9 research outputs found

    Développement d'une plateforme de calcul d'équilibres chimiques complexes et adaptation aux problèmes électrochimiques et d'équilibres contraints

    Get PDF
    Avec l'arrivée de l'environnement comme enjeu mondial, le secteur de l'efficacité énergétique prend une place de plus en plus importante pour les entreprises autant au niveau économique que pour l'image de la compagnie. Par le fait même, le domaine des technologies de l'énergie est un créneau de recherche dont les projets en cours se multiplient. D'ailleurs, un des problèmes qui peut survenir fréquemment dans certaines entreprises est d'aller mesurer la composition des matériaux dans des conditions difficiles d'accès. C'est le cas par exemple de l'électrolyse de l'aluminium qui se réalise à des températures très élevées. Pour pallier à ce problème, il faut créer et valider des modèles mathématiques qui vont calculer la composition et les propriétés à l'équilibre du système chimique. Ainsi, l'objectif global du projet de recherche est de développer un outil de calcul d'équilibres chimiques complexes (plusieurs réactions et plusieurs phases) et l'adapter aux problèmes électrochimiques et d'équilibres contraints. Plus spécifiquement, la plateforme de calcul doit tenir compte de la variation de température due à un gain ou une perte en énergie du système. Elle doit aussi considérer la limitation de l'équilibre due à un taux de réaction et enfin, résoudre les problèmes d'équilibres électrochimiques. Pour y parvenir, les propriétés thermodynamiques telles que l'énergie libre de Gibbs, la fugacité et l'activité sont tout d'abord étudiées pour mieux comprendre les interactions moléculaires qui régissent les équilibres chimiques. Ensuite, un bilan énergétique est inséré à la plateforme de calcul, ce qui permet de calculer la température à laquelle le système est le plus stable en fonction d'une température initiale et d'une quantité d'énergie échangée. Puis, une contrainte cinétique est ajoutée au système afin de calculer les équilibres pseudo-stationnaires en évolution dans le temps. De plus, la contrainte d'un champ de potentiel électrique est considérée pour l'évaluation des équilibres électrochimiques par des techniques classiques de résolution et fera l'objet de travaux futurs via une technique d'optimisation. Enfin, les résultats obtenus sont comparés avec ceux présents dans la littérature scientifique pour valider le modèle. À terme, le modèle développé devient un bon moyen de prédire des résultats en éliminant beaucoup de coût en recherche et développement. Les résultats ainsi obtenus sont applicables dans une grande variété de domaines tels que la chimie et l'électrochimie industrielle ainsi que la métallurgie et les matériaux. Ces applications permettraient de réduire la production de gaz à effet de serre en optimisant les procédés et en ayant une meilleure efficacité énergétique

    Thermodynamic analysis of methane reforming processes and Fischer-Tropsch synthesis

    Get PDF
    Orientador: Reginaldo GuirardelloDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia QuímicaResumo: As reações de reforma de hidrocarbonetos leves, especialmente o gás natural, são reações químicas de elevada importância e representam etapas chave para a produção em larga escala de hidrogênio, para uso em reações de hidrogenação ou em células a combustível, ou de gás de síntese para aplicação na produção de amônia, metanol ou ainda para a síntese de Fischer-Tropsch (FT). A síntese de Fischer-Tropsch e o principal processo de conversao de hidrocarbonetos leves, como o metano, em hidrocarbonetos maiores, de maior valor agregado, assim a determinação das condições termodinamicamente favoráveis para a operação deste tipo de processos se torna cada vez mais necessária. Dentro desse contexto, as reações de reforma a vapor, reforma oxidativa, reforma autotérmica, reforma seca, reforma seca autotérmica e reforma seca combinada com reforma a vapor foram termodinamicamente avaliadas com o objetivo de determinar as melhores condições de reação para a produção de gás de síntese e de hidrogênio. Posteriormente, o gás de síntese produzido foi utilizado para a produção de metanol, etanol e hidrocarbonetos lineares, sendo avaliadas as melhores estratégias para a produção de cada um desses compostos. Para isso foram utilizadas as metodologias de minimização da energia de Gibbs a pressão e temperatura constantes e de maximização da entropia a pressão e entalpia constantes. Ambos os casos foram formulados como problemas de otimização na forma de programação não-linear, e resolvidas com o solver CONOPT2 do software GAMS 23.1'MARCA REGISTRADA'. A partir dos resultados obtidos com a aplicação da metodologia de minimização da energia de Gibbs, verificou-se que todos os processos de reforma avaliados se mostraram favoráveis para a produção de hidrogênio e/ou de gás de síntese do ponto de vista termodinâmico. Tendo a reação de reforma a vapor se destacado para a produção de hidrogênio devido a elevada razao molar H2/CO obtida no produto. A reação de oxidação parcial mostrou bons resultados para a produção de gás de síntese, devido a razão molar H2/CO próxima de 2 no produto. A comparação com dados experimentais permitiu verificar que a metodologia de minimização da energia de Gibbs apresentou boa capacidade de predição e pela comparação com dados simulados obtidos na literatura, pode-se verificar que a metodologia utilizada pelo presente trabalho esta de acordo com os dados publicados. Os resultados obtidos com a aplicação da metodologia de maximização da entropia pode-se verificar que as reações de reforma oxidativa, reforma autotérmica e reforma seca autotérmica, apresentaram comportamento autotérmico, tanto para o uso de O2 como para o uso de ar como agente oxidante. O ar mostrou capacidade de diminuir a elevação da temperatura final do sistema, sendo seu uso promissor para evitar pontos quentes no reator. A comparação com dados de perfil térmico de reatores, para as reações de reforma oxidativa e reforma autotérmica, únicas obtidas na literatura, demonstraram a boa capacidade de predição da metodologia de maximização da entropia para determinação das temperaturas de equilíbrio das reações. As analises realizadas pela aplicação da metodologia de minimização da energia de Gibbs para as reações de síntese de metanol, etanol e hidrocarbonetos lineares, demonstraram a viabilidade da produção desses compostos. Todas reações de síntese avaliadas apresentaram grande dependência da influencia do catalisador (efeito cinético) para promover a produção dos produtos de interesse. Aplicando-se a metodologia de maximização da entropia foi possível determinar que todas as reações de síntese apresentaram comportamento exotérmico. As metodologias empregadas, bem como o solver CONOPT2 aplicado no software GAMS® 23.1 se mostraram rápidos e eficazes para a solução dos problemas propostos, com baixos tempos computacionais para todos os casos analisadosAbstract: The reactions of reforming of light hydrocarbons, especially natural gas, are chemical reactions of great importance and represent key steps for large scale production of hydrogen for use in hydrogenation reactions or fuel cells, or synthesis gas production, for application in the ammonia or methanol production, or to Fischer-Tropsch (FT) synthesis. The Fischer- Tropsch synthesis is the main process of converting light hydrocarbons such as methane, in hydrocarbons of higher value added. The determination of the thermodynamically favorable conditions for the operation for this type of process is required. Within this context, the reactions of steam reforming, oxidative reforming, autothermal reforming, dry reforming, dry autothermal reforming and dry reforming combined with steam reforming were thermodynamically evaluated to determine the best reaction conditions for the production of synthesis gas and hydrogen. For this, we used the methods of Gibbs energy minimization, at constant pressure and temperature, and the Entropy maximization, at constant pressure and enthalpy. Both cases were formulated as optimization problems in the form of non-linear programming and solved with the software GAMS 2.5® with the solver CONOPT2. The results obtained by the method of minimization of Gibbs energy, for all the reform processes evaluated, proved able to produce hydrogen and syngas. Since the reaction of steam reforming showed greater ability to hydrogen production, due to high H2/CO molar ratio obtained in the product. The partial oxidation reaction showed good results for the syngas production, due to H2/CO molar ratio close to 2 in the product. The comparison with experimental data has shown that the Gibbs energy minimization method showed good predictive ability. By comparison with simulated data from the literature we can see that the methodology of minimization of Gibbs energy, used in this work is in agreement with data obtained in the literature for the same methodology. The results obtained using the methodology of entropy maximization allowed us to verify that the reactions of partial oxidation, autothermal reforming and dry autothermal reforming had autothermal behavior, both for the use of O2 as for the use of air as oxidizing agent. The air has shown ability to reduce the final temperature rise of the system, and its use has proved interesting to avoid hot spots in the reactor. A comparison with data from the reactor's thermal profile, for the reactions of partial oxidation and autothermal reforming, only found in the literature, showed good predictive ability of the methodology of entropy maximization to determine the final temperature of the reaction. The analysis realized using the methodology of Gibbs energy minimization for the synthesis reactions of methanol, ethanol and linear hydrocarbons, demonstrated the feasibility of producing these compounds. All synthesis reactions evaluated were greatly dependent on the influence of the catalyst (kinetic effect) to promote the production of products of interest. Trough the entropy maximization method was determined that all synthesis reactions analyzed presents exothermic behavior, but in the reaction conditions evaluated here, these systems can be considered safe. The methodologies used and applied in the software GAMS ® 23.1, and solved with the solver CONOPT2 proved to be fast and effective for solving the proposed problems with low computational time in all cases analyzedMestradoDesenvolvimento de Processos QuímicosMestre em Engenharia Químic

    Thermodynamic analysis of fischer-tropsch synthesis using global optimization methods

    Get PDF
    Orientador: Reginaldo GuirardelloDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia QuímicaResumo: A produção de combustíveis a partir de fontes renováveis tem ganhado atenção nas últimas décadas devido a fatores ambientais e socio-econômicos. A síntese de Fischer-Tropsch (SFT) destaca-se como uma alternativa para conversão \textit{gas-to-liquid}, permitindo a transformação de gás de síntese (H2\textrm{H}_2 e CO), produzido a partir de biomassa (ou carvão e gás natural) em uma variedade de produtos. A SFT é um processo catalítico que gera uma mistura de hidrocarbonetos, tais como olefinas leves, ceras, gasolina, diesel, nafta e álcoois. As condições operacionais (temperatura, pressão, composição do gás de síntese e composição do catalisador) influenciam a formação dos produtos no processo de Fischer-Tropsch (FT). A modelagem termodinâmica de tal sistema pode ser efetuada através de cálculos de equilíbrio químico e de fases, utilizando a minimização global da energia livre de Gibbs. Desse modo, a compreensão deste sistema, a partir de um modelo termodinâmico, foi formulada como um problema de otimização. Algumas restrições devem ser consideradas, como a não negatividade das quantidades das espécies químicas e o balanço material. Além disso, o efeito do catalisador é levado em conta nessas limitações, de modo que somente certas reações são permitidas. Assim, a proposta deste trabalho foi realizar uma avaliação do cálculo de equilíbrio químico e de fases de uma mistura de gás de síntese e hidrocarbonetos utilizando equações de estado, com o objetivo de determinar a composição de produtos e das fases formadas na SFT. Para isso, foi utilizada a metodologia da minimização da energia de Gibbs, empregando a equação de estado de Soave-Redlich-Kwong (SRK) no cálculo das fugacidades. O efeito do catalisador foi considerado através das restrições de balanço material. O cálculo termodinâmico foi desenvolvido como um problema de otimização, através de programação não-linear, utilizando o \textit{software} GAMS. Inicialmente, foi realizada a implementação das equações cúbicas de estado (PR e SRK) como programação não-linear na modelagem matemática para o equilíbrio de fases. Após a validação da metodologia, o modelo foi estendido ao equilíbrio químico e de fases combinados para a SFT. Nessa etapa, foi avaliado o efeito das condições de operação. Por fim, foi realizada uma análise termodinâmica propondo a utilização do dióxido de carbono gerado na SFT para minimizar a emissão deste gásAbstract: The production of fuels from renewable sources has gained attention in recent decades due to environmental and socioeconomic factors. The Fischer-Tropsch synthesis (FTS) stands out as an alternative to gas-to-liquid technology, allowing the conversion of synthesis gas (H2\textrm{H}_2 and CO), produced from biomass (or coal and natural gas) into a variety of products. FTS is a catalytic process that generates a mixture of hydrocarbons such as light olefins, waxes, gasoline, diesel, naphtha, and alcohols. The operating conditions (temperature, pressure, synthesis gas composition, and catalyst composition) influence the formation of the products in the Fischer-Tropsch (FT) process. The thermodynamic modeling of such a system can be carried out through chemical and phase equilibrium calculations, using the overall Gibbs energy minimization. Thus, the understanding of this system from a thermodynamic model was formulated as an optimization problem. Some constraints must be considered, such as the non-negativity of the quantities of the chemical species and the material balance. In addition, the effect of the catalyst is taken into account in these limitations, so that only certain reactions are allowed. Thus, the purpose of this work was to perform an evaluation of the chemical and phase equilibrium calculation of a mixture of synthesis gas and hydrocarbons using equations of state, to determine the composition of products and phases formed in the FTS. For this, the Gibbs free energy minimization methodology was used, using the Soave-Redlich-Kwong (SRK) equation of state in the calculation of fugacities. The effect of the catalyst was considered through material balance constraints. The thermodynamic model was developed as an optimization problem, through nonlinear programming, using GAMS software. Initially, the implementation of cubic equations of state (PR and SRK) was performed as nonlinear programming in mathematical modeling for phase equilibrium. After validation of the methodology, this model was extended to the chemical and phases equilibrium combined for the FTS. In this stage the effect of the operating conditions were evaluated. Finally, a thermodynamic analysis is presented proposing the use of the carbon dioxide generated in the SFT to minimize the emission of this gasMestradoEngenharia QuímicaMestre em Engenharia Química1646929CAPE

    Simultaneous calculation of chemical and phase equilibria using convexity analysis

    No full text
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Chemical and phase equilibria were considered for closed multicomponent reactive systems at: (a) constant pressure and temperature; (b) constant pressure and enthalpy. Equilibrium at constant P and T was found by minimization of G, while equilibrium at constant P and H was found by maximization of S or minimization of -S, all with respect to the number of moles of each component in each phase. Both cases could be handled as optimization problems, satisfying the restrictions imposed by mole or atom balances, and non-negativity of number of moles. Convexity analyses were carried out, and the conditions were found in order to guarantee global minimum, for one liquid phase, one gas phase, and a number of solid phases. The minimum point was then found either by analytical methods or by direct minimization methods. These strategies were tested for a number of cases, with good results. (c) 2010 Elsevier Ltd. All rights reserved.35712261237Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Combustion à la ferme de cultures énergétiques : influence de leurs propriétés physico-chimiques sur les émissions atmosphériques, prédiction de la composition des gaz et cadre de qualité de la biomasse agricole

    Get PDF
    Le monde agricole québécois a actuellement la volonté de mettre en place une filière biomasse pour la production de chaleur à la ferme. Toutefois, la législation sur la qualité de l’air du Québec ne permet pas de valoriser aisément des cultures énergétiques à cette fin. Dans la littérature, le manque de facteurs d’émission en lien avec la combustion de biomasses lignocellulosiques limite l’actualisation du règlement, plutôt contraignant dans le moment, pour répondre aux besoins du milieu. Par ailleurs, la variabilité des propriétés physico-chimiques des plantes agricoles rend le dossier encore plus complexe. Le présent projet visait donc à quantifier l’influence des caractéristiques (espèce, composition chimique, date de récolte, forme, etc.) des cultures dédiées ayant le meilleur potentiel de développement au Québec sur les émissions atmosphériques (particules et gaz) lors de la combustion à la ferme. Une revue critique de la littérature a d’abord ciblé, en plus du bois (référence), quatre biomasses agricoles d’intérêt : le saule à croissance rapide, le panic érigé, le miscanthus et l’alpiste roseau. Ces cultures pérennes ont ensuite été acquises de divers producteurs selon la forme du produit (copeaux, granules ou vrac) et sa date de récolte (automne ou printemps). Au total, 12 différentes biomasses ont été brûlées dans une chaudière multi-combustible de 29 kW au Laboratoire sur les énergies en agriculture durable (LEAD) de l’Institut de recherche et de développement en agroenvironnement (IRDA). Au cours de 36 essais expérimentaux (3 répétitions), les paramètres d’opération (masse du combustible, températures de la chambre, de l’effluent gazeux et de l’eau de l’échangeur de chaleur, débits des gaz et du fluide caloporteur, etc.) et les concentrations de 11 gaz (CO, CO[indice inférieur 2], CH[indice inférieur 4], N[indice inférieur 2]O, NO, NO[indice inférieur 2], NH[indice inférieur 3], SO[indice inférieur 2], HCl, H[indice inférieur 2]O et O[indice inférieur 2]) ont été mesurés en continu. Les matières particulaires ont aussi été échantillonnées pour chaque test de combustion à l’aide de la Méthode 5 de l’United States Environmental Protection Agency (USEPA). Au final, aucune des biomasses n’a respecté les valeurs limites de particules décrites par la règlementation environnementale québécoise avec le système de combustion utilisé. Des contraintes technologiques et la vaste gamme de biomasses sélectionnées ont compliqué l’ajustement des conditions optimales d’opération pour chaque combustible. Néanmoins, plusieurs tendances ont été soulevées. Le bois, étant donné ses faibles teneurs en éléments inorganiques, a produit moins de polluants que les plantes à vocation énergétique. Dans leur cas, leurs émissions particulaires et gazeuses ont généralement été proportionnelles à leurs contenus en azote, en soufre, en chlore, en métaux alcalins et en cendres. C’est ce qui explique que le lessivage causé par la fonte des neiges et subi par une culture récoltée au printemps ait entraîné une diminution importante des rejets atmosphériques. De plus, la granulation, qui permet en densifiant et en homogénéisant le produit de mieux contrôler le procédé, a engendré une baisse des composés issus d’une combustion incomplète. L’analyse de l’impact des propriétés physico-chimiques des cultures sur les émissions lors de la combustion a mené à l’établissement d’un cadre potentiel de certification de la qualité de la biomasse agricole. Un modèle de prédiction de la composition des gaz, basé sur la notion d’équilibre thermodynamique et la minimisation de l’énergie libre de Gibbs, a également été développé pour estimer rapidement les rejets de combustion de toute biomasse et ainsi faciliter son classement à l’intérieur du cadre proposé

    Thermodynamic Analysis Of Autothermal Reforming Of Methane Via Entropy Maximization: Hydrogen Production

    No full text
    In this work a thermodynamic analysis of the autothermal reforming (ATR) of methane was performed. Equilibrium calculations employing entropy maximization were performed in a wide range of oxygen to methane mole ratio (O/M), steam to methane ratio (S/M), inlet temperature (IT), and system pressure (P). The main calculated parameters were hydrogen yield, carbon monoxide formation, methane conversion, coke formation, and equilibrium temperature. Further, the optimum operating oxygen to methane feed ratio that maximizes hydrogen production, at P = 1 bar, has been calculated. The nonlinear programming problem applied to the simultaneous chemical and phase equilibrium calculation was implemented in GAMS®, using CONOPT2 solver. The maximum amount of hydrogen obtained was in the order of 3 moles of hydrogen per mole of fed methane at IT = 1000 °C, P = 1 bar, S/M = 5, and O/M = 0.18. Experimental literature data are in good agreement with calculation results obtained through proposed methodology. © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.391682578270(2012) BP Statistical Review of World Energy June 2012, , LondonEnergy Agency, I., (2012) World Energy Outlook 2012, , LondonPetrachi, G.A., Negro, G., Specchia, S., Saracco, G., Maffettone, P.L., Specchia, V., Combining catalytic combustion and steam reforming in an innovative multifunctional reactor for on-board hydrogen production from middle distillates (2005) Ind Eng Chem Res, 44 (25), pp. 9422-9430Specchia, S., Cutillo, A., Saracco, G., Specchia, V., Concept study on ATR and SR fuel processors for liquid hydrocarbons (2006) Ind Eng Chem Res, 45 (15), pp. 5298-5307Specchia, S., Negro, G., Saracco, G., Specchia, V., Fuel processor based on syngas production via short-contact-time catalytic-partial-oxidation reactors (2007) Appl Catal B Environ, 70 (14), pp. 525-531Laosiripojana, N., Assabumrungrat, S., Methane steam reforming over Ni/Ce-ZrO2 catalyst: Influences of Ce-ZrO2 support on reactivity, resistance toward carbon formation, and intrinsic reaction kinetics (2005) Appl Catal A Gen, 290 (12), pp. 200-211Hou, K., Hughes, R., The kinetics of methane steam reforming over a Ni/α-Al2O catalyst (2001) Chem Eng J, 82 (13), pp. 311-328Basini, L., Issues in H2 and synthesis gas technologies for refinery, GTL and small and distributed industrial needs (2005) Catal Today, 106 (14), pp. 34-40Souza, M.M.V.M., Schmal, M., Autothermal reforming of methane over Pt/ZrO2/Al 2O3 catalysts (2005) Appl Catal A en, 281 (12), pp. 19-24Gao, J., Guo, J., Liang, D., Hou, Z., Fei, J., Zheng, X., Production of syngas via autothermal reforming of methane in a fluidized-bed reactor over the combined CeO2-ZrO2/SiO 2 supported Ni catalysts (2008) Int J Hydrogen Energy, 33 (20), pp. 5493-5500Halabi, M.H., Croon, M.H.J.M., Van Der Schaaf, J., Modeling and analysis of autothermal reforming of methane to hydrogen in a fixed bed reformer (2008) Chem Eng J, 137 (3), pp. 568-578Chang, H.F., Pai, W.J., Chen, Y.J., Lin, W.H., Autothermal reforming of methane for producing high-purity hydrogen in a Pd/Ag membrane reactor (2010) Int J Hydrogen Energy, 35 (23), pp. 12986-12992Akbari, M.H., Ardakani, A.H.S., Tadbir, M.A., A microreactor modeling, analysis and optimization for methane autothermal reforming in fuel cell applications (2011) Chem Eng J, 166 (3), pp. 1116-1125Pino, L., Recupero, V., Beninati, S., Shukla, A.K., Hegde, M.S., Bera, P., Catalytic partial-oxidation of methane on a ceria-supported platinum catalyst for applications in fuel cell electric vehicles (2002) Appl Catal A Gen, 225 (12), pp. 63-75Pino, L., Vita, A., Cordaro, M., Recupero, V., Hegde, M.S., A comparative study of Pt/CeO2 catalyst for catalytic partial oxidation of methane to syngas for application in fuel cell electric vehicles (2003) Appl Catal A Gen, 243 (1), pp. 135-146Specchia, S., Vella, L.D., Montini, P., Fornasiero, P., Syngas production by short contact time catalytic partial oxidation of methane (2011) Hydrogen Production: Prospects and Processes, pp. 95-139. , D.R. Honnery, P. Moriarty, Nova Science Publishers Inc. New York ISBN: 978-1-62100-246-8Prette, M., Eichner, C.H., Perrin, M., The catalytic oxidation of methane to carbon monoxide and hydrogen (1946) T Faraday Soc, 42, pp. 335-339Horn, R., Williams, K.A., Degenstein, N.J., Bitsch-Larsen, A., Dallenogare, D., Tupy, S.A., Methane catalytic partial oxidation on autothermal Rh and Pt foam catalysts: Oxidation and reforming zones, transport effects, and approach to thermodynamic equilibrium (2007) J Catal, 249 (2), pp. 380-393Li, B., Maruyama, K., Nurunnabi, M., Kunimori, K., Tomishige, K., Temperature profiles of alumina-supported noble metal catalysts in autothermal reforming of methane (2004) Appl Catal A Gen, 275 (12), pp. 157-172Liu, T., Snyder, C., Veser, G., Catalytic partial oxidation of methane: Is a distinction between direct and indirect pathways meaningful (2007) Ind Eng Chem Res, 46 (26), pp. 9045-9052Dias, J.A.C., Assaf, J.M., Autothermal reforming of methane over Ni/γ-Al2O 3 catalysts: The enhancement effect of small quantities of noble metals (2004) J Power Sources, 130 (12), pp. 106-110Takeguchi, T., Furukawa, S.N., Inoue, M., Koichi, E., Autothermal reforming of methane over Ni catalyst supported over CaO-CeO2-ZrO2 solid solution (2003) Appl Catal A Gen, 240 (12), pp. 223-233Hagh, B.F., Stoichiometric analysis of autothermal fuel processing (2004) J Power Sources, 130 (12), pp. 85-94Rabe, S., Truong, T.B., Vogel, F., Catalytic autothermal reforming of methane: Performance of a kW scale reformer using pure oxygen as oxidant (2007) Appl Catal A Gen, 318, pp. 54-62Santos, D.C.R.M., Madeira, L., Passos, F.B., The effect of the addition of Y2O3 to Ni/α-Al2O3 catalysts on the autothermal reforming of methane (2010) Catal Today, 149 (34), pp. 401-406Liu, S., Xiong, G., Dong, H., Yang, W., Effect of carbon dioxide on the reaction performance of partial oxidation of methane over a LiLaNiO/γ-Al2O3 catalyst (2000) Appl Catal A Gen, 202 (1), pp. 141-146Liu, Z.W., Jun, K.W., Roh, H.S., Park, S.E., Hydrogen production for fuel cells through methane reforming at low temperatures (2002) J Power Sources, 111 (2), pp. 283-287Vagia, E.C., Lemonidou, A.A., Thermodynamic analysis of hydrogen production via autothermal steam reforming of selected components of aqueous bio-oil fraction (2008) Int J Hydrogen Energy, 33 (10), pp. 2489-2500Rodriguez, M.L., Ardissone, D.E., Pedernera, M.N., Borio, D.O., Influence of the oxygen feed distribution on the performance of a catalytic reactor for ATR of methane (2010) Catal Today, 156 (34), pp. 246-253Chen, W.H., Lin, M.R., Lu, J.J., Chao, Y., Leu, T.S., Thermodynamic analysis of hydrogen production from methane via autothermal reforming and partial oxidation followed by water gas shift reaction (2010) Int J Hydrogen Energy, 35 (21), pp. 11787-11797Li, Y., Wang, Y., Zhang, X., Mi, Z., Thermodynamic analysis of autothermal steam and CO2 reforming of methane (2008) Int J Hydrogen Energy, 33 (10), pp. 2507-2514Wang, H., Wang, X., Li, M., Li, S., Wang, S., Ma, X., Thermodynamic analysis of hydrogen production from glycerol autothermal reforming (2009) Int J Hydrogen Energy, 34 (14), pp. 5683-5690Michelsen, M.L., State function based flash specifications (1999) Fluid Phase Equilibr, 158-160, pp. 617-626Castier, M., Solution of the isochoric-isoenergetic flash problem by direct entropy maximization (2009) Fluid Phase Equilibr, 276 (1), pp. 7-17Rossi, C.C.R.S., Berezuk, M.E., Cardozo-Filho, L., Guirardello, R., Simultaneous calculation of chemical and phase equilibria using convexity analysis (2011) Comput Chem Eng, 35 (7), pp. 1226-1237Freitas, A.C.D., Guirardello, R., Oxidative reforming of methane for hydrogen and syntesisgás production: Thermodynamic equilibrium analysis (2012) J Nat Gas Chem, 21 (5), pp. 571-580Gao, J., Hou, Z., Liu, X., Zeng, Y., Luo, M., Zheng, X., Methane autothermal reforming with CO2 and O2 to synthesis gas at the boundary between Ni and ZrO2 (2009) Int J Hydrogen Energy, 34 (9), pp. 3734-3742Nurunnabi, M., Mukainakano, Y., Kado, S., Miyazawa, T., Okumura, K., Miyao, T., Oxidative steam reforming of methane under atmospheric and pressurized conditions over Pd/NiO-MgO solid solution catalysts (2006) Appl Catal A Gen, 308, pp. 1-12Choudhary, V.R., Mamman, A.S., Uphade, B.S., Steam and oxysteam reforming of methane to syngas over Co xNi1-xO supported on MgO precoated SA-5205 (2001) AIChE J, 47 (7), pp. 1632-1638Reese, M.A., Turn, S.Q., Cui, H., Kinetic modeling of high pressure autothermal reforming (2010) J Power Sources, 195 (2), pp. 553-558Simeone, M., Salemme, L., Allouis, C., Reactor temperature profile during autothermal methane reforming on Rh/Al2O3 catalyst by IR imaging (2008) Int J Hydrogen Energy, 33 (18), pp. 4798-4808Simeone, M., Salemme, L., Scognamiglio, D., Allouis, C., Volpicelli, G., Effect of water addition and stoichiometry variations on temperature profiles in an autothermal methane reforming reactor with Ni catalyst (2008) Int J Hydrogen Energy, 33 (4), pp. 1252-1261Ayabe, S., Omoto, H., Utaka, T., Kikuchi, R., Sasaki, K., Teraoka, Y., Catalytic autothermal reforming of methane and propane over supported metal catalysts (2003) Appl Catal A Gen, 241 (12), pp. 261-269Escritori, J.C., Dantas, S.C., Soares, R.R., Hori, C.E., Methane autothermal reforming nickel-ceria-zirconia based catalysts (2009) Catal Commun, 10 (7), pp. 1090-1094Souza, A.E.A.M., Maciel, L.J.L., Filho, M.L., Abreu, C.A.M., Catalytic activity evaluation for hydrogen production via autothermal reforming of methane (2010) Catal Today, 149 (34), pp. 413-417Hoang, D.L., Chan, S.H., Ding, O.L., Hydrogen production for fuel cells by autothermal reforming of methane over sulfide nickel catalyst on a gamma alumina support (2006) J Power Sources, 159 (2), pp. 1248-1257Dantas, S.C., Escritori, J.C., Soares, R.R., Hori, C.E., Effect of different promoters on Ni/CeZrO2 catalyst for autothermal reforming and partial oxidation of methane (2010) Chem Eng J, 156 (2), pp. 380-387DIADEM Public V. 1.2-DIPPR® - Information and Data Evaluation Manager, 2000, , Design Institute for Physical Property DataPoling, B.E., Prausnitz, J.M., O'Connell, P.J., (2000) The Properties of Gases and Liquids, , 5thed MacGraw Hill New YorkReid, R.C., Prausnitz, J.M., Poling, B.E., (1987) The Properties of Gases and Liquids, , 4thed MacGraw Hill New YorkReid, R.C., Prausnitz, J.M., Poling, B.E., (1977) The Properties of Gases and Liquids, , 3rded MacGraw Hill New YorkLiu, K., Song, C., Subramani, V., (2010) Hydrogen and Syngas Production and Purification Technologies, , John Wiley & Sons New JerseySpecchia, S., Francia, C., Spinelli, P., Polymer electrolyte membrane fuel cells (2011) Electrochemical Technologies for Energy Storage and Conversion, pp. 601-670. , R.S. Liu, L. Zhang, X. Sun, H. Liu, J. Zhang, Wiley-VHC Verlag GmbH & Co., KGaA Germany. WeinheimRuiz, J.A.C., Passos, F.B., Bueno, J.M.C., Souza-Aguiar, E.F., Mattos, L.V., Noronha, F.B., Syngas production by autothermal reforming of methane on supported platinum catalysts (2008) Appl Catal A Gen, 334 (12), pp. 259-267Adhikari, S., Fernando, S., Gwaltney, S.R., To, S.D.F., Bricka, R.M., Steele, P.H., A thermodynamic analysis of hydrogen production by steam reforming of glycerol (2007) Int J Hydrogen Energy, 32 (14), pp. 2875-2880Hoang, D.L., Chan, S.H., Modeling of a catalytic autothermal methane reformer for fuel cell applications (2004) Appl Catal A Gen, 268 (12), pp. 207-216Van Ness, H.C., Abbott, M.M., (1982) Classical Thermodynamics of Noneletrolyte Solutions: With Applications to Phase Equilibria, , MacGraw Hill New YorkSandler, S.I., (2006) Chemical, Biochemical, and Engineering Thermodynamics, p. 32. , 4th ed. John Wiley & Sons In

    Comparison Of Several Glycerol Reforming Methods For Hydrogen And Syngas Production Using Gibbs Energy Minimization

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)This paper focuses on the comparison of different glycerol reforming technologies aimed to hydrogen and syngas production. The reactions of steam reforming, partial oxidation, autothermal reforming, dry reforming and supercritical water gasification were analyzed. For this, the Gibbs energy minimization approach was used in combination with the virial equation of state. The validation of the model was made between the simulations of the proposed model and both, simulated and experimental data obtained in the literature. The effects of modifications in the operational temperature, operational pressure and reactants composition were analyzed with regard to composition of the products. The effect of coke formation was discussed too. Generally, higher temperatures and lower pressures resulted in higher hydrogen and syngas production. All reforming technologies demonstrated to be feasible for use in hydrogen or synthesis gas production in respect of the products composition. The proposed model showed good predictive ability and low computational time (close to 1 s) to perform the calculation of the combined chemical and phase equilibrium for all systems analyzed.39311796917984CAPES; São Paulo Research Foundation; 2011/20666-8; FAPESP; São Paulo Research FoundationFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Saxena, R.C., Seal, D., Kumar, S., Goyal, H.B., Thermo-chemical routes for hydrogen rich gas from biomass: A review (2008) Renew Sustain Energy Rev, 12, pp. 1909-1927Ma, F., Hanna, M.A., Biodiesel production: A review (1999) Bioresour Technol, 70, pp. 1-15Pagliaro, M., Ciriminna, R., Kimura, H., Rossi, M., Della Pina, C., From glycerol to value added products (2007) Angew Chem Int Ed, 46, pp. 4434-4440Vaidya, P.D., Rodrigues, A.E., Glycerol reforming for hydrogen production: A review (2009) Chem Eng Technol, 32, pp. 1463-1469Zhang, B., Tang, X., Li, Y., Xu, Y., Shen, W., Hydrogen production from steam reforming of ethanol and glycerol over ceria supported metal catalysts (2007) Int J Hydrogen Energy, 32, pp. 2367-2373Buffoni, I.N., Pompeo, F., Santori, G.F., Nichio, N.N., Nickel catalysts applied in steam reforming of glycerol for hydrogen production (2009) Catal Commun, 10, pp. 1656-1660Adhikari, S., Fernando, S.D., Haryanto, A., Hydrogen production from glicerin by steam reforming over nickel catalysts (2008) Renew Energy, 33, pp. 1097-1100Thyssen, V.V., Maia, T.A., Assaf, E.M., Ni supported on La2O3-SiO2 used to catalyze glycerol steam reforming (2013) Fuel, 105, pp. 358-363Iriondo, A., Barrio, V.L., Cambra, J.F., Arias, P.L., Guemez, M.B., Sanchez, M.C., Glycerol steam reforming over Ni catalysts supported on ceria and ceria promoted alumina (2010) Int J Hydrogen Energy, 35, pp. 11622-11633Pompeo, F., Santori, G.F., Nichio, N.N., Hydrogen production by glycerol steam reforming with Pt/SiO2 and Ni/SiO2 catalysts (2011) Catal Today, 172, pp. 183-188Pompeo, F., Santori, G.F., Nichio, N.N., Hydrogen and/or syngas from steam reforming of glycerol. Study of platinum catalysts (2010) Int J Hydrogen Energy, 35, pp. 8912-8920Wang, H., Wang, X., Li, M., Li, S., Wang, S., Ma, X., Thermodynamic analysis of hydrogen production from glycerol autothermal reforming (2009) Int J Hydrogen Energy, 34, pp. 5683-5690Wang, W., Thermodynamic analysis of glycerol partial oxidation for hydrogen production (2010) Fuel Process Technol, 91, pp. 1401-1408Yang, G., Yu, H., Peng, F., Wang, H., Yang, J., Xie, D., Thermodynamic analysis of hydrogen generation via oxidative steam reforming of glycerol (2011) Renew Energy, 36, pp. 2120-2127Byrd, A.J., Pant, K.K., Gupta, R.B., Hydrogen production from glycerol by reforming in supercritical water over Ru/Al2O3 catalyst (2008) Fuel, 87, pp. 2956-2960Chakinala, A.G., Brilman, D.W.F., Van Swaaij, W.P.M., Kersten, S.R.A., Catalytic and non catalytic supercritical water gasification of microalgae and glycerol (2009) Indust Eng Chem Res, 49, pp. 1113-1122Guo, S., Guo, L., Cao, C., Yin, J., Lu, Y., Zhang, X., Hydrogen production from glycerol by supercritical water gasification in a continuos flow tubular reactor (2012) Int J Hydrogen Energy, 37, pp. 5559-5568Van Bennekon, J.G., Venderbosch, R.H., Assink, D., Heeres, H.J., Reforming of methanol and glycerol in supercritical water (2011) J Supercrit Fluids, 58, pp. 99-113Voll, F.A.P., Rossi, C.C.R.S., Silva, C., Guirardello, R., Souza, R.O.M.A., Cabral, V.F., Thermodynamic analysis of supercritical water gasification of methanol, ethanol, glycerol, glucose and cellulose (2009) Int J Hydrogen Energy, 34, pp. 9737-9744Wang, X., Li, M., Wang, M., Wang, H., Li, S., Wang, S., Thermodynamic analysis of glycerol dry reforming for hydrogen and synthesis gas production (2009) Fuel, 88, pp. 2148-2153Fernández, Y., Arennilas, A., Bermúdez, J.M., Menéndez, J.A., Comparative study of conventional and microwave assisted pyrolysis, steam and dry reforming of glycerol for syngas production, using a carbonaceous catalyst (2010) J Anal Appl Pyrolysis, 88, pp. 155-159Kale, G.R., Kulkarni, B.D., Thermodynamic analysis of dry autothermal reforming of glycerol (2010) Fuel Process Technol, 91, pp. 520-530Valliyappan, T., Bakhshi, N.N., Dalai, A.K., Pyrolysis of glycerol for the production of hydrogen or syngas (2008) Bioresour Technol, 99, pp. 4476-4483Adhikari, S., Fernando, S., Gwaltney, S.R., Filip To, S.D., Bricka, R.M., Steele, P.H., A thermodynamic analysis of hydrogen production by steam reforming of glycerol (2007) Int J Hydrogen Energy, 32, pp. 2875-2880Holladay, J.D., Hu, J., King, D.L., Wang, Y., An overview of hydrogen productions technologies (2009) Catal Today, 139, pp. 244-260Rass-Hansen, J., Johansson, R., Moller, M., Christensen, C.H., Steam reforming of technical bioethanol for hydrogen production (2008) Int J Hydrogen Energy, 33, pp. 4547-4554Adhikari, S., Fernando, S., Haryanto, A., Production of hydrogen by steam reforming of glicerin over alumina supported metal catalysts (2007) Catal Today, 129, pp. 355-364Adhikari, S., Fernando, S., Haryanto, A., A comparative thermodynamic and experimental analysis on hydrogen production by steam reforming of glicerin (2007) Energy Fuels, 21, pp. 2306-2310Slinn, M., Kendall, K., Mallon, C., Andrews, J., Steam reforming of biodiesel by-product to make renewable hydrogen (2008) Bioresour Technol, 99, pp. 5851-5858Oliveira, E.L.G., Grande, C.A., Rodrigues, A.R.E., Methane steam reforming in large pore catalyst (2010) Chem Eng Sci, 65, pp. 1539-1550Sanchez, E.A., Comelli, R.L.A., Hydrogen by glycerol steam reforming on a nickel alumina catalyst: Deactivation processes and regeneration (2012) Int J Hydrogen Energy, 37, pp. 14740-14746Dieuzeide, M.L., Iannibeli, V., Jobbagi, M., Amadeo, N., Steam reforming of glycerol over Ni/Mg/γ-Al2O3 catalysts. Effect of calcination temperatures (2012) Int J Hydrogen Energy, 37, pp. 14926-14930Bobadilla, L.F., Álvarez, A., Domínguez, M.I., Romero-Sarria, F., Centeno, M.A., Montes, M., Influence of the shape of Ni catalyst in the glycerol steam reforming (2012) Appl Catal B - Environ, 123, pp. 379-390Cheng, G.K., Foo, S.Y., Adesina, A.A., Steam reforming of glycerol over Ni/Al2O3 catalysts (2011) Catal Today, 178, pp. 25-33Wang, C., Dou, B., Chen, H., Song, Y., Xu, Y., Du, X., Hydrogen production from steam reforming of glycerol by Ni-Mg-Al based catalysts in fixed bed reactor (2013) Chem Eng J, 220, pp. 133-142Wang, C., Dou, B., Chen, H., Song, Y., Xu, Y., Du, X., Renewable hydrogen production from steam reforming of glycerol by Ni-Cu-Al, Ni-Cu-Mg, Ni-Mg catalysts (2013) Int J Hydrogen Energy, 38, pp. 3562-3571Ahmed, S., Krumpelt, Hydrogen from hydrocarbon fuels for fuel cells (2001) Int J Hydrogen Energy, 26, pp. 291-301Carrettin, S., McMorn, P., Johnston, P., Griffin, K., Kiely, C.J., Hutchings, G.J., Oxidation of glycerol using supported Pt, Pd and Au catalysts (2003) Phys Chem Chem Phys, 5, pp. 1329-1336Rennard, D.C., Kruger, J.S., Schmidt, L.D., Autothermal catalytic partial oxidation of glycerol to syngas and non-equilibrium products (2009) Chem Sus Chem, 2, pp. 89-98Rabenstein, G., Hacker, V., Hydrogen for fuel cells from ethanol by steam reforming, partial oxidation and combined auto-thermal reforming: A thermodynamic analysis (2008) J Power Sources, 185, pp. 1293-1304Qi, A., Wang, S., Fu, G., Wu, D., Autothermal reforming of n-octane on Ru-based catalysts (2005) Appl Catal A - Gen, 293, pp. 71-82Dauenhauer, P.J., Salge, J.R., Schmidt, L.D., Renewable hydrogen by autothermal steam reforming of volatile carbohydrates (2006) J Catal, 244, pp. 238-247Douette, A.M.D., Turn, S.Q., Wang, W., Keffer, V.I., Experimental investigation of hydrogen production from glycerin reforming (2007) Energy Fuels, 21, pp. 3499-3504Edwards, J.H., Maitra, A.M., The chemistry of methane reforming with carbon dioxide and its current and potential applications (1995) Fuel Process Technol, 42, pp. 269-289Mizuno, T., Goto, M., Kodama, A., Hirose, T., Supercritical water oxidation of a model municipal solid waste (2000) Indust Eng Chem Res, 39, pp. 2807-2810Kruse, A., Supercritical water gasification (2008) Biofuels Bioprod Biorefining, 2, pp. 415-437Savage, P.E., Heterogenous catalysis in supercritical water (2000) Catal Today, 62, pp. 167-173Calzavara, Y., Joussot-Dubien, C., Boissonnet, G., Sarrade, S., Evaluation of biomass gasification in supercritical water process for hydrogen production (2005) Energy Convers Manag, 46, pp. 615-631Guo, Y., Wang, S.Z., Xu, D.H., Gong, Y.M., Ma, H.H., Tang, X.Y., Review of catalytic supercritical water gasification for hydrogen production from biomass (2010) Renew Sustain Energy Rev, 14, pp. 334-343Hao, X.H., Guo, L.J., Mao, X., Zhang, X.M., Chen, X.J., Hydrogen production from glucose used as a model compound of biomass gasified in supercritical water (2003) Int J Hydrogen Energy, 28, pp. 55-64Clifford, T., (1998) Fundamentals of Supercritical Fluids, , Oxford University Press New YorkMay, A., Salvadó, J., Torras, C., Montané, D., Catalytic gasification of glycerol in supercritical water (2010) Chem Eng J, 160, pp. 751-759Smith, W.R.M., Missen, R.W., (1982) Chemical Reaction Equilibrium Analysis: Theory and Algorithms, , JohnWiley & SonsPitzer, K.S., Curl, R.F., The volumetric and thermodynamic properties of fluids III. Empirical equation of the second virial coefficient (1957) J Am Chem Soc, 20, pp. 263-272Tsonopoulos, C., An empirical correlation of second virial coefficients (1974) AIChE J, 20, pp. 263-272Castello, D., Fiori, L., Supercritical water gasification of biomass: Thermodynamic constraints (2011) Bioresour Technol, 102, pp. 7574-7582Castillo, J., Grossmann, I.E., Computation of phase and chemical equilibria (1981) Comput Chem Eng, 5, pp. 99-108Freitas, A.C.D., Guirardello, R., Oxidative reforming of methane for hydrogen and synthesis gas production: Thermodynamic equilibrium analysis (2012) J Nat Gas Chem, 21, pp. 571-580Lu, Y., Guo, X., Zhang, X., Yan, Q., Thermodynamic modeling and analysis of biomass gasification for hydrogen production in supercritical water (2007) Chem Eng J, 131, pp. 233-244Nichita, D.V., Gomez, S., Luna, E., Multiphase equilibria calculation by direct minimization of Gibbs free energy with a global optimization method (2002) Comput Chem Eng, 26, pp. 1703-1724Rossi, C.C.R.S., Berezuk, M.E., Cardozo-Filho, L., Guirardello, R., Simultaneous calculation of chemical and phase equilibria using convexity analysis (2011) Comput Chem Eng, 35, pp. 1226-1237Freitas, A.C.D., Guirardello, R., Supercritical water gasification of glucose and cellulose for hydrogen and syngas production (2012) Chem Eng Trans, 27, pp. 361-366Castier, M., Solution of isochoric-isoenergetic flash problem by direct entropy maximization (2009) Fluid Phase Equilibria, 276, pp. 7-17White, W.B., Johnson, S.M., Danzig, G.B., Chemical equilibrium in complex mixtures (1958) J Chem Phys, 28, pp. 751-755Brooke, K., Meeraus, D., Raman, R., (1998) GAMS - A User's ManualPolling, B.P., Prausnitz, J.M., O'Connel, P.J., (2000) The Properties of Gases and Liquids, , 5th ed. McGraw Hill New YorkReid, R.P., Prausnitz, J.M., Sherwood, T.K., (1987) The Properties of Gases and Liquids, , 4th ed. McGraw Hill New YorkDippr, (2000) DIADWM Public V. 1.2. Design Institute for Physical Property Data. Information and Data Evaluation ManagerAdhikari, S., Fernando, S.D., To, S.D.F., Bricka, R.M., Steele, P.H., Haryanto, A., Conversion of glycerol to hydrogen via a steam reforming process over nickel catalysts (2008) Energy Fuels, 22, pp. 1220-1226Wang, X., Li, M., Li, S., Wang, H., Wang, S., Ma, X., Hydrogen production by glycerol steam reforming with/without calcium oxide sorbent: A comparative study of thermodynamic and experimental work (2010) Fuel Process Technol, 91, pp. 1812-1818Freitas, A.C.D., Guirardello, R., Thermodynamic analysis of supercritical water gasification of microalgae biomass for hydrogen and syngas production (2013) Chem Eng Trans, 32, pp. 553-55
    corecore