155 research outputs found

    A Floorplan-Aware Dynamic Inductive Noise Controller for Reliable Processor Design

    Full text link

    Statistical Power Supply Dynamic Noise Prediction in Hierarchical Power Grid and Package Networks

    Get PDF
    One of the most crucial high performance systems-on-chip design challenge is to front their power supply noise sufferance due to high frequencies, huge number of functional blocks and technology scaling down. Marking a difference from traditional post physical-design static voltage drop analysis, /a priori dynamic voltage drop/evaluation is the focus of this work. It takes into account transient currents and on-chip and package /RLC/ parasitics while exploring the power grid design solution space: Design countermeasures can be thus early defined and long post physical-design verification cycles can be shortened. As shown by an extensive set of results, a carefully extracted and modular grid library assures realistic evaluation of parasitics impact on noise and facilitates the power network construction; furthermore statistical analysis guarantees a correct current envelope evaluation and Spice simulations endorse reliable result

    Network-on-Chip

    Get PDF
    Addresses the Challenges Associated with System-on-Chip Integration Network-on-Chip: The Next Generation of System-on-Chip Integration examines the current issues restricting chip-on-chip communication efficiency, and explores Network-on-chip (NoC), a promising alternative that equips designers with the capability to produce a scalable, reusable, and high-performance communication backbone by allowing for the integration of a large number of cores on a single system-on-chip (SoC). This book provides a basic overview of topics associated with NoC-based design: communication infrastructure design, communication methodology, evaluation framework, and mapping of applications onto NoC. It details the design and evaluation of different proposed NoC structures, low-power techniques, signal integrity and reliability issues, application mapping, testing, and future trends. Utilizing examples of chips that have been implemented in industry and academia, this text presents the full architectural design of components verified through implementation in industrial CAD tools. It describes NoC research and developments, incorporates theoretical proofs strengthening the analysis procedures, and includes algorithms used in NoC design and synthesis. In addition, it considers other upcoming NoC issues, such as low-power NoC design, signal integrity issues, NoC testing, reconfiguration, synthesis, and 3-D NoC design. This text comprises 12 chapters and covers: The evolution of NoC from SoC—its research and developmental challenges NoC protocols, elaborating flow control, available network topologies, routing mechanisms, fault tolerance, quality-of-service support, and the design of network interfaces The router design strategies followed in NoCs The evaluation mechanism of NoC architectures The application mapping strategies followed in NoCs Low-power design techniques specifically followed in NoCs The signal integrity and reliability issues of NoC The details of NoC testing strategies reported so far The problem of synthesizing application-specific NoCs Reconfigurable NoC design issues Direction of future research and development in the field of NoC Network-on-Chip: The Next Generation of System-on-Chip Integration covers the basic topics, technology, and future trends relevant to NoC-based design, and can be used by engineers, students, and researchers and other industry professionals interested in computer architecture, embedded systems, and parallel/distributed systems

    Rapid Prototyping of Large-scale Analog Circuits With Field Programmable Analog Array

    Full text link
    Abstract — Modern advances in reconfigurable analog technologies are allowing field-programmable analog arrays (FPAAs) to dramatically grow in size, flexibility, and usefulness. This paper presents rapid prototyping results of a bandpass filter as a sample analog circuit using our floating-gate based large-scale FPAA. A major source of parasitics introduced during the circuit mapping process is interconnect switches used for routing. Our goal is to obtain models of the mapped circuits that can be simulated using SPICE in order to observe the impact of interconnect parasitics on the relevant analog metrics. Our results indicate that the mapped analog circuits obtain desired responses even with interconnect parasitics, clearly demonstrating the practicality of our FPAA. I

    Overcoming the challenges in very deep submicron for area reduction, power reduction and faster design closure

    Get PDF
    The project is aimed at understanding the existing very deep sub-micron (VDSM) implementation of a digital design, analyzing it from the point of view of power, area and timing and to come up with solutions and strategies to optimize the implementation in terms of power, area and timing. The effort involved, to understand the constraints, reasons and the requirements resulting in the existing implementation of the design. Further, various experiments were carried out to improve the design in various aspects like power, area and timing. The tradeoffs required and the benefits of each of the experiments were contrasted and analyzed. The optimum solutions and strategies which balance the requirements were tried out and published at the end of the report
    corecore