The order-theoretic approach to scheduling: the

stochastic case. In R. Slowinski and J. Weglarz, editors, Advances in project scheduling,

chapter III.4. Elsevier, 1989.

[22] R. O’Donovan, R. Uzsoy, and K.N. McKay. Predictable scheduling of a single machine

with breakdowns and sensitive jobs. International Journal of Production Research,

37:4217–4233, 1999.

[23] A.S. Raheja and V. Subramaniam. Reactive recovery of job shop schedules - a review.

International Journal of Advanced Manufacturing Technology, 19:756–763, 2002.

[24] R. Rangsaritratsamee, W.G.Jr. Ferrel, and M.B. Kurz. Dynamic rescheduling that

simultaneously considers efficiency and stability. Computers and Industrial Engineering,

46:1–15, 2004.

[25] F. Stork. Stochastic resource-constrained project scheduling. PhD thesis, Technische

Universität Berlin, 2001.

27

[26] V. Suresh and D. Chaudhuri. Dynamic scheduling – a survey of research. International

Journal of Production Economics, 32:53–63, 1993.

[27] E.D. Taillard, L.M. Gambardella, M. Gendreau, and J.-Y. Potvin. Adaptive mem-

ory programming: a unified view of metaheuristics. European Journal of Operational

Research, 135:1–16, 2001.

[28] S. Van de Vonder, E.L. Demeulemeester, and W.S. Herroelen. An investigation of effi-

cient and effective predictive-reactive project scheduling procedures. Journal of Schedul-

ing. To appear.

[29] S.D. Wu, H.S. Storer, and P.-C. Chang. One-machine rescheduling heuristics with

efficiency and stability as criteria. Computers and Operations Research, 20:1–14, 1993.

28

