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Sensitivity of the microprocessor to voltage fluctuations is becoming a

major concern with growing emphasis on designing power-efficient micropro-

cessors. Voltage fluctuations that exceed a certain threshold cause “emergen-

cies” that can lead to timing errors in the processor, thus risking reliability.

To guarantee correctness under such conditions, large voltage guardbands are

employed, at the cost of reduced performance and wastage of power. Trends

in microprocessor technology indicate that worst-case operating voltage mar-

gins are not sustainable. Since voltage emergencies occur only infrequently,

resilient architectures with aggressive guardbands are needed. However, to en-

able the exploration of the design space of resilient processors, it is important

to have a deep understanding of the characteristics of voltage noise in different

system configurations.

Prior research in this area has mostly focused on systems with very few

cores. Given the increasing relevance of large multi-core systems, this thesis
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presents a detailed characterization of voltage noise on chip multi-processors,

consisting of large number of cores. The data indicates that while the worst

case voltage droop increases with increase in the number of cores, the frequency

of occurrence of the droops is not greatly impacted, emphasizing the feasibility

of employing resilient microarchitectures with aggressive voltage margins.

The thesis also presents a comparative study of voltage noise in CMPs

consisting of either high-performant out-of-order cores and power-efficient in-

order cores. The study highlights that the out-of-order cores experience much

larger voltage variations when compared to the in-order cores, but offer a

clear advantage in terms of performance. Experiments indicate that in-order

configurations that offer equivalent performance to the out-of-order cores result

in large energy-delay product, indicating the trade-offs involved in designing

for performance, power and reliability.

The thesis also presents a study of voltage noise in single-ISA het-

erogeneous configurations, to highlight the benefits of such systems towards

lowering the worst-case voltage margins, which improve both performance and

power. The experimental results indicate that the worst-case voltage droop

in such heterogeneous systems lies in between the out-of-order and in-order

cores and provide reasonable power-efficiency and performance. Further, the

work highlights the importance of exploring the design-space of heterogeneous

systems considering reliability as an important design criteria.
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Chapter 1

Introduction

Microprocessor design is increasingly constrained by power and per-

formance efficiency [41]. Mobile devices use small in-order cores to achieve

better power efficiency, while the high performance servers that use the big

out-of-order cores, employ techniques like clock gating and dynamic voltage

and frequency scaling, to reduce power consumption. These techniques lead

to rapid changes in the supply current over a small amount of time. Due to

the parasitic inductance in the power delivery subsystem, these changes in

the current can cause large variations in the supply voltage, typically referred

to as voltage noise. Significant variations in the supply voltage, called a

voltage emergency [46], can lead to timing errors and operational failures

in the microprocessor. Since guaranteeing reliable operation is a fundamental

requirement of a microprocessor, chip designers have used voltage margins or

guardbands to compensate these voltage variations, to prevent such failures.

Voltage margins are typically around 20% [29] of the nominal voltage

on many modern systems. Voltage fluctuations must be contained within this

allowed margin. While a voltage margin provides reliability in operation of the

chip, the margin has to be designed carefully as it has implications on both
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performance and power. The voltage margin affects the peak operating clock

frequency, with larger margins lowering the clock frequency as shown in [46].

This reduces performance and also leads to wastage of power. Furthermore,

[46] also showed that with technology scaling, the maximum peak-to-peak

voltage swing will become double in 16nm when compared to 45nm, which

will require even larger margins.

Many techniques have been proposed in the literature, both in hard-

ware and software, for reducing the worst case voltage drop, allowing narrower

guardbands. A significant number of these techniques have been proposed for

resilient architectures [34] [20] [24] [23] [42] [12] [13], that have error recovery

circuitry to recover from transient faults and timing violations, to reduce the

occurrences of large voltage variations, to reduce the impact of added reli-

ability on performance. Thus, with and without resilient processor designs,

reliability will be an important microprocessor design criteria.

Efforts to improve the energy efficiency of high performance processors

has led to another class of multi-cores, called heterogeneous multi-cores. Het-

erogeneous systems may consist of different-ISA cores, like CPU and GPU, e.g,

Intel’s Sandy Bridge [2], AMD’s Fusion [1], NVidia’s Tegra [4], or single-ISA

multi-core system design proposed by Rakesh et al [35], adopted by commercial

products like ARM’s big.LITTLE [5] comprising of big out-of-order cores and

small in-order cores. [10][16][18] [21][32] illustrates that such heterogeneous

multi-cores can provide energy efficiency when workloads are appropriately

scheduled on the most suitable cores. Thus, heterogeneous system architec-
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ture is a promising design, especially for the power constrained mobile devices.

Given the importance of reliability, it is necessary to understand how voltage

noise impacts the design of heterogeneous systems.

In this thesis, I present a detailed characterization of voltage fluctua-

tions in a multi-core system with large number of cores and present a com-

parative study of voltage fluctuations in the high performant out-of-order and

small, energy-efficient in-order cores. The study also characterizes voltage

noise in single-ISA heterogeneous systems. The results indicate that while

the big cores yield better performance, they require extremely large voltage

guardbands, compared to the smaller, in-order cores, leading to reduced power-

efficiency. The study also indicates that the heterogeneous systems not only

provide energy-efficiency, they allow reduced voltage margins, thus effectively

increasing performance.

The main contributions of this thesis are:

1. pvSim, a simulation framework that can be used to study power and

voltage variations in multi-core systems at a cycle-level granularity.

2. The study characterizes voltage variations in larger multi-core systems

and shows that the magnitude of the worst-case voltage droop increases

as the number of cores increase.

3. The thesis presents a comparative analysis of voltage noise in high-

performant out-of-order cores and the power-efficient in-order cores. Ex-
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perimental results indicate that the out-of-order cores suffer larger volt-

age variations when compared to the in-order cores, requiring an order

magnitude larger voltage guardbands.

4. The study compares voltage fluctuations on equivalent-TDP configura-

tions consisting of big, small and a combination of big and small cores,

to demonstrate that single-ISA heterogeneous systems achieve better

energy-efficiency and reduced worst case voltage fluctuations.
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Chapter 2

Background

This chapter provides a brief description of voltage noise in micro-

processors and modeling of power delivery networks, as it will enable better

understanding of the topics discussed in the thesis.

2.1 Voltage Noise

The power delivery network (PDN) of a microprocessor is responsible

for providing steady voltage to the processor. It consists of inductive and

resistive elements on the motherboard (MB), package, and die. The rate of

change of current in the circuit, either due to clock gating or workload activity,

leads to a proportional variation in the supply voltage, which comprises of the

drop across the parasitic resistance (IR drop) and the inductive components

(commonly referred to as inductive noise or di/dt in the literature). Low-level

circuit techniques use a hierarchy of on-die, on-chip and off-chip decoupling

capacitors (decap) to reduce the effects of inductive noise, by reducing the

overall impedance. However, power supplies with such decoupling capacitors

still suffer from high impedance as it is difficult to completely nullify the impact

of inductive noise in the network. Current variations at the frequency of such
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peak impedance result in supply voltage variations.

Several resonant frequencies like, the first, second and third droop are

possible in the circuit, depending on the interaction of the inductances and

capacitances at different levels. For instance, as highlighted in [31], the promi-

nent resonant frequency is the first droop, which occurs due to the interaction

of package and on-die inductance with on-die decap. While the second and

third resonant frequencies lead to supply voltage fluctuations, the magnitude

of such fluctuations are smaller when compared to those induced by the first

droop. The first droop for many PDNs is typically in the range of 50-200MHz.

Repeating pattern of low to high current variations at the frequency of the

first droop of the PDN, results in large voltage fluctuations, potentially caus-

ing timing faults and affecting long-term reliability of the system. To prevent

such side-effects, processors are usually designed to tolerate such worst-case

voltage swings, by employing operating voltage margins that are about 20%

of the nominal supply voltage.

2.2 Modeling Power Delivering Network

In a microprocessor, the supply voltage is provided by a PDN. A PDN

can be modeled in a number of ways, taking into account the components

present on the die, on-chip and off-chip in the circuitry. A simple model that

can be used to model the PDN is shown in Figure 2.1, as used in [43]. It is

a second-order resistive, inductive and capacitive (parallel RLC) circuit, with

the power supply considered as a voltage source. The processor that consumes

6



current based on the workload activity is represented as a current source. L

models the inductance of the connections between the die and the chip and

C is the on-die decoupling capacitance. This simple model does not consider

the on-chip and off-chip decap capacitors and thus does not show variations

at all possible frequencies in the PDN. However, this second-order model does

capture resonant behavior and suffices for the purpose of the study.

supply
voltage

board & chip chip-die die

CPU
core

+
 -

Figure 2.1: Second-order power delivery network model [43]

The values of the components R,L and C can be determined based

on the characteristics of the microprocessor, like the clock frequency and the

technology. The parameters that can be used to define a PDN are the resonant

frequency f , resistance R and quality factor Q. Resonant frequency of a

second-order circuit is the frequency at which the current variations in the

processor lead to maximum fluctuations in the supply voltage and is computed

as :

f =
1

2Π
√
LC

Typical resonant frequency ranges from 50-200MHz in modern micro-

processor PDNs. The quality factor of a PDN determines the range of fre-
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quencies at which the PDN circuit resonates with more than half the energy

than at resonant frequency. Gupta et al [24] provides some analysis on how

the different values of R and Q impact the characteristics of a PDN.

Prior work [43] highlights the impact of technology scaling on the RLC

components of the PDN. For instance, the value of R becomes smaller with

technology scaling, L remains almost the same, while C increases to constrain

inductive noise.

2.2.1 Lumped PDN model vs Distributed model

One of the limitations of the lumped voltage model is that it does not

capture local, inter-core voltage variations in a CMP, but instead provides an

aggregate view of the voltage variations across the entire chip. With large

number of cores on the chip, varying workload activity could lead to large

inter-core voltage variations. In order to understand the characteristics and

impact of these variations, a distributed voltage model has been proposed [25],

which uses a RL network to model the cores/functional units in the core at

a much finer granularity. Figure 2.2(a) from [25] shows the detailed power

deliver network with a distributed on-chip power-supply grid. The off-chip

network models the motherboard, package and off-chip decap capacitors and

parasitic inductances. Figure 2.2(b) shows the distributed on-chip grid model.

The C4 bumps that connect the grid to the off-chip network are modeled as

parallel connections. The on-chip grid is modeled as an RL network as shown.

More details on the model can be found in the paper [25].

8



(a) Package model

(b) On-die grid model

Figure 2.2: Distributed Power Delivery Model [25]

The distributed model provides voltage modeling at a fine granularity

and is flexible so that the granularity can be adjusted. However, the lumped

model suffices for our purpose as the goal is to study voltage noise character-

istics at the package level, especially since the study focuses on understanding

the aggregate trends in voltage noise on large CMPs.
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Chapter 3

Related Work

Much of the research work addressing voltage noise problem can be

categorized into circuit-level, micro-architectural-level and software-level, de-

pending on where in the system the solution has been applied. Below is a brief

summary of the different techniques that have been proposed at each of these

levels.

3.1 Circuit-level Techniques

One of the techniques applied at the circuit-level to reduce voltage noise

is to use a hierarchy of on-die, on-chip, and off-chip decoupling capacitors [3]

[9] to reduce the impedance of the PDN. Voltage being a product of current

and impedance, smaller impedance would result in smaller peak-to-peak volt-

age swings. However, even well-designed PDNs have some impedance due to

the wires, inductances and capacitances, which leads to voltage noise. Prior

work [15] [39] highlighted mechanisms that can be applied at the time of floor-

planning for simultaneous power supply planning and voltage noise avoidance.

In another work, Ernst et al [20] proposed Razor, a circuit-level technique to

dynamically detect and recover from timing failures by augmenting critical
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flip-flops in the processor pipeline with shadow latches. The shadow latches

provide extra timing margins. So if a timing violation is detected, potentially

due to inductive noise, then the data from the shadow latch is used. Ra-

zor, however, is expensive to implement, especially in out-of-order processors

that have large and complex array structures, with many tight timing paths.

DIVA [8] also provides a way to dynamically detect and recover from transient

faults, by employing an additional checker processor that runs in parallel of

the main out-of-order processor and checks the results before committing the

instructions.

3.2 Architectural Techniques

A number of architectural techniques have been proposed to mitigate

voltage noise. The main approach adopted is to control the current varia-

tions such that the voltage variations are within the tolerable margins, for

instance, by managing instruction fetch and issue. Powell et al [44] proposed

two techniques - pipeline muffling and resonance tuning, to reduce inductive

noise caused by the varying pipeline activity. Pipeline muffling controls the

number of functional units switching at any given time by altering the in-

struction issue. A sudden surge in the current drawn is avoided by a-priori

slow current ramp-up of functional units. Gupta et al [24] proposed a check-

point/rollback framework called DeCoR, that commits instructions only once

it is determined that there were no emergencies (using a low voltage sensor),

else the pipeline is flushed and rolled back to a previous safe state. Reddi et

11



al [45] predict voltage emergencies from a history of architectural events and

based on the prediction, execution rate is throttled to lower the rate of change

of current, thereby reducing voltage emergencies. Gupta et al [26] proposed

an event-guided adaptive voltage emergency avoidance scheme by removing

recurring emergencies by prefetching, or hardware throttling of events that

lead to emergencies or by introducing pseudo-nops in the instruction stream.

3.3 Software Techniques

A number of approaches have been proposed in the software/compiler

layer to mitigate voltage emergencies. Toburen [48] proposed compilation tech-

niques to reduce voltage noise. Yun et al [51] presented a power-aware modulo

scheduling to reduce step and peak power profiles in VLIW processors. Hazel-

wood et all [28] further explored the possibility of runtime code optimization

techniques to reduce future voltage emergencies. El-Essaway [19] used thread

management to manage voltage noise in SMT processors. Gupta et al [27]

showed that several microarchitectural events, such as L1/L2/TLB misses,

branch mis-predictions, that stall the pipeline are likely to cause voltage emer-

gencies. They further showed that only a few loops in the SPEC benchmarks

led to a majority of emergencies. They proposed a few compiler-optimizations

that can be used to reduce the occurrence of the above events and thus voltage

emergencies.
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3.4 Voltage Noise in Multi-core Processors

While a significant amount of this prior work has focused on character-

izing voltage noise in single-core processors, very few studies have focused on

chip multiprocessors. Reddi et al [46] studied voltage noise in a Core 2 Duo

and found that there exist a constructive phase, in which the voltage swing in-

creases with the aggregated activity of the two cores, and a destructive phase,

in which different microarchitectural activities on the two cores effectively re-

duce the occurrences of voltage emergencies. Using an oracle-based droop

scheduler, they demonstrated that intelligent scheduling policies could lever-

age the destructive phases in the combination of workloads to smoothen out

supply voltage variations. Gupta et al [25] characterized local, on-die volt-

age variations using a detailed distributed power model, using a 4-core CMP.

Recently, Miller et al [38] studied the impact of synchronization on voltage

emergencies in multi-core systems. With all the cores waiting in the barrier,

the activity in the system drops down significantly, only to shoot up as soon

as the barrier is released, resulting in a surge in current draw. They pro-

posed a barrier release policy optimized to mitigate occurrence of such voltage

emergencies.

This thesis presents a detailed characterization of voltage noise in a

multi-core system with larger number of cores, and presents a comparative

study of voltage variations in high performant out-of-order and small, energy-

efficient in-order cores. To the best of my knowledge, this is the first compara-

tive study of voltage noise in big and small cores. The thesis also demonstrates

13



trends in voltage noise in single-ISA heterogeneous CMP systems.
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Chapter 4

pvSim: Simulation Framework for modeling

Power and Voltage

Power consumption has become a first-order design constraint of mod-

ern microprocessors, as it is becoming a challenge to contain the ever increase

demand for power, especially with the rapidly increasing density of transistors

on the chip as per Moore’s Law. Multi-core architectures were proposed as

a technique to lower power consumption, while still achieving maximum per-

formance by utilizing multiple computing resources, each operating at a lower

frequency. However, with reducing processor technology, increasing number

of cores per package, power management in future multi-core systems will

continue to be an area of active research in the field of computer architecture.

Increased rate of change of current due to clock gating and lower sup-

ply voltages, have increased the sensitivity of the processor to inductive noise

in the PDN. Inductive noise, referred to as di/dt problem, lead to significant

variations in the supply voltage, resulting in malfunctioning of the chip. Volt-

age margins are used to tolerate the worst-case voltage variations. Research

has highlighted that the magnitude of these variations will increase with tech-

nology scaling, requiring much larger margins to safeguard reliable operation.
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This would result in reduced power and performance. There is thus a grow-

ing push to move towards resilient architectures, that provide error-recovery

circuits that dynamically detect and correct transient errors that might occur

due to voltage margin violations. This is an active area of research in the

architecture community, both at hardware and software level, to tackle the

various aspects.

Power and voltage profiling is thus important to enable the design and

evaluation of new schemes to make reliable and energy efficient architectures.

While some aspects of this research can be effectively performed on existing

hardware, fundamentally new structural designs, enhancements, will increas-

ingly require simulation for design and validation. Accurately modeling power

and voltage is thus crucial to generate reliable data. While many functional

simulators are available to the research community, there is a need for an in-

tegrated simulator that provides for both power and voltage profiling at the

granularity of a CPU cycle. This thesis introduces pvSim, an integrated online

power and voltage profiler, based on Marssx86 [40], McPAT [36] and lumped

voltage model [27].

This chapter provides a detailed description of the design and imple-

mentation of pvSim and the components that it is built on.

4.1 Marssx86

Marssx86 is a cycle-accurate, full-simulator of the 64-bit x86 architec-

ture, developed by the CAPS research group at State University of New York
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at Binghamton. Figure 4.1 shows the block diagram of the simulator. The

main features of Marssx86 are:

Figure 4.1: Block Diagram of Marssx86 Simulator [40]

(a) Multi-core: It supports multi-core simulation of the x86 ISA, with detailed

pipeline model. It also supports hardware threads (SMT).

(b) Full-system: It uses QEMU base full-system emulation and can boot un-

modified operating systems

(c) Core models: It is based on PTLsim [50] and leverages the detailed out-

of-order core model of PTLsim. The in-order core model it provides is an

improvement over the PTLsim simple core model.

(d) Cache models: It provides detailed model for coherent caches and on-

chip interconnects. Different types of caches can be created, like write-

back and write-through. It also supports the MESI and MOESI cache
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coherency protocols. A cache hierarchy with multiple levels can be created

to simulate different machines.

(e) Benchmarks: The benchmarks do not have to be specifically built for

execution in the simulation environment. Any pre-compiled binaries and

libraries for x86 can be run in the simulator.

(f) High Performance: It provides good speed of simulation and yields average

instruction commit rate of 200k+ instructions per-second.

(g) Heterogeneous system: It can be used to simulate heterogeneous system

consisting of both out-of-order and in-order cores.

4.2 McPAT

Several models have been proposed in the research community to enable

computer architects to design power-efficient microarchitectures. For example,

CACTI [47] was one of the first tools that was developed to estimate the

power consumed by RAM-based memory structures. Wattch [14] is a popular

tool that is used to model the dynamic power consumption of a processor.

McPAT is a fairly new power model, which provides an integrated power,

area and timing modeling framework for multi-core and many-core processor

configurations, ranging from 90nm to 22nm. pvSim uses the McPAT power

model over Wattch for several reasons as described below:

1. Wattch uses a simple linear scaling based on 0.8µ m technology, which

are inaccurate to correctly predict the power consumption for recent
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technology like 65, 45 or 22nm. McPAT, on the other hand, uses device

models based on the ITRS [6] roadmap, to compute the device param-

eters at different technology levels and hence provides better estimates

for power consumption with technology scaling.

2. Wattch estimates only dynamic power dissipation based on the activity

counter values obtained from functional simulator. A study of voltage

noise, however, requires estimation of static and dynamic power con-

sumption, which McPAT provides.

3. Unlike McPAT, Wattch models power without taking into account timing

and area information. This leads to inaccuracy in the power estimates.

4. Some aspects of Wattch are tied to the SimpleScalar simulator [7], like

the synthetic RUU model, and thus may not provide accurate estimation

when used with other architectural simulators.

5. Rakesh et al [35] indicated that the power estimates produced by Wattch

did not match published results on peak and typical power numbers of

several processor configurations.

6. McPAT provides a integrated tool that can be used to estimate power

of multi-threaded and multi-core processors, unlike Wattch’s core power

model.

McPAT provides a detailed model for the following components of the

chip:
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1. in-order and out-of-order cores, with models for subcomponents like the

pipelines, load-store unit, execution unit, register-renaming unit, physi-

cal register file, memory management units, on-chip caches,

2. networks-on-chip

3. shared caches

4. on-chip memory controller

McPAT also models static leakage power of the different components

in accordance with the forecasts in the ITRS road map including bulk CMOS,

SOI and double gate transistors, as highlighted in ITRS. McPAT has become a

de-facto standard for power modeling in computer architecture research com-

munity. It is not tied to a particular microarchitecture and can be used to

derive power estimates for systems like the Intel Netburst and the DEC Alpha

architecture.

4.3 Lumped Voltage Model

To model the voltage profile of the system, pvSim uses the lumped

voltage model, as described in Chapter 2.2. The PDN is modeled based on the

parameters of the Pentium 4 package, as detailed in Table 5.2. The impedance

plot of the PDN is shown in Figure 5.1. The model takes as input the power

trace generated from the functional simulator are convolved with the impulse

response from the PDN circuit to obtain the per-cycle voltage trace.
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4.4 Integration of Marssx86, McPAT and Lumped Volt-
age Model - pvSim
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Figure 4.2: Block Diagram of pvSim

This section provides details of how pvSim integrates Marssx86 and

McPAT to provide power and voltage data at a CPU-cycle granularity.

4.4.1 Design

Figure 4.2 indicates the block diagram of pvSim. The Marssx86 simula-

tor is used for simulating a benchmark on an x86 machine configuration. The

machine configuration and the run-time performance statistics of the bench-

mark execution are then fed into the McPAT power model to produce power

consumption estimates. The power estimates can then be used by subsystems

to detect hot-spots and to apply various run-time power optimizations, feed-

ing back into the simulator. To generate voltage profile, the generated power
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trace is fed as input to the lumped voltage model as described in Section 4.3.

While the lumped model has been used here, the framework is generic and

any model of the PDN, like the distributed model [25], could be plugged-in to

generate the voltage profile.

4.4.2 Implementation

Below are some of the modifications that were made to Marssx86 and

McPAT to build pvSim:

1. Marssx86: To generate online power estimates, per-cycle performance

statistics are required. Modifications were made to Marssx86 to enable

pvSim to compute the activity in the different components of the system

in a single cycle. This requires computing the difference in the statistics

thus far and till the previous cycle. This computation is performed for

every activity counter that is required by the power model, every cycle.

However, the framework can be configured to generate power estimates

for a bunch of cycles instead of one. Further, there are many events that

are not sampled by the simulator. For instance, classification of total

number of committed instructions into integer, floating-point, branch,

load and store, number of ALU and FPU operations, register file reads,

writes, register renames, etc. Marssx86 was modified to gather statistics

pertaining to these events to allow proper power computation. The per-

cycle statistics are then communicated to the power model, every cycle,

to generate the power estimates.
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2. McPAT: The modifications made to McPAT are as follows:

• McPAT uses an XML interface as the frontend to take input from

any functional simulator. It takes as input an XML file that con-

tains information about the machine configuration and the perfor-

mance statistics, i.e, value of the event counters. For online power

computation, the XML interface was removed and the code was

re-structured as a library to provide APIs that can be used by any

functional simulator to use the power model. This makes the frame-

work very generic in nature in terms of the functional simulator that

can used.

• McPAT is designed to compute total power consumption given

the aggregate activity counter values for the benchmark execution.

However, for online power computation, power has to be computed

every cycle, given the delta of counters for a cycle. McPAT was

modified to ensure that the static leakage component of the power

is computed just once at the beginning of the simulation and sub-

sequently, the values of the internal data structures is reset every

cycle to compute the run-time dynamic power for that particular

cycle.

4.4.2.1 Power modeling of multi-cycle events

There are many microarchitectural events/operations that require mul-

tiple cycles to execute, for instance, ALU operations, cache hit and miss events.
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Thus, when computing the power consumed per-cycle, it is important to fac-

tor the effects of such multi-cycle events. McPAT was modified to take this

into account. Every event, like L1 cache miss, is associated with a value of

latency, which is the number of cycles it takes for the event to complete. The

power consumed by multi-cycle event is evenly distributed across this number

of cycles it takes for the event to complete. Every time such an event occurs,

the power due to the event is divided by the latency and just one unit of it

is added to the power estimate of that cycle. The rest is placed into a per-

subsystem queue. In each subsequent cycles, a unit of this power is added to

the power estimate of that cycle, till the queue becomes empty, i.e, all the

power components have been distributed. The functional simulator internally

takes into account the latency of a subsystem to ensure that an event is not

triggered until a previous event completes, or the total number of outstanding

events is less than the configured value.

4.5 Summary

This chapter introduced pvSim, an integrated simulation framework

that models per-cycle power and voltage in a cycle-accurate functional simu-

lation environment for x86 systems. The framework is built using marssx86

as the full-system simulator for x86 systems, McPAT as the power model and

lumped voltage model. The rest of this thesis uses pvSim to study voltage

noise in large CMP systems.
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Chapter 5

Voltage Noise in Large CMPs

In addition to performance and power, reliability is becoming a first-

order design criteria for microprocessors. A number of approaches, both in

hardware and software, have been proposed to manage the increasing level

of voltage noise in chip multi-processors. However, most of the prior work

in this area has focused on CMP systems with only a few cores. With the

massive penetration of CMPs, it is important to measure and characterize

voltage variations in large CMPs. Furthermore, all the prior work have studied

voltage noise only in the performance oriented out-of-order (OoO) cores. With

the increased adoption of small, power-efficient in-order cores in mobile devices

and even in servers, it is critical to understand if there is a difference in the

nature of supply voltage noise on the two types of cores. This characterization

will enable to better understand the design space of reliability in large CMP

systems. This chapter presents a detailed characterization of supply voltage

variations in both OoO and in-order core types.
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5.1 Experimental Setup

This section describes the simulation infrastructure used to study volt-

age variations in CMP systems.

5.1.1 pvSim Configuration

We use pvSim for the characterization of voltage variations. The con-

figuration parameters for a single out-of-order and in-order core is shown in

Table 5.1. The multi-core OoO configurations use a 3-level cache hierarchy,

with the size of the shared L3 cache being scaled as the number of cores are in-

creased. On the other hand, the small, in-order core configurations use 2-levels

of cache, with the size of L2 scaled with the number of cores.

Out-of-Order Core In-Order Core
Clock Rate 3.0 GHz 1.6GHz
Fetch Width 4 2
Decode Width 4 2
Inst Window 128 ROB, 64-LSQ -
BTB 1K Entries 1K Entries
RAS 1024 Entries 1024 Entries
L1 I/D cache 32KB each, 4-way, 2 cycles 32KB, 4-way, 2cycles
L2 cache 128KB, 8-way, 12 cycles 128KB, 8-way, 10 cycles
L3 cache 1MB, shared, 40 cycles -
Int ALU & mult/div 2 per-core, 1 cycle 2 per core, 4 cycles
FP ALU 2 per core, 6 cycles 1 per core, 6 cycles

Table 5.1: Core Configurations

For this study, pvSim is configured such that only the power consumed

by the core, private and shared caches was modeled and do not include power
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consumed by other components, like the memory controller and interconnects,

as previous studies [27] have shown that voltage variations are most sensitive

to load variations in the core and caches. The package characteristics of the

second-order lumped model used are similar to that of Pentium 4 micropro-

cessor and are summarized in Table 5.2. The impedance plot of the PDN

is shown in Figure 5.1. It can be seen that the resonance frequency of the

PDN occurs at 100MHz with a peak impedance of 10mΩ. The supply voltage

is configured at 1V. The PDN is kept the same as the number of cores are

varied, to demonstrate the impact of increase in core count on the magnitude

and frequency of voltage variations.

Resonant Frequency Resistance Quality Factor Peak Impedance (Z)

100 MHz 1mΩ 3 10mΩ

Table 5.2: PDN Parameters
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Figure 5.1: Impedance Plot of the PDN used for modeling Voltage
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5.1.2 Benchmarks

The multi-threaded PARSEC benchmarks [11] were used for the study.

The PARSEC benchmark suite has been designed to allow researchers to ex-

plore the design space of chip-multiprocessors. The suite consists of emerging

workloads in the areas of data mining, synthesis (RMS) and visual recogni-

tion, as well as applications that are representative of large-scale real-world

multi-threaded programs. The benchmark suite consists of programs with

varied characteristics like working set size, locality, data sharing, I/O traffic,

synchronization, among others, as highlighted in [11].

Each benchmark in the suite is simulated for 200 million instructions

from the region of interest. The number of threads of execution equal the

number of simulated cores and are affined to a particular core. The simlarge

input set was used to run each of the benchmarks.

5.1.3 Limitations

The absolute values of power and voltage are subject to errors in sim-

ulation and modeling at different levels in pvSim. For instance, the level of

voltage variations are dependent on the per-cycle power consumption of the

system, which in pvSim depends both on the power model and the functional

simulator marssx86. However, the relative trends are consistent with the data

that has been published in the literature.
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5.2 Characterization of Voltage Noise in Out-of-Order
Cores

Out-of-order core is a de-facto core type used to build all types of

servers, ranging from low-end to high-end. An OoO core achieves high per-

formance by extracting parallelism in the dynamic instruction stream of a

program, at the cost of high power consumption. This section presents a char-

acterization of voltage noise in the PARSEC benchmarks when executing on

OoO cores.
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Figure 5.2: Cumulative Distribution of voltage swings for the PARSEC bench-
marks on a single OoO core

Figure 5.2 indicates the distribution of samples of voltage swings for

the PARSEC benchmarks. It can be seen that majority of the samples are

distributed close to the nominal supply voltage and a very small percentage

of all the samples are below 1% of the nominal. Only bodytrack and vips

experience a maximum voltage drop of greater than 2%. Thus, for all the
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future experiments, we assume an aggressive voltage margin of 2% for the

OoO cores, purely for characterization purpose.

5.2.1 Correlation with Current Variations

From Figure 5.2, we see that different benchmarks result in different

levels of maximum voltage swing. During execution, due to the different mi-

croarchitectural activity during program execution, the rate of change of cur-

rent, varies from program to program. To quantify the relationship between

the magnitude of voltage swing and the magnitude of the swing in current, we

conducted the following experiment - compute the maximum swing in current

during the benchmark execution by using a sliding window of about 30 cycles,

to compute the maximum swing in current in that period and the maximum

of all these values during the entire simulation is used as the maximum swing

in current for that benchmark. Figure 5.3 shows that the magnitude of the

peak voltage drop is strongly correlated to the maximum fluctuation in cur-

rent, observed during the benchmark execution. Inspite of the lower variation

in current in bodytrack when compared to vips, bodytrack experiences a larger

droop. This can be attributed to the nature of voltage fluctuations in body-

track, as explained below in Section 5.2.2. The voltage noise in the bodytrack

benchmark are predmoninantly due to the variations in current matching the

frequency of the PDN, leading to much larger amplitude of voltage fluctua-

tions.
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Figure 5.3: Maximum voltage undershoots in PARSEC benchmarks on a single
OoO core, with correlation to maximum swing in current

5.2.2 Characteristics of Current Variations

As highlighted in Figure 5.3, each of the PARSEC benchmarks experi-

ences a different magnitude of maximum voltage drop. This section provides

a closer look at the reasons behind the difference in magnitude, using the

benchmarks bodytrack and freqmine as examples.

bodytrack is a computer vision program which tracks a 3D pose of a marker-

less human body using mutliple cameras through a sequence of images [11].

Consider the voltage and current trace in Figure 5.4 of the bodytrack bench-

mark. The voltage, as annotated, corresponds to the maximum drop observed

during the entire simulation of the benchmark. As can be observed, the current

and voltage trace leading up to the maximum swing, resonate with a period of

about 30 cycles, which is also the period of the PDN. Current variations at the
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resonant frequency of the PDN, build up energy and result in a larger voltage

swing when compared to an isolated maximum current event. This resonance

is the reason why the magnitude of the worst case swing is maximum in body-

track. The kernel of the benchmark that causes this resonance, as indicated in

Table 5.3, is the computation of particle density which is performed at every

time step.
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Figure 5.4: Current and Voltage trace snippet for bodytrack

freqmine application uses an array-based adaptation of the Frequent-Pattern

growth method for Frequent Itemset Mining, which is typically applied in

problems like protien sequencing and log analysis. Figure 5.5 shows the current

and voltage trace observed around the worst-case voltage fluctuation during

benchmark execution. Unlike in the case of bodytrack, the current variations

do not resonate with the first droop frequency of the PDN. However, from our

analysis of the entire current trace, this event corresponds to a large spike in
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current, leading to an isolated fluctuation in voltage.

5.2.3 PARSEC Kernels Causing Maximum Droop

Each of the PARSEC benchmarks consist of a set of kernels that execute

in parallel, as described in [11]. Table 5.3 shows the names of the kernels that

lead to the maximum voltage drop during simulation for a few benchmarks.

Exploring particular aspects of these kernels, like the underlying microarchi-

tectural events that lead to the voltage noise, is beyond the scope of this thesis

and is left as future work.
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Benchmark Kernel Description

bodytrack
Calculate particle weights This kernel is executed during every time step

during every time step, and is thus
computationally most intensive

fluidanimate
Compute Densities This kernel estimates the density of the

fluid at each particle

raytrace
Traverse BVH BVHs are used to ray trace a dynamic

scene. This kernel traverses this structure
and is executed often during execution

dedup Compression This kernel performs parallel compression

freqmine
Build FP-tree header This kernel scans the transaction

database and counts number of occurrence of each item

Table 5.3: PARSEC kernels that lead to maximum voltage droop

5.2.4 Impact of Core Count on Voltage Noise

Prior studies [46] have shown that supply voltage variations in a single

core are correlated to the microarchitectural events like cache misses, TLB

misses, branch mis-predictions, among others. As the number of cores in-

crease, the different level of workload activity on the different cores lead to

constructive and destructive interference in voltage noise. Further, Miller et

al [38] highlighted that as the number of cores increase beyond 32, large volt-

age variations are primarily caused by increased synchronization among the

threads of a program. This section aims at studying the general trend in the

magnitude of voltage variations as the number of OoO cores are increased.

Figure 5.6 shows the change in maximum voltage drop for each bench-

mark, as the number of cores is increased from 1 to 16. For benchmarks like

bodytrack, canneal, dedup, fluidanimate, streamcluster,etc, the maximum worst

case drop increases as the number of cores increase. However, for many others
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Figure 5.6: Impact of increase in core count on maximum voltage undershoot
in OoO core

facesim, ferret, freqmine, swaptions, vips, the maximum drop either decreases

slightly or remains stable as the number of cores increase beyond 4. This is an

interesting trend, as it points to a potential destructive interference that takes

place across the cores, that effectively smoothens the voltage noise. This is a

useful data point, as it further highlights that destructive interference takes

place even on systems with large cores and that a droop scheduler, as proposed

by [46], could be employed to mitigate voltage noise.

Figure 5.6 also highlights that the strong correlation between the mag-

nitude of the maximum voltage drop and rate of change of current continues to

hold even as the number of cores increase, and the increase in the magnitude

of the voltage swing can be attributed to a proportional change in current.

Figure 5.7 shows the cumulative distribution of voltage samples with

increasing number of cores (OoO), for a few representative PARSEC bench-
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marks. It can be seen that while the maximum voltage swing increases, for

most benchmarks like fluidanimate, freqmine, facesim, the distribution is not

impacted with increase in the core count. As in with a single-core, only about

0.05% of all the samples exceed the voltage margin of 2%. The bodytrack

benchmark, shows the maximum spread of voltage swings from the nominal

supply voltage, which increases with the number of cores.
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(b) blackscholes
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(c) x264
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(d) fluidanimate
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(e) freqmine
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Figure 5.7: Cumulative distribution of voltage samples for different PARSEC
benchmarks with increasing core count (OoO)
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To quantify this observation, we computed the percentage of droops

experienced during the benchmark execution, where, a voltage droop corre-

sponds to a voltage drop beyond the set voltage margins. Assuming an ag-

gressive voltage margin of 2%, the voltage trace is scanned to count the number

of instances when it exceeds the margin. The total number of droops divided

by the total number of cycles of execution yields the percentage of droops. Ta-

ble 5.4 provides the data for the PARSEC benchmarks, for different number of

cores. The number of voltage droops on a single or dual core are very negligible

and hence are not shown in the table. The two main observations from this

data are that (1) the absolute values of the droops indicate that the frequency

of occurrence of such voltage swings is very low, (2) while for a majority of

benchmarks, the percentage of droops increase with increase in the number of

cores, for some they remain the same or decrease, indicating both constructive

and destructive interference across the threads of the benchmarks.

Benchmark
Percentage of Droops

4-cores 8-cores 16-cores
blackscholes 0.0001062 0.081617 0.017661
bodytrack 1.0283 14.423 30.955

canneal 0 0 0.00014005
dedup 0.000016884 0.00056403 0.012634
facesim 0.0048493 0.0012403 0.00001534

fluidanimate 0.020794 0.0046054 0.16463
streamcluster 0.0043466 0.038968 0.054671

swaptions 0.00024206 1.4905 0.059073
x264 0.00019395 0.045323 0.053422

Table 5.4: Impact of increase in core count on droops for OoO cores
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5.3 Characterization of Voltage Noise in In-Order Cores

In-order cores are increasingly being used in embedded devices due to

their power efficiency and small area. For workloads that have very high in-

struction level parallelism, the in-order cores provide good performance. This

section presents a characterization of voltage noise in the PARSEC benchmarks

when executing on the in-order cores and highlights the impact of increase in

the number of in-order cores on voltage noise.
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Figure 5.8: Cumulative Distribution of voltage swings for the PARSEC bench-
marks on a single in-order core

Figure 5.8 shows the cumulative distribution of the voltage variations

observed when running the PARSEC benchmarks. It can be seen that the sam-

ples for the different benchmarks are packed more tightly around the nominal

and also the lines are more tightly bound together, with little variation. A very

small percentage of all the samples are just below 0.2% of the nominal. Thus,
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for all the future experiments with in-order cores, we assume an aggressive

voltage margin of 0.2%, again, purely for characterization purpose only.

5.3.1 Correlation with Current Variations
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Figure 5.9: Maximum voltage undershoots in PARSEC benchmarks on a single
in-order core, with correlation to maximum swing in current

An analysis similar to that in Section 5.2.1 was performed to evaluate

the correlation between the magnitude of the maximum voltage drop and

maximum swing in current in the in-order cores. The data in Figure 5.9

indicates that the two do not seem correlated in the case of an in-order core and

is contrary to expectation. To investigate the cause behind this observation,

we examined the current and voltage traces for all the benchmarks for cycles

in the vicinity of maximum voltage drop. Figure 5.10 and Figure 5.11 shows

two sample traces for the bodytrack and streamcluster benchmarks. In both

the traces, the voltage drop corresponds to an isolated high current event, and
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the current variations do not resonate with the PDN. This is similar to the

observation on the OoO cores for some benchmarks, but does not substantially

explain the cause of the observation in Figure 5.9. We leave this investigation

as part of our future work.
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Figure 5.10: Current and Voltage trace snippet for bodytrack

5.3.2 Impact of Core Count on Voltage Noise

Figure 5.12 indicates how the maximum voltage droop varies as the

number of in-order cores are increased from 1 to 16. Unlike in the case of OoO

cores, the maximum voltage droop increases linearly with increase in the core

count for all the benchmarks.
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Figure 5.11: Current and Voltage trace snippet for streamcluster

5.4 Big Core vs Small Core

The big out-of-order cores and small in-order cores differ in the way the

dynamic instruction stream is executed in the microprocessor. The big cores

exploit the possibility of executing independent instructions out-of-order, to

utilize the CPU cycles that would otherwise go unused due to stalls in the

pipeline. For example, while the data operands required to execute an in-

struction are being brought into the memory, instead of stalling, the processor

starts executing next instructions in the stream that are not dependent on the

stalled instruction. This reduces the wastage of CPU cycles. The OoO cores

have additional hardware structures like the Re-order Buffer (ROB), load-

store queues (LSQ), register renaming unit (RNU), to name a few, to support

out-of-order execution without affecting the correctness of the programs. Due
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Figure 5.12: Impact of increase in core count on maximum voltage droop in
in-order core

to these additional structures and logic, the power consumption of the OoO

cores is much larger than the in-order cores. However, the added complexity

significantly improves the performance of programs that do not have inher-

ent instruction level parallelism (ILP) and also for programs that have a very

high memory level parallelism (MLP), at the cost of higher power consump-

tion. The in-order cores, on the other hand, provide good performance for

compute-intensive workloads whose subsequent instructions in the stream are

mostly independent (i.e, programs with high ILP) and can be executed in par-

allel in the in-order cores. This has been demonstrated by a number of prior

research [17] [22] [33] [37] [49] addressing the issue of appropriately scheduling

workloads on a heterogeneous system consisting of both big and small cores.

The difference in the workload execution pattern and the power profile

of the two types of cores, results in different levels of voltage noise.
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Figure 5.13: Maximum voltage droop comparison between OoO and in-order
cores

As seen in Figure 5.13, the maximum voltage droop in in-order cores is

an order of magnitude smaller when compared to that in OoO cores. Further-

more, Figure 5.14 indicates a very interesting trend in the rate of increase of

the magnitude of the worst case voltage swing for both types of cores. As can

be seen, the magnitude of voltage swing in an in-order core increases linearly

from one to eight cores, like the OoO cores, but increases only gradually be-

yond that (this is based on the data for 20 and 27 in-order cores). This trend

has positive implications on the design of future servers composed of only the

in-order cores, from the perspective of reliability. However, due to conflict-

ing requirement of good performance, the reliability benefits of in-order core

configurations might not be achievable.

Consider Figure 5.15 which indicates the performance equivalence be-

tween the two types of cores. It appears that about 4 times the number of OoO

cores are required to achieve nearly the same performance as the OoO cores.

For instance, with 4 in-order cores, about 50% of the PARSEC benchmarks
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Figure 5.14: Rate of increase in maximum voltage swing with increase in the
number of cores, normalized to 1-core

yield better performance when compared to that of a single OoO core, and

similarly for other configurations. From the reliability perspective, replacing

out-of-order cores with more number of in-orders might appear acceptable,

however, Figure 5.16 shows that the homogeneous in-order configurations re-

sult in a larger energy-delay product (EDP), implying poor energy efficiency.

This nullifies the benefits of using the in-order cores for better reliability and

low power. Thus, the number of in-order cores in a system cannot be arbitrar-

ily increased to match the performance of the corresponding OoO cores.
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5.5 Summary

This chapters presents a characterization of voltage noise in large CMP

systems consisting of upto 16 cores, which are either out-of-order or in-order.

The maximum voltage drop in an out-or-oder core is an order of magnitude

larger when compared to the in-order core. The data indicates that the mag-

nitude of maximum voltage drop increases linearly as the number of cores

increase, for both types of cores. However, for the in-order cores the max-

imum drop increases only very slowly beyond 16 cores. Furthermore, the

magnitude of this drop in increasing number of out-of-order cores is found to

be strongly correlated to the maximum swing in the current. However, the

correlation is not strong for the in-order cores. Current variations that res-

onate with the PDN lead to much larger voltage variations, as indicated by

the noise experienced by the bodytrack benchmark. In an in-order core, most

variation observed were due to isolated high current events.

Experimental results also indicate that the level of voltage noise, for

instance, the percentage of voltage droops, do not increase significantly as

the number of cores are increased, potentially due to destructive interference

across the cores leading to voltage smoothing.

This chapter also considered performance equivalent out-of-order and

in-order system configurations, to evaluate the performance, power and relia-

bility design constraints. The results indicate that as the number of in-order

cores are increased to match the performance of an out-of-order configura-

tion, the energy-efficiency reduces, even though the configurations offer better
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reliability.

How can we build a systems that provides a good trade-off between the

performance of the OoO cores and the power-efficiency and reliability of the

in-order cores? The next chapter evaluates single-ISA heterogeneous CMPs

based on these design constraints.
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Chapter 6

Voltage Noise in Single-ISA Heterogeneous

Multi-Core Systems

A class of multi-cores, called heterogeneous multi-cores is gaining pop-

ularity, both in the industry and research community, due to their better

energy-efficiency. For example, Intel’s Sandy Bridge [2], AMD’s Fusion [1],

NVidia’s Tegra [4], include CPU and GPU or IBM’s Cell [30] that has accel-

erators. These, however, execute a different instruction set and are tailored to

perform a particular functionality, like GPUs for graphics processing. While

they provide performance and power efficiency, they cannot be used to execute

general purpose workloads and require specialized programming in some cases

like the GPU. Single-ISA heterogeneous multi-core architectures like ARM’s

big.LITTLE [5], on the other hand, use a combination of different types of

cores, like the big OoO and small in-order cores, that both execute the same

instruction set, but have different capabilities, performance and power levels.

Depending on the characteristics of the workload, the runtime can select the

most appropriate core that can provide best performance while minimizing en-

ergy consumption. The key insight in such a design is that different workloads

have different amounts of ILP and MLP, making them suitable for execution

on a particular type of core [17] [22] [33] [37] [49]. For instance, a workload
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Homogeneous Homogeneous Heterogeneous TDP
OoO In-order

Config-I 2 7 1 OoO, 2 in-order 42-45W
Config-II 3 10 1 OoO, 3 in-order 57-58W
Config-III 4 13 2 OoO, 3 in-order 74-77W
Config-IV 6 20 2 OoO, 6 in-order 110-113W
Config-V 8 27 3 OoO, 8 in-order 148-150W

Table 6.1: TDP Equivalence across different CMP configurations

with large amounts of ILP would be most suitable for a wide-issue, in-order

core with no additional logic needed for extracting parallelism. The single-ISA

offers the benefit of not having to write specialized programs or re-compilation,

making dynamic scheduling decisions possible.

In this light, this section analyzes voltage noise in such single-ISA het-

erogeneous multi-core systems. Since the PDN of a microprocessor is designed

taking into account the designated peak power of the processor, for a fair com-

parison of the level of voltage noise across different multi-core configurations

comprising of different types of cores, this study relies on configurations with

same designated peak power as reported by McPAT. The TDP equivalent con-

figurations considered are summarized in Table 6.1. The mapping of OoO to

in-order cores is not linear due to the different sizes of the last-level caches,

adjusted to obtain reasonable performance with larger configurations.
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6.1 Experimental Setup

Heterogeneous configurations were simulated using the different core

models provided by marssx86, using frequency scaling in the in-order cores

to run them at a lower frequency. The different cores in the heterogeneous

configuration have a private L1 and L2 caches and all the cores share a last

level L3 cache. The configuration of each of the two types of cores is the same

as in Table 5.1.

The PDN used is also the same as that in Table 5.2. The supply voltage

is also kept same at 1V. Further, PARSEC benchmarks are used for the study.

Three PARSEC benchmarks, fluidanimate, facesim and canneal are excluded

from the results presented in this chapter, as fluidanimate and facesim require

an even number of benchmark threads to be executed but there were odd-

numbered core configurations in some of our experiments, and the run-time of

the canneal benchmark on the in-order and heterogeneous configurations was

not feasible for conducting repeated experiments.

6.2 Voltage noise in a heterogeneous CMP

Figure 6.1 shows the maximum voltage swing in a heterogeneous config-

uration, compared to their TDP-equivalent OoO and in-order configurations.

In Config-V, the maximum voltage swing in the heterogeneous configuration

is roughly 53% lesser than in the corresponding OoO configuration, but an

order of magnitude larger than the in-order configuration. However, consider

Figure 6.2 that shows the EDP of the heterogeneous configurations. It can be
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Figure 6.1: Maximum Voltage Droop in different TDP Equivalent Configura-
tions

seen that for larger core configurations, from Config-II and above, the EDP

in heterogeneous configurations is comparable to that of the corresponding

OoO configurations, but is much lower when compared to the in-order config-

urations. In Config-I, for larger number of benchmarks like dedup, freqmine,

streamcluster, blackscholes, x264, the EDP of the heterogeneous configuration

is higher or equal to the in-order configuration. Config-I has the lowest ratio

of OoO in the heterogeneous configuration, resulting in poor EDP.

When compared to the OoO configurations, the voltage guardbands

on a corresponding heterogeneous system can be reduced on an average by

about 35%. The benefits of reducing the voltage guardbands are twofolds,

a) reduction in supply voltage, thus saving power; b) increase in operating

frequency, increasing performance.A reduction in the voltage guardband can be

translated to a proportional reduction in the supply voltage. Since P = cV 2f ,

the savings in power are proportional to the square of the reduction in the

voltage guardbands. This would further lower the EDP, making heterogeneous

53



configurations power-efficient.
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(c) Config-III
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(d) Config-IV
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Figure 6.2: Comparison of Energy-Delay Product across TDP Equivalent Con-
figurations

6.2.1 Limitations of the study

Single-ISA Heterogeneous systems studied in this chapter are a subject

of active research in the community. As highlighted earlier, workload schedul-
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ing is a fundamental problem in the design space of single-ISA heterogeneous

CMPs. Incorrect mapping of workloads to the most appropriate core can lead

to suboptimal performance and even higher power consumption. Since some

of the PARSEC benchmarks have threads executing different kernels, it is pos-

sible that some of these threads are more suited to run on a particular type

of core. However, in our experiment, we did not consider the most appropri-

ate mapping and hence the absolute values of EDP and voltage noise are not

optimal. Further, since the two types of cores run at different frequencies, the

precise characteristics of the PDN have to be determined as well.

6.3 Summary

A class of single-ISA heterogeneous multi-core systems consist of a com-

bination of out-of-order and in-order cores, to provide good performance and

energy-efficiency. This chapter provides some preliminary results on the na-

ture of voltage noise observed on such heterogeneous systems. The results

indicate that the maximum voltage swing experienced on a heterogeneous sys-

tem lies in between the corresponding out-of-order and in-order configurations,

which could allow reduction in voltage guardbands, potentially leading to im-

provements in both performance and power. However, the design space for

heterogeneous systems is huge and requires more rigorous characterization.
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Chapter 7

Conclusion

This thesis presents a detailed characterization of voltage noise in large

multi-core systems, comparing the differences in voltage noise in big and small

cores. The results indicate that as the number of out-of-order cores increase,

the magnitude of the worst-case voltage droop increases, while in the case of an

in-order core, the worst-case swings seems to plateau beyond 16 cores. Thus,

microarchitectures designed for worst-case voltage noise will require very large

voltage guardbands on larger systems, resulting in wastage of power and re-

duced peak operating frequency. The data, however, shows that the frequency

of the worst-case swings is very low, less than 0.05%, and is not impacted as

the number of cores increase, indicating the feasibility of microarchitecture

designs that are optimized for typical case behavior.

The thesis also presents a preliminary characterization of voltage noise

on single-ISA heterogeneous systems. The experiments indicate that the worst-

case voltage droops in a heterogeneous system are larger when compared to

a TDP-equivalent in-order configuration, but smaller than the corresponding

OoO configurations. Since reducing the voltage margin benefits both power

and performance, it enhances the EDP of the heterogeneous systems.
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