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Summary 

Nowadays, optimization is a necessity in almost every field such as business, 

science and engineering. In real life, most of the optimization problems are highly 

nonlinear and non-convex. The traditional optimization techniques can be easily 

trapped at a local optimum. So, global optimization becomes more and more 

important since it can overcome this difficulty and can find the global optimum. 

However, there are still many challenges in developing reliable, robust and efficient 

global optimization methods and using these techniques to solve the difficult and 

complex application problems. Therefore, a study of global optimization methods and 

their applications is important and necessary. This thesis focuses on the development 

of a stochastic global optimization technique with novel strategies for termination and 

constraints handling, and its application to chemical engineering problems. 

First, an overview of various global optimization algorithms together with 

their categories, advantages and working principles is provided. Then, global 

optimization applications in thermodynamics, namely, phase equilibrium modeling, 

calculations and stability analysis, are reviewed. Next, an integrated differential 

evolution algorithm (IDE) is developed. It combines parameter self-adaption, tabu list, 

new stopping criterion and local search. The effectiveness of IDE is demonstrated on 

different sets of benchmark problems and by comparison with the latest DE 

techniques in the literature. Subsequently, IDE is used to solve many different 

parameter estimation problems in vapor-liquid equilibrium modeling and in nonlinear 

dynamic systems. Further, performance of IDE for phase equilibrium and stability 

problems is studied and compared with other global optimization algorithms. 

Many application problems involve equality and inequality constraints. Hence, 

a new constraint handling method is developed for handling equality and/or inequality 
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constrained problems. It utilizes self-adaptive relaxation of constraints and the 

feasibility approach for selection. IDE with the proposed constraint handling method 

is tested for solving benchmark problems and chemical engineering applications with 

equality and/or inequality constraints. The results show that the proposed constraint 

handling method is reliable and efficient for solving constrained optimization 

problems. The pooling problem is an important optimization problem that has not 

been studied using stochastic global optimization algorithms. Hence, the constraint 

handling method with IDE is applied to solve the pooling problems. The performance 

comparison with the recent results by deterministic methods shows that our algorithm 

is a good alternative method for solving the pooling problems. 

Finally, IDE algorithm is modified to handle both discrete and continuous 

variables. In addition, one-step approach for solving heat exchanger network (HEN) 

retrofit problems by this modified IDE is proposed. In this approach, HEN structure 

(integer variables) and retrofitting model parameters (continuous variables) are 

simultaneously optimized, which not only avoids the algorithm trapping at a local 

optimum but can also improve the computational efficiency. The performance of the 

modified IDE algorithm and the proposed one-step approach is compared with the 

reported state-of-the-art methods for HEN retrofit problems. This shows that our 

approach is efficient and robust for global optimization of HEN retrofit problems. 
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Chapter 1 

Introduction 

This chapter provides a general introduction to global optimization techniques, 

categories, challenges, applications and motivation for this study. 

1.1 Global Optimization 

Nowadays, optimization is a necessity in almost every field such as business, 

science and engineering. In every area, some quantitative optimization techniques are 

required in order to improve the performance of applications and processes. To 

achieve this goal, we need to have a mathematical model for the application and an 

objective function which depends on decision variables that are subject to relevant 

conditions or constraints. Most of the optimization problems in real life are nonlinear 

and non-convex in nature, and so optimization of such problems should find a global 

optimum rather than a local optimum. However, classical optimization techniques 

have difficulties in finding the global optimal solution since they can easily be trapped 

in local minima. Moreover, they cannot generate or even use the global information 

needed to find the global minimum of a problem with multiple local minima. The 

global optimization techniques can overcome the disadvantages of the classical 

optimization techniques. They try to find the values of decision variables to optimize 

the objective function globally and not just locally.  

Interest in global optimization has increased in the last 10-20 years in order to 

develop effective algorithms for finding global optimal solutions for different kinds of 

optimization problems. Global optimization refers to finding the best (either 

maximum or minimum) value of a given non-convex function in the specified feasible 
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region. Some optimization problems involve finding the maximum of an objective 

function such as profit, production rate, etc. whereas others involve finding the 

minimum of an objective such as cost, processing time, etc. Often, optimization 

methods are described for minimization. If the problem is for maximization, it can be 

transformed to minimization by simply negating the objective function.  

A typical global optimization problem features an objective function, 

equality/inequality constraints and upper/lower bounds on decision variables.  

Minimize  ( )

Subject to  ( ) 0, 1, 2,..., 1

                 ( ) 0, 1, 2, ..., 2

                 , 1, 2,...,

i

j

l u

k k k

f x

h x i m

g x j m

x x x k n

= =

≤ =

≤ ≤ =

                                             (1.1) 

Here, xk is an n-dimensional vector of decision variables, f(x) is an objective function, 

hi(x) = 0 and gj(x) ≤ 0 are respectively m1 equality and m2 inequality constraints, and 

xk
l and xk

u are respectively the lower and upper bounds of xk. 

1.2  Classification of Global Optimization Techniques 

There are many global optimization techniques available currently. However, 

global optimization is still challenging. Available global optimization methods can be 

classified in two broad categories (Pardalos et al., 2000; Liberti and Kucherenko, 

2005): deterministic and stochastic (or probabilistic) global optimization methods. 

The commonly used methods are classified and shown in Figure 1.1. 
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Figure 1.1: Classification of Global Optimization Methods 

Deterministic methods include branch and bound methods, homotopy 

continuation methods, interval analysis, outer approximation methods, global terrain, 

etc. They are most often used for specific problems and when the relation between the 

characteristics of the possible solutions and the problem is known (Nocedal and 

Wright, 1999; Weise, 2008). Deterministic methods can guarantee the global 

optimality of the final solution under certain conditions such as continuity and 

convexity. However, no algorithm could solve general global optimization problems 

with certainty in finite time (Guus et al. 1995; Moles et al., 2003). If the relation 

between a solution candidate and its “fitness” is not so obvious or too complicated, or 

the dimensionality of the search space is very high, the global optimization problem 

becomes harder to solve using deterministic methods (Weise, 2008). For mixed 

integer nonlinear problems (MINLP), some deterministic methods require solving a 

relaxed problem or they solve a sequence of NLP with fixed integer values (Exler et 
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al., 2008). In fact, although several classes of deterministic methods (e.g., branch and 

bound) have sound theoretical convergence properties, the associated computational 

effort increases very rapidly (often exponentially) with the problem size (Moles et al., 

2003).  

The well-known stochastic global optimization methods include genetic 

algorithm, evolutionary strategy, simulated annealing, differential evolution, tabu 

search, ant colony optimization, particle swarm optimization and scatter search. The 

recent book by Rangaiah (2010) covers these and their applications in chemical 

engineering. The most challenging global optimization problems are those without 

any known structure that can be used, so-called black-box optimization problems 

(Pardalos et al., 2000; Exler et al., 2008). Stochastic optimization algorithms, whose 

search is random, are designed to deal with such black-box optimization problems or 

highly complex optimization problems. They generally require little or no additional 

assumptions on the optimization problem, are simple to implement and use, and do 

not require transformation of the original problem. These characteristics are especially 

useful if the researcher has to link the optimizer with a simulator such as Aspen Plus 

and Hysys. On the other hand, stochastic algorithms require infinite number of 

iterations to guarantee global optimality, but they can locate the global optimum with 

high probability in modest computation times (Moles et al., 2003; Lin and Miller, 

2003). Therefore, this thesis focuses on the development and applications of the 

stochastic global optimization algorithms. 
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1.3  Motivation and Scope of Work 

There are many stochastic global optimization methods which have been 

developed and applied to application problems in many areas. However, there are still 

challenges in reliably and efficiently solving global optimization problems by 

stochastic techniques. These include: 

1. Tuning of the algorithm parameters 

2. Overcoming the premature condition 

3. Balancing the exploration (global search) and exploitation (local search)  

4. Lack of good stopping criteria 

5. Effective constraint handling methods 

Therefore, one of the focuses of the present research is on developing a more 

reliable, robust and efficient stochastic algorithm for global optimization. The other 

important issues considered are the parameter estimation in models, phase equilibrium 

and stability calculations, and pooling problems. Finally, a new mixed-integer 

nonlinear programming with novel approach for solving heat exchanger network 

retrofit problems is also proposed as part of this thesis. The motivation for studying 

these issues, together with relevant background information, is briefly discussed in 

this section. 

1.3.1  An IDE with a Novel Stopping Criterion  

The limitation of the global optimization algorithms has been listed in Section 

1.3. The proposed algorithm (IDE) integrates differential evolution (DE) with taboo 

list of taboo search and parameter adaptation. The taboo list/check prevents revisiting 

the same area, thus increasing the population diversity and computational efficiency. 

The parameter adaptation strategy reduces the algorithm parameters to be provided 
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and makes the algorithm more robust. Furthermore, a novel stopping criterion based 

on the number of rejected points is developed, and a local search is employed after the 

global search for finding the global optimum accurately and efficiently. The 

effectiveness of the proposed stopping criterion and IDE is assessed on more than 30 

benchmark problems with 2 to 30 variables. The performance of IDE is compared 

with state-of-the-art global optimization algorithms in the literature.  

1.3.2  Global Optimization of Parameter Estimation Problems  

Parameter estimation is essentially an optimization problem where the 

unknown values of the parameters in the model are obtained by minimizing a suitable 

objective function. It plays an important role in developing better mathematical 

models which can be used to understand and analyze systems. Parameter estimation in 

thermodynamic models as well as dynamic models have been of great interest in 

chemical engineering due to its complex nature such as non-linearity, flat objective 

function in the neighborhood of global optimum, badly scaled model and non-

differential term(s) in the equations. In this thesis, IDE with the proposed stopping 

criterion and local search is used to solve the parameter estimation problems for 

modeling vapor-liquid equilibrium (VLE) data and chemical engineering applications 

involving dynamic models. The performance of IDE for benchmark functions and 

VLE modeling is compared with that of other stochastic algorithms such as DE, DE 

with tabu list, particle swarm optimization, simulated annealing and a deterministic 

algorithm, Branch and Reduce Optimization Navigator (BARON).  
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1.3.3  Global Optimization of Phase Equilibrium and Stability Problems 

Phase equilibrium calculations and phase stability analysis play a significant 

role in the simulation, design and optimization of separation processes in chemical 

engineering. These are very challenging problems due to the high non-linearity of 

thermodynamic models. In this study, we introduce two global optimization 

algorithms developed by our group for phase and chemical equilibrium calculations, 

namely, IDE and IDE without tabu list and radius (IDE_N), which have fewer 

parameters to be tuned. The performance of these stochastic algorithms is tested and 

compared in order to identify their relative strengths for phase equilibrium and phase 

stability problems. The phase equilibrium problems include both without and with 

chemical reactions.  

1.3.4  Novel Constraint Handling Method 

Constrained optimization problems are very important as they are encountered 

in many engineering applications. Equality constraints in them are challenging to 

handle due to tiny feasible region. Additionally, global optimization is required for 

finding global optimum when the objective and constraints are nonlinear. Stochastic 

global optimization methods can handle non-differentiable and multi-modal objective 

functions. In this work, a new constraint handling method for use with such methods 

is proposed for solving equality and/or inequality constrained problems. It 

incorporates adaptive relaxation of constraints and the feasibility approach for 

selection. The IDE with this constraint handling technique is tested for solving 

challenging constrained benchmark problems, and then applied to many chemical 

engineering application problems with equality and/or inequality constraints.  
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1.3.5  Global Optimization of Pooling Problems 

The pooling problems are the important optimization problems that are 

frequently encountered in the petroleum refining industries, and they often have 

multiple optimum. Therefore, pooling problems require a reliable and easy-to-

implement optimization method to find the global optimal solution. Recently, many 

deterministic optimization algorithms have been applied to pooling problems. To the 

best of our knowledge, the performance of stochastic global optimization algorithms 

for solving the complex pooling problems has not been reported. In this thesis, IDE 

with the proposed constraint handling method is applied to solve many pooling 

problems, and its performance results are compared with those of deterministic 

methods.  

1.3.6  Heat Exchanger Network Retrofitting Using IDE 

Heat exchanger network (HEN) synthesis has been a hot topic in the past 

several decades. HEN retrofitting is more important and challenging than HEN 

synthesis since it involves the retrofitting existing HEN for improved energy 

efficiency. Additional factors to be taken into account include spatial constraints, 

relocation and re-piping costs, reassignment and effective use of existing heat 

exchangers (Rezaei and Shafiei, 2009). HEN retrofitting is gaining importance in 

chemical process industries as one of the most effective ways to decrease energy 

consumption in the current plants. It is generally formulated as a MINLP 

superstructure model, which contains both discrete and continuous variables. The 

MINLP model of HEN retrofitting is NP-hard which makes it difficult for 

deterministic optimization methods, especially for larger size problems (Furman and 

Sahinidis, 2001). The previous studies using stochastic global optimization algorithms 

are mainly focused on two-level approach: the first level uses stochastic algorithm for 
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the structure change (discrete variables), and the second level uses either stochastic or 

deterministic algorithm for optimizing the continuous variables (Rezaei and Shafiei, 

2009; Bochenek, and Jezowski, 2010). In this study, we propose one-step approach, 

where IDE algorithm developed above handles both discrete and continuous variable 

together. Thus, HEN structure and retrofitting model parameters are simultaneously 

optimized, which not only avoids the algorithm trapping at a local optimum but also 

can improve the computational efficiency. Application of the one-step approach using 

IDE to HEN retrofitting is tested on several examples. 

1.4   Organization of the Thesis 

This thesis comprises nine chapters. The next chapter presents an overview of 

both deterministic and stochastic global optimization techniques together with their 

applications in phase equilibrium modeling and calculations. Development of IDE 

algorithm along with a novel stopping criterion based on the number of rejection 

points, and its evaluation are presented in Chapter 3. Application of IDE to solve the 

parameter estimation in chemical engineering applications is described in Chapter 4. 

The evaluation of IDE algorithm for solving phase equilibrium and stability problems 

is presented in Chapter 5. The subsequent chapter presents a novel constraint handling 

method which uses self-adaptive relaxation method with feasibility approach for 

constrained global optimization. The first attempt to solve the pooling problems with 

a large number of equality and inequality constraints using a stochastic global 

optimization is presented in Chapter 7. Next, modified IDE is developed to handle 

both continuous and discrete variables, and applied for solving HEN retrofitting 

problems by one-step approach in Chapter 8. The conclusions and recommendations 

for future works are finally outlined in the last chapter. Note that Chapters 2 to 8 are 
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based on published journal papers or submitted manuscripts, which are edited in order 

to minimize repetition. However, some material in Chapters 2 to 8 was repeated with 

the sole intention of making the concerned chapters easier to follow.  
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Chapter 2 

Literature Review *1 

2.1 Introduction 

The phase equilibrium modeling for multi-component systems is essential in 

the design, operation, optimization and control of separation schemes. Novel 

processes handle complex mixtures, severe operating conditions, or even incorporate 

multi-functional unit operations (e.g., reactive distillation and extractive distillation). 

Therefore, phase behavior of multi-component systems has significant impact on 

process design including equipment and energy costs of separation and purification 

strategies (Wakeham and Stateva, 2004). Phase equilibrium calculations are usually 

executed thousands of times in process simulators, and are especially important in 

chemical, petroleum, petrochemical, pharmaceutical and other process industries 

where separation units are the core of process performance. Hence, these calculations 

must be performed reliably and efficiently, to avoid uncertainties and errors in process 

design.  

Global optimization problems abound in the modelling and analysis of phase 

equilibrium for both reactive and non-reactive systems. Specifically, several 

thermodynamic calculations can be formulated as global optimization problems, and 

they include three applications: a) phase stability analysis, b) Gibbs free energy 

minimization and c) estimation of parameters in thermodynamic models. Formally, 

the optimization problems of these applications can be stated as follows: minimize 

Fobj(u) subject to hj(u) = 0 for j = 1, 2, …, m and u ∈ Ω where u is a vector of n 

                                                           
1* This chapter is based on the paper: Zhang, H., Bonilla-Petriciolet, A. and Rangaiah, G.P., A 
review on global optimization methods for phase equilibrium modeling and calculations. The 

Open Thermodynamics J., vol. 5, pp.71-92, 2011. 
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continuous variables in the domain Ω ∈ ℜn, m is the number of equality constraints 

arising from the specific thermodynamic application, and Fobj(u) : Ω ⇒ ℜ is a real-

valued function. The domain Ω is defined by the upper and lower limits of each 

decision variable.  

The major challenge of solving global optimization problems for phase 

equilibrium modeling and analysis is because Fobj(u) is generally non-convex and 

highly non-linear with many decision variables. Thus, the objective functions 

involved in phase equilibrium modeling and calculations may have several local 

optima including trivial and non-physical solutions especially for multi-component 

and multi-phase systems. Therefore, traditional optimization methods are not suitable 

for solving these thermodynamic problems because they are prone to severe 

computational difficulties and may fail to converge to the correct solution when good 

initial estimates are not available (Teh and Rangaiah, 2002; Wakeham and Stateva, 

2004). In general, finding the global optimum is more challenging than finding a local 

optimum, and the location of this global optimum for phase equilibrium problems is 

crucial because only it corresponds to the correct and desirable solution (Floudas, 

1999; Wakeham and Stateva, 2004). 

The development and evaluation of global optimization methods had played 

and continue to play a major role for modeling the phase behavior of multi-

component systems (Floudas, 1999; Teh and Rangaiah, 2002; Wakeham and Stateva, 

2004). Until now, many deterministic and stochastic global optimization methods 

have been used for phase equilibrium calculations and modeling. Studies on the use of 

deterministic methods for phase equilibrium problems have been focused on the 

application of branch and bound optimization, homotopy continuation method and 

interval-Newton/generalized bisection algorithm. The stochastic optimization 
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techniques applied for solving phase equilibrium problems include point-to-point, 

population-based and hybrid stochastic methods.  

There have been significant developments in global optimization and their 

applications to phase equilibrium problems. But, to the best of our knowledge, there is 

no review in the literature that focuses on the global optimization methods for phase 

equilibrium modeling and calculations. Therefore, use of both deterministic and 

stochastic global optimization methods to solve phase equilibrium problems in multi-

component systems is reviewed in this chapter. In particular, we focus on applications 

of global optimization for phase stability analysis, Gibbs free energy minimization in 

both reactive and non-reactive systems, and parameter estimation in phase 

equilibrium models. The performance and capabilities of many global optimization 

methods for these thermodynamic calculations are discussed. The remainder of this 

review is organized as follows. The formulation of optimization problems for phase 

equilibrium modeling and calculations is presented in Section 2.2. In Section 2.3, we 

briefly describe the deterministic and stochastic optimization methods used for 

solving the optimization problems outlined in Section 2.2. Section 2.4 reviews the 

phase equilibrium modeling and calculations using global optimization algorithms. 

Finally, concluding remarks are given in Section 2.5. 

2.2 Phase Equilibrium Modeling and Calculations 

This section introduces the basic concepts and description of phase 

equilibrium problems considered in this review. Specifically, a brief description of the 

global optimization problems including the objective function, decision variables and 

constraints, for phase stability, physical and chemical equilibrium, and phase 

equilibrium modeling is given in the following sections. 
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2.2.1  Phase Stability  

Phase stability analysis is a fundamental step in phase equilibrium calculations. 

This analysis allows identification of the thermodynamic state that corresponds to the 

global minimum of Gibbs free energy (globally stable equilibrium). Additionally, the 

results of stability analysis can be used to begin phase-split calculations. According to 

the Gibbs criterion, a mixture at a fixed temperature T, pressure P and overall 

composition is stable if and only if the Gibbs free energy surface is at no point below 

the tangent plane to the surface at the given overall composition (Michelsen, 1982; 

Wakeham and Stateva, 2004). This statement is a necessary and sufficient condition 

for global stability. Generally, stability analysis is performed using the tangent plane 

distance function (TPDF). So, the phase stability of a non-reactive mixture with c 

components and overall composition in mole fraction units, at constant P and T, 

requires the global minimization of TPDF. Physically, TPDF is the vertical distance 

between the Gibbs free energy surface and the tangent plane constructed to this 

surface. For more details on the explanation, derivation and implications of TPDF, see 

the work of Michelsen (1982). 

To perform stability analysis, TPDF must be globally minimized with respect 

to a trial composition y subject to an equality constraint and bounds on decision 

variables. The decision variables in phase stability problems are the mole fractions. If 

the global minimum of TPDF(y) < 0, the mixture under analysis is unstable; else, it is 

a globally stable system. Note that the constrained problem can be transformed into an 

unconstrained problem by using new decision variables βi instead of yi as the decision 

vector (Rangaiah, 2001; Srinivas and Rangaiah, 2007a and 2007b). As an alternative 

to the optimization procedure, phase stability can also be determined by finding all 

solutions of the stationary conditions of TPDF. If TPDF at any of the solutions 
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obtained by this set of equations is negative, then the given mixture is unstable and 

will exhibit phase-split. Note that the trivial solution is always present in this 

thermodynamic problem, and it corresponds to the global minimum of TPDF for the 

case of stable mixtures. As suggested by Michelsen (1982), the stability criterion is 

also applicable to chemically equilibrated phases, and consequently almost any 

method proposed for stability analysis of non-reactive systems can be extended to 

reactive mixtures.  

2.2.2 Phase Equilibrium Calculations 

In the phase equilibrium/split calculations, main objectives are to establish the 

correct number and types of phases at equilibrium as well as the composition and 

quantity of each phase (Wakeham and Stateva, 2004). At constant temperature T and 

pressure P, a c multi-component and π multi-phase non-reactive system achieves 

equilibrium when its Gibbs free energy is at the global minimum. There are two main 

approaches for performing phase equilibrium calculations: a) equation solving 

approach and b) Gibbs free energy minimization approach (Teh and Rangaiah, 2002). 

The former involves solving a set of non-linear equations arising from mass balances 

and equilibrium relationships, whereas the latter involves the direct minimization of 

Gibbs free energy function. Although the first approach seems to be faster and simple, 

the solution obtained may not correspond to the global minimum of free energy 

function. Moreover, it needs a priori knowledge of phases existing at equilibrium (Teh 

and Rangaiah, 2002). Therefore, minimization of Gibbs free energy is a natural 

approach for calculating the equilibrium state of a mixture.  

In a non-reactive system with c components and π phases, the thermodynamic 

function for phase equilibrium calculations is expressed as a linear combination of the 

chemical potential of each component in each phase. The expression for Gibbs free 
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energy and its mathematical properties depend on the thermodynamic equation(s) 

chosen to model each of the phases that may exist at equilibrium. For a non-reactive 

system, Gibbs free energy must be minimized with respect to the set of decision 

variables subject to mass balance constraints. One can use new variables instead of 

original decision variables in the above optimization problem. Introduction of the new 

variables eliminates the restrictions imposed by material balances, reduces problem 

dimensionality and the optimization problem is transformed to an unconstrained one. 

For multi-phase non-reactive systems, real variables βij∈(0, 1) are defined and 

employed as new decision variables. For Gibbs energy minimization, the number of 

phases existing at the equilibrium is usually assumed to be known a priori, and the 

number of decision variables in the unconstrained approach is c (π - 1) for non-

reactive systems. 

Reactive phase equilibrium calculations, also known as chemical equilibrium, 

are performed if a reaction is possible in the system under study. Note that reactions 

increase the complexity and dimensionality of phase equilibrium problems, and so 

phase split calculations in reactive systems are more challenging due to non-linear 

interactions among phases and reactions. The phase distribution and composition at 

equilibrium of a reactive mixture are determined by the global minimization of Gibbs 

free energy subject to mass balances and chemical equilibrium constraints. Based on 

the handling of material balance constraints, available strategies can be classified as 

either stoichiometric or non-stoichiometric (Stateva and Wakeham, 1997).  

For reactive phase equilibrium, the mass balance restrictions and non-

negativity requirements are usually formulated using the conservation of chemical 

elements in the components (Seider and Widagdo, 1996). Therefore, to determine the 

phase equilibrium compositions in reactive systems using this approach, it is 
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necessary to solve the constrained global optimization problem. The constrained 

global minimization of Gibbs free energy is with respect to cπ  decision variables. For 

modeling reactive systems, the chemical equilibrium condition can be evaluated from 

either Gibbs free energy data or chemical equilibrium constants determined 

experimentally. Accordingly, we can use different objective functions for the 

constrained minimization of Gibbs energy function. In addition, this thermodynamic 

problem can be also formulated using transformed composition variables. For more 

details on different objective functions using both conventional and transformed 

composition variables as the decision vector for Gibbs free energy minimization in 

reactive systems, see the recent study by Bonilla-Petriciolet et al. (2011).  

In particular, the constrained Gibbs free energy minimization using 

conventional composition variables is better in terms of computer time and numerical 

implementation, for reactive phase equilibrium calculations (Bonilla-Petriciolet et al., 

2011). For a c multi-component and π multi-phase system subject to r independent 

chemical reactions, the objective function for reactive phase equilibrium calculations 

can be defined, using reaction equilibrium constants. The constrained global 

optimization problem can be solved by minimizing Gibbs free energy with respect to 

c (π − 1) + r decision variables. In this formulation, the mass balance equations are 

rearranged to reduce the number of decision variables of the optimization problem 

and to eliminate equality constraints. For more details on the development of 

equations, see the recent study of Bonilla-Petriciolet et al. (2011). 

2.2.3  Phase Equilibrium Modeling 

The estimation of parameters in thermodynamic models is an important 

requirement and a common task in many areas of chemical engineering because these 
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models form the basis for synthesis, design, optimization and control of process 

systems. In the case of separation processes, thermodynamic models play a major role 

with respect to energy requirements, phase equilibrium and equipment sizing. The 

parameter estimation problem refers to determining values of model parameters that 

provide the best fit to a set of measured data such as vapor-liquid or liquid-liquid 

equilibrium. In particular, estimation of parameters in non-linear thermodynamic 

models for vapor-liquid equilibrium (VLE) modeling has been of great interest in the 

chemical engineering literature. VLE data modeling using thermodynamic equations 

is generally based on classical least squares or maximum likelihood approaches 

(Englezos and Kalogerakis, 2001).  

Consider a set of observations qij of i = 1, …, nd dependent/response variables 

from j = 1, …, ne experiments are available for the system, where the responses can 

be expressed by an explicit model qij = fi ( rj, θθθθ ), with independent variables rj = 

(r1,j,…,rnd,j)
T  and npar parameters θθθθ = (θ1,…,θnpar)

T. Measurement errors in rj can 

either be treated or neglected; depending on this choice, we can have either least 

squares (when errors in independent variable are neglected) or maximum likelihood 

formulation (when independent variables have measurement errors). For modeling 

VLE data (i.e., x−y−P at constant T, or x−y−T at constant P), excess Gibbs energy 

equations are widely employed. Therefore, the objective function commonly used for 

VLE data fitting is based on activity coefficients. Thus, the global minimization of LS 

objective function can be done as an unconstrained optimization problem using local 

composition models. On the other hand, if we assume that there are measurement 

errors in all the variables (which include both independent and response variables) for 

the experiments of the system to be modeled, the minimization problem to be solved 

is the error-in-variable (EIV) formulation of the form. In the EIV formulation, there is 
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a substantial increase in the dimensionality of the optimization problem, which 

depends on the number of experiments.  

2.3 Global Optimization Methods 

As stated, global optimization problems involved in the modeling and 

calculation of phase equilibrium are very challenging. This is because the objective 

functions are multivariable, non-convex and highly non-linear. For example, global 

minimization of TPDF and Gibbs free energy are difficult tasks and require robust 

numerical methods, since these objective functions often have unfavorable attributes 

such as discontinuity and non-differentiability (e.g., when cubic equations of state or 

asymmetric models are used for modeling thermodynamic properties). Additional 

complexities arise near the phase boundaries, in the vicinity of critical points or 

saturation conditions, and when the same model is used for determining the 

thermodynamic properties of the mixture (Teh and Rangaiah, 2002; Wakeham and 

Stateva, 2004). Consequently, TPDF and Gibbs free energy may have several local 

minima including trivial and non-physical solutions.  

Parameter estimation problems can be very difficult to solve reliably even for 

simple thermodynamic models (Gau et al., 2000; Bollas et al., 2009; Bonilla-

Petriciolet et al., 2010). Specifically, a number of pitfalls and difficulties may be 

faced in parameter estimation for VLE modeling; these include convergence to a local 

minimum, flat objective function in the neighborhood of the global optimum, badly 

scaled model functions and non-differentiable terms in thermodynamic equations. In 

addition, the number of decision variables can be very large, especially for EIV 

problems. Failure to find the globally optimal parameters for a thermodynamic model 

and using locally optimal parameters instead, can have significant consequences in 
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phase equilibrium calculations and predictions, may cause errors and uncertainties in 

equipment design and erroneous conclusions about model performance. Recent 

studies have shown that using the locally optimal parameters may result in incorrect 

predictions of the azeotropic states with local composition models and in qualitative 

discrepancies of the phase behavior such as prediction of spurious phase split and 

modeling of homogeneous azeotropes as heterogeneous (Gau et al., 2000; Bollas et 

al., 2009). In summary, several studies have demonstrated the challenging nature of 

global optimization problems for phase equilibrium modeling and calculations, and 

they have highlighted the need for reliable numerical techniques to overcome these 

difficulties.  

Global optimization methods can be classified into two broad categories: 

deterministic and stochastic methods (Rangaiah, 2010). The former methods can 

provide a guaranteed global optimum but they require certain properties of objective 

function and constraints such as continuity and convexity. In some cases, problem 

reformulation is needed depending on the characteristics of the model under study. 

The stochastic methods generally require little or no assumption on the characteristics 

of the optimization problem, and yet provide a high probabilistic convergence to the 

global optimum. Further, stochastic methods are easy to understand, implement and 

use. They can often locate the global optimum in modest computational time 

compared to deterministic methods (Blum and Roli, 2003). This section provides the 

basic concepts and description of deterministic and stochastic methods used for global 

optimization in phase equilibrium calculations and modeling. 
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2.3.1  Deterministic Methods 

Deterministic optimization methods are those which exploit analytical 

properties of the problem to generate a deterministic sequence of points (finitely or 

infinitely) converging to a global optimum (Pardalos et al., 2000). These methods 

include branch and bound global optimization, homotopy continuation methods, 

Lipschitz optimization and interval analysis (Floudas, 1999). In the following 

sections, we briefly summarize different deterministic global optimization methods 

applied to phase equilibrium calculations and modeling. 

2.3.1.1 Branch and Bound Global Optimization 

Branch and bound algorithms are a variety of adaptive partition strategies that 

have been proposed to solve global optimization problems (Floudas, 1999). These 

methods are based upon partitioning, sampling, and subsequent lower and upper 

bounding procedures. These operations are iteratively applied to the collection of 

active (i.e., candidate) subsets within the feasible set D. Branch and bound methods 

are non-heuristic, in the sense that they maintain provable upper and lower bounds on 

the globally optimal objective value; they terminate with a certificate that the optimal 

point found is ε-suboptimal.  

Branch and bound methods include many specific approaches, and allow for a 

variety of implementations. These methods typically rely on some a priori knowledge 

of objective function characteristics and in developing proper structures (i.e., convex 

terms) of the optimization problem. The general branch and bound methodology is 

applicable to broad classes of global optimization problems. In general, these 

optimization algorithms are often slow and require a significant numerical effort that 

grows exponentially with problem size (Nichita et al., 2002a; Wakeham and Stateva, 

2004). 
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2.3.1.2  Homotopy Continuation Methods 

A Homotopy continuation method is considered as a global method since it 

has the capability of finding all roots of a set of nonlinear equations. In brief, 

homotopy continuation methods provide a smooth transition between an approximate 

solution (often linear or nearly linear) and the true solution(s) of a nonlinear equation 

system, f(u) = 0 by gradually introducing the nonlinearities through the use of a scalar 

homotopy parameter, t (Riggs, 1994; Jalali et al., 2008). These methods are global 

methods for finding the zeros of nonlinear functions. For global optimization, f(u) is a 

system of non-linear equations obtained from the stationary conditions of the 

optimization problem. Newton homotopy is usually used in the literature, and it has 

the form: 

H(u, t) = t f(u) − (1 − t) g(u) = 0                                                                       (2.1) 

where f (u) is the system of equations to be solved, g(u) is a simple system of 

equations for which a solution is known or easily found and t is a scalar homotopy 

parameter, which is gradually varied from 0 to 1 as the path is tracked from the 

starting point to the true solution.  

Note that starting at t = 0, H(u, 0) = 0 is trivial to solve given any initial 

vector, u
0. A homotopy path is generated as t increases to unity, where the true 

solutions occur. A predictor-corrector method can be applied to trace the homotopy 

paths by integrating along their arc lengths. Beginning on the homotopy path, a 

tangent vector is computed and a step is taken along the direction of its arc length 

(Euler’s method). The algorithm calculates tangent vectors by solving an initial-value 

problem. The resulting homotopy paths resemble the solution diagrams obtained 

through parameterization. When a unique and continuous path exists for H(u, t) from 

t = 0 to t = 1, the Newton homotopy-continuation algorithm guarantees global 
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convergence to a single solution; however, it does not guarantee global convergence 

to multiple solutions. Note that success in finding all solutions along a single path has 

only been demonstrated for simple polynomials when all variables are relaxed from 

the real to the complex domain. Therefore, continuation methods can be implemented 

in both real and complex search spaces (Golubitsky and Schaeffer, 1985). 

2.3.1.3 Interval Analysis 

The interval analysis method is a general-purpose computational method to 

solve nonlinear equations to find all solutions lying within the variable bounds 

(Schnepper and Stadtherr, 1996; Hua et al., 1998). Specifically, consider the solution 

of a nonlinear equation system, f(u) = 0 where u ∈ U
0 and the goal is to enclose, 

within very narrow intervals, all roots of the equation system in U0. The algorithm is 

applied to a sequence of intervals, beginning with the initial interval vector U
0 

specified by the user. For an interval Uk in the sequence, the first step in the solution 

procedure is the function range test. The interval extension F(Uk) of f(u) over the 

current interval Uk is computed and tested to determine whether it contains zero. If 

not, then clearly there is no root of f(u) = 0 in this interval and can be discarded. If Uk 

passes the function range test, then the next step is the interval Newton test. This step 

requires an interval extension of the Jacobian matrix of f(u) and involves setting up 

and solving the interval Newton equation (a system of linear interval equations) for a 

new interval, which is usually referred as the image. Comparison of this image to the 

current interval being tested provides an existence and uniqueness test for roots of the 

equation system. Note that the initial interval should be wide enough so that the 

interval Newton method provides all solutions of local minima and maxima, saddle 

points and global minimum for the optimization problem under study (Hansen, 1992; 

Gecergormez and Demirel, 2005).  
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2.3.2  Stochastic Methods 

Stochastic optimization methods involve probabilistic elements and use 

random sequences in the search for the global optimum (Gecergormez and Demirel, 

2005). These methods employ heuristics for exploring (diversification) and exploiting 

(intensification) the search space, and learning strategies are used to find quickly 

near-optimal solutions (Blum and Roli, 2003). The balance between diversification 

and intensification is important to equilibrate between reliability and computational 

efficiency (i.e., improve the effectiveness) of finding the global optimum by the 

stochastic algorithm. Stochastic optimization methods manipulate a single (i.e., point-

to-point methods) or a collection of solutions (i.e., population-based methods) at each 

iteration or objective function evaluation. They include random search, simulated 

annealing, particle swarm optimization, tabu search, genetic algorithms, differential 

evolution, ant colony optimization and harmony search. In the following sections, we 

describe the general characteristics of several stochastic methods used in phase 

equilibrium modeling and calculations. 

2.3.2.1 Random Search 

The original random search method is pure random search (PRS) which was 

first defined by Brooks (1958). It is the simplest algorithm among the random search 

methods, and consists of generating a sequence of uniformly distributed points in the 

feasible region, while keeping track of the best point that was already found. PRS 

offers a probabilistic asymptotic guarantee that the global minimum will be found 

with probability one as the sample size grows to infinity. Among the random search 

methods, a direct search algorithm (also called adaptive random search, ARS) 

proposed by Luus and Jaakola has found many applications in chemical engineering; 
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it uses random search points and systematic region reduction for locating the global 

optimum (Luus and Jaakola, 1973).  

The ARS algorithm begins with a feasible initial point and region size vector 

r. Then, it generates a number of random points R around the initial point. The 

feasibility of each randomly chosen point is checked. The objective function values of 

such feasible points are found, and the best point is recorded. In the next iteration, R 

random points are generated around the best point found so far and the same 

procedure is repeated. After each iteration, the region size is reduced by a certain 

factor. Iterations are continued until the termination criterion is satisfied. Pseudo-code 

of ARS is shown in Algorithm 1, and details of this optimization procedure can be 

found in (Luus, 2001 and 2010). There are several versions of ARS, which have been 

applied to different chemical engineering application problems (Ali et al., 1997; Luus 

and Brenek, 1989; Lee et al., 1999; Jezowski et al., 2005; Jezowski et al., 2010). 

Algorithm 1 Pseudo-code of Adaptive Random Search 

Set region size vector r and initialize xbest  

Give a feasible initial point x0 within the search space 
While the stopping criterion is not satisfied 
           Randomly generate R points, xi around x0 
           Check the feasibility of each xi 
           For i = 1 to R 
                 If xi is feasible then 
                    Evaluate objective function at xi 

                 End if 
           End for 
           Update xbest based on the objective function value and let x0 = xbest 

                 Reduce the region size by a certain factor 
       End while 

 

2.3.2.2 Simulated Annealing 

Simulated annealing (SA), which was developed by Kirkpatrick et al. (1983), 

is a stochastic method inspired by the analogy to annealing of metals. In the physical 

process of annealing, a metal is first heated to its molten state and then slowly cooled 
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to solid state in order to reach thermal equilibrium with minimum energy. This 

process of slow, controlled cooling scheme of the melted metal to obtain the desired 

crystalline structure is simulated in SA. It starts from an initial point in the search 

space and a given high temperature T. A new point is randomly created in the 

neighborhood of the initial point, and its energy (objective function) is evaluated. If 

this new point has lower energy than the previous one, it is accepted; otherwise, the 

new point is accepted with probability, P = exp(-∆E/KBT) where ∆E is the difference 

in the energy of these two points, KB is the Boltzmann constant. Generation of new 

points and their evaluation/acceptance are repeated N times at the same temperature to 

ensure the system is in thermal equilibrium at this T. After that, T is reduced 

according to the cooling schedule and the same procedure is repeated until the 

termination criterion is satisfied. The probability of acceptance, P decreases as the 

search progresses because of lower T.  

From mathematical point of view, SA can be viewed as a randomization 

device that allows wrong-way movements during the search for the optimum through 

an adaptive acceptance/rejection criterion. Based on this concept, SA not only accepts 

the point with better value but also accepts a point with worse value with some 

probability, which decreases as search progresses. The main control parameter in the 

cooling schedule is the temperature, T. The main role of T is to let the probability of 

accepting a new move be close to 1 in the early stage of the search and to make it 

almost zero in the final stage of the search. Convergence to an optimal solution can 

theoretically be guaranteed after an infinite number of iterations controlled by the 

procedure of cooling schedule. Pseudo-code of SA is shown in Algorithm 2, and more 

details of this optimization method are available in Chibante (2010). Various versions 
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of SA have been proposed and applied to chemical engineering problems (Cordero et 

al., 1997; Hanke and Li, 2000; Zhu et al., 2000; Bonilla-Petriciolet et al., 2007).  

Algorithm 2 Pseudo-code of Simulated Annealing 

 Choose an initial point xo  
While the stopping criterion is not satisfied 
     For i = 1 to N   
           Randomly generate xnew around x0 
           ∆E = f (xnew) – f (xo) 
           If ∆E < 0 then 
               xo = xnew 

           Else 

                 If random(0,1) < exp(-∆E/KBT) then 
                     x0 = xnew 

                 End if 
           End if 
     End for 
     Reduce T according to the cooling schedule   

       End While  

 

2.3.2.3 Genetic Algorithm 

Genetic algorithm (GA), developed by Holland (1975), is inspired by the 

evolutionary process occurring in nature. The main ideas of this algorithm are the 

‘survival of the fittest’, and crossover and mutation operations for generating a new 

solution. GA starts with initializing a population of individuals or trial solutions, 

which are generated randomly within the feasible region. Objective function value of 

these individuals is evaluated. The individuals undergo three main operations, 

namely, reproduction, crossover and mutation. Reproduction creates a mating pool in 

which the individuals with good fitness will have more copies than the ones with 

lower fitness value. Crossover is an operation which allows the algorithm to explore 

the entire search space and to escape from the local minima. In this operation, new 

strings (individuals) are formed by exchanging the information among parents of the 

mating pool. Mutation operation involves making changes in each individual directly. 
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Mutation is exploitative; it can create random small diversions, thereby staying near 

the parent. After the mutation, the new population is created.  

The new population enters into the next generation and the same process of 

reproduction, crossover and mutation is repeated until the stopping criteria are 

satisfied. Since the selection of the population for the mating pool is based on the 

survival of the fittest, the solutions will converge towards its optimal point. GA is 

probably the most widely known stochastic algorithm, and has found many 

applications in chemical engineering (e.g., Rangaiah, 2001; Alvarez et al., 2008; Babu 

et al., 2009; Bonilla-Petriciolet et al., 2011). Pseudo-code of GA is shown in 

Algorithm 3, and more details of this stochastic method can be found in Younes et al. 

(2010). 

Algorithm 3 Pseudo-code of Genetic Algorithm 

Initialization:  
           Randomly generate NP individuals within the search space 
           Evaluate objective function of each of the individuals generated 

While the termination criterion is not satisfied 
             Reproduction: Create a mating pool of parents 
             Crossover: New individuals formed from parents 
             Mutation: Randomly modify the new individuals  
             Selection: Offspring created by crossover and mutation replaces the original 

parent population based on its fitness  
       End While 

 

2.3.2.4 Tabu Search 

Tabu (or taboo) Search (TS) was developed by Glover in 1989 (Glover and 

Laguna, 1997). Tabu means that the things must be left alone and should not be 

visited or touched. Accordingly, the main idea of TS is that the points searched by the 

algorithm should not be re-visited. This procedure enhances the searching capability 

of the solution space economically and effectively. Initially, a set of candidate 

solutions is evaluated and then stored in a taboo list. Then, each new solution 
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generated is compared with the solutions in the taboo list. If the new solution is near 

to any point in the taboo list, then it will not be evaluated and discarded right away. 

The length of taboo list is defined by the user. If a new solution enters into the taboo 

list, the oldest solution in the taboo list will be removed to keep the specified length of 

the taboo list. After a number of iterations, several promising areas containing the 

global optimum solution will be found. Then, the intensive search is carried out from 

these areas to find the global optimum. See the pseudo-code of TS given in Algorithm 

4. For more details on this stochastic optimization method, see the book by Glover 

and Laguna (1997) and the book chapter by Sim et al. (2010). TS has been 

successfully applied to a wide range of optimization problems (e.g., Teh and rangaiah, 

2003; Lin and Miller, 2004; Srinivas and Rangaiah, 2007a; Exler et al., 2008; 

Mashinchi et al., 2011). 

Algorithm 4 Pseudo-code of Tabu Search 

Randomly generate N initial points, Xi within the search space 
Evaluate objective function of all these points, and send them to tabu list 
While the termination criterion is not satisfied 
          For i =1 to N 
                Generate a new point Xi,new  

                If Xi,new  is near any point in the tabu list then 
                    Discard Xi,new 

                End if 
          End for 
          Evaluate the objective function at all the remaining points Xi,new 
     Find and save the best point found so far 
          Update tabu list 
End while 

 

2.3.2.5  Differential Evolution 

Storn and Price (1997) proposed differential evolution (DE). The main idea 

behind it is taking the difference between two individuals and adding it to another 

individual to produce a new individual. It contains four steps similar to GA, namely, 

initialization of population, mutation, crossover and selection (see the pseudo-code in 
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Algorithm 5). The main difference between DE and GA is that the search is guided by 

mutation in the former whereas it is governed by the crossover in the latter. DE 

algorithm starts with a randomly generated initial population within the search region. 

For each (target) individual in the population, three other individuals are randomly 

selected, and the weighted difference between two of them is added to the third 

individual in order to produce a mutant individual. This operation is called as 

mutation. Elements of the mutant individual thus obtained are copied to the target 

individual using crossover constant/probability to produce a trial individual, in the 

crossover operation. In the selection operation, the better one between the trial and 

target individuals is selected based on the objective function values, for the next 

generation. This selection of the fittest individual causes the individuals to improve 

over the generations, finally converging to an optimum. DE has been successfully 

applied to a wide range of optimization problems (Chen et al., 2010). More details of 

DE can be found in Price et al. (2005). 

Algorithm 5 Pseudo-code of Differential Evolution 

Initialization:  
        Randomly generated N individuals (xi) within the search space 
        Evaluate the objective function of all these individuals, and find the best, xBest 
 While the termination criterion is not satisfied 
         For i =1 to N 

        Randomly choose 3 individuals (xr1  ≠ xr2  ≠ xr3 ) from the current population                

               Mutation to find mutant individual: vi = xr1 + F (xr2 − xr3)  
                     Crossover: For j = 1 to D 

                                        If rand(0,1) ≥ Cr then 
                                             ui,j = vi,j 

                                                               Else   
 ui,j = xi,j  

                                        End If 
                                  End For 
                Find the objective function of the new (trial) individual 
                Between ui and xi, the better one goes to next generation  
                Update xBest 
         End For 
End While 
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2.3.2.6  Particle Swarm Optimization 

Particle swarm optimization (PSO), developed by Eberhart and Kennedy 

(1995), exploits swarm intelligence (i.e., the behavior of a biological social system 

like a flock of birds or a school of fish) for finding the global optimum. This search 

algorithm is also a population-based stochastic optimization technique. The swarm in 

PSO consists of a number of particles, each of which represents a potential solution in 

the search space. Each particle moves to a new position according to certain velocity 

and the previous position of the particle.  

PSO algorithm starts with a randomly generated initial population of particles 

in the search space. Unlike other evolutionary optimization methods, particles in PSO 

do not recombine genetic material directly between individuals during the search, but 

work according to the social behavior of swarms instead. Therefore, PSO finds the 

global best solution by simply adjusting the moving vector of each individual 

according to the personal best and the global best positions of particles in the entire 

swarm at each time step (generation). In other words, the search process allows 

particles to stochastically return toward previously successful regions in the search 

space. Recent developments and applications of PSO can be found in Schwaab et al. 

(2008), Skolpap et al. (2008), Bonilla-Petriciolet and Segovia-Hernandez (2010), and 

Zhang et al. (2011). Pseudo-code PSO is presented in Algorithm 6, and more details 

of this method can be found in Kennedy et al. (2001). 
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Algorithm 6 Pseudo-code of Particle Swarm Optimization  

Initialization:  
       Randomly generate N particles (xi), velocities (vi) and positions (pbesti) 
       Evaluate objective function of all these particles 

 Set the global best particle to gbest 
While the termination criterion is not satisfied 
       for i = 1 to N 

vi = wvi + c1rand(0,1)(pbesti – xi) + c2rand(0,1)(gbest – xi)              
xi = xi + vi 

            Evaluate the objective function of the new particle 
            If xi better than pbesti 
                pbesti = xi 
            End if  
            If xi better than gbest 

                gbest = xi 
            End if  
       End for 
End While 

 

2.3.2.7  Random Tunneling Algorithm 

The tunneling method was first introduced by Levy and Montalvo (1985). It is 

composed of a sequence of cycles, where each cycle has two phases: a local 

minimization phase and a tunneling phase. In the first phase, a minimization 

algorithm such as gradient descent or Newton’s method is used to minimize the given 

objective function, ( )f x  to locate the first local minimum, x*. In the second phase, 

the method searches for the zeros of the tunneling function such that x
0 ≠ x

* but 

0( ) ( )f x f x
∗=  Then, the zero point is used as the starting point of the next cycle, 

and the two phases are repeated sequentially until a stopping criterion such as failure 

to find a zero within the prescribed CPU time is met. 

Jiang et al. (2002) developed one of the tunneling algorithms, namely, random 

tunneling algorithm (RTA). It is a stochastic algorithm based on the concepts of sub-

energy transformation and terminal repeller in the terminal repeller and unconstrained 

sub-energy tunneling (TRUST) algorithm of Cetin et al. (1993). RTA consists of two 
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phases: a global search phase and a local optimization phase. The global phase 

perturbs the system randomly from the last local minimum and solves a system of 

differential equations from the perturbed point to explore new regions of attraction. 

Then, the local phase employs a local optimization method (e.g., Quasi-Newton 

method) to find an improved point in the new region. The two phases are repeated 

until the specified termination criterion is met.  

Srinivas and Rangaiah (2006) implemented RTA differently, as in Algorithm 

7; it starts with setting parameter values and randomly generating an initial point 

within the search space. A local optimization is performed from this point to find the 

local optimum in this area. Then, tunneling phase is started from this local minimum 

which comprises of three steps. The first step is random perturbation from the current 

local minimum, and the second step involves tunneling from the perturbed point in a 

random direction using uniform grid search until it hits the boundary. The third step 

consists of 1D tunneling from the perturbed point along each coordinate axis. 

Algorithm 7 Pseudo-code of Random Tunneling Algorithm  

Initialization:  
       Randomly generate a point, x within the search space 
While termination criterion is not satisfied 
          Local phase: Local search starts from x and optimum found is x* 
          Tunneling: Do          
                                   Random perturbation from the best local minimum x*  
                                   Perform tunneling from perturbed point along a random direction 
                                   1D tunneling from perturbed point along each coordinate axis 
                                   If any point is better than x* then 
                                       Exit Do and go to Local phase 
      End if 
                             Until maximum number of perturbations exceed 
           Set last perturbed point as new initial guess x       

End while 
Local search starts from x and optimum found is x*      

 

The three steps of tunneling phase are repeated until the number of 

perturbations reaches the maximum number or a better point is found. If a better point 
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is found, the tunneling phase will be terminated, and this point will be the new initial 

guess for the local minimization phase; else, the last perturbed point will be the new 

initial guess. In the local minimization, a new local minimum is found and compared 

with the previous local minima, and the best minimum is taken as the current local 

minimum for the subsequent tunneling phase. The cycle of local minimization and 

tunneling is repeated until the number of tunneling phases reaches the maximum 

specified number. The algorithm then terminates declaring the last/best local 

minimum as the global minimum. More details about this RTA algorithm can be 

founded in Srinivas and Rangaiah (2006). 

2.3.2.8  Ant Colony Optimization 

Ant colony optimization (ACO) is a novel meta-heuristic that mimics foraging 

behavior of real ant colonies. Dorigo et al. (1996) developed the first ant algorithm, 

and since then several improvements of the ant system have been proposed 

(Jayaraman et al., 2010). It is an evolutionary approach where several generations of 

artificial ants search for good solutions in a co-operative way. These ants deposit 

pheromone on the ground for making some favorable paths that should be followed 

by other members of the colony. Note that the indirect communication between the 

ants is performed by means of pheromone trails which enable them to find short paths 

between their nest and food sources. This characteristic of real ant colonies is 

exploited in ACO algorithms in order to solve optimization problems. On the other 

hand, pheromone evaporation is a process of decreasing the intensities of pheromone 

trails over time. This process is used to avoid local convergence and to explore more 

in the search space. The meta-heuristic of classical ACO consists of three basic 

components, and its pseudo-code is given in Algorithm 8.  
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Algorithm 8 Pseudo-code of Ant Colony Optimization  
While termination conditions not met, do 

Schedule activities 
Ants generation and activity 
Pheromone evaporation 
Daemon actions 

End Schedule activities 

Evaluate objective function 
End while 

 

Ants find solutions, starting from an initial value and moving to feasible 

neighbor regions, in the step of Ants generation and activity. During this step, 

information collected by ants is stored in the so-called pheromone trails. An agent-

decision rule, made up of the pheromone and heuristic information, guides the ant’s 

search toward neighbor regions stochastically. Objective function values of candidate 

solutions are usually used to modify the pheromone values in a way that is deemed to 

bias future sampling towards high quality solutions. However, due to pheromone 

evaporation, later generations of ants have smaller influence of the pheromone values 

than earlier. Ants use this information and make their decisions according to the 

probability distribution determined by the relative size of the pheromone values 

corresponding to the possible outcomes of the decision variables. Finally, Daemon 

actions are optional for ACO, and they can be used to implement centralized actions 

which cannot be performed by single ants. Examples are the application of local 

search methods to the constructed solutions, or the collection of global information 

that can be used to decide whether it is useful or not to deposit additional pheromone 

to bias the search process from a non-local perspective. Details of this stochastic 

optimization method can be found in Jayaraman et al. (2010). 
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2.3.2.9  Harmony Search 

Harmony search (HS) is a music-inspired meta-heuristic algorithm, which has 

been introduced by Geem et al. (2001). This stochastic optimization method was 

developed in analogy with music improvisation process where music players 

improvise the pitches of their instruments to obtain better harmony. Specifically, 

musicians may perform the following steps to improvise: playing an existing score 

from memory, performing variations on an existing piece, or creating an entirely new 

composition. In the optimization context, each musician is replaced with a decision 

variable, and the possible notes in the musical instruments correspond to the possible 

values for the decision variables. So, the harmony in music is analogous to the vector 

of decision variables, and the musician’s improvisations are analogous to local and 

global search schemes in optimization techniques. HS combines heuristic rules and 

randomness to imitate this music improvisation process.  

Briefly, HS involves three stochastic operators to perform both diversification 

and intensification stages: a) memory consideration, b) pitch adjustment, and c) 

random selection. Pseudo-code of HS is given by Algorithm 9. The diversification is 

controlled by the pitch adjustment and random selection operators, while memory 

consideration is generally associated with the intensification. The proper combination 

of these operators is important to favor the performance of HS in global optimization. 

This iterative procedure is repeated until the convergence criterion is satisfied. 

Recently, some modifications have been proposed in the literature to improve the 

convergence performance of the original HS. According to Geem (2009), variations 

proposed for HS may involve: a) mechanisms for the proper initialization of HS 

parameters, b) mechanisms for the dynamic adaptation of HS parameters during 

optimization, and c) the application of new or modified HS operators that include 
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hybrid methods using other meta-heuristics such as SA or DE. For example, two 

typical and promising variants of HS are the Improved HS and the Global-Best HS. 

For more details on this meta-heuristic, consult the book by Geem (2009). 

Algorithm 9 Pseudo-code of Harmony Search 

While termination conditions are not met, do 
Perform Improvisation (i.e., generate a new solution) 

Memory consideration 
Pitch adjustment 
Random selection 

End Improvisation 
Evaluate objective function 

End while 

2.3.2.10 Hybrid Methods 

In recent years, many hybrid methods have been proposed and studied. A 

judicious combination of effective concepts of different meta-heuristics can provide a 

better algorithm for dealing with real world and large scale problems (Talbi, 2002). 

The hybrid algorithm usually provides several advantages such as better solution 

using less computational time and handle large or difficult problems (Srinivas and 

rangaiah, 2007b; Balsa-Canto et al., 2008; Jourdan et al., 2009; Liu and Wang, 2009; 

Zhang and Rangaiah, 2011). We focus here on hybrid algorithms that have been 

applied to phase equilibrium modeling and calculations.  

Chaikunchuensakun et al. (2002) presented a combined algorithm based on 

nonlinear parametric optimization (NLQPB) routines. It solves the Kuhn-Tucker 

conditions by minimizing a quadratic sub-problem with linearized equality and 

inequality constraints. The solution vector of the quadratic sub-problem is used as a 

search direction until sufficient decrease of a merit function is found. The 

approximate Hessian matrix is updated for each quadratic sub-problem by the quasi-

Newton algorithm. Mitsos and Barton (2007) proposed a hybrid method which 

combines CPLEX and BARON solvers in GAMS. The upper bound of the problem is 
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solved with CPLEX, and lower bound of the problem is solved through BARON in 

order to enhance its reliability. Srinivas and Rangaiah (2007b) proposed a hybrid 

method which combines DE and tabu list of TS. The tabu list used in DE can avoid 

re-visiting the same area, increase the diversity of the population, avoid unnecessary 

function evolutions, enhance global exploration and prevent premature convergence. 

The proposed method was shown to be more reliable and efficient compared to many 

other stochastic algorithms (Bonilla-Petriciolet et al., 2010a and 2011). Pereira et al. 

(2010) combined three solvers in GAMS, where BARON is used for global 

optimization, MINOS is used as a nonlinear solver and CPLEX is used for linear 

problems. The proposed algorithm can solve challenging optimization problems.  

Srinivas and Rangaiah (2010) proposed two versions of DE with tabu list, 

referred as DETL-G (wherein the tabu list is implemented in the generation step) and 

DETL-E (wherein the tabu list is implemented in the evaluation step). These two 

algorithms combine the good reliability of DE with the computational efficiency of 

TS. Recently, Zhang et al. (2011) proposed a novel bare-bones PSO for parameter 

estimation of vapor-liquid data modeling problems. The proposed method combines 

the mutation strategy of DE with bare-bones PSO for a good balance between the 

exploration and exploitation to enhance the global search ability. 

Besides the above hybrid methods, one common approach is to use stochastic 

algorithm for global search followed by a local optimizer for intensifying search. 

Accordingly, a local optimizer has been combined with stochastic optimization 

algorithms such as GA, SA, PSO, DE and HS (Rangaiah, 2001; Srinivas and 

Rangaiah, 2007a; Bonilla-Petriciolet et al., 2006, 2007 and 2010b; Lin and Chen, 

2007; Staudt et al., 2009; Bonilla-Petriciolet and. Segovia-Hernandez, 2010; 

Fernandez-Vargas, 2011).  
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2.4  Applications of Global Optimization Methods to Phase 

Equilibrium Modeling and Calculations 

The following sections summarize studies, mainly from the year 2000, on 

application and evaluation of deterministic and/or stochastic global optimization 

methods to phase equilibrium modeling (in Section 2.4.1), phase stability analysis (in 

Section 2.4.2) and phase equilibrium calculations (in Section 2.4.3). 

2.4.1  Applications to Phase Equilibrium Modeling 

Deterministic and stochastic global optimization methods have been applied to 

parameter estimation in VLE modeling, and these are summarized in Table 2.1. In 

comparison to phase equilibrium calculations, there are fewer studies on the solution 

of parameter estimation problems for phase equilibrium modeling using global 

optimization methods. 
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Table 2.1. Application of Global Optimization Methods to Modeling Vapor-liquid Equilibrium Data 

Method (Reference) Problem formulation Thermodynamic models 
Branch and Bound (Esposito and Floudas, 1998)  Error-in-variable Local composition model and ideal gas 

Interval Analysis (Gau et al., 2000; Dominguez et al., 2002)  Least squares Local composition models and ideal gas 

Interval Analysis (Gau and Stadtherr, 2002)  Error-in-variable Local composition model and ideal gas 

Simulated Annealing (Costa et al., 2000)  Least squares Equation of state 

Simulated Annealing (Bonilla-Petriciolet et al., 2007)  Least squares and Error-in-
variable 

Local composition models and ideal gas 

Random Tunneling (Srinivas and Rangaiah, 2006)  Error-in-variable Local composition model and ideal gas 

Genetic Algorithm (Alvarez et al., 2008)  Least squares Local composition models and equation 
of state 

Differential Evolution (Kundu et al., 2008)  Least squares Equation of state 

Particle Swarm Optimization, Differential evolution, 
Simulated Annealing, Genetic Algorithm, Differential 
Evolution with tabu list (Bonilla-Petriciolet et al., 2010)  

Least squares and Error-in-
variable 

Local composition model and ideal gas 

Particle Swarm Optimization (Lazzus, 2010)  Least squares Local composition models and ideal gas 

Bare bone particle swarm optimization (Zhang et al., 2011)  Least squares and Error-in-
variable 

Local composition models and ideal gas 

Harmony Search (Bonilla-Petriciolet et al., 2010)  Least squares Local composition models and ideal gas 

Ant Colony Optimization (Fernandez-Vargas, 2011)  Least squares and Error-in-
variable 

Local composition models and ideal gas 
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Specifically, Esposito and Floudas (1998) have reformulated the optimization 

problem in terms of convex under-estimating functions and then used a branch-and-

bound procedure to solve parameter estimation problems. This method provides a 

mathematical guarantee of global optimality but, in general, it may be necessary to 

perform problem reformulation and develop convex under-estimators specific to each 

new application. Gau et al. (2000) and Dominguez et al. (2002) have used an interval 

analysis approach and classical least square formulation for modeling VLE data. 

These studies indicated that several sets of parameter values of local composition 

models published in the DECHEMA VLE Data Collection correspond to local 

optima. These authors also showed that these locally optimal parameters affect the 

predictive capability of thermodynamic models for phase equilibrium modeling. 

Later, Gau and Stadtherr (2002) applied an interval-Newton approach for the reliable 

solution of EIV parameter estimation problems in VLE modeling of binary systems. 

This approach can be used for both parameter estimation and data reconciliation.  

With respect to stochastic methods, several meta-heuristics have been used to 

solve the parameter estimation problems in phase equilibrium modeling, and they 

include SA, GA, RTA, DE, DE with tabu list (DETL), PSO, HS, bare-bones PSO 

(BBPSO) and ACO. Specifically, Costa et al. (2000) reported the application of SA 

for parameter estimation in the modeling of vapor-solid equilibrium with supercritical 

carbon dioxide as the solvent. Results of data fitting using SA were compared with 

those obtained using the Powell method, and the authors concluded that SA may offer 

a better performance. Steyer and Sundmacher (2004) used an evolutionary 

optimization strategy for the simultaneous fitting of VLE and liquid-liquid 

equilibrium (LLE) data for ternary systems. Bonilla-Petriciolet et al. (2007) also 

studied the performance of SA for parameter estimation in VLE modeling using both 
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least squares and maximum likelihood formulations. This study concluded that SA is 

a robust method for non-linear parameter estimation in thermodynamic models. 

However, in difficult problems (e.g., EIV problems with several decision variables), it 

may converge to a local optimum of the objective function. Srinivas and Rangaiah 

(2007a) used a RTA for VLE modeling using the error-in-variable approach. This 

method was able to solve reliably the two modeling problems having 18 and 34 

decision variables, and with a global minimum not comparable to a local minimum. 

Alvarez et al. (2008) applied and compared two versions of GA for VLE modeling 

using local composition models and equations of state and LS approach. DE was 

successfully applied to modeling the equilibrium solubility of CO2 in aqueous 

alkanolamines (Kundu et al., 2008).  

Recently, the performance of SA, GA, DE, DETL and PSO has been 

compared for VLE modeling using experimental data for binary systems and both 

least squares and maximum likelihood criteria (Bonilla-Petriciolet et al., 2010a). This 

comparison shows that DE and DETL perform better than other algorithms tested in 

terms of reliability for parameter estimation in VLE data modeling. Further, DETL 

offers a significant reduction in the computational time. Lazzus (2010) also reported 

the application of PSO to modeling vapor-liquid equilibrium in binary systems using 

UNIQUAC and NRTL local composition models. Zhang et al. (2011) studied the 

performance of PSO and variants of BBPSO algorithms for parameter estimation in 

VLE modeling problems based on LS and EIV approaches. The reliability of BBPSO 

proposed by Zhang et al. (2011) is shown to be better than or comparable to other 

stochastic global optimization methods tested; in addition, it has fewer parameters to 

be tuned. Preliminary studies have also been performed for parameter estimation in 

VLE modeling using both HS and ACO (Bonilla-Petriciolet et al., 2010b; Fernandez-
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Vargas, 2011). In particular, HS is reliable for solving parameter estimation problems 

using LS approach but its performance is poor for finding the global optimum using 

EIV formulation. On the other hand, ACO appears to be a competitive stochastic 

method for VLE modeling especially using EIV formulation. 

The above review indicates that several researchers have studied the parameter 

estimation in VLE modeling problems using stochastic optimization methods instead 

of deterministic methods. In particular, stochastic optimization methods may offer 

reduced computational time and easier implementation than the deterministic 

approaches. The former methods usually show robust performance for solving 

parameter estimation problems but, in some challenging problems, they may fail to 

locate the global optimum especially using fewer function evaluations and for 

optimization problems with many decision variables (e.g., EIV problems). In addition, 

the performance of many stochastic methods is significantly dependent on the 

stopping condition used.  

2.4.2  Applications to Phase Stability Analysis  

With the introduction of the tangent plane criterion for phase stability analysis, 

many researchers have studied the solution of this optimization problem using 

different computational methods. These studies using deterministic and stochastic 

optimization methods are summarized in Tables 2.2a and 2.2b respectively.  

 



Chapter 2 Literature Review 

  

44 

 

Table 2.2a. Application of Deterministic Optimization Methods to Phase Stability Analysis 

Method (Reference) Problem formulation Thermodynamic models 

Homotopy Continuation (Sun and Seider ,1995)  Tangent plane distance function SRK and PR 

Branch and Bound (Harding and Floudas,2000)  Tangent plane distance function SRK, PR and van der Waals 

Interval Newton/Generalized Bisection (Tessier et al., 2000) Excess Gibbs energy NRTL and UNIQUAC 

Branch and Bound (Zhu and Inoue, 2001)  Tangent plane distance function NRTL activity coefficient equation 

Interval Newton/Generalized Bisection (Xu et al., 2002)  Volume-based formulation using the 
Helmholtz energy 

Statistical associating fluid theory  

Tunneling Method (Nichita et al., 2002)  Tangent plane distance function SRK and PR 

Terrain Method (Lucia et al., 2005)  Projected Gibbs energy and the norm 
of chemical potentials 

PR 

Interval Newton method (Gecegormez and Demirel, 2005)  Tangent plane distance function NRTL 

Tunneling Method (Nichita et al., 2006)  Tangent plane distance function in 
terms of Helmholtz free energy 

SRK and PR 

CPLEX and BARON (Mitsos and Barton, 2007)  Tangent plane distance function NRTL and UNIQUAC  

Homotopy Continuation (Jalali et al., 2008)  Michelsen criteria  NRTL 

Tunneling Method (Nichita et al., 2008)  Tangent plane distance function Perturbed-chain statistical 
association fluid theory 

Dividing Rectangles (Saber and Shaw, 2008)  Tangent plane distance function PR and SRK 

Tunneling Method (Nichita and Gomez, 2009)  Tangent plane distance function PR and SRK 
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Table 2.2b. Application of Stochastic Optimization Methods to Phase Stability Analysis 

Method (Reference) Problem formulation Thermodynamic models 
Genetic Algorithm and Simulated Annealing (Rangaiah, 
2001)  

Tangent plane distance function NRTL, UNIQUAC and SRK  

Stochastic Sampling and Clustering Method (Balogh et al., 
2003)  

Modified tangent plane distance 
function 

SRK 

Simulated Annealing (Henderson et al., 2004)  Modified tangent plane distance 
function 

SRK and PR 

Simulated Annealing, very fast SA, a modified direct search 
SA and stochastic differential equations (Bonilla-Petriciolet 
et al., 2006)  

Tangent plane distance function SRK 

Differential Evolution and Tabu Search (Srinivas and 
Rangaiah, 2007a)  

Tangent plane distance function NRTL, UNIQUAC and SRK 

Adaptive Random Search (Junior et al., 2009)  Tangent plane distance function SRK, PR and Perturbed Chain – 
Statistical associating fluid theory 

Repulsive Particle Swarm Optimization (Rahman et al., 
2009)  

Tangent plane distance function NRTL and UNIQUAC 

Particle Swarm Optimization  and its Variants (Bonilla-
Petriciolet and Segovia-Hernandez, 2010)  

Tangent plane distance function NRTL, SRK, Wilson, UNIQUAC, 
ideal solution and gas 

Differential Evolution, Simulated Annealing and Tabu 
Search (Bonilla-Petriciolet et al. 2010)  

Tangent plane distance function 
with reaction 

NRTL, Wilson and UNIQUAC 
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Sun and Seider (1995) introduced homotopy continuation method for phase 

stability problem, in order to locate all stationary points of the tangent plane distance 

function (TPDF). However, their technique requires several initial estimates for 

finding all stationary points of TPDF. Harding and Floudas (2000a) studied the phase 

stability of three cubic equations of state: SRK, Peng-Robinson and van der Waals, 

based on analytical findings and the principles of αBB (branch and bound) global 

optimization framework. In this study, stability problems with several decision 

variables (≤ 8) have been analyzed. 

Tessier et al. (2000) introduced an interval Newton/generalized bisection 

technique for solving phase stability problems involving excess Gibbs energy models. 

The proposed technique is independent of initialization, immune to rounding errors, 

and provides both mathematical and computational guarantees that all stationary 

points of TPDF are enclosed. Zhu and Inoue (2001) developed a general quadratic 

under-estimating function based on branch and bound algorithm by the construction 

of a rigorous under-estimator for TPDF involving NRTL model, and showed its 

effectiveness for phase stability analysis of three ternary mixtures with up to 2-3 

phases. Xu et al. (2002) studied the phase stability criterion involving the statistical 

associating fluid theory equation of state model. They introduced an interval 

Newton/generalized bisection algorithm and a volume-based formulation for the 

Helmholtz energy, and then applied them successfully to non-associating, self-

associating, and cross-associating systems.   

Nichita et al. (2002b) proposed the tunneling method for phase stability 

analysis with cubic equations of state by minimization of the TPDF on a variety of 

representative systems. Their results show that the proposed method is very robust 

even for the very difficult systems. Lucia et al. (2005) incorporated some new ideas 
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within the terrain methods and applied them to phase stability and equilibrium of n-

alkanes mixtures. This method provides global knowledge for understanding the 

solution structure, saddle points and other information. Gecegormez and Demirel 

(2005) introduced interval Newton method for phase stability analysis of binary 

systems and ternary systems modeled by NRTL, to locate all the stationary points. 

Their results confirm that the interval Newton method is able to locate all the 

stationary points of TPDF. Mitsos and Barton (2007) reinterpreted the Gibbs tangent 

plane stability criterion via a Lagrangian duality approach, as the solution of the dual 

problem of a primal problem that minimizes Gibbs free energy subject to material 

balances. Then, this optimization problem was solved using CPLEX and BARON in 

GAMS. Nichita et al. (2008a) used the tunneling method to solve the non-convex 

optimization problem that results from the TPDF in terms of the Helmholtz free 

energy. 

Jalali et al. (2008) studied homotopy continuation method for phase stability 

analysis in the complex domain using Michelsen criteria (Michelsen, 1982). However, 

this approach is not possible if the equations cannot be converted into complex 

variables. Nichita et al. (2008b) applied the tunneling method to solve the phase 

stability problem for more complex equation of state like perturbed-chain statistical 

association fluid theory. Calculations were performed for several benchmark 

problems and for binary and multi-component mixtures of non-associating molecules. 

Saber and Shaw (2008) tested dividing rectangles (DIRECT) global optimization 

algorithm for optimizing TPDF with SRK equation of state for multi-component 

mixtures and near critical-point systems, and showed that this algorithm has better 

robustness and efficiency compared to Lipschitz method, interval Newton method, 

tunneling method, very fast simulated annealing, stochastic differential equations 
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and/or modified direct search annealing. Nichita and Gomez (2009) applied the 

tunneling method to perform stability analysis of various systems modeled by PR and 

SRK equation of state. 

Besides the application of deterministic methods outlined in the above 

paragraphs, stochastic methods have been studied by many researchers for phase 

stability problems. Rangaiah (2001) applied GA and SA to phase stability problems of 

various systems. The results show that the former is more efficient and reliable than 

the latter. Balogh et al. (2003) introduced a stochastic sampling and clustering method, 

and applied it to a modified TPDF with an equation of state as the thermodynamic 

model. This method was able to solve small to moderate size problems efficiently and 

reliably. Henderson et al. (2004) formulated the phase stability optimization problem 

with a slight modification of the Gibbs tangent plane criterion, and used SA to solve it. 

Bonilla-Petriciolet et al. (2006) compared four algorithms: SA, very fast SA, a 

modified direct search SA and stochastic differential equations, on several phase 

stability problems. Their results show that SA is the most reliable among the methods 

tested for minimization of TPDF for both reactive and non-reactive mixtures.  

Srinivas and Rangaiah (2007a) investigated solution of phase stability 

problems with DE and TS, and reported that the former has better reliability but less 

computational efficiency compared to the latter. Junior et al. (2009) applied a hybrid 

adaptive random search method to solve the phase stability problems for three 

different equation of state models. Their results show that the proposed method 

outperforms the classical adaptive random search, quasi-Newton and DIRECT 

methods. Rahman et al. (2009) tested a repulsive PSO for phase stability problems. 

This optimization algorithm uses the propagation mechanism to determine new 

velocity for a particle. Consequently, it can prevent the swarm from being trapped in a 
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local minimum. Ferrari et al. (2009) used SA and PSO for modeling liquid-liquid 

equilibrium data of binary and multi-component systems. They concluded that both 

algorithms are robust for estimating the model parameters in these applications. 

Bonilla-Petriciolet and Segovia-Hernandez (2010) performed a comparative study of 

different variants of PSO algorithms for phase stability of multi-component mixtures. 

Their results indicate that the classical PSO with constant cognitive and social 

parameters is reliable and offers the best performance for global minimization of 

TPDF in both reactive and non-reactive systems.  

Srinivas and Rangaiah (2010) proposed two versions of DE with tabu list, 

referred as DETL-G and DETL-E, and applied to phase stability problems. Their 

results show that the overall performance of DETL-G and DETL-E is better than that 

of DE and TS. Bonilla-Petriciolet et al. (2010c) studied phase stability and 

equilibrium calculations in reactive systems using DE, SA and TS, and showed that 

DE and TS are better than SA in terms of efficiency but not so in terms of reliability. 

In these and other studies (Rangaiah, 2001; Srinivas and Rangaiah, 2007a and 2010; 

Bonilla-Petriciolet and Segovia-Hernandez, 2010), a local optimization technique was 

used after the global search for efficiently and accurately finding the (global) 

minimum. Among the many stochastic methods tested and compared for solving the 

phase stability problems, DETL has shown better performance. 

It is clear that both stochastic and deterministic methods can be used for 

reliably solving phase stability problems in multi-component system. Overall, finding 

all stationary points of TPDF is not an easy task because a search over the entire 

composition space is required and the number of these stationary points is also 

unknown. Hence, it is better to find the global optimum of TPDF during phase 

stability analysis. Several studies indicate that optimization methods tested may fail to 
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find the global optimum in phase stability analysis when there are comparable minima 

(i.e., the difference in function values at the global minimum and at a local minimum 

is very small). The reduction of CPU time taken by global optimization methods is 

one of the major challenges in phase stability analysis of multi-component systems. 

This improvement would allow us to extend the application of these strategies for 

performing phase equilibrium calculations in more complex systems.  

2.4.3  Applications to Phase Equilibrium Calculations  

Both deterministic and stochastic global optimization methods have been 

applied for phase equilibrium calculations of different systems with and without 

chemical reactions; these investigations are summarized in Tables 2.3a and 2.3b. For 

example, Lucia et al. (2000) introduced unique initialization strategies and successive 

quadratic programming for phase equilibrium calculations. The overall algorithmic 

framework is based on using a combination of binary tangent plane analyses, bubble 

point calculations and dimensionless Gibbs free energy minimization for solving a 

sequence of sub problems (i.e., VLE, LLE, and VLLE). Chaikunchuensakun et al. 

(2002) applied a combined algorithm, NLQPB, for the calculation of multi-phase 

equilibrium conditions at fixed temperature, pressure and overall composition. 

Although global solutions cannot be guaranteed, NLQPB can find equilibrium 

compositions accurately for multi-phase mixtures by the minimization of the Gibbs 

free energy of the system. Cheung et al. (2002) developed a branch-and-bound 

algorithm, which incorporates tight convex under-estimators and bounds on the 

dependent variables approach, and applied it to determine the global minimum 

potential energy for the solvent-solute interactions in phase equilibrium.  
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Table 2.3a. Application of Deterministic Optimization Methods to Phase Equilibrium Calculation 

Method (Reference) Problem formulation Thermodynamic models 
Successive Quadratic Programming (Lucia et al. 2000)  Gibbs free energy NRTL, UNIQUAC, UNIFAC, RK,  

PolyNRTL, HOC, SRK and PolySRK 
Nonlinear parametric optimization (NLQPB) (Chaikunchuensakun 
et al., 2000)  

Gibbs free energy UNIQUAC, PR and van der Waals 

Branch and Bound (Cheung et al., 2002)  Potential energy  van der Waals and Coulombic  

Tunneling Method (Nichita et al., 2002)  Gibbs free energy SRK and PR 

Interval Analysis (Scurto et al., 2003)  Gibbs energy surface  PR and van der Waals 

Tunneling method (Nichina et al., 2004)  Gibbs free energy SRK and PR 

CONOPT in GAMS (Rossi et al., 2010)  Gibbs free energy NRTL and Wilson 

Duality based optimization (BARON, MINOS and CPLEX) 
(Pereira et al., 2010)  

Helmholtz free energy Augmented van der Waals 
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Table 2.3b. Application of Stochastic Optimization Methods to Phase Equilibrium Calculations 

Method (Reference) Problem formulation Thermodynamic models 
Enhanced Simulated Annealing (Zhu et al. 2000)  Gibbs free energy PR and SRK 

Genetic Algorithm, Simulated Annealing and hybrid GA 
(Teh and Rangaiah, 2001)  

Gibbs free energy SRK, PR, NRTL and UNIFAC 

Enhanced Tabu Search (Teh and Rangaiah, 2003)  Gibbs free energy SRK, PR, NRTL and UNIFAC 

Random Tunneling Algorithm (Srinivas and Rangaiah, 
2006) 

Gibbs free energy SRK, PR, NRTL and ideal gas 

Differential Evolution and Tabu Search (Srinivas and 
Rangaiah, 2007a)  

Gibbs free energy SRK, PR, NRTL and UNIFAC 

Differential Evolution with Tabu List (Srinivas and 
Rangaiah, 2007b) 

Gibbs free energy SRK, PR, NRTL and UNIFAC 

Hybrid Artificial Immune System (Lin and Chen, 2007)  Gibbs free energy with 
reaction 

NRTL and UNIQUAC 

Simulated Annealing (Bonilla-Petriciolet et al, 2009)  Gibbs free energy with its 
orthogonal derivatives 

NRTL, Wilson and ideal gas 

Hybrid Genetic Algorithm with Interior Point Method 
(Staudt and Soares, 2009)  

Gibbs free energy NRTL, SRK and PR 

Genetic Algorithm and Differential Evolution with Tabu 
List (Bonilla-Petriciolet et al, 2011)  

Gibbs free energy with 
reaction 

NRTL, Wilson, UNIQUAC and 
Margules solution 

   



Chapter 2 Literature Review 

  

53 

 

Nichita et al. (2002a) tested the tunneling method for multi-phase equilibrium 

calculation by direct minimization of Gibbs free energy of a variety of multi-

component systems. Their results suggest that tunneling method is a robust and 

efficient tool for solving phase equilibrium problems even for extremely difficult 

cases. However, it requires feasible and improved initial estimates for reliability and 

computational efficiency respectively. Scurto et al. (2003) applied interval analysis 

methodology to predict the behavior of high-pressure solid-multiphase equilibrium 

systems using cubic equations of state with co-solvents, where the likelihood of 

formation of more than two phases is great. Nichita et al. (2004) too used the 

tunneling method to directly minimize Gibbs free energy in multi-phase equilibrium 

calculations. Rossi et al. (2010) applied convex analysis method to chemical and 

phase equilibrium of closed multi-component reactive systems. This method employs 

the CONOPT solver in GAMS. The optimization is to minimize Gibbs free energy of 

systems at constant pressure and temperature, and constant pressure and enthalpy. The 

proposed method can solve the phase equilibrium problems with high efficiency and 

reliability but it requires the convexity of the model. Pereira et al. (2010) proposed a 

duality-based optimization for phase equilibrium where the volume-composition 

space is converted from Gibbs free energy to Helmholtz free energy. They used 

BARON for global optimization, MINOS as the nonlinear local solver and CPLEX 

for linear problems. The method is applicable to the calculation of any kind of fluid 

phase behavior (e.g., VLE, LLE and VLLE). The method proposed by Pereira et al. 

(2010) can guarantee the global optimum but it requires a differentiable objective 

function. 

Beside deterministic methods for solving the phase equilibrium problems 

reviewed above, many stochastic methods have been used to solve them. Zhu et al. 
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(2000) introduced enhanced SA for phase equilibrium calculations of multi-

component systems at high pressure, which include ternary, quaternary and five 

component mixtures. Although the proposed algorithm requires slightly more 

computational time compared to two algorithms in the literature (MULPRG and 

HOMPEQ), it provides comparable reliability, is self-starting and simple. Rangaiah 

(2001) evaluated the performance of GA, SA and hybrid GA for phase stability 

problems of several mixtures. The results show that GA is more efficient and reliable 

than SA, and that hybrid GA outperforms both GA and SA in terms of reliability but 

its main limitation is the significant increase in the CPU time. Teh and Rangaiah 

(2003) tested enhanced continuous TS for phase equilibrium calculations via Gibbs 

free energy minimization, of VLE, LLE and VLLE systems. Their results indicate that 

TS is more efficient than GA but both require further improvement for 100% 

reliability. 

Srinivas and Rangaiah (2006) evaluated RTA on a number of medium sized 

problems including VLE, LLE and VLLE problems. This algorithm can locate the 

global optimum for most of the examples tested but its reliability is low for problems 

having a local minimum comparable to the global minimum. Srinivas and Rangaiah 

(2007a) compared DE and TS algorithms for phase equilibrium calculations of 

various VLE, LLE and VLLE systems. Subsequently, Srinivas and Rangaiah (2007b) 

introduced DETL algorithm for phase equilibrium calculation. Their results show that 

this hybrid algorithm performs better than both DE and TS. Lin and Chen (2007) 

proposed a hybrid method for chemical reaction and phase equilibrium calculation. 

This method was constructed by making use of the advantages of artificial immune 

system and sequential quadratic programming. The results show that the hybrid 

method is better than the artificial immune system method alone.  



Chapter 2 Literature Review 

  

55 

 

Staudt and Soares (2009) proposed a hybrid global optimization method for 

the minimization of Gibbs free energy for multi-phase equilibrium calculation. The 

proposed method uses GA for the global search and interior point method for 

refinement after the global search. Bonilla-Petriciolet et al. (2011) applied GA and 

DETL for phase equilibrium calculations in reactive systems by Gibbs free energy 

minimization; two approaches – constrained and unconstrained, were tried for solving 

these problems. The results show that unconstrained free energy minimization 

involving transformed composition variables requires more computational time 

compared to constrained minimization, and that DETL has generally better 

performance for free energy minimization in reactive systems. Among the stochastic 

methods, hybrid methods often provide better performance in terms of reliability and 

efficiency. 

In summary, the literature indicates that the major difficulties of Gibbs free 

energy minimization using both deterministic and stochastic methods arise in phase 

equilibrium calculations for highly non-ideal mixtures. For some conditions, 

difference of objective function value at the global minimum and at a local optimum 

(i.e., at trivial solutions and unstable phase equilibria) is also very small. In fact, 

trivial solutions present a significant region of attraction for numerical strategies, and 

may cause convergence problems. Many of the studies and tests assume that the 

correct number of phases at equilibrium is known a priori. However, the number and 

type of phases, at which Gibbs free energy function achieves the global minimum, are 

unknown in phase equilibrium problems and, as a consequence, several calculations 

must be performed using different phase configurations (adding or removing phases) 

to identify the stable equilibrium state. Hence, it is desirable to develop more effective 
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deterministic and stochastic methods for the global Gibbs free energy minimization in 

both reactive and non-reactive systems. 

2.5 Concluding Remarks 

Optimization problems involved in phase equilibrium modeling and 

calculations are complex and difficult to solve using traditional local optimization 

methods due to (a) the presence of several local minima, (b) the objective function 

may be flat and/or with discontinuities in some regions of solution domain, (c) wide 

range of decision variables in modeling problems, and (d) presence of trivial solutions 

in some problems. In fact, these optimization problems are generally non-convex, 

constrained, and highly non-linear. Hence, solution of these important and common 

problems requires reliable and efficient global optimization methods able to handle 

different problem characteristics. To date, a number of deterministic and stochastic 

global optimization methods have been developed and evaluated for solving phase 

equilibrium modeling and calculation problems. These methods have been widely 

applied to solve phase stability and Gibbs free energy minimization problems in non-

reactive systems. However, fewer attempts have been made in the application of these 

methods to reactive phase equilibrium calculations and modeling, compared to those 

reported for non-reactive systems.  

Even though research in the application of global optimization methods for 

phase equilibrium modelling and calculations has grown significantly over the last 

decade, results reported in the literature indicate that both deterministic and stochastic 

global optimization methods require further improvement for solving, robustly and 

efficiently, these application problems. One of the major limitations of deterministic 

global optimization methods is the significant computational time required for solving 
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high dimensional problems, which grows exponentially with the number of decision 

variables. This aspect limits the application of these strategies to model multi-

component and multi-phase systems and the use of complex thermodynamic models 

for predicting mixture properties. Therefore, further research should be performed to 

improve the performance of available optimization algorithms and to develop general 

purpose and effective deterministic methods for solving phase equilibrium problems 

in multi-component systems.  

Compared to deterministic optimization methods, stochastic optimization 

techniques involve simple concepts, do not require any assumptions and can be used 

for any type of problem. Hybridization to synergize selected features of different 

stochastic algorithms is a promising approach for developing highly effective 

algorithms since reported results show that the performance of pure algorithms is 

almost always inferior to that of hybrid algorithms. Therefore, further studies should 

be focused on the development of hybrid strategies to improve the reliability of 

stochastic optimization methods using fewer NFE. In addition, alternative termination 

criteria should be studied and tested for reliably determining the global convergence 

of stochastic optimization methods for phase equilibrium modeling and calculations. 

It is also desirable that these methods should have no or fewer tuning parameters.  

Despite the many advances in this area, research in global optimization for phase 

equilibrium modeling and calculations will continue to be an active field in chemical 

engineering, in order to develop and evaluate effective global optimization methods, 

in the foreseeable future. Further, promising deterministic and stochastic methods 

need to be compared carefully and comprehensively for solving phase equilibrium 

modeling and calculation problems. 
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Chapter 3 

An Integrated Differential Evolution with a Novel Stopping 

Criterion*2 

3.1 Introduction 

Global optimization is a fast growing area in the recent few decades due to its 

applications in many areas such as mathematics, science and engineering. Available 

global optimization methods can be classified into two broad categories (Pardalos et 

al., 2000; Moles et al., 2003): deterministic methods (Horst and Tuy 1996; Pinter 

1996; Floudas 1999; Esposito and Floudas 2000; Lucia, Gattupalli et al. 2008) and 

stochastic methods (Guus et al. 1995; Zhigljavsky and Zilinskas 2007). Deterministic 

algorithms are most often used for specific problems and when the clear relation 

between the characteristics of the possible solutions and the problem is available 

(Nocedal and Wright. 2006; Weise 2008). They can guarantee the global optimality of 

the final solution under certain conditions such as continuity and convexity (Moles 

2003; Teh and Rangaiah 2003). However, no algorithm can solve general global 

optimization problems with certainty in finite time (Weise 2008). If the relation 

between a candidate solution and the objective function is too complicated or the 

dimensionality of the search space is very high, it becomes harder to solve an 

optimization problem deterministically (Moles, et al., 2003; Liberti and Kucherenko 

2005; Weise 2008). 

                                                           
2* This chapter is based on the paper - Zhang, H., Rangaiah, G.P. and Bonilla-Petriciolet, A., 
Integrated Differential Evolution for Global Optimization and its Performance for Modeling 
Vapor-Liquid Equilibrium Data. IECR, vol.50, pp.10047-10061, 2011. 
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The most challenging global optimization problems in real life are those 

without any known structure that can be used, the so-called black-box optimization 

problems (Pardalos et al., 2000; Exler et al., 2008). Stochastic optimization algorithms, 

whose search and outcome are random, are designed to deal with such problems or 

highly complex problems. They generally require little or no additional assumptions 

on the optimization problem, are simple to implement and use, and do not require 

transformation of the original problem, which can be treated as a black box. This 

characteristic is especially useful if the researcher has to link the optimizer with a 

simulator such as Aspen Plus and Hysys. On the other hand, stochastic algorithms 

cannot guarantee global optimality (except for infinite iterations), but they can locate 

the global optimum with high probability in modest computation times (Moles et al., 

2003; Lin and Miller 2004; Liberti and Kucherenko 2005). 

Many stochastic global optimization methods have been developed and used 

for diverse applications. The well-known stochastic global optimization methods 

include GA, evolutionary strategy, SA, DE, TS and PSO. Our recent book covers 

these and their applications in chemical engineering (Chen et al., 2010). Among these, 

DE is a promising population-based stochastic optimization algorithm proposed by 

Storn and Price (Storn and Price 1997; Price et al., 2005). It has been gaining 

popularity due to its simplicity, faster convergence and capability to handle non-

differentiable and multi-model problems (Price et al., 2005; Babu and Munawar 

2007). It has found many applications in chemical engineering (Chen et al., 2010). In 

general, users need to choose suitable values of DE parameters (namely, population 

size NP, mutation/scaling factor F and crossover rate Cr), and proper mutation 

strategy for different problems in order to find the global optimum. These selections 

require effort and expertise as an improper choice can result in computational 
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inefficiency. In order to overcome these difficulties, recently, researchers have been 

studying strategies to adapt the algorithm parameters of DE according to the 

performance in the previous generations (Brest et al., 2006 and 2008; Soliman and 

Bui 2008; Omran et al., 2009; Qin et al., 2009; Liao, 2010). Of these, Qin et al. (2009) 

developed a comprehensive self-adaptive DE (SaDE) to adapt mutation strategy, F 

and Cr, and showed it to be better than the conventional DE and three recent adaptive 

DE variants on more than 20 benchmark optimization problems having up to 30 

decision variables and bounds on variables but no constraints. In parallel to these 

works, there have been a number of attempts to improve DE (Lampinen, 2002; Angira 

and Babu, 2006; Srinivas and Rangaiah, 2007b and 2007c; Yang et al., 2008; Zhang 

et al., 2008; Ali and Kajee, 2009; Pant et al., 2009). The work of Srinivas and 

Rangaiah (2007b and 2007c) improved the computational efficiency of DE by 

including the taboo list of taboo search (DETL) which avoids revisits during the 

search. Results show that DETL outperforms the classic DE and modified DE of 

Angira and Babu (2006). 

Although there are many stochastic global optimization methods with good 

performance, there are still some challenges. Limitations of stochastic optimization 

algorithms include tuning of algorithm parameters, lack of good stopping criterion 

and difficulty to overcome the premature convergence. The main objective of the 

present work is to develop an efficient and reliable DE for practical applications that 

can overcome these disadvantages. Motivated by the desirable features and 

performance of DETL and parameter adaptation, both these are integrated together 

with a novel termination criterion to stop the global search reliably and use a local 

optimizer for finding the minimum accurately and efficiently. The resulting algorithm, 

IDE, is tested on many challenging benchmark problems, and the effectiveness of the 
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novel termination criterion is compared with another used earlier (Bonilla-Petriciolet 

et al., 2006; Babu and Munawar, 2007; Srinivas and Rangaiah, 2007b and 2007c; 

Zielinski and Laur 2007; Bonilla-Petriciolet et al., 2010c). Note that an effective 

stopping criterion is critical for efficiently and reliably solving application problems 

where the global minima are unknown, and yet it has not received much attention in 

the literature on stochastic global optimization. 

The remainder of this chapter is organized as follows. Classical DE is outlined 

in Section 3.2, and development and description of the IDE are presented in Section 

3.3. The performance of IDE on benchmark functions is reported and discussed in 

Section 3.4. The effect of NRmax is studied in Section 3.5. Finally, Section 3.6 

concludes this chapter. 

3.2 Differential Evolution Algorithm 

DE is a population-based, real-coded direct search algorithm. It can be used to 

solve the following type of optimization problems: 

  ( )  1, 2,...,j

obj
Min F x j D=   subject to    m in m a x

j j j
x x x≤ ≤              (3.1)   

Here, Fobj denotes the objective function, xj is the jth decision variable, D denotes the 

number of decision variables in (i.e., dimension of) the problem, and xj
min and xj

max are 

respectively the lower and upper bound on each decision variable. DE uses a 

population of NP D-dimensional vectors, which are also called individuals. It has four 

main steps: initialization, mutation, crossover and selection, as outlined in the pseudo-

code in Fig. 3.1. Mutation and crossover steps generate new individuals, and they 

together with the selection step constitute one generation or iteration of the DE 

algorithm. 
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Figure 3.1. Pseudo-code of the Classic DE Algorithm 

  

Step 1 Initialization 

Initialize the generation number as G = 0. 

Randomly initialize NP individuals (target vectors { }1
, , ,, ..., D

i G i G i GX x x= for i = 1, 2, …, 

NP) within the search range [Xmin,Xmax], where { }1
min min min, ..., D

X x x=  and  

{ }1
max max max, ..., D

X x x= . 

FOR i = 1 to NP 
      FOR j = 1 to D 

, min max min(0,1) ( )j j j j

i G
x x rand x x= + ∗ −  

      END FOR 
END FOR 

Step 2 Generation  

WHILE stopping criterion is not satisfied 

• Mutation Step: /generate a mutation vector { }1
, , ,, ..., D

i G i G i G
V v v=  

FOR i = 1 to NP 

, 1, 2, 3,( )
i G r G r G r G

V X F X X= + −  

END FOR   /where F is the mutation factor and subscripts: r1, r2 and r3 are randomly 

chosen integers from 1 to NP such that 1 2 3r r r i≠ ≠ ≠  

• Crossover Step: / generate a trial vector { }1
, , ,, ..., D

i G i G i GU u u=   

FOR i = 1 to NP 
FOR j = 1 to D 

,
,

,

  

                            
rand

j

i Gj

i G j

i G

if  rand(0,1) Cr or j = j

otherwise

v
u

x

≤
= 


 

END FOR / where Cr is the crossover rate and jrand is a random integer from 1 to D 

END FOR 
• Selection Step: / select trial or target vector with better objective value as the individual 

for the next generation. 

FOR i = 1 to NP 

, , ,

, 1
,

  

                        
i G obj i G obj i G

i G

i G

if  F (U ) F (X )

otherwise

U
X

X+

≤
= 


 

END FOR 
Increment the generation number G = G + 1 

END WHILE 
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3.2.1 Initialization 

The search space is bounded by the minimum bound 

{ }1
m i n m i n m i n, . . .,  DX x x=  and maximum bound { }1

m a x m a x m a x, . . .,  DX x x= . 

The decision variables of each individual are generated randomly (using uniformly 

distributed random numbers) within the search space by

m in m a x m in( 0 ,1) ( )j j j j
x x r a n d x x= + ∗ − . So, an individual is expressed by the D-

dimensional genes { }1 , . . . , DX x x= . Thus, the initial population of NP individuals 

is produced. 

3.2.2 Mutation 

One of the vectors (say, i
th vector, Xi,G) in the population is selected as the 

target vector for possible replacement. Then, the mutation operation is performed by 

randomly selecting two individuals in the population, calculating the difference vector 

between them, and then adding the difference vector multiplied by the mutation factor, 

F to another individual to produce a mutation vector, Vi,G.  

    , 1, 2, 3,( )i G r G r G r GV X F X X= + −i

                                                          
            (3.2) 

Here, G denotes the generation number and subscripts: r1, r2 and r3 are randomly 

chosen integers from 1 to NP (number of individuals in population) such that

1 2 3r r r i≠ ≠ ≠ . So, at generation G, its mutation vector is { }1
, , ,,..., D

i G i G i G
V v v= . When 

the population converges to an optimum, any randomly chosen difference vector will 

become smaller in magnitude. Eventually when all members converge to a single 

solution, the difference vector will become zero and mutation operation (Eq. 3.2) will 

be nearly disabled. Thus, mutation operation is not only determined by F but also by 

the population diversity.  
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3.2.3 Crossover 

Once the mutation vector is created, it will undergo a binomial crossover 

between target and mutant vectors (Xi,G and Vi,G) to generate a trial vector. Each gene 

of trial vector is generated using a random number between 0 and 1; if the random 

number is lower than crossover rate (Cr), the variable of the target vector is chosen, 

otherwise the variable of the mutation vector is chosen. So the variable of trial vector 

is 

,
,

,

,     (0,1) ,   

,                                    

j

i G randj

i G j

i G

v if rand Cr or j j
u

x otherwise

 < =
= 
   

                         
             (3.3) 

Thus, the trial vector is { }1
, , ,, ..., D

i G i G i G
U u u= .

 
The condition randj j=  (where jrand is a 

random integer in the range 1 to NP) is introduced to ensure that the trial vector will 

be different from its corresponding target vector by at least one decision variable.
 

3.2.4 Selection 

After the crossover operation, there is a need to check the boundary violation 

of the trial vector. If any variable of the trial vector has crossed the upper or the lower 

bound, it is reinitialized randomly within the decision variable’s bounds. After 

evaluating the objective function value at the resulting trial vector, selection operation 

is performed. DE uses a greedy selection criterion based on the objective function 

value. The comparison is performed between the objective function values of the trial 

vector, ,( )
i G

f U and the corresponding target vector, ,( )
i G

f X . The vector with better 

objective function value is selected for the next generation. The selection operation is 

expressed as follows:  

, , , ,
, 1

, ,

  ( ) ( )

                  
i G i G i G

i G

i G

U if f U f X
X

X otherwise+

≤
= 
                                                         

 (3.4) 
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Mutation, crossover and selection steps are repeated for each and every individual in 

the population as the target vector. This completes one generation. The generations 

will be repeated until the specific termination criteria are satisfied.  

3.3 Integrated Differential Evolution Algorithm 

There have been many developments on DE with regards to initialization, 

mutation, crossover and selection operations as well as hybridization with other 

methods. Developments up to the year 2002 can be found at 

http://www2.lut.fi/~jlampine/debiblio.htm, and subsequent developments are 

reviewed by Chen et al. (2010). These are not repeated here for brevity, and only two 

relevant developments are outlined here. Hybrid methods combine DE with another 

optimization method to enhance the performance of DE (Srinivas and Rangaiah, 

2007b; Yang et al., 2008; Pant et al., 2009; Liao, 2010). DETL proposed by Srinivas 

and Rangaiah (2007b and 2007c), was tested on benchmark functions and application 

problems, and shown to have better performance. In this, the taboo check is 

implemented after mutation and crossover steps; it is performed by measuring the 

Euclidean distance between the trial individual and each individual in the taboo list 

(TL). If the Euclidean distance is less than the taboo radius, the trial individual is 

rejected and another trial individual is produced by mutation and crossover 

operations. This procedure is repeated until the Euclidean distance between the trial 

individual and each individual in the TL is greater than the taboo radius. This 

operation significantly avoids revisiting the same area, increases the diversity of the 

population and avoids unnecessary objective function evaluations. Thus, the ability of 

global exploration is greatly enhanced. On the other hand, several researchers 

investigated self-adaptive strategies to tune the parameters in DE (Brest et al., 2008; 
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Nobakhti and Wang, 2008; Omran et al., 2009; Qin et al., 2009). Among these, SaDE, 

proposed by Qin et al. (2009) was tested on many benchmark functions and shown to 

be better than nine variants of DE.  

Typically, DE requires values for algorithm parameters, uses the stopping 

criterion of maximum number of generations and has scope to improve its efficacy. 

Hence, several useful strategies are integrated into DE to develop IDE for finding the 

global optimum reliably and efficiently. These are: adaptation of mutation parameter 

and strategy, crossover parameter, inclusion of tabu list and tabu check as in DETL, a 

novel stopping criterion and a local optimizer after the global search. These additions 

into the classic DE are briefly discussed in the following sub-sections.  

3.3.1 Adaptation of Mutation Strategy 

A particular mutation strategy performs differently for solving different 

optimization problems, and an inappropriate choice of strategies and parameters may 

lead to premature convergence.(Lampinen, 2002; Price, Storn et al. 2005) Therefore, 

the mutation strategy candidate pool should contain distinct capabilities for dealing 

with specific problems at different stages of evolution. Recently, many researchers 

have studied adapting mutation strategy and parameters in DE`(Lampinen, 2002; 

Brest et al. 2006; Soliman and Bui, 2008; Omran et al., 2009; Qin et al., 2009; Liao, 

2010). Of these, Qin et al.(2009) developed a self-adaptive DE to adapt mutation 

strategy, F and Cr, and showed it to be better than the conventional DE and three 

recent adaptive DE variants on more than 20 benchmark optimization problems 

having up to 30 decision variables. Hence, the adaptation schemes of Qin et al. (2009) 

are chosen for developing IDE. Accordingly, the following four mutation strategies 

are selected for the candidate pool in IDE.  

1) DE/rand/1  
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, 1, 2, 3,( )i G r G r G r GV X F X X= + −i

                                                                      
(3.5) 

2) DE/rand/2  

, 1, 2, 3, 4, 5,( ) ( )i G r G r G r G r G r GV X F X X F X X= + − + −i i

                                  
(3.6) 

3) DE/rand-to-best/2 

, , , , 1, 2, 3, 4,( ) ( ) ( )
i G i G best G i G r G r G r G r G

V X F X X F X X F X X= + − + − + −i i i          (3.7) 

4) DE/current-to-rand/1  

, , 1, , 2, 3,(0,1) ( ) ( )
i G i G r G i G r G r G

U X rand X X F X X= + − + −i i

                      
(3.8) 

Each of the mutation strategies 1, 2 and 3 (Eqs. 3.5, 3.6 and 3.7) will be followed by 

the binomial crossover operation to produce the trial vector. Mutation strategy 4 (Eq. 

3.8) directly produces the trial vector and does not need crossover operation. 

During evolution in each generation, one mutation strategy is selected from 

the candidate pool according to the probability, Pk, k = 1, 2, ..., K, where K is the total 

number of strategies in the pool. Initially, the probability of each strategy is 0.25 since 

K = 4 here. In the subsequent generations, the probability of selecting a mutation 

strategy is based on its success rate in the previous LP number of generations. The 

number of trial vectors generated by k
th strategy that are successfully selected in a 

generation, g is recorded as nsk,g; otherwise, it is recorded as nfk,g. After LP 

generations, the probability of choosing kth strategy in generation G is given by 

 

1

,

, 1 1

, ,

G

k gg G LP

k G G G

k g k gg G LP g G LP

ns
S

ns nf

−

= −

− −

= − = −

= +
+

∑
∑ ∑

ε             for k = 1, 2, …, K                    (3.9)  

,
,

,1

k G

k G K

k Gk

S
p

S
=

=
∑

  for k = 1, 2, …, K                                 (3.10) 

Here, ε = 0.1 is used to prevent the possibility of null success rate. So, the larger 

success rate of k
th mutation strategy in the previous LP generations will result in 
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higher probability of the corresponding mutation strategy to be selected in the current 

generation G. 

Stochastic universal sampling method (Baker, 1987), which provides zero bias 

and minimum spread, is employed to choose one of these four strategies for mutation, 

based on probability. The probabilities of these strategies are calculated at each 

generation, using Eqs. 3.9 and 3.10. This method for four strategies and 6 individuals 

is illustrated in Fig. 3.2. Here, the four strategies are mapped in black/continuous line 

such that size of each strategy is equal to its probability (e.g., 0.18, 0.31, 0.24 and 

0.27 in Fig. 3.2). The equally spaced pointers (individuals) are placed in green line to 

indicate the strategy that they belong to. The first individual position is given by a 

randomly generated number in the range [0, 1/6]. For example, the first individual is 

randomly generated at 0.1, and the strategies are assigned to individuals as follows: 

strategy 1 to individual 1, strategy 2 to individuals 2 and 3, strategy 3 to individual 4 

and strategy 4 to individuals 5 and 6 (Fig. 3.2). It is obvious that the higher 

probability of a mutation strategy (due to higher success of the trial individuals 

produced by this strategy in the previous generations) leads to more chances for 

producing the new trial individuals by this strategy. The probabilities of mutation 

strategies are calculated once in each generation, which results in adaptive learning to 

choose the more suitable strategy for the particular problem being solved. This in turn 

makes the algorithm more reliable and robust. 

 

Figure 3.2. Stochastic Universal Sampling Method for Selecting 4 Strategies with 6 
Individuals 
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3.3.2 Adaptation of F and Cr 

Mutation factor (F) is very important for DE as it is closely related to the 

convergence speed. So, in order to maintain the balance between exploration and 

exploitation, F is randomly chosen using normal distribution with mean of 0.5 and 

standard deviation of 0.3. Crossover rate (Cr) is another important parameter in DE, 

which significantly affects the reliability of the algorithm. Crk value follows the 

normal distribution with mean of Crmk (where k is the mutation strategy used) and 

standard deviation of 0.1. The initial value of Crmk is set at 0.5, and the successful Crk 

values of each strategy are stored into CRMemoryk. After LP generations, the median 

of values stored inside CRMemoryk will be used for Crmk. Thus, Crk value is 

gradually changed by learning from the previous generations. This option will lead to 

promising Crk value for different kinds of problems and to more reliability (Qin et al., 

2009). 

3.3.3 DE with Tabu List 

The hybrid of classic DE with TL was proposed and tested on benchmark 

functions by Srinivas and Rangaiah (2007b), and subsequently applied to nonlinear 

and mixed-integer nonlinear programming problems (Srinivas and Rangaiah, 2007c). 

The tabu check is implemented after the mutation and crossover steps. In this, if the 

Euclidean distance between the new trial individual and any of the individuals in the 

TL is smaller than the specified tabu radius value (which indicates that the trial 

individual is similar to an individual already visited), the trial individual is rejected 

and another trial individual is generated by the mutation and crossover steps. This 

procedure is repeated until the Euclidean distance between the trial individual and 

each of the individuals in the tabu list is greater than the tabu radius. The procedure 
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makes the individuals in the population more diverse, enhances the exploration of the 

search space and avoids unnecessary evaluation of the objective function.  

Tabu radius is one of the parameters used in the algorithm, and it prevents 

revisit of the same neighbourhood. So, the higher the value of tabu radius, the larger 

area will be forbidden for revisiting and vice versa. Obviously, the higher value of 

tabu radius will cause larger number of rejected points and result in faster termination 

of the global search by the rejection-based stopping criterion. For problems having a 

local optimum very near to the global optimum, it is better to choose a smaller tabu 

radius for higher reliability. The tuning of the tabu radius and nominal values are 

reported in Srinivas and Rangaiah (2007b). 

The objective function is evaluated at the trial individual only if it is away 

from all the points in the tabu list. After each evaluation, the tabu list is updated 

dynamically to keep the latest points in the list by replacing the earliest entered 

point(s). Thus, the new point is added to the list by rejecting the oldest point in the list 

so that the recently added points are retained (i.e., first-in first-out basis). The tabu 

check avoids revisiting the same area, increases the diversity of the population and 

avoids unnecessary function evaluations. Thus, the ability of global exploration is 

greatly enhanced. The tabu check will require extra computational effort but this is 

negligible in application problems where objective function evaluation is 

computationally intensive.  

3.3.4 Stopping Criteria 

One of the disadvantages of stochastic optimization algorithms is lack of 

proper stopping criteria. The improper stopping of the algorithm will lead to the final 

solution either at a local optimum (stop too early) or waste of the computational 

resources (stop too late). The commonly used stopping criteria for stochastic 
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optimization algorithm in the literature can be classified as: (1) closeness of the 

optimum found to the exact/known optimum (Brest et al., 2006; Qin et al., 2009); (2) 

maximum number of function evaluations (femax) or generations (Gmax) (Moles et al., 

2003; Price et al. 2005; Omran et al., 2009; Liao, 2010); and (3) maximum number of 

successive iterations without improvement in the best objective function value found 

so far, which is also known as an improvement-based stopping criterion (SCmax) 

(Bonilla-Petriciolet et al., 2006; Babu and Munawar, 2007; Srinivas and Rangaiah 

2007b and 2007c; Zielinski and Laur 2007; Bonilla-Petriciolet et al., 2010c).  

The first type is only suitable for benchmark functions where the optimum is 

known. It is not applicable for real-world optimization problems where the optimum 

is not known a priori. The second one can be applied to these problems but it is 

difficult to choose a proper femax or Gmax value. Firstly, it is highly dependent on the 

optimization problem being solved. Secondly, the stochastic optimization algorithm 

contains some randomness, and so the same problem solved at a different time may 

need a different femax or Gmax. Wrong choice of femax or Gmax will lead to a local 

solution or excessive computation time. The third criterion has been used in the 

application problems (Angira and Babu, 2006; Bonilla-Petriciolet et al., 2006; 

Srinivas and Rangaiah 2007b and 2007c; Bonilla-Petriciolet et al., 2010). This is 

consistent with the conclusion of Zielinski and Laur (2007) that it is better to use a 

stopping criterion which considers knowledge from the state of optimization run. 

Here, a novel stopping criterion specifically for IDE is used after observing 

detailed results on a number of benchmark functions. It is based on the number of 

rejected individuals when producing a new trial individual for a target individual in a 

generation. As the generations proceed, individuals in the population congregate 

together owing to the nature of DE. When they are close enough, the new trial 
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individual is more likely to be rejected by the tabu check, which is performed using 

the Euclidean distance between the new trial individual and every individual in the 

tabu list. If the Euclidean distance is smaller than the tabu radius, then the new trial 

individual is rejected and another trial individual is generated. So, many rejections of 

the new trial individual for a target individual in a generation indicate convergence of 

the algorithm. The stopping criterion based on number of rejections monitors the 

positions of individuals rather than the objective function values. Thus, it is more 

robust than the stopping criteria mentioned previously (SCmax and Gmax). The stopping 

criterion based on number of rejections is appropriate for IDE which includes tabu 

check. In this work, effectiveness of this stopping criterion is compared with SCmax 

used earlier. 

3.3.5 Hybridize with Local Optimization 

There are different ways of hybridization of global optimization with local 

optimization methods (Talbi, 2002). The traditional hybridization methods are based 

on the global search followed by a local search. In this approach, switching time 

between global and local searches is very important. Early switching will increase the 

probability of trapping in a local optimum. Conversely, a late switching time will 

waste computational resources.(Miettinen et al., 2006) In this chapter, results are 

presented later to show that the tabu check in DETL and the stopping criterion based 

on the number of rejections can determine the switching time efficiently (i.e., the 

global search is expected to terminate in the valley containing the global optimum). In 

order to find a precise optimum efficiently, a local optimizer is used after completing 

the global search, as in our previous works (Srinivas and Rangaiah, 2007b and 2007c).  

Some researchers have used a local optimizer during the iterations of the global 

algorithm (Dumas et al., 2009; Tong et al., 2009; Yuan and Qian, 2010). However, 
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this increases computational effort, its benefit is unclear and so this approach is not 

chosen for the IDE algorithm. 

The IDE algorithm is implemented in MS Excel spreadsheet environment 

using VBA (Visual Basic Application) language because of its ready availability and 

used by researchers and practitioners in diverse fields. Solver tool in Excel is used as 

the local optimizer; this can solve different types of optimization problems, and 

employs Generalized Reduced Gradient (GRG) method for solving nonlinear 

problems. GRG method is an efficient local optimizer, and uses finite difference 

approximation for numerical derivatives of the objective function. A user-friendly 

interface is developed in a worksheet for coding the objective function and calling the 

optimization algorithm by anyone who can use the spreadsheet. Decision variables in 

the problem given by the user are normalized between 0 and 1, inside the program. 

3.3.6 Description of IDE Algorithm 

IDE begins with the setting of parameter values: population size (NP), 

learning period (LP), taboo list size (TLS), taboo radius (TR), maximum number of 

generations (Gmax) and maximum number of rejections (NR); see the flowchart in 

Figure 3.3. In the first/initialization step, a population of NP individuals is generated 

using uniformly distributed random numbers within the search space. The objective 

function of each individual is evaluated and sent to the taboo list. The best individual 

is saved.  

During each generation, a strategy for each target individual is selected with 

probability PkG using stochastic universal sampling method. The crossover rate (Cri,k) 

for each trial individual is calculated based on normal distribution with mean of Crmk 

and standard deviation of 0.1. Note that the initial probability of each mutation 

strategy, PkG is 0.25 and median value of crossover rate for each strategy, Crmk is 0.5. 
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When the generation number is higher than the learn period (LP), PkG is updated and 

median of values stored inside CRMemoryk is used for Crmk. 

For generating a trial individual, mutation factor, F is calculated based on 

normal distribution with mean of 0.5 and standard deviation of 0.3, and then a trial 

individual is produced according to assigned mutation strategy (based on stochastic 

universal sampling and PkG), F and Cri,k. A boundary violation check is performed to 

make sure the decision variables of the generated trial individual is within the search 

space. If any bound is violated, the corresponding decision variable of the trial 

individual is replaced by a randomly generated value within its bounds. The trial 

individual is then compared with the points in the taboo list. If it is near to any point 

in the taboo list (i.e., Euclidean distance between the two points in the search space is 

less than TR), the trial individual is rejected and another point is generated through 

the mutation and crossover operations.  

If the number of rejections for the same trial individual is greater than the 

specified number, NR, then it means that the individuals in the current population are 

very close. This indicates the algorithm has either converged to the approximate 

global optimum or trapped at a local optimum. So, running the global search for more 

generations is unlikely to improve the solution significantly. Hence, the global search 

is terminated and the local optimizer is started from the best point found so far. In this 

study, the Solver tool in Excel is used as the local optimizer. This can solve different 

types of optimization problems, and employs Generalized Reduced Gradient (GRG) 

method for solving nonlinear problems. GRG method is an efficient local optimizer 

and uses finite difference approximation for numerical derivatives of the objective 

function. 
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If the number of rejections for the same trial individual is not greater than the 

specified NR, the global algorithm will continue. After evaluating the objective 

function of the trial individual produced, the selection step is performed based on the 

fitness of objective function value. If the trial individual is selected, it replaces the 

target individual in the population immediately, and Cri,k is stored into Crmk and the 

success of the corresponding mutation strategy is updated as nsk,G = nsk,G + 1. 

Otherwise, the target individual remains in the population and the failure of the 

corresponding mutation strategy is recorded as nfk,G = nfk,G + 1. The objective function 

is evaluated at the trial individual only if it is away from all the points in the taboo list. 

After each evaluation, the taboo list is updated dynamically to keep the latest points in 

the list by replacing the earliest entered point(s). Then, NR is reset to 0 for generating 

the trial individual for the next target individual until all NP target individuals are 

covered. The updating of PkG, calculation of Crmk, mutation, crossover and selection 

operations are repeated for the next generation until the maximum number of function 

evaluations or generations, Gmax or the specified stopping criterion is satisfied. Then, 

the best point obtained over all generations is refined using the local optimizer.  
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 Figure 3.3.  Flowchart of IDE Algorithm. 
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3.4 Evaluation of IDE on Benchmark Functions 

In this section, the proposed algorithm with the novel stopping criterion is 

tested on many benchmark functions which include shifted, rotated and composite 

functions. The performance of IDE is compared with some recent state-of-the-art 

global optimization algorithms in the literature. Finally, the analysis of the proposed 

stopping criterion is presented. 

3.4.1 Comparison of IDE with DETL 

3.4.1.1  Benchmark Functions and Evaluation Procedure 

The performance of the IDE algorithm is tested on common benchmark 

functions involving a few to thousands of local optima and 2-20 variables (Srinivas 

and Rangaiah, 2007b). The details of these benchmark functions are summarized in 

Table 3.1. As shown in this table, some of these functions are considered to be 

moderate while the rest as difficult to solve (Srinivas and Rangaiah, 2007b). Out of 

nine benchmark functions in Table 3.1, five functions (GP, H3, ROS, ZAK and mHB) 

can be solved by BARON and four functions (ES, SH, RAS and GW) cannot be 

solved by BARON because of cosine terms in the objective function. 

The following parameters were used for all benchmark functions: population 

size, NP = 30, learning period, LP = 10, tabu list size, TLS = 50, tabu radius, TR  =  

10-3
D and 10-6

D for moderate and difficult functions respectively. Stopping criterion 

is the satisfaction of either the maximum number of rejections, NRmax = 20 or 

maximum number of function evaluations, Gmax = 30D and 60D for moderate and 

difficult functions respectively. All these parameter values are the same as those in 

Srinivas and Rangaiah (2007b) except NP and LP. The Gmax is used as another 

stopping criterion to avoid infinite loops. IDE both with an improvement-based 



Chapter 3 IDE with a Novel Stopping Criterion 

  

78 

 

stopping criterion (SCmax) and the new number of rejections based stopping criterion 

(NRmax), will be evaluated. 

Table 3.1. Benchmark Problems  

Function Dimension Domain 
Global 

minimum 

Goldstein and Price (GP)a    
2 2 2

1 2 1 1 2 1 2 2[1 ( 1) ( 14 3 14 6 3 )]objF x x x x x x x x= + + + − + − + +  

       2 2 2
1 2 1 1 2 1 2 2[30 (2 3 ) (18 32 12 48 36 27 )]x x x x x xx x+ − − + + − +  

2 2 2
i

x− ≤ ≤  
3.0  

at x={0,1} 

Easom(ES) a 
2 2

1 2 1 2cos( )cos( )exp[ (( ) ( ) )]objF x x x xπ π=− − − + −

 

2 
100 100ix− ≤ ≤

 

-1.0 at 

x={ π , π } 

Shubert (SH) a 
5 5

1 2
1 1

cos[( 1) ] cos[( 1) ]
obj

j j

F j j x j j j x j
= =

      = + + + +  
      
∑ ∑  2 

10 10
i

x− ≤ ≤

 

-186.7309  

x={0.0217,             
-0.9527} 

Hartmann 3 (H3) a 
4

,
1 1

exp[ ( )]
n

obj j ji i i j

j i

F c a x p
= =

=− − −∑ ∑   3 0 1
i

x≤ ≤  

-3.86278 at 
x={0.1146,0

.5556, 
0.8525} 

Rosenbrock (ROSn) a 

2 2 2
1

1

[100( ) ( 1) ]
n

obj i i i

i

F x x x+
=

= − −∑   
2,5,10, 

15,20 

5 10
i

x− ≤ ≤

 

0.0 

at 
x={1,…,1} 

Zakharov (ZAKn) a 
2 2 2 2 4

1 1 1

( ) ( 0.5 ) ( 0.5 )
n n n

obj i i i

i i i

F x ix ix
= = =

= + +∑ ∑ ∑   
2,5,10, 

15,20 

5 10
i

x− ≤ ≤

 

0.0 

at 
x={0,…,0} 

Modified Himmelbalu (mHB)b 

2 2 2 2 2 2
1 2 1 2 1 2( 11) ( 7) 0.1(( 3) ( 2) )objF x x x x x x= + − + + − + − + −  2 6 6

i
x− ≤ ≤  

0.0 

at x={3,2} 

Rastrigin (RASn) b 
2

1

10 ( 10 cos(2 ))
n

obj i i

i

F n x xπ
=

= + −∑   
2,5,10, 

15,20 

600 600ix− ≤ ≤

 

0.0 

at 
x={0,…,0} 

Griewank (GWn) b 
2

11

( ) cos( ) 1
n n

i i
obj

ii

x x
F

D i==

= − +∑ ∏   
5,10, 

15,20 

600 600ix− ≤ ≤

 

0.0 

at 
x={0,…,0} 

a Moderate functions; b Difficult functions 
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Since IDE is a stochastic optimization algorithm, convergence speed 

(computational efficiency) and reliability of finding the global optimum may be 

affected by random numbers. Hence, 100 independent runs, each time starting from a 

different random number seed, were performed on each of the benchmark functions. 

A successful run means the algorithm has found the objective function value very 

close to the known global optimum value, f(x*). Here, a run of an algorithm is 

considered to be successful if the objective function value found is ≤ [f(x*) +1e-5] for 

all benchmark functions. Convergence speed and reliability are assessed using 

average number of (objective) function evaluations (NFE) and success rate (SR) 

respectively. NFE for local optimizer is not included here since it is not provided by 

the Solver tool in Excel; however, our experience shows that local optimization 

contributes only a small percentage to the total NFE for finding accurate final 

solutions (Srinivas and Rangaiah, 2007b). Note that NFE is a good indicator of 

computational efficiency since function evaluation involves extensive computations in 

application problems. Further, it is independent of the computer and software 

platform used, and so it is useful for comparison by researchers. The reliability of the 

algorithm is measured in terms of SR, which is the number of times the algorithm 

located the global optimum to the specified accuracy out of 100 runs. SR and NFE of 

the benchmark functions are summarized and discussed in the next section. 

3.4.1.2  Results and Discussion 

First, IDE and DETL are compared using the same stopping criterion (namely, 

SCmax = 7D for moderate functions and SCmax = 12D for difficult functions) used by 

Srinivas and Rangaiah (2007b) (see Table 3.2). For an overall comparison of 

algorithms, we report the global success rate (GSR) defined as the mean success rate 

for all benchmark functions tested (nb):  
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1

nb

i

i

SR
GSR

nb=

=∑                                                                                                   (3.11) 

where SRi is the success rate for function i. The results in Table 3.2 for SCmax 

criterion show that, out of 21 benchmark functions tested in this study, IDE achieved 

100% SR for 16 benchmark functions compared to 100% SR for 10 benchmark 

functions by DETL. GSR of all benchmark functions listed in Table 3.2 is 

respectively 97.6% and 99.3% for DETL and IDE. It is obvious that IDE is more 

reliable than DETL for the benchmark functions. Total NFE used for all the 21 

benchmarks is 114,235 and 128,638 for DETL and IDE respectively; thus, total NFE 

used for IDE is increased by around 12.6%. This may be partly because DETL used 

different parameter settings for different sets of benchmark functions whereas IDE 

used the same parameter settings along with parameter adaptation for all benchmark 

functions tested. In any case, using SCmax criterion, IDE with higher reliability at the 

expense of slight increase in NFE is preferable to DETL. 

Next, IDE is tested using the NRmax = 20 stopping criterion. These results in 

Table 3.2 show that IDE with NR stopping criterion has achieved 100% SR for 18 out 

of 21 benchmark functions tested, and that GSR of IDE with NR criterion is the 

highest (99.8%). Further, NFE taken by IDE with NR criterion is less than the other 

two algorithms for 11 out of 21 problems tested, and total NFE required by the former 

is 14.7% less than that by DETL. Thus, IDE with NRmax is more reliable and efficient 

than DETL and IDE with SCmax. Comparing the performance of IDE with NRmax and 

SCmax, it can be concluded that the NRmax stopping criterion is better in stopping the 

global search effectively to achieve high reliability with less computational effort. 

Further, it is more robust than SCmax since the latter required different values for 

different problems (2007b). Additionally, IDE has fewer parameters to be chosen 

compared to DETL since two parameters (F and Cr) which are very sensitive in DE 
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are adapted during the iterations. All these make the IDE algorithm more reliable and 

efficient for application problems.  

Table 3.2. Performance Results of DETL and IDE for Benchmark Functions 

Functions 
DETL with SCmax  IDE with SCmax  IDE with NRmax 

SR NFE   SR NFE   SR NFE 
GP 100 636  100 1084  100 862 
ES 95 1409  96 1306  100 1482 
SH 99 684  100 990  100 1279 
ROS2 100 678  100 883  100 1230 
ZAK2 100 400  100 912  100 1161 
H3 100 719  100 1364  100 589 

ROS5 99 2671  100 2615  100 931 

ZAK5 100 1071  100 1980  100 3071 
ROS10 97 4913  98 5442  99 1269 

ZAK10 100 2194  100 2169  100 5862 
ROS20 98 9507  97 11490  98 3043 

ZAK20 100 4894   100 4748   100 4378 

mHB 93 1473  100 1308  100 1279 

RAS5 100 3592  100 6469  100 5862 
RAS10 95 7544  100 10210  100 9234 
RAS15 93 12532  97 14530  100 12155 

RAS20 83 19156  97 18765  99 20361 
GW5 98 5889  100 8582  100 3043 

GW10 100 11580  100 12517  100 4960 

GW15 99 11105  100 11505  100 6483 

GW20 100 11588   100 9769   100 7800 

GSR 97.6   99.3   99.8  

Total NFE Used  114235   128638   97388 

Total NFE Reduced Compared to DETL(%) -12.6   14.7 
Note: The least NFE required for solving each problem by an algorithm is in bold.  

3.4.2 Comparison of IDE with SaDE 

3.4.2.1  Benchmark Functions and Evaluation Procedure 

In this section, the proposed algorithm with the novel stopping criterion is 

tested on many benchmark functions in Table 3.3. These include shifted, rotated and 

composite functions which are more challenging to solve. In the shifted functions, 
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position of the global optimum is shifted to a new random position (i.e., global 

optimum solution has different values for decision variables) but keep the objective 

function value unchanged. 

Table 3.3: Basic Details of 26 Benchmark Functions 

Remark: o is the shifted vector. 

Function Name Dimension Global optimum x* f(x*) Search range

f1 Shifted Sphere 10 & 30 o 0 [-100,100]D

f2 Shifted Schwefel 1.2 10 & 30 o 0 [-100,100]D

f3 Rosenbrock 10 & 30 (1,…,1) 0 [-100,100]
D

f4 Shifted Schwefel 1.2 with niose 10 & 30 o 0 [-100,100]
D

f5 Shifted Ackley 10 & 30 o 0 [-32,32]
D

f6 Shifted rotated Ackley 10 & 30 o 0 [-32,32]
D

f7 Shifted Griewank 10 & 30 o 0 [-600,600]
D

f8 Shifted rotated Griewank 10 & 30 o 0 [-600,600]
D

f9 Shifted Rastrigin 10 & 30 o 0 [-5,5]
D

f10 Shifted rotated Rastrigin 10 & 30 o 0 [-5,5]
D

f11 Shifted non-continuous Rastrigin 10 & 30 o 0 [-5,5]
D

f12 Schwefel 10 & 30 (420.96,…,420.96) 0 [-500,500]
D

f13 Composition 1 10 & 30 o 0 [-5,5]
D

f14 Composition 2 10 & 30 o 0 [-5,5]
D

f15 Schwefel 2.22 30 (0,…,0) 0 [-10,10]
D

f16 Schwefel 2.21 30 (0,…,0) 0 [-100,100]
D

f17 Generalized penalized 1 30 (-1,…,-1) 0 [-50,50]
D

f18 Generalized penalized 2 30 (1,…,1) 0 [-50,50]
D

f19 Kowalik 4 (0.1928,0.1908,0.1231,0.1358) 0.00031 [-5,5]
D

f20 Six-hump camel-back 2 (0.8983,-0.7126);(-0.08983,0.7126) -1.03163 [-5,5]D

f21 Branin 2 (3.142,2.275);(9.425,2.425) 0.398 [-5,10]D

f22 Hartman 1 3 (0.114,0.556,0.853) -3.86 [0,1]D

f23 Hartman 2 6 (0.201,0.150,0.447,0.275,0.331,0.657) -3.32 [0,1]D

f24 Shekel's family 1 4 (4,4,4,4) -10.2 [0,10]D

f25 Shekel's family 2 4 (4,4,4,4) -10.4 [0,10]D

f26 Shekel's family 3 4 (4,4,4,4) -10.5 [0,10]
D
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We fixed values of the algorithm parameters for solving all the problems, for 

fair performance comparison between the proposed IDE algorithm and SaDE 

algorithm. The following parameter values are used: population size, NP = 50, 

learning period, LP = 50, taboo list size = 50, The maximum number of function 

evaluations is just used as a second stopping criterion to prevent infinite iterations. 

Most of the parameter values used in this study are referring Qin et al. (2009) and 

Srinivas and Rangaiah (2007b) for fair comparison purpose. In order to make a 

reliable evaluation of the IDE algorithm, we performed 30 independent runs on each 

benchmark function. The solution quality, success rate and number of function 

evaluations (NFE) in these 30 runs are summarized and compared. 

3.4.2.2 Results and Discussion 

Table 3.4 gives the summary of the results obtained by IDE for the 26 

benchmark functions in Table 3.3. These are compared with those of SaDE using the 

convergence to the known global optimum (i.e., best objective function value ≤ f(x*) 

+1e-5) as the stopping criterion, given in Qin et al. (2009). SaDE is chosen for 

comparison because it outperforms the recent self-adaptive DE such as ADE, SDE 

and jDE (2008). Note that the termination criteria of IDE are NRmax and NFEmax 

stated above, and do not require the global optimum of the problem in advance. The 

stopping criterion of convergence to the known global optimum is very efficient for 

problems with known global optimum; but it is not practicable and useful for 

application problems where the global optimum is unknown.  
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Table 3.4 Comparison of Results by IDE and SaDE for Benchmark Functions 

Dimension Function Name SR NFE SR NFE
f1 Shifted Sphere 100 8375 100 6744 19
f2 Shifted Schwefel 1.2 100 14867 100 17299 -16
f3 Rosenbrock 100 42446 100 16626 61
f4 Shifted Schwefel 1.2 with niose 100 15754 0 19317 -
f5 Shifted Ackley 100 12123 100 5954 51
f6 Shifted rotated Ackley 100 12244 100 6256 49
f7 Shifted Griewank 100 35393 100 31867 10
f8 Shifted rotated Griewank 20 - 47 81924 -
f9 Shifted Rastrigin 100 23799 100 19207 19

f10 Shifted rotated Rastrigin 0 100000 0 92122 8
f11 Shifted non-continuous Rastrigin 100 26945 100 21287 21
f12 Schwefel 100 16663 100 15722 6
f13 Composition 1 100 9740 100 5316 45
f14 Composition 2 80 - 100 18854 -

f1 Shifted Sphere 100 20184 100 16779 17
f2 Shifted Schwefel 1.2 100 118743 100 88641 25
f3 Rosenbrock 90 - 93 36485 -
f4 Shifted Schwefel 1.2 with niose 0 300000 0 168427 44
f5 Shifted Ackley 100 26953 100 14542 46
f6 Shifted rotated Ackley 100 33014 100 15407 53
f7 Shifted Griewank 80 - 100 22671 -
f8 Shifted rotated Griewank 40 - 37 42614 -
f9 Shifted Rastrigin 100 58723 100 55484 6

f10 Shifted rotated Rastrigin 0 300000 0 224941 25
f11 Shifted non-continuous Rastrigin 100 77920 100 68266 12
f12 Schwefel 100 44283 100 45626 -3
f13 Composition 1 100 19031 100 12227 36
f14 Composition 2 0 - 0 17140 -

30 f15 Schwefel 2.22 100 25137 100 11707 53
30 f16 Schwefel 2.21 100 88934 100 35653 60
30 f17 Generalized penalized 1 100 18742 100 17516 7
30 f18 Generalized penalized 2 100 19390 100 17125 12
4 f19 Kowalik 100 6426 100 8074 -26
2 f20 Six-hump camel-back 100 2076 100 441 79
2 f21 Branin 100 2614 100 1930 26
4 f22 Hartman 1 100 802 100 79 90
6 f23 Hartman 2 100 3080 100 3022 2
4 f24 Shekel's family 1 100 4947 100 5805 -17
4 f25 Shekel's family 2 100 4173 100 4136 1
4 f26 Shekel's family 3 100 4267 100 4380 -3

Average reduction in NFE (%) by IDE compared to SaDE 25

SaDE IDE

D=10

D=30

Reduction in 
NFE (%)

Note: “-“ Results are not available for SaDE for these functions. 
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It is obvious from Table 3.4 that IDE often requires fewer NFE compared to 

SaDE even without knowing the global optimum in advance; it requires slightly more 

NFE for functions f2, f4, f19 and f24 (i.e., in 4 out of 40 cases studied). The average 

reduction in NFE by IDE is by 25%, and SR is also slightly better than SaDE. For f4, 

SR for IDE is shown as 0 in Table 2; this is because local optimizer fails to find the 

precise minimum due to noise. However, the final value obtained by the global search 

is near the global minimum in all runs. In effect, SR of IDE can be considered as 100% 

for f4 as well.  

To further confirm the improved performance of IDE, Figure 3.4 shows the 

convergence characteristics of IDE, SaDE, ADE and jDE on 10D benchmark 

functions f1-f14. It illustrates the convergence profile in terms of best objective 

function value of the median run of each algorithm for each function. The data for 

SaDE, ADE and jDE are taken from Qin et al. (2009). From Figure 3.4, it can be 

concluded that IDE has faster convergence in early stages, and the convergence speed 

slows down in the later generations; the former is because of TL and taboo check 

which increases exploration of new regions. After terminating the global search by the 

proposed stopping criterion, the local optimizer (Solver) is started to find the precise 

solution.  In Figure 3.4, for functions f1, f2, f3, f6, f8, f13 and f14, IDE shows the 

fastest convergence over SaDE, ADE and jDE, throughout most of the search. For 

function f4, SaDE shows the best convergence profile among the four algorithms 

except in the initial stage where IDE is faster. For functions f7, f9, f11 and f12, ADE 

shows the fastest convergence among the four algorithms, but its reliability is lower 

than IDE for some of these functions.  
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Figure 3.4: Convergence Profiles of 
on 10D Benchmark Functions f1

From Figure 3.4, it is clear that the local optimizer can significantly increase 

the convergence speed to the exact optimum. 

IDE is much faster than the other three algorithms

(‘IDE (Successful Runs)’) in each plot

all 30 runs for each function. It shows the number of successful runs at different NFE. 

This facilitates better understanding of algorithm’s reliability to find the global 

optimum.  

3.4.3 Comparison of IDE with CMA

3.4.3.1 Benchmark Functions and Evaluation Procedure

In order to evaluate the stopping criterion of the proposed algorithm and 

compare with the state-of-the

variants, IDE is compared with covariance matrix adaptation evolution strategy 

(CMA-ES) proposed by Hansen and Kern

different programming languages. The 10

in Omran et al. (2009) are used to evaluate and compare the optimization algorithms. 
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rofiles of IDE, SaDE, ADE and jDE for the Median Trial 
unctions f1-f14. Results for SaDE, ADE and jDE are T

from Qin et al. (2009). 

From Figure 3.4, it is clear that the local optimizer can significantly increase 

the convergence speed to the exact optimum. So, the overall convergence speed

is much faster than the other three algorithms compared. The additional line 

) in each plot in Figure 3.4 shows the performance of 

all 30 runs for each function. It shows the number of successful runs at different NFE. 

facilitates better understanding of algorithm’s reliability to find the global 

Comparison of IDE with CMA-ES 

nctions and Evaluation Procedure 

In order to evaluate the stopping criterion of the proposed algorithm and 

the-art global optimization algorithm other than DE 

is compared with covariance matrix adaptation evolution strategy 

ES) proposed by Hansen and Kern (2004). CMA-ES is readily available in 

different programming languages. The 10 commonly used benchmark functions listed 

are used to evaluate and compare the optimization algorithms. 
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, SaDE, ADE and jDE for the Median Trial 
ults for SaDE, ADE and jDE are Taken 

From Figure 3.4, it is clear that the local optimizer can significantly increase 

the overall convergence speed of 

. The additional line 

shows the performance of IDE in 

all 30 runs for each function. It shows the number of successful runs at different NFE. 

facilitates better understanding of algorithm’s reliability to find the global 

In order to evaluate the stopping criterion of the proposed algorithm and 

art global optimization algorithm other than DE 

is compared with covariance matrix adaptation evolution strategy 

ES is readily available in 

commonly used benchmark functions listed 

are used to evaluate and compare the optimization algorithms. 
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These functions are different from Table 3.1 except Rosenbrock and Camel-back 

functions, and include five unimodal and five multi-modal functions. All these 

functions are considered with 30 dimensions except for Camel-back function with 2 

variables. IDE uses the termination criterion based on the number of rejections. CMA-

ES refers to the updated cmaes.m version 3 (2008) in 

http://www.lri.fr/~hansen/cmaes_inMATLAB.html, with   default settings for the 

termination. 

3.4.3.2 Result and discussion 

The results reported in Table 3.5 are SR, mean and standard deviations over 30 

trials. The significantly better results are shown in bold in this table. The results in 

Table 3.5 clearly show that the proposed stopping criterion can achieve 100% success 

rate for all the 10 test functions. CMA-ES can achieve 100% success rate on only 5 

test functions, namely, Sphere, Schwefel 2.22, Rotated hyper-ellipsoid, Griewank and 

Camel-back; of these, Sphere, Schwefel 2.22 and Rotated hyper-ellipsoid are 

unimodal functions whereas Griewank and Camel-back are multi-modal functions. 

For the Step function, CMA-ES has only 17% success rate; it fails to find the global 

optimum for Schwefel 2.26 and Rastrigin functions. It is clear that the IDE algorithm 

has better reliability and that the proposed stopping criterion is very robust compared 

to those in CMA-ES. On the other hand, CMA-ES has faster convergence rate 

compared to IDE, but it is easily trapped at a local optimum point. It is desirable to 

have higher reliability to find the global optimum since computational resources are 

often readily available. 
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Table 3.5 Comparison of Results by CMA-ES and IDE 

CMA-ES   IDE 

Functions Mean (std) SR NFE   Mean (std) SR NFE 

Sphere 0 (0) 100 6101 0 (0) 100 14553 

Schwefel 2.22 0 (0) 100 10020 0 (0) 100 10634 

Rosenbrock 0.1329 (0.7279) 97 46235 0 (0) 100 22498 

Step 3.567 (2.725) 17 305 0 (0) 100 12352 
Rotated hyper-
ellipsoid 

0 (0) 100 19213 
 

0 (0) 100 80583 

Schwefel 2.26 -118.359 (0) 0 6363 -12569.5 (0) 100 41475 

Rastrigin 18.0419 (4.2029) 0 7065 0 (0) 100 50586 

Ackley 0.031 (0.170) 97 8970 0 (0) 100 12715 

Griewank 0 (0) 100 7100 0 (0) 100 18190 

Camel-back -1.0316 (0) 100 528   -1.0316 (0) 100 401 

 

3.5 Studies on the Effect of NRmax 

The proposed stopping criterion is based on the number of trial individuals 

rejected, NRmax, which indicates the clustering of the population. Since NR is 

monitoring the positions of the population instead of the objective function value, it is 

expected to be more robust and independent of problem dimension and type. In order 

to explore this and also find suitable value of NRmax for the proposed IDE, 

experiments were performed. Higher NRmax will result in higher reliability but lower 

efficiency, and lower NR will cause lower reliability but higher efficiency. Therefore, 

a good value of NRmax should give high reliability as well as reasonable efficiency. 

Experiments with NRmax = 3, 5, 8, 10 and 13 were conducted on five functions; 

dimensions of these are 10 and 30.  
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Table 3.6 Effect of NRmax on the Performance of IDE 

Function with  
D in brackets 

3   5   8   10   13 

SR NFE SR NFE   SR NFE   SR NFE   SR NFE 

Sphere (10) 100 4826   100 6069   100 6572 100 6850   100 7047 

Rosenbrock(10) 100 9820 100 12804 100 16162 100 20065 100 23803 

Rastrigin (10) 33 15653 83 17994 100 18690 100 20149 100 21100 

Ackley (10) 100 4511 100 5463 100 5840 100 6358 100 6613 

Griewank(10) 90 26481 97 28825 100 31463 100 36141 100 42800 

Sphere (30) 100 12650 100 13487 100 13996 100 14303 100 14713 

Rosenbrock(30)    90 18079 93 20844 100 22753 100 23615 100 24373 

Rastrigin (30) 40 41369 93 48852 100 50552 100 50801 100 50934 

Ackley (30) 100 10937 100 11954 100 12679 100 12739 100 12953 

Griewank (30) 90 16755   93 17227   100 18424   100 18915   100 19282 

Total NFE  

  
161081 

  
183519 

  
197131 

  
209936 

  
223618 

 

The results in Table 3.6 and Figure 3.5 show that when NRmax = 3 and 5, the 

reliability of the algorithm is low. When NRmax = 8, 10 and 13, the reliability is as 

high as 100%, but NRmax = 10 and 13 require more NFE (lower efficiency) compared 

with NRmax = 8. Thus, NRmax = 8 is used and recommended as the stopping criterion 

in IDE for problems with up to 30 variables. In stochastic global optimization 

methods, different parameter settings will affect convergence of speed, and this in 

turn can affect NRmax value. Although NRmax can be affected by other parameters, it 

will be a robust stopping criterion if a higher NRmax value is used especially for 

application problems where the global optimum is unknown. 
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Figure 3.5: Average NFE for the Five Benchmark Functions Versus the Number of 
Rejected Points (NRmax) 

3.6 Conclusions 

The IDE algorithm integrates classic DE with parameter adaptation, tabu list, a 

new stopping criterion and local optimization after global search. In IDE, where the 

two control parameters (F and Cr) of DE are automatically tuned and mutation 

strategies for DE are assigned suitable probability based on the previous generations. 

The strong feature of TS is integrated with DE in order to prevent re-visiting the same 

place, to increase the diversity of population and consequently increase the reliability 

of the algorithm. A new novel stopping criterion based on the number of rejection 

points is incorporated in IDE to enhance its performance, and a local optimizer is used 

to efficiently refine the solution obtained by global search. The results obtained on the 

benchmark functions show that IDE algorithm is superior to the recent algorithms 

(DETL, SaDE and CMA-ES). In addition, the NRmax stopping criterion is effective in 

terminating the global search at the right time to start the local search. In summary, 
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the proposed IDE integrating DE, taboo check, parameter self-adaptation strategy and 

the novel stopping criterion is robust, efficient and suitable for application problems. 
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Chapter 4 

Global Optimization of Parameter Estimation Problems*3 

4.1 Introduction 

Parameter estimation in models plays a very important role in developing a 

better mathematical model which can be used for understanding and analyzing a 

physical, chemical and/or biochemical system. Parameter estimation in a 

(thermodynamic) model refers to determining the values of model parameters that 

best fit the model predictions to the given experimental data. Mathematically, it is 

formulated as the minimization of a suitable objective function subject to constraints 

arising from the model equations. For many mathematical models, the objective 

function and constraints are multi-modal (non-convex). Hence, it is necessary to 

estimate the model parameters by using a global optimization method because 

traditional gradient-based optimization methods often provide a local solution only 

(Gau et al., 2000; Bonilla-Petriciolet et al., 2010). 

Many deterministic and stochastic algorithms have been proposed for finding 

the global optimum, particularly in the past two decades. The former methods can 

guarantee convergence to the global optimum but they usually require certain 

properties such as continuity; in some cases, reformulation of the problems is needed 

depending on the characteristic of the thermodynamic models. In contrast, stochastic 

methods are quite simple to implement and use, and they do not require any 

assumptions or transformation of the original problems (Bonilla-Petriciolet et al., 

                                                           
3* This chapter is based on the paper - Zhang, H. and Rangaiah, G.P., A hybrid global 
optimization algorithm and its application to parameter estimation problems. Asia Pac. J. 

Chem. Eng., vol. 6, pp. 379-390, 2011. 
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2010). The stochastic algorithms include simulated annealing, genetic algorithms, 

tabu search, differential evolution and particle swarm optimization.  

Several researchers have studied the parameter estimation in vapor-liquid-

equilibrium (VLE) data modeling problems. The challenges and difficulties identified 

in solving these problems are convergence to a local optimum, flat objective function, 

badly scaled model functions, non-differential terms in thermodynamic equations 

and/or large number of optimization variables (Gau et al., 2000 and 2002; Alvarez, 

2008; Bonilla-Petriciolet et al., 2010a and 2010b). Thus, it is necessary to use a 

reliable global optimization method in order to overcome these difficulties. 

In the present work, IDE is evaluated on parameter estimation problems in 

dynamic models in chemical engineering problems such as first-order chain reaction, 

catalytic cracking of gas oil, methanol-to-hydrocarbon process and Lotka-Volterra 

problems. Then, it is further applied to parameter estimation in vapor-liquid 

equilibrium (VLE) data modeling using both least squares and error-in-variable 

approaches; these application problems involve three different thermodynamic models: 

NRTL, Wilson, and UNIQUAC. Results obtained by IDE are compared with both 

deterministic (BARON) and other stochastic methods, and discussed.  

The remainder of this chapter is organized as follows. Classical DE is outlined 

in Section 4.2, and development and description of the IDE are presented in Section 

4.3. The performance of IDE on benchmark functions is reported and discussed in 

Section 4.4. The application of IDE to VLE data modeling problems and performance 

comparison of IDE with other stochastic global algorithms and BARON are presented 

in Section 4.5. Finally, Section 4.6 concludes this chapter. 
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4.2 Solving Parameter Estimation Problems in Dynamic Systems 

Many chemical engineering applications involve dynamic models. Hence, 

application of global optimization techniques to estimate parameters in dynamic 

systems has received greater attention in the recent past. Parameter estimation 

involves fitting the model to experiment data by minimizing the objective function 

such as sum of squared errors (SSE). So, parameter estimation problem in a dynamic 

model is given by: 

2
, ,

1 1

min   ( )
n NS

e

i j i j

i j

SSE y y
= =

= −∑∑                                                                                 (4.1) 

subject to the model constraints and bounds on parameters: 

( )
( , )i

i

d y
f y

dt
θ=                                                                                                       (4.2) 

LB UBθ θ θ≤ ≤                                                                                                           (4.3) 

where n is the number of quantities and NS is the number of sampled data points. θ 

denotes D-dimensional parameters, ,i j
y  is the calculated value for i

th quantity at j
th 

time and ,
e

i j
y is the corresponding experimental data. and LB UBθ θ are the lower and 

upper bounds on the parameters. Note that the D-parameters are the decision variables 

in parameter estimation problems. 

The solution of the above type of optimization problems is usually very 

difficult due to their highly nonlinear and complex nature. Local optimization 

methods may get trapped at a local optimum depending on the degree of nonlinearity 

and initial guess. Some deterministic global optimization algorithms have been 

applied to parameter estimation problems (Esposito and Floudas, 2000; Papamichail 

and Adjiman, 2000). Although these methods can guarantee finding the global 

optimum, some difficulties in using them were stated in the literature (Angira and 
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Santosh, 2007). Several researchers have studied stochastic global optimization 

methods for solving parameter estimation problems in dynamic models (Kapadi and 

Gudi, 2004; Katare et al., 2004; Angira and Santosh, 2007; Srinivas and Rangaiah, 

2007b). In this study, IDE is evaluated for parameter estimation in dynamic systems.  

4.2.1  Evaluation Procedure 

The application problems (i.e., differential equations and bounds on 

parameters) are summarized in Table 4.1. The IDE for solving these parameter 

estimation problems is implemented in MATLAB platform, and fmincon in 

MATLAB’s optimization toolbox is used as the local optimizer. The reason for using 

MATLAB is that Excel does not have an efficient program for solving stiff ordinary 

differential equations (ODE). The ODE solver (ode15s) is used to solve stiff ODEs in 

the parameter estimation problems tested. The performance of IDE is compared with 

that of DETL; in order to make a fair comparison, NP used (= 30) in IDE is the same 

as that in DETL (Srinivas and Rangaiah, 2007b), and the rest of the parameters are 

kept same at the previous settlings. Each parameter estimation problem is solved 100 

times independently as in Srinivas and Rangaiah (2007b). The performance of IDE is 

compared with that of DETL based on SR, NFE and stopping criterion. The stopping 

criterion used in DETL is the maximum number of iterations (SCmax = 7D) without 

improvement in the best objective function value found so far, which is also known as 

an improvement-based stopping criterion. The stopping criterion in IDE is NRmax (= 8) 

as in the benchmark functions studied above. 
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Table 4.1 Dynamic System Parameter Estimation Problems 

No. Application Differential equations 
Parameter 

bounds 

Number of 
data points 
available 

 
p1 

 

First –order 
irreversible 
chain reaction 

 1
1 1

dz
z

dt
θ= −  

 2
1 1 2 2

dz
z z

d t
θ θ= −  

 

0 10θ≤ ≤  10 

 
p2 

 

First –order 
reversible 
chain reaction 

 1
1 1 2 2

dz
z z

dt
θ θ= − +  

 2
1 1 2 3 2 4 3( )

dz
z z z

dt
θ θ θ θ= − + +  

 1
2 2 4 3

dz
z z

dt
θ θ= −  

 

1 20 , 10θ θ≤ ≤

 

3 410 , 50θ θ≤ ≤

 

20 

 
p3 

 

Catalytic 
cracking of 
gas oil 

 21
1 2 1( )

dz
z

dt
θ θ= − +  

 22
1 1 2 2

dz
z z

dt
θ θ= −  

 

0 20θ≤ ≤  20 

 
p4 

 

Methanol-to-
hydrocarbon 
process 

1 1 2
1 3 4 1

2 5 1 2

(2 )
( )

dz z
z

dt z z

θ
θ θ θ

θ θ
=− − + +

+ +
 

2 1 1 2 1 2
3 1

2 5 1 2

( )

( )

dz z z z
z

dt z z

θ θ
θ

θ θ

−
= −

+ +
 

 1 1 2 5 12
4 1

2 5 1 2

( )

( )

z z zdz
z

dt z z

θ θ
θ

θ θ

+
= +

+ +
 

 

0 20θ≤ ≤  16 

p5 Lotka-
Volterra 
problem 

 1
1 1 2(1 )

dz
z z

dt
θ= −  

 2
2 2 1( 1)

dz
z z

dt
θ= −  

0 1θ≤ ≤  10 

 

4.2.2   Results and Discussion 

The results of solving the parameter estimation problems in dynamic models 

are summarized in Table 4.2. It shows that SR of IDE for all examples tested is 100%. 

The p5 problem is highly non-convex and difficult to solve as shown in Esposito and 

Floudas (2000). Results in Table 4.2 for this problem show that IDE algorithm has 
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higher reliability compared to DETL. The reduction in NFE required for solving 

problems p1 to p5 by IDE is 58%, 24%, 60%, 0.2% and -11% respectively compared 

to DETL. For p5, IDE requires more NFE because of the difficult nature of the 

problem; however, it achieves 100% success rate. On average, IDE requires 26% 

fewer NFE compared to DETL, which shows that IDE has faster convergence and is 

an efficient algorithm. Thus, the proposed stopping criterion based on NRmax is able to 

stop the algorithm effectively, which makes IDE more suitable for application 

problems.  

Table 4.2 Results for Parameter Estimation Problems 

Problem 
No. 

 DETL  IDE  Reduction in 
NFE (%) SR          NFE SR           NFE 

p1  100 1015  100 433  57 

p2  100 5025  100 3824  24 

p3  100 3490  100 1408  60 

p4  100 6137  100 6124  0.2 

p5  96 1971  100 2192  -11 

Average reduction in NFE (%) by IDE compared to DETL 26 

 

4.3 Solving Parameter Estimation Problems for VLE Modeling 

4.3.1 Least Squares Approach 

Consider a set of observations qij of i = 1, 2, …, m response variables from j = 

1, 2, …, ndat experiments, where the responses can be expressed by an explicit model 

( , )
i j

f r θ  with nl independent variables 1, ,( ,..., )
j j nl j

r r r=  and npar parameters 

1( ,..., )
npar

θ θ θ=  . Measurement errors in rj are neglected in LS approach. There are 

different objective functions that can be used to estimate the parameter values that 

provide the best fit for a model. In this study, the following objective function 
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involving fractional errors is used since it tends to weigh errors in small and large 

quantities equally.  

2

1 1

( , )ndat m
ij i j

obj

j i ij

q f r
F

q

θ

= =

 −  =   
∑∑                                        (4.4) 

The decision variables in the LS approach are npar parameters θ .  

In the case of VLE data, excess Gibbs energy equation is normally used for 

phase equilibrium modeling. Hence, the objective function used in Eq. (4.4) can be 

modified as follows to fit the activity coefficient data: 

 

2exp
,

exp
1 1 ,

calcndat c
i j ij

obj

j i i j

F
γ γ

γ= =

 −  =   
∑∑                                                                                      (4.5) 

where  exp
,i jγ   is the experimental value for the activity coefficient of component i in jth 

experiment, calc

ijγ   is the calculated value for the activity coefficient of component i in 

j
th experiment, and c is the number of components in the mixture. exp

iγ  can be 

calculated from VLE data as follows: 

exp
exp

exp 0
     1,...,i

i

i i

y P
i c

x P
γ = =                                                                         (4.6) 

where exp
ix  and exp

iy  are, respectively, the measured mole fraction of component i in 

the liquid and vapor phases at equilibrium, 0
iP is the vapor pressure of pure 

component i at the system temperature T and P is the pressure of the system. For Eq. 

(4.6), it is assumed that, at low pressure, the fugacity coefficients of pure components 

cancel each other and the values of Poynting corrections are very close to one.  

Non-Random-Two-Liquid (NRTL), Wilson and UNIversal QUAsi-Chemical 

(UNIQUAC) models have been used to evaluate calc

iγ , and Eq. (4.5) is optimized by 

changing the energy parameters ( θ ) of these models. Owing to the explicit nature of 

the equations for calc

iγ , global minimization of LS objective function, Eq. (4.5) can be 
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solved as an unconstrained optimization problem. Details of the test problems used 

for LS approach are summarized in Table 4.3. 

Table 4.3.  Details of VLE-LS Problems 

No. System Data Models Variables Global optimum Reference 

LS-1 

tert butanol 
+ 1 butanol 

P = 100 mm Hg 
ndat = 9 

Wilson and 
Ideal gas 
models 

D = 2; θ1,θ2 

∈(-8500, 
320000) 

Fobj = 0.01026;   
θ1 = -567.96 
θ2 = 745.33 

Alvarez et 
al., 2008 

LS-2 
P = 700 mm Hg 
ndat = 9 

Fobj = 0.013690 ; 
θ1 = -733.95 
θ2 = 1318.23 

Bonilla-
Petriciolet et 
al., 2007 

LS-3 
P = 500 mm Hg 
ndat = 9 

Fobj = 0.006852; 
θ1 = -718.01 
θ2 = 1264.74 

Gau et 
al.,2000 
 

LS-4 

water + 1,2 
ethanediol 

P = 430 mm Hg 
ndat = 18 

Wilson and 
Ideal gas 
models 

D = 2; θ1,θ2 

∈(-8500, 
320000) 

Fobj = 1.039134; 
θ1 = 5072.361 
θ2 = -1921.62 

Bonilla-
Petriciolet et 
al., 2007 

LS-5 
UNIQUAC  
Ideal gas 
models 

D = 2; θ1,θ2 

∈(-5000, 
20000) 

Fobj = 1.408547; 
θ1 = -1131.84 
θ2 = 3617.65 

Bonilla-
Petriciolet et 
al., 2007 

LS-6 
NRTL and 
Ideal gas 
models 

D = 3; θ1,θ2 

∈(-2000, 
5000); α12 
∈(0.01, 10.0) 

Fobj = 1.253531; 
θ1 = -678.99 
θ2 = 3046.13; 
α12 = 0.621375 

Bonilla-
Petriciolet et 
al., 2007 

LS-7 

benzene + 
hexafluoro-
benzene 

T = 50 °C 
ndat = 11 

Wilson and 
Ideal gas 
models 

D = 2 
θ1,θ2 ∈        
(-8500, 
320000) 

Fobj = 0.008935; 
θ1 = -424.08 
θ2 = 983.06 

Bollas et al., 
2009 
 

LS-8 
P = 300 mm Hg 
ndat = 17 

Fobj = 0.014860 ; 
θ1 = -432.49 
θ2 = 992.85 

Bonilla-
Petriciolet et 
al., 2007 

LS-9 
P = 760 mm Hg 
ndat = 29 

Fobj = 0.014616; 
θ1 = -334.70 
θ2 = 704.74 

Gau et al., 
2000 
 

LS-10 T = 30 °C 

ndat = 10 

Fobj = 0.011783; 

θ1 = -467.76 

θ2 = 1313.94 

Bonilla-
Petriciolet et 
al., 2007 

4.3.2  Error-in-variables Approach 

Unlike LS approach, EIV approach considers errors in the state variables zi,j 

for the experiments of the system to be modeled (namely, x, y, T and P for VLE data 

modeling). This results in the following objective function: 
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, ,

2
1 1

tndat nest
i j i j

obj

j i i

z z
F

σ= =

−
= ∑ ∑                                                                                      (4.7) 

subject to 

,( , ) 0   1,...,    1,...,t

i jg z i nest j ndatθ = = =                                                               (4.8) 

Here, g is a vector of model functions, nest is the number of state variables, ,
t

i jz  is the 

unknown “true” value of i
th state variable in j

th experiment and σi is the standard 

deviation associated with the measurement of ith state variable. The decision variables 

of EIV formulation include the set of ,
t

i jz  values in addition to npar parameters � in 

the model. This leads to significant increase in the dimensionality of the optimization 

problem depending on the number of experimental data. Bounds for state variables 

are usually three standard deviations away from the measured values.  

Assuming the experiment is conducted at low pressure, VLE problems can be 

defined by the following equations: 

0

1

( )
c

i i i

i

P x Pγ
=

=∑                                                                                                 (4.9) 

0

0

1

( )

i i i
j c

j j j

j

x P
y

x P

γ

γ
=

=

∑

        i = 1, …, c                                                                   (4.10) 

The above equations allow the VLE problems to be solved as unconstrained 

optimization problems through their substitution for tP   and t

iy  in Eq. (4.7) to give 

the following objective function for EIV optimization problem. 

exp 2 exp 2 exp 2 exp 2
, , , ,

2 2 2 2
1 1

( ) ( ) ( ) ( )

i i

t t t tndat c
i j i j i j i j j j j j

obj

j i x y T P

x x y y T T P P
F

σ σ σ σ= =

 − − − −  = + + +    
∑∑                 (4.11) 

The independent variables are the set,  exp exp( , )iz x T=   for all the measurements. The 

decision variables for optimization are the set of ( , )t t t

iz x T=   and 1( ,..., )nparθ θ θ=  , 
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and the total number of decision variables is npar + c × ndat. Both LS and EIV 

formulations involve complex, non-linear thermodynamic models, which results in 

non-linear and potentially non-convex objective function with local optima. Details of 

VLE-EIV problems studied are given in Table 4.4. 

Table 4.4. Details of VLE-EIV Problems  

No. Data Variables Global optimum Reference 

EIV-1 
P = 500 mmHg ndat = 16 ;         
σ (0.003, 0.0029, 1.7, 0.083) 

D = 34 
θ1, θ2 ∈ (-10000, 200000); 

( 3 , 3 )t

ij ij ijx x xσ σ∈ − +   

( 3 , 3 )tT T Tσ σ∈ − +  

Fobj = 19.998720 
θ1 = -429.85 
θ2 =1029.32 

Bonilla-
Petriciolet 
et al., 2007  

EIV-2 
P = 300 ; mmHg ;ndat = 17 ; 
σ (0.003, 0.0029, 1.7, 0.083) 

D = 36 
 

Fobj = 42.343724 
θ1 = -437.72 
θ2 =1003.12 

Esposito 
and 
Floudas, 
1998 

EIV-3 
T = 30 °C; ndat = 10;  
σ (0.001, 0.01, 0.75, 0.1) 

D = 22 
Fobj = 11.898795 
θ1 = -472.00 
θ2 =1274.32 

Gau and 
Stadtherr, 
2002 
 

EIV-4 
T = 40 °C; ndat = 10;  
σ (0.001, 0.01, 0.75, 0.1) 

D = 22 
Fobj = 11.170496 
θ1 = -462.51 
θ2 =1197.31 

Srinivas 
and 
Rangaiah, 
2006 

EIV-5 
T = 50 °C; ndat = 11;  
σ (0.003, 0.0029, 1.7, 0.083) 

D = 24 
Fobj = 25.671042 
θ1 = -415.76 
θ2 = 944.57 

Bonilla-
Petriciolet 
et al., 2007 

EIV-6 
T = 60 °C; ndat = 10 

σ (0.003, 0.0029, 1.7, 0.083) 
D = 22 

 

Fobj = 19.401593 

θ1 = -437.05 

θ2 =1065.04 

 Bonilla-
Petriciolet 
et al., 2007 

Note: The system used is benzene + hexafluorobenzene, and the models are Wilson and ideal gas. The 
bounds of variables used for all the EIV problems as given in EIV-1. 

4.3.3. Test Examples and Evaluation Procedure 

Altogether, there are 20 VLE problems, consisting of 10 LS and 10 EIV 

problems respectively (Tables 4.3, 4.4 and 4.10). All these problems are multi-modal, 

and their number of decision variables ranges from 2 to 60. Each VLE problem is 

solved 100 times independently. A trial/run is considered successful if the best 

objective function value obtained is within 1.0E-5 from the known global optimum. 

Also, GSR of different algorithms is reported for the LS and EIV problems. The 

performance (i.e., SR and NFE) of IDE is compared for four stopping criteria: SC-1 
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(i.e., SCmax = 6D) and SC-2 (i.e., SCmax = 12D) are based on the maximum number of 

iterations without improvement in the best objective function value, maximum 

number of rejected points (NRmax = 20), and maximum number of iterations (Gmax = 

1000) to find the success rate for a large number of iterations. The results of IDE are 

also compared with those by other stochastic algorithms and a deterministic algorithm.  
4.3.4. Results and Discussion Using Least Squares Approach 

4.3.4.1 Performance of IDE with Different Stopping Criteria and Population Size 

In order to show the robustness of the IDE algorithm for VLE-LS problems, 

all the algorithm parameters are kept same except that the stopping criteria (SC-1 and 

SC-2) are the same as those in Bonilla-Petriciolet et al.(2010c). The SR, GSR, NFE, 

total NFE and CPU time (in seconds) for NRmax and Gmax of the IDE algorithm with 

four stopping criteria used for the ten VLE-LS problems are summarized in Table 4.5. 

Recall that VBA is used in the present study because of its ready availability and used 

by researchers and practitioners in diverse fields. However, based on our experience, 

it is about one order of magnitude slower than the equivalent MATLAB code. 

It is obvious from Table 4.5 that IDE with SC-1 has the lowest SR and uses 

the least NFE. IDE with SC-2 has better SR but requires higher NFE compared to SC-

1. IDE with NR obtains very good SR although NFE is higher than that with SC-1 and 

SC-2 but much lower than Gmax. This is due to the nature of the stopping criteria 

where SC-1 and SC-2 will force the algorithm to stop when the best objective 

function value in the population fails to improve after a certain number of iterations. 

NRmax can overcome this difficulty since it is monitoring the convergence of the 

whole population instead of the best objective function value. IDE with Gmax obtains 

the best SR but it needs much more NFE.  
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Table 4.5. NFE and SR of IDE with Four Different Stopping Criteria: SC-1, SC-2,NRmax and Gmax for Solving VLE-LS 
problems with NP =30. 

No. 
SC-1 = 6D   SC-2 = 12D   NRmax = 20   Gmax = 1000 

SR NFE   SR NFE   SR NFE CPU*    SR NFE CPU*  

1 16 1044  49 2156  62 6238 19  66 30000 109 
2 13 1001  44 2025  66 8656 26  69 30000 98 
3 17 1095  44 2032  65 5618 18  68 30000 106 
4 27 1197  58 2374  79 7031 16  79 30000 86 
5 52 1112  58 2746  61 6165 22  62 30000 105 
6 72 1843  75 3948  79 4599 20  79 30000 111 
7 25 1260  43 1962  75 7271 18  75 30000 92 
8 23 1032  58 2174  73 6667 18  74 30000 102 
9 40 1071  70 1956  100 7898 20  100 30000 95 
10 19 983   46 1980   75 6627 19   75 30000  91 

GSR 30.4     54.5     73.5       74.7     

Total NFE 1.16E+04     2.34E+04     6.68E+04       3.00E+05   

*     CPU time in seconds 
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In general, the higher the iteration level, the better the results are but the 

additional iterations with no significant improvement in the results are waste of 

computational resources. For example, for LS-4, IDE with NRmax can achieve 79% SR 

with NFE of 7031, whereas IDE with Gmax obtained the same SR but with NFE of 

30000. Thus, it is essential for the optimization algorithm to stop at the right time 

incurring least computational resources without compromising reliability of finding 

the global optimum. Results in Table 5 indicate that the IDE with NRmax termination 

criterion can stop the global search effectively. They further indicate that SR 

improves with increasing number of NFE initially; but, once the algorithm is 

converged, increasing NFE will not improve SR.  

GSR and total NFE for all ten LS problems using 4 different stopping criteria 

in IDE is reported in Table 4.5. It is clear that IDE with NRmax and Gmax can achieve 

better reliability compared with IDE with SC-1 and SC-2. IDE with NRmax obtained 

similar good GSR as by IDE with Gmax, but IDE with NRmax required much less total 

NFE. Furthermore, Gmax is difficult to choose for application problems especially for 

unknown problems. Very low Gmax value will increase the probability of trapping in 

local optimum, and very high Gmax value will waste computational resources. In order 

to show the implication of the trade-offs between reductions in NFE and SR between 

IDE either Gmax or IDE with NRmax, CPU time for each problem is reported in Table 5. 

It is clear that IDE with NRmax uses much less computation time compared to IDE 

with Gmax. Overall, the IDE with NRmax stopping criterion has better reliability and 

efficiency.  

Population size is another control parameter which can affect the performance 

of the stochastic algorithms. The effect of population size on VLE-LS problems is 

studied using the IDE with NP of 50D and different stopping criteria. Comparing 
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these results shown in Table 6 with those in Table 4.5, it can be seen that both SR and 

NFE are increased with NP = 50D. This is expected because, when the population size 

is increased, the algorithm can search more thoroughly but requires more 

computational effort.  

Results for IDE with each of the four stopping criteria (Table 4.6) indicate that 

the IDE with NRmax can stop the algorithm effectively. This observation is consistent 

with the results in Table 4.5. The overall performance of IDE with each of four 

different stopping criteria is shown in Table. 4.6. It is clear that IDE with NRmax and 

Gmax can achieve better reliability compared to IDE with SC-1 and SC-2. IDE with 

NRmax obtained good GSR similar to IDE with Gmax but with only one quarter NFE. 

Thus, the stopping criterion (NRmax) is very efficient and robust than other stopping 

criteria, and performs consistently well for higher population size as well.  

Table 4.6. NFE and SR of IDE with Four Different Stopping Criteria: SC-1, SC-2, 
NRmax and Gmax for Solving VLE-LS problems with NP = 50D 

No. 

SC-1 = 6D   SC-2 = 12D   NRmax = 20   Gmax = 1000 

SR NFE   SR NFE   SR NFE   SR NFE 
1 26 3189  51 6814  85 24921  90 100000 
2 27 3091  60 6855  88 29680  95 100000 
3 29 3266  51 7197  74 26729  93 100000 
4 39 3361  74 7370  97 23616  97 100000 
5 77 3661  76 6494  79 18957  80 100000 
6 99 10260  100 21568  100 14701  100 150000 
7 26 3325  68 7581  97 24896  97 100000 
8 31 3297  55 7376  89 24003  94 100000 
9 46 3396  87 6844  100 28007  100 100000 

10 34 3112   62 6821   91 31497   93 100000 
GSR 43.4   68.4   90   93.9  

Total NFE 4.00E+04     8.49E+04     2.47E+05     1.05E+06 
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4.3.4.2 Comparison of IDE with Other Stochastic Methods 

For the ten VLE-LS problems, GSR of the IDE algorithm with SC-1, SC-2 

and NRmax is compared with that of other stochastic algorithms, namely, SA, DE, 

DETL and PSO in Fig. 4; in all these algorithms, NP = 30. It is clear that the overall 

reliability (GSR) of IDE for VLE-LS problems is superior to SA, DE, DETL and PSO 

with SC-1 and SC-2. As expected, Fig. 4.1 shows that all the algorithms obtained 

better GSR when SC-2 is used instead of SC-1 but this is at the expense of 

computational effort (i.e., more NFE as can be seen in Table 5 for IDE). IDE with 

NRmax obtained the best GSR compared to other methods and stopping criteria. This 

again shows that IDE with NRmax is very reliable for solving VLE-LS problems. 

  

Figure 4.1. Global Success Rate (GSR) for SA, PSO, DE, DETL and IDE with 
Different Stopping Criteria for VLE-LS Problems Using NP = 30. 

In order to illustrate the robustness of the IDE algorithm, Fig. 4.2 compares its 

GSR with that of SA, PSO, DE and DETL at different iteration levels without 

stopping criterion. For PSO, DE, DETL and IDE, population (NP) = 50D is used. For 
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SA, NS × NT = 50D is used. Note that NT is the number of iterations before the 

reduction of annealing temperature and NS is the number of cycles for updating the 

decision variables. At different iteration levels, local optimizer is used to find the 

accurate optimum. Fig. 5 shows that IDE achieves slightly worse GSR compared to 

SA and DETL at 50 generations. However, at higher iterations, IDE can give very 

good GSR comparable to or better than SA, DE, DETL and PSO. Interestingly, SA 

achieves the best GSR at all different iteration levels.  

 

Figure 4.2. Global Success Rate (GSR) for SA, PSO, DE, DETL and IDE at Different 
Iteration Level for VLE-LS Problems Using NP = 50D. 

4.3.4.3 Comparison of IDE with a Deterministic Method 

BARON is a deterministic global optimization solver, developed by Sahinidis 

and Tawarmalani (2010) and available in GAMS(Rosenthal, 2010). Purely continuous, 
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deterministic method. BARON combines constraint propagation, interval analysis and 

duality approaches for problem reduction along with enhanced branch and bound 

concepts. It can solve a wide range of optimization problems but it cannot solve the 

problems containing trigonometric functions (Rosenthal, 2010; Sahinidis and 

Tawarmalani, 2010). However, it requires the some reformulation when the 

denominator on the right hand side of the equations, defining dependent variables, 

contains decision variables. Note that definition of dependent variables is often 

required for application problems where the objective function involves numerous, 

complex terms. All the VLE-LS problems are solved using the latest version 

(23.6.3/9.0.6) of GAMS/BARON. Maximum CPU time is set at 1 hour. 

The comparison of IDE (with NRmax and NP = 30) and BARON is performed 

in order to assess their relative merits for VLE-LS problems. The common 

comparison of IDE (Table 4.5) and BARON (Table 4.7) based on finding the global 

optimum and computational time for it, shows that BARON obtained global solution 

for all ten VLE-LS problems tested. Note that the computational time is on the same 

computer but IDE and BARON are on different platforms (namely, Excel and 

GAMS). BARON uses less computational time for LS-2, 3, 7, 8, 9 and 10 compared 

to IDE. But for LS-1, 4, 5 and 6 BARON has used more computational time. 

Especially for LS-6, which has 3 variables, BARON has reached the maximum CPU 

time to solve this problem. Based on the results in Table 4.5 and use of IDE in VBA 

(which is an order of magnitude slower than software such as MATLAB), it can be 

concluded that IDE is better than or comparable to BARON for solving VLE-LS 

problems. 
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Table 4.7. The Performance and Time Required by BARON for VLE-LS Problems  

Problem BARON (Global 
Optimum Found) 

 CPU time (seconds) 

  BARON 
LS-1 yes  25 
LS-2 yes  12 
LS-3 yes  4 
LS-4 yes  46 
LS-5 yes  27 
LS-6 yes  3600 
LS-7 yes  12 
LS-8 yes  13 
LS-9 yes  19 

LS-10 yes   5 

 

4.3.5. Results and Discussion Using Error-in-Variables Approach 

4.3.5.1 Performance of IDE with Different Stopping Criteria 

Unlike LS approach, EIV approach considers errors in the measured data in all 

decision variables, and hence the number of decision variables, npar + c×ndat, 

increases significantly. The accounting for the error in all variables leads to unbiased 

estimates of parameter values, and achieves more accurate models. Furthermore, in 

solving the VLE problems using EIV approach, not only parameter estimation results 

are obtained but also data reconciliation is performed. Owing to increased number of 

decision variables, VLE-EIV problems are more challenging than VLE-LS problems. 

For solving VLE-EIV problems, population size of NP = 10D is used which is the 

same as that by Bonilla-Petriciolet et al.(2010c), and other parameter settings are the 

same as above (Section 4.3). Table 4.8 presents SR and NFE results using IDE with 

each of four stopping criteria; SR of EIV problems is better than that of LS problems 

in Table 4.5 with the same stopping criterion, probably due to larger population size 

arising from 10D and large number of variables. As expected and as in the LS 

approach, SR improves with increasing iterations for VLE-EIV problems too.  
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It is clear from Table 8 that IDE with any of the 4 criteria tested can achieve 

100% SR except for problems 3 and 4. NFE shows that SC-1 and SC-2 can terminate 

the algorithm before reaching the maximum number of iterations except for problems 

1 and 2. NRmax can terminate the algorithm before reaching the maximum number of 

iterations except for problem 1, and it uses the least NFE compared to others. 

Compared to the results with LS problems in Table 4.5, it is obvious that SCmax 

stopping criteria performs differently. For LS problems, SCmax terminated the global 

search very early but for EIV problems, SCmax terminated the algorithm very late. 

This is probably due to the use of objective function improvement in this stopping 

criterion and characteristics of the objective function. Thus, suitable values for SCmax 

are problem-dependent. The CPU time of IDE with NRmax and IDE with Gmax, 

reported in Table 4.8, shows that use of NRmax significantly reduced the computation 

time for 5 of the 6 EIV problems tested, compared to IDE with Gmax, without affecting 

reliability. Considering both GSR and total NFE for the four stopping criteria (Table 

8), it is clear that NRmax is an efficient and robust stopping criterion for VLE-EIV 

problems too. 
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Table 4.8. NFE and SR of IDE with Four Different Stopping Criteria (SC-1, SC-2, NRmax and Gmax) for Solving VLE-EIV Problems 

No. 
 SC-1 = 6D   SC-2 = 12D   NRmax = 20   Gmax = 1000 

  SR NFE   SR NFE   SR NFE CPU   SR NFE CPU 

1  100 340000  100 340000  100 340000 3157  100 340000 3157 

2  100 360000  100 360000  100 164524 1132  100 360000 3549 

3  96 147727  98 178750  98 113559 771  98 220000 1655 

4  97 146300  97 220000  97 120192 795  97 220000 1622 

5  100 167760  100 193157  100 118612 915  100 240000 1842 

6  100 144569  100 184278  100 106668 728  100 220000 1576 

GSR 98.8   99.2   99.2    99.2   

Total NFE 1.31E+06   1.48E+06   9.64E+05    1.60E+06  
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4.3.5.2 Comparison of IDE with Other Stochastic Methods 

Of the many stochastic algorithms, SA, PSO, DE and DETL have been 

evaluated for parameter estimation involved in modeling VLE data.(Bonilla-

Petriciolet et al., 2010b and 2010c) Fig. 4.3 shows GSR values for solving VLE-EIV 

problems by these and IDE algorithms using NT × NS = NP = 10D. It can be seen that 

IDE achieves consistently much higher GSR with SC-1, SC-2 and NRmax compared to 

SA, PSO, DE and DETL. This is a clear indication that IDE is very reliable for 

solving VLE-EIV problems.  

 

Figure 4.3. Global Success Rate (GSR) for solving VLE-EIV problems by SA, DE, 
DETL, PSO and IDE algorithms with different stopping criteria. 

4.3.5.3 Comparison of IDE with a Deterministic Method 

BARON is used to solve VLE-EIV problems also, and the performance results 

and CPU time required of BARON are summarized in Table 4.9. Comparing the 
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performance of BARON with that of IDE in Table 4.8, reliability of BARON is low 

within the maximum CPU time setting of one hour; it obtained only the local 

optimum for EIV-1 and EIV-2, and terminated with the message: “No feasible 

solution was found and bounds too wide – model status uncertain” for the remaining 4 

problems. So, bounds on θ1 and θ2 are reduced by a factor of 10, and BARON was 

tried again for solving all 6 VLE-EIV problems. The global solution can then be 

obtained; however, CPU time was still the maximum one hour (Table 4.9). In contrast, 

IDE has shown high reliability and efficiency; it obtained the global optimum with 

significantly less CPU time for 5 of the 6 EIV problems (Table 4.8). The above 

message indicated that BARON in GAMS platform is taking explicit equations such 

as equations 14 and 15 as constraints. So, an attempt was made to substitute these 

equations into the objective function, which became extremely long and prone to error. 

In any case, this laborious substitution was tried for EIV-6 problem. The global 

solution can then be obtained; however, CPU time was still the maximum one hour. 

Table 4.9. Performance and Time Required by BARON for VLE-EIV Problems 

Problem 

Original Bounds (See Table 4)  Reduced Bounds* 

Global Optimum 

Found? 

CPU time 

(seconds) 

 Global Optimum 

Found? 

CPU time 

(seconds) 

EIV-1 Local Optimum    3600 yes 3600 

EIV-2 Local Optimum    3600 

   3600 

yes 3600 

EIV-3 No Convergence yes 3600 

EIV-4 No Convergence    3600 yes 3600 

EIV-5 No Convergence    3600 yes 3600 

EIV-6 No Convergence    3600 yes 3600 

* In this case, bounds on θ1 and θ2 are reduced by a factor of 10 from (-10,000 to 
200,000) to (-1,000 to 20,000); bounds for other variables are same as those in Table 
4.4. 
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4.3.5.4 Solution of LS Problems Using EIV Approach 

Four LS problems from Table 4.3 (LS-1, LS-2, LS-3 and LS-9) for different 

systems, are also studied using EIV approach; these are referred to as EIV-7, EIV-8, 

EIV-9 and EIV-10 respectively. Details of these EIV problems are listed in Table 4.10. 

These problems are in addition to problems LS-7, LS-8 and LS-10, which have been 

considered via EIV approach as EIV-5, EIV-2 and EIV-3 (in Table 4.4) respectively. 

As stated in Section 4.3, different objective functions are used in the two approaches 

to obtain the optimal parameter values for the respective objective. By comparing the 

objective function value obtained from both LS and EIV approaches, it is clear that 

LS approach can achieve a better objective value. This is because EIV approach 

includes many more error residuals divided by respective variance in the objective 

function. However, EIV approach is more realistic for data modeling problems.  

Table 4.10. Details of VLE-LS Problems Using EIV approach 

No. System Data Variables Global optimum 

EIV-7 
tert butanol 
+ 1 butanol 

P = 100 mmHg ndat = 9 ;         
σ (0.003, 0.0029, 1.7, 0.083) 

D = 20 
θ1, θ2 ∈ (-10000, 200000); 

( 3 , 3 )t

ij ij ijx x xσ σ∈ − +   

( 3 , 3 )tT T Tσ σ∈ − +  

Fobj = 2.677843 
θ1 = -674.78 
θ2 =1234.60 

EIV-8 
tert butanol 
+ 1 butanol 

P = 700 mmHg ;ndat = 9 ;    
σ (0.003, 0.0029, 1.7, 0.083) 

D = 20 
 

Fobj = 17.658547 
θ1 = -780.45 
θ2 =1695.77 

EIV-9 
tert butanol 
+ 1 butanol 

P = 500 mmHg ; ndat = 9;  
σ (0.003, 0.0029, 1.7, 0.083) 

D = 20 
Fobj = 7.585433 
θ1 = -746.22 
θ2 =1498.13 

EIV-10 
benzene + 
hexafluoro-
benzene 

P = 760 mmHg ; ndat = 29; 
σ (0.001, 0.01, 0.75, 0.1) 

D = 60 

 

Fobj = 16.925014 

θ1 = -420.67 

θ2 =1060.34 

Note: The models systems used are Wilson and ideal gas. The bounds of variables used for these the 
EIV problems as given in EIV-7. 

The performance of IDE with NR criterion for the same problem by both LS and 

EIV approaches is compared in Table 4.11. These results indicate that IDE with NR 

criterion is somewhat more reliable for EIV approach compared to LS approach. This 

is interesting since LS approach involves significantly fewer parameters, and is 
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probably due to the smaller population size used in LS problems (namely, 30 

compared to 10D in EIV problems) that limits the exploration of the whole search 

space (note that wide bounds of decision variables indicate larger searching space). 

On the other hand, NFE required for EIV approach is 5 times more than that for LS 

approach, mainly due to the larger number of variables in the former approach.  

Table 4.11. Performance of IDE with NR Criterion for LS and EIV Approaches 

Problem SR NFE  Problem SR NFE 
LS-1 85 24921  EIV-7 93 104189 
LS-2 88 29680  EIV-8 96 159112 
LS-3 74 26729  EIV-9 95 172600 
LS-7 97 24896  EIV-5 100 118612 
LS-8 89 24003  EIV-2 100 164524 
LS-9 100 28007  EIV-10 100 241782 

LS-10 91 31497   EIV-3 98 113559 

4.4 Conclusions 

The IDE algorithm developed by our group is applied to solve the parameter 

estimation problems in chemical engineering. The performance of IDE indicates that 

IDE is more efficient and reliable than DETL for parameter estimation problems in 

dynamic models. Subsequently, IDE is applied to parameter estimation in VLE 

modeling problems based on LS and EIV approaches. Compared to SA, PSO, DE and 

DETL, IDE was found to be the overall best for these modeling problems. In addition, 

among the stopping criteria tested, the stopping criterion based on NRmax can switch 

the global search to local search at the right time in order to achieve good reliability 

and to reduce computational resources. The comparison of results shows that IDE is 

comparable to or better than BARON for VLE modeling problems tested, particularly 

for VLE-EIV problems with more than 20 decision variables and very wide bounds. 

In summary, IDE algorithm with NRmax stopping criterion is robust, reliable, easy to 

use and suitable for solving application problems. 
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Chapter 5 

Evaluation of Integrated Differential Evolution for Phase 

Equilibrium and Stability Problems*4 

5.1.  Introduction 

Phase equilibrium calculations (PEC) and phase stability (PS) problems are 

crucial for the analysis of chemical process. Novel processes handle complex 

mixtures, severe operating conditions, or even incorporate combined unit operations 

(e.g. reactive distillation, extractive distillation etc.). The reliable computation of the 

thermodynamic state for these systems is especially important due to the direct impact 

of wrong estimations on energy consumption and operating costs. When a mixture is 

analyzed, PEC involves not only the calculation of number of moles of each phase but 

also the number of stable phases where PS is used to determine the stability of the 

calculated composition at equilibrium. In general, number and type of phases, at 

which Gibbs free energy function achieves the global minimum, are unknown in PEC 

problems, and so several calculations may have to be performed using different phase 

configurations to identify the stable equilibrium state. Therefore, the unknown phases 

of general PEC increase the complexity of the optimization problem. Both PEC and 

PS problems require the global optimization of a specific function; usually, these have 

to be solved numerous times during a simulation. Specifically, PS analysis requires 

the minimization of tangent plane distance function (TPDF), while the Gibbs free 

                                                           
4* This Chapter is based on the paper - Zhang, H., Fernandez-Vargas, J.A., Rangaiah, G.P., 
Bonilla-Petriciolet, A. and Segovia-Hernandez, J.G., Evaluation of Integrated Differential 
Evolution and Unified Bare-bones Particle Swarm Optimization for Phase Equilibrium and 
Stability Problems. Fluid Phase Equilibrium, 310, 129-141, 2011. 



Chapter 5 Evaluation of IDE for Phase Equilibrium and Stability Problems  

  

119 

 

energy function needs to be minimized for PEC (Srinivas and Rangaiah, 2007a). A 

reactive phase equilibrium calculation (rPEC) or chemical equilibrium, is performed 

if any reaction is possible in the system under study, and the objective function must 

satisfy the chemical equilibrium constraints.  

In general, there are several challenges in finding the global optimum of Gibbs free 

energy function. First, number and type of phases where the thermodynamic function 

achieves the global optimum are usually unknown a priori. Second, high non-linearity 

of thermodynamic models, non-convexity of Gibbs free energy function and the 

presence of a trivial solution in the search space make PEC and PS problems difficult 

to solve. Moreover, for a fixed number of phases and components, Gibbs free energy 

function may have local optima that are very comparable to the global optimum value, 

which makes it challenging to find the global optimum (Bonilla-Petriciolet et al., 

2011). Thus, PEC, rPEC and PS problems require a reliable, efficient and robust 

global optimization algorithm. Further, application of global optimization techniques 

to these problems is very challenging.  

Many deterministic and stochastic optimization algorithms have been 

proposed and tested for finding the global optimum in PEC, rPEC and PS problems, 

particularly in the past two decades (e.g., Reynolds et al., 1997; Wasylkiewicz and 

Ung, 2000; Rangaiah, 2001; Burgos-Solorzano et al., 2004; Srinivas and Rangaiah, 

2007a; Rossi et al., 2009; Bonilla-Petriciolet et al., 2010a; Bonilla-Petriciolet et al., 

2011). Deterministic global optimization studies have been applied to different PEC, 

PS and/or rPEC problems. Homotopy continuation methods have been applied to PEC 

and PS problems (Sun and Seader, 1995; Jalali and Seader, 1999; Jalali et al., 2008). 

Although homotopy-continuation algorithm guarantees global convergence to a single 

solution, it does not guarantee global convergence to multiple solutions. Even using 
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complex search spaces, the success of continuation methods in finding all solutions 

cannot be assured. Burgos-Solorzano et al. (2004) applied interval Newton method for 

solving the PEC problems under high pressure. This method can solve nonlinear 

equations to find all solutions lying within the variable bounds. It requires an interval 

extension of the Jacobian matrix, and involves setting up and solving the interval 

Newton equation for a new interval. However, it is very hard to find all solutions and 

Jacobian matrix for the complex systems, and the computational time is significant for 

multi-component systems.  

Recently, Rossi et al. (2011) applied convex analysis method to PEC and 

rPEC problems. This method employs the CONOPT solver in GAMS (General 

Algebraic Modeling System). The proposed method can solve PEC problems with 

high efficiency and reliability but it requires the convexity of the model. Branch and 

bound methods have been applied to many applications including PS and PEC 

problems (Harding and Floudas, 2000; Cheung et al., 2002). In general, these methods 

are often slow and require a significant numerical effort that grows exponentially with 

problem size (Nichita et al., 2002; Wakeham and Stateva, 2004). In addition, branch 

and bound methods require certain properties of the objective function, and problem 

reformulation is usually needed to guarantee the global convergence. The problem 

reformulation can be very difficult to perform, especially for complex thermodynamic 

models such as equations of state with non-traditional mixing rules. Finally, Nichita 

and co-workers applied the tunneling method to perform stability analysis of various 

systems (Nichita et al., 2002; Nichita et al., 2008) and to PEC problems (Nichita et 

al., 2002; Nichita et al., 2004). Their results suggest that tunneling method is a robust 

and efficient tool for these applications. However, it requires feasible and improved 

initial estimates for reliability and computational efficiency respectively (Nichita et 
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al., 2002). For an unknown system, it is very difficult to provide a feasible and good 

initial estimate for the algorithm. 

In summary, the deterministic methods can guarantee convergence to the 

global optimum but they usually require certain properties such as continuity, a priori 

information of the system; reformulation of the problem may be needed depending on 

the characteristic of the thermodynamic models, and the computational time grows 

exponentially with problem size. In contrast, stochastic methods are quite simple to 

implement and use. They do not require any assumptions or transformation of the 

original problems, can be applied with any thermodynamic model, and yet provide a 

high probabilistic convergence to the global optimum. They can often locate the 

global optimum in modest computational time compared to deterministic methods 

(Bonilla-Petriciolet et al., 2011).   

In recent years, several stochastic global optimization techniques have been 

applied to solve the PS and PEC problems in non-reactive and reactive systems 

(Reynolds et al., 1997; Rangaiah, 2001; Nichita et al., 2002; Nichita et al., 2004; 

Bonilla-Petriciolet et al., 2006; Srinivas and Rangaiah, 2006; Srinivas and Rangaiah, 

2007a; Srinivas and Rangaiah, 2007b; Nichita et al., 2008; Bonilla-Petriciolet and 

Segovia-Hernandez, 2010; Bonilla-Petriciolet et al., 2011). These algorithms include 

SA, GA, TS, DE, RT and PSO. In particular, Srinivas and Rangaiah (2007a) studied 

DE and TS for non-reactive mixtures, and proposed two versions of DETL, in order to 

improve the performance of the optimization algorithm. Srinivas and Rangaiah (2006) 

evaluated the RT on a number of medium-sized problems including vapor-liquid, 

liquid-liquid and vapor-liquid-liquid equilibrium problems. RT can locate the global 

optimum for most of the examples tested but its reliability is low for problems having 

a local minimum comparable to the global minimum. In a recent study, Bonilla-
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Petriciolet and Segovia-Hernandez (2010) tested different versions of PSO for PS and 

PEC for both reactive and non-reactive systems, and their results show that classical 

PSO is a reliable method with good performance.  

Systematic and comprehensive comparison of different global optimization 

methods is challenging. However, some comparison of stochastic with deterministic 

algorithms for phase equilibrium calculations can be found in the literature. Teh and 

Rangaiah (2002 and 2003) compared GA and TS with several deterministic 

algorithms such as Rachford-Rice-Mean value theorem-Wegstein’s projection method, 

accelerated successive substitution method, Nelson’s method, simultaneous equation-

solving method, linearly constrained minimization method, GLOPEQ and enhanced 

interval analysis method for solving phase equilibrium calculations. Their comparison 

shows that some stochastic methods can be more efficient than deterministic 

algorithms. 

Most of the stochastic methods have some parameters to be tuned for different 

problems in order to improve the convergence to the global optimum. Selection of 

proper parameter values for different problems usually cost a lot of effort, and an 

improper choice can result in computational inefficiency or poor reliability. In order 

to overcome such difficulties, this work evaluates two global optimization algorithms 

(IDE and IDE without tabu list and radius, IDE_N) that have fewer algorithm 

parameters, for PEC, rPEC and PS problems involving multiple components, multiple 

phases and popular thermodynamic models. The performance of IDE and IDE_N on 

PEC, rPEC and PS problems are compared with recent global optimization algorithms 

and discussed based on both reliability and computational efficiency using practical 

stopping criteria.  
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The rest of this chapter is organized as follows. Description of PEC, PS and rPEC 

problems is given in Section 5.2. Implementation of IDE_N and IDE is presented in 

Section 5.3. Section 5.4 presents the results and discusses the performance of IDE_N 

and IDE on PEC, PS and rPEC problems. Finally, conclusions of this work are 

summarized in Section 5.5.  

5.2.  Description of PEC, PS and rPEC Problems 

A brief description of the global optimization problems including the objective 

function, decision variables and constraints, for PEC, PS and rPEC problems is given 

in the following sections. 

5.2.1  Description of PEC Problems 

A mixture of substances at a given temperature, T, pressure, P and total molar 

amount may separate into two or more phases. The composition of the different 

substances is the same throughout a phase but may significantly vary in different 

phases at equilibrium. If there is no reaction between the different substances, then it 

is a phase equilibrium problem. There are mainly two different approaches for PEC: 

equation solving approach and Gibbs free energy minimization approach. The former 

involves solving a set of non-linear equations arising from mass balances and 

equilibrium relationships. The latter involves the minimization of the Gibbs free 

energy function. Although the first approach seems to be faster and simple, the 

solution obtained may not correspond to the global minimum of Gibbs free energy 

function. Moreover, it needs a priori knowledge of phases existing at equilibrium 

(Rangaiah, 2001). Classic thermodynamics indicate that minimization of Gibbs free 

energy is a natural approach for calculating the equilibrium state of a mixture. Hence, 

this study uses Gibbs free energy minimization for PEC, which was used to determine 
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phase compositions at equilibrium in several works (e.g., McDonald and Floudas, 

1995; Reynolds al., 1997; Rangaiah, 2001; Teh and Rangaiah, 2003).  

The mathematical formulation involves the minimization of a non-convex 

objective function (Gibbs free energy) subject to mass balance equality constraints 

and bounds that limit the range of variables. In a non-reactive system with c 

components and π phases, the objective function for PEC is 
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where nij,  xij, γij and 
ijϕ̂  are respectively the moles, mole fraction, activity coefficient 

and fugacity coefficient of component i in phase j, and ϕi is the fugacity coefficient of 

pure component. Eq. (5.1) must be minimized with respect to nij taking into account 

the following mass balance constraints: 

cinzn Fi
j

ij ,...,1   
1  

==∑
=

π

                                                                                       (5.2) 

π,...,1   ,...,1   0 ==≤≤ jcinzn Fiij                                                                     (5.3) 

where zi is the mole fraction of component i in the feed and nF is the total moles in the 

feed. 

To perform unconstrained minimization of Gibbs energy function, we can use 

new variables instead of nij as decision variables. The introduction of the new 

variables eliminates the restrictions imposed by material balances, reduces problem 

dimensionality and the optimization problem is transformed into an unconstrained one. 

For multi-phase non-reactive systems, new variables βij∈(0, 1) are defined and 

employed as decision variables by using the following expressions: 

cinzn Fiii ,...,1   11 == β                                                                                        (5.4) 
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Using this formulation, all trial compositions satisfy the mass balances allowing the 

easy application of optimization strategies. For Gibbs energy minimization, the 

number of phases existing at the equilibrium is assumed to be known a priori, and the 

number of decision variables βij is c (π - 1) for non-reactive systems.  

Details of PEC problems used in this study are in Table 5.1. In most of the 

reported studies, PEC problems tested are assuming that the number and type of 

phases are known; such problems are also known as phase split calculations. In this 

study too, the same assumption is made, and the problems tested are simply referred 

to as PEC problems.  

5.2.2  Description of PS Problems 

Phase stability (PS) problem is used to determine the thermodynamic state that 

corresponds to the global minimum of Gibbs free energy. Its results can be used to 

find good starting points to improve the reliability of PEC. PS is often tested using the 

tangent plane criterion, which states that a phase is stable provided that the tangent 

plane generated at the corresponding composition lies below the molar Gibbs energy 

surface for all compositions (Sun and Seider, 1995; Harding and Floudas, 2000). As 

an alternative, Mitsos and Barton (2007) reinterpreted the Gibbs tangent plane 

stability criterion via a Lagrangian duality approach, as the solution of the dual 

problem of a primal problem that minimizes Gibbs free energy subject to material 

balances for solving the PS problems.  
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One common implementation of the tangent plane criterion (Sun and Seider, 

1995; Harding and Floudas, 2000) is to minimize the tangent plane distance function 

(TPDF), defined as the vertical distance between the molar Gibbs energy surface and 

the tangent plane at the given phase composition. Specifically, TPDF is given by 

∑
=

−=
c

i
ziyiiyTPDF

1

)( µµ  (5.7) 

where 
yiµ  and 

ziµ  are the chemical potentials of component i calculated at 

compositions y and z, respectively. Eq. (5.7) is the objective function, and the 

constraint and bounds are 

1

1 and  0 1
c

i i

i

y y
=

= ≤ ≤∑  (5.8) 

For stability analysis of a phase/mixture of composition z, TPDF must be globally 

minimized with respect to composition of a trial phase y. If the global minimum value 

of TPDF is zero, then the specified phase and others sharing the same tangent plane 

would coexist at equilibrium. The decision variables in phase stability problems are yi 

for i = 1, 2,…, c.  

The constrained global optimization of TPDF can be transformed into an 

unconstrained problem by using decision variables βi instead of yi as follows: 

   1,...,iy i i Fn z n i cβ= =                                                                                       (5.9) 

and 

1

   1,...,
c

i iy iy

j

y n n i c
=

= =∑                                                                                (5.10) 

where nF is the total moles in the feed mixture used for stability analysis, and niy are 

the conventional mole numbers of component i in trial phase y. The number of 
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decision variables is still c for the unconstrained minimization of TPDF. Thus, the 

unconstrained global optimization problem for phase stability analysis is: 

min ( )

0 1 =1,...,
i

TPDF

i c

β

β≤ ≤
                                                                                  

(5.11) 

The calculation of TPDF is straightforward with almost any thermodynamic model 

because: 
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                                                                         (5.12) 

where Rg is the universal gas constant, µi is the chemical potential of component i at 

the mixture, and 0
iµ  is the chemical potential of pure component i. More details of PS 

problem formulation can be found in Rangaiah (2001). Characteristics of PS problems 

used in this study are summarized in Table 5.1 
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Table 5.1. Details of PEC and PS Problems Studied 

PEC&PS 
No. System Feed conditions Thermodynamic models 

Global optimum for 

Equilibrium    Stability 
1 n-Butyl acetate 

+ water 
nF = (0.5, 0.5)  
at 298K and 101.325kPa 

NRTL model and parameters reported by 
Rangaiah (2001). 

-0.020198 -0.032466 

2 Toluene + water 
+ aniline 

nF = (0.29989, 0.20006, 
0.50005)  
at 298K and 101.325kPa 

NRTL model and Model parameters 
reported by McDonald and Floudas (1995). 

-0.352957 -0.294540 

3 N2+C1 + C2 nF = (0.3, 0.1, 0.6)  
at 270K and 7600kPa 

SRK EoS with classical mixing rules. 
Model parameters reported by Bonilla-
Petriciolet et al. (2006). 

-0.547791 -0.015767 

4 C1 + H2S nF = (0.9813, 0.0187)  
at 190K and 4053kPa 

SRK EoS with classical mixing rules. 
Model parameters reported by Rangaiah 
(2001). 

-0.019892 -0.003932 

5 C2 + C3 + C4 + 
C5 + C6 

nF = (0.401, 0.293, 0.199, 
0.0707, 0.0363)  
at 390K and 5583kPa 

SRK EoS with classical mixing rules. 
Model parameters reported by Bonilla-
Petriciolet et al. (2006). 

-1.183653 -0.000002 

6 C1 + C2 + C3 + 
C4 + C5 + C6 + 
C7-16 + C17+ 

nF = (0.7212, 0.09205, 
0.04455, 0.03123, 0.01273, 
0.01361, 0.07215, 0.01248) 
at 353K and 38500kPa 

SRK EoS with classical mixing rules. 
Model parameters reported by Harding and 
Floudas (2000). 

-0.838783 -0.002688 

7 C1 + C2 + C3 + 
iC4 + C4 + iC5 + 
C5 + C6 + iC15 

nF = (0.614, 0.10259, 
0.04985, 0.008989, 0.02116, 
0.00722, 0.01187, 0.01435, 
0.16998)  
at 314K and 2010.288kPa 

SRK EoS with classical mixing rules. 
Model parameters reported by Rangaiah 
(2001). 

-0.769772 -1.486205 

8 C1 + C2 + C3 + 
C4 + C5 + C6 + 
C7 + C8 + C9 + 
C10 

nF = (0.6436, 0.0752, 
0.0474, 0.0412, 0.0297, 
0.0138, 0.0303, 0.0371, 
0.0415, 0.0402)  
at 435.35K and 19150kPa 

SRK EoS with classical mixing rules. 
Model parameters reported by Bonilla-
Petriciolet et al. (2006). 

-1.121176 -
0.0000205 
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Table 5.2. Details of rPEC (Chemical Equilibrium) Problems Studied 

rPEC     
No. 

System Feed conditions 
Thermodynamic 

models 
Global 

optimum 
1 A1+A2 ↔ A3+A4  

(1) Ethanol        
(2) Acetic acid   
(3) Ethyl acetate 
(4) Water 

nF = (0.5, 0.5, 0.0, 0.0)  
at 355K and 
101.325kPa 

NRTL model and ideal 
gas. Keq=18.670951 

-1.298000 

2 A1+A2 ↔ A3, and A4 as 
an inert component  
(1) Isobutene        
(2) Methanol     
(3) Methyl ter-butyl ether        
(4) n-Butane 

nF = (0.3, 0.3, 0.0, 0.4)  
at 373.15K and 
101.325kPa 

Wilson model and ideal 
gas.                  
 ∆G0

rxs /R = -4205.05 
+10.0982T-0.2667TlnT                                     
 ln Keq= - ∆G0

rxs /R   
where T is in K 

-1.434267 

3 A1+A2 +2A3↔ 2A4  
(1) 2-Methyl-1-butene        
(2) 2-Methyl-2-butene   
(3) Methanol  
(4) Tert-amyl methyl ether 

nF = (0.354, 0.183, 
0.463, 0.0) at 355K 
and 151.95kPa 

Wilson model and ideal 
gas. Keq=1.057*10-04 

e4273.5/T  
where   is in K 

-1.226367 

4 A1+A2 ↔ A3+A4  
(1) Acetic acid         
(2) n-Butanol   
(3) Water  
(4) n-Butyl acetate 

nF = (0.3, 0.4, 0.3, 0.0) 
at 298.15K and 
101.325kPa 

UNIQUAC model and 
ideal gas.     
 lnKeq=450/T +0.8  

-0.301730 

5 A1+A2 ↔ A3 nF = (0.6, 0.4, 0.0   Margules solution 
model.                      
gE/RgT = 
3.6x1x2+2.4x1x3+2.3x2x3 
Keq=0.9825 

-1.798377 

6 A1+A2+2A3 ↔ 2A4  with 
A5 as inert component  
(1) 2-Methyl-1-butene         
(2) 2-Methyl-2-butene   
(3) Methanol  
(4) Tert-amyl methyl ether  
(5) n-Pen ane 

nF = (0.1, 0.15, 0.7, 
0.0, 0.05)  
at 335K and 
151.9875kPa 

Wilson model and ideal 
gas.  
Keq=1.057*10-04 e4273.5/T   
where T is in K 

-0.144508 

7 A1+A2 ↔ A3 nF = (0.52, 0.48, 0.0) at 
323.15K and 
101.325kPa 

Margules solution 
model.  Keq = 3.5 
 

-1.043199 

8 A1+A2 ↔ A3+A4  nF = (0.048, 0.5, 0.452, 
0.0)  
at 360K and 
101.325kPa 

NRTL model         
Keq=4.0 

 -1.347857 
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5.2.3  Description of rPEC or (Chemical Equilibrium) Problems 

In rPEC problems, also known as chemical equilibrium problems, reactions 

increase the complexity and dimensionality of phase equilibrium problems, and so 

phase split calculations in reactive systems are more challenging due to non-linear 

interactions among phases and reactions. The phase distribution and composition at 

equilibrium of a reactive mixture are determined by the global minimization of Gibbs 

free energy subject to element/mass balances and chemical equilibrium constraints 

(Seider and Widagdo, 1996; Burgos-Solorzano et al., 2004). Therefore, to determine 

the phase equilibrium compositions in reactive systems, it is necessary to find the 

global minimum of the free energy with respect to mole numbers of components in 

each of the phases subject to constraints and bounds. The expressions for Gibbs free 

energy and its mathematical properties depend on the structure of the thermodynamic 

equation(s) chosen to model each of the phases that may exist at equilibrium (Bonilla-

Petriciolet et al., 2011).  

Recently, Bonilla-Petriciolet et al. (2011) concluded that the constrained 

Gibbs free energy minimization approach has the advantage of requiring smaller 

computing time compared to the unconstrained approach, is straightforward and 

suitable for chemical equilibrium calculations. In summary, for a system with c 

components and π phases subject to r independent chemical reactions, the constrained 

objective function for rPEC is 

∑

--
π

1j

j,ref

1

eqobj nNKlngF
=

=                                                                                  (5.13) 

where g is given by Eq. (5.1), 
eq

lnK  is a row vector of logarithms of chemical 

equilibrium constants for r independent reactions, N is an invertible, square matrix 

formed from the stoichiometric coefficients of a set of reference components chosen 
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from r reactions, and nref  is a column vector of moles of each of the reference 

components. This objective function is defined using reaction equilibrium constants, 

and it must be globally minimized subject to the following mass balance restrictions 

(Rangaiah, 2001): 

( ) FrefiiF

j

jrefiij nn ,
1

1
,

1 nNvnNv −

=

− −=−∑
π

   i = 1, …, c − r                                    (5.14) 

where ni,F is the initial moles of component i in the feed. These mass balance 

equations can be rearranged to reduce the number of decision variables of the 

optimization problem and to eliminate equality constraints, which are usually 

challenging for stochastic optimization methods. Thus, Eq. (5.14) is rearranged to 

reduce the number of decision variables using the following expression: 
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1
π

ππ nNvnnNv               (5.15) 

Using Eq. (5.15), the decision variables for rPEC are c (π −1) + r mole numbers (nij). 

Then, the global optimization problem can be solved by minimizing Eq. (5.13) with 

respect to c (π −1) + r decision variables nij and the remaining c − r mole numbers (niπ) 

are determined from Eq. (5.15), subject to the inequality constraints niπ > 0.  

For rPEC, feasible points satisfy all the mass balance constraints, Eq. (5.14), 

while infeasible points violate at least one of them (i.e., niπ < 0 where i = 1, …, c − r). 

The penalty function method is used to solve the constrained Gibbs free energy 

minimization in reactive systems because it is easy to implement and is considered 

efficient for handling constraints in the stochastic methods (Rangaiah, 2001). For 

handling these constraints, absolute value of constraint violation is multiplied with a 

high penalty weight and then added to the objective function. In case of more than one 

constraint violation, all constraint violations are first multiplied with the penalty 
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weight, and all of them are added to the objective function. Specifically, the penalty 

function is given by 
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==>∀
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where p is the penalty term whose value is positive. So, the penalty term used for 

handling infeasible solutions in rPEC is given  

∑
=

⋅=
unfn

i

inp
1

10 π                                                                                        (5.17) 

where niπ is obtained from Eq. (5.15) and nunf is the number of infeasible mole 

numbers (i.e., niπ < 0 where i = 1, ..., c − r). In this study, the resulting constrained 

Gibbs free energy minimization for a reactive system is solved using IDE_N and IDE 

algorithms. The details of rPEC problems are shown in Table 5.2. 

5.3  Implementation of the Methods 

In this study, all the optimization algorithms and thermodynamic models are 

coded in MATLAB. The parameters used for the algorithms are fixed for all problems 

tested in order to compare the robustness of the algorithm. Further, NP = 10D for both 

IDE and IDE_N, and TL = 50 and TR = 0.001D are used in IDE. Altogether, there are 

24 problems consisting of 8 PEC, 8 PS and 8 rPEC problems, whose details can be 

found in Tables 5.1 and 5.2. All these problems are multimodal with number of 

decision variables ranging from 2 to 36. Each problem is solved 100 times 

independently with a different random number seed for robust performance analysis. 

The performances of stochastic algorithms are compared based on success rate (SR) 

and average number of function evaluations (for both global and local searches) in the 

100 runs (NFE), for two stopping criteria: SC-1 based on the maximum number of 
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iterations and SC-2 based on the maximum number of iterations without improvement 

in the gbest objective function value (SCmax). 

Note that NFE is a good indicator of computational efficiency since function 

evaluation involves extensive computations in application problems. Further, it is 

independent of the computer and software platform used, and so it is useful for 

comparison by researchers. SR is the number of times the algorithm located the global 

optimum to the specified accuracy, out of 100 runs. A run/trial is considered 

successful if the gbest objective function value obtained after the local optimization is 

within 1.0E-5 from the known global optimum. Also, global success rate (GSR) of 

different algorithms is reported for all the problems.  

At the end of each run by each stochastic algorithm, a local optimizer is used 

to continue the search to find the global optimum precisely and efficiently. This is 

also done at the end of different iteration levels for analysis; however, global search in 

the subsequent iterations is not affected by this. Since all algorithms are implemented 

in MATLAB, sequential quadratic program (SQP) is chosen as the local optimizer. 

The best solution at the end of the stochastic algorithm is used as the initial guess for 

SQP, which is likely to locate the global optimum if the initial guess is in the global 

optimum region.  

5.4.  Results and Discussion 

5.4.1  Performance of Algorithms on PEC problems 

First, GSR values for all PEC problems by IDE and IDE_N with NP of 10D 

using SC-1 are illustrated in Fig. 5.1, and compared with those of UBBPSO from 

Zhang et al. (2011c). The results are collected at different iteration levels, starting 

from 50 to 1500 iteration level, after local optimization at each of these iteration 
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levels. As expected, GSR improves with increasing number of iterations (Fig. 5.1), 

particularly at lower iteration levels. After 250 iterations, GSR does not improve 

significantly; this suggests that subsequent iterations without improvement in the 

results are waste of computational resources. For example, GSR of UBBPSO is 83.5% 

at 50 iterations; it increases to 88% at 250 iterations and 89.6% at 1500 iterations. 

GSR of IDE is 83%, 99.9% and 100% at 50, 250 and 1500 iterations respectively. 

Results in Fig. 5.1 show that IDE has higher reliability and faster convergence rate 

compared to IDE_N and UBBPSO, for PEC problems. Further, IDE and IDE_N can 

achieve 100% GSR at 1500 iteration level. Thus, it is essential for the optimization 

algorithm to stop at the right time incurring least computational resources without 

compromising reliability of finding the global optimum. 

 

Figure 5.1. Global Success Rate (GSR) Versus Iterations for PEC Problems Using 
UBBPSO, IDE_N and IDE with SC-1 
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Table 5.3. Success Rate (SR) and Number of Function Evaluations (NFE) of 
UBBPSO, IDE_N and IDE for PEC Problems Using SCmax with NP of 10D  

PEC          
No. SCmax 

UBBPSO   IDE_N   IDE 

SR NFE   SR NFE SR NFE 
PEC-1 10 71 1303 72 955 75 886 

25 89 4151 86 1980 93 1826 
50 100 6757 92 4405 98 3407 

PEC-2 
10 99 1694 100 1326 100 1307 
25 100 7898 100 4803 100 3386 
50 100 10814 100 7988 100 6021 

PEC-3 
10 100 1816 100 1253 100 954 
25 100 12019 100 5304 100 2916 
50 100 18224 100 7396 100 4488 

PEC-4 
10 67 1414 85 507 83 491 
25 88 3491 95 1922 98 1371 
50 94 10121 98 4680 100 2669 

PEC-5 
10 8 9851 5 4101 31 1879 
25 9 16619 54 12406 100 6991 
50 10 25062 97 14599 100 13116 

PEC-6 
10 99 60812 99 9441 98 6318 
25 100 73893 100 26921 100 17995 
50 100 84375 100 31615 100 29251 

PEC-7 
10 100 22678 99 15044 100 13699 
25 100 32835 99 30052 100 35353 
50 100 37831 100 47858 100 54626 

PEC-8 
10 98 116054 96 17456 80 7284 

25 99 125860 100 34345 94 19463 

50 99 138266 100 38509 100 35456 
 

Table 5.3 summarizes SR and NFE obtained by IDE, IDE_N and UBBPSO 

with SCmax = 10, 25 and 50 along with the maximum allowable iterations of 1500 (to 

avoid indefinite looping), all using NP = 10D. As expected, reliability of the 

algorithms increases with SCmax, which requires more NFE, because probability to 

locate the global optimum region increases as the algorithms are allowed to run for 

more iterations. For PEC problems 1-3 and 6-8, the three algorithms obtained similar 
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high reliability; and, for PEC problems 4 and 5, IDE and IDE_N obtained better 

reliability than UBBPSO. Even through the same stopping criterion is used for all the 

algorithms; NFE required by IDE is much less than that of IDE_N and UBBPSO. As 

shown in Table 5.3, the total NFE required by IDE for all tests on PEC problems is 

271153 compared to 324866 and 823838 for IDE_N and UBBPSO respectively.  

Fig. 5.2 summarizes GSR and NFE of IDE, IDE_N and UBBPSO algorithms 

with four stopping criteria. We obtain the same conclusion of higher reliability and 

increased NFE with higher SCmax. It can be observed in Fig. 5.2a that the use of SC-2 

gives lower GSR compared to SC-1. However, with the use of SCmax = 50, the 

reliability of the algorithm is only slightly lower than that with SC-1 (1500 iterations). 

Comparison of the three algorithms shows that IDE uses least NFE to terminate the 

global search by SC-2. In general, SC-2 requires significantly fewer NFE compared to 

SC-1. Especially, with SCmax = 50, SR obtained by the algorithms is comparable to 

that obtained with SC-1 but uses much fewer NFE (Fig. 5.2). Compared to IDE_N, 

IDE has achieved better reliability with fewer NFE, probably due to the tabu list and 

tabu check operations in IDE, which prevents revisiting the searched areas thus 

enhancing the global search ability. In summary, it can be concluded that IDE is better 

and that SCmax = 50 is a good stopping criterion for PEC problems in order to achieve 

both high reliability and efficiency. 
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5.4.2  Performance of Algorithms on PS problems 

On PS problems, similar tests using the three stochastic algorithms are 

performed. As expected, GSR of UBBPSO, IDE_N and IDE for all PS problems 

using SC-1 improves with increasing number of iterations (Fig. 5.3). The highest GSR 

is 90.1% obtained by UBBPSO. Results in Fig. 5.3 show that the selected PS 

problems are more difficult to optimize compared to PEC problems. At 50 iterations, 

IDE_N obtained best GSR, but from 100 to 1500 iterations, GSR of IDE_N did not 

improve but UBBPSO and IDE obtained better GSR. In fact, IDE_N has faster 

convergence but it is easily trapped at a local optimum. GSR of UBBPSO is 73% at 

50 iterations; it increases to 84% at 250 iterations and 90% at 1500 iterations. On the 

other hand, GSR of IDE is 73%, 87% and 88% at 50, 250 and 1500 iterations, 

respectively. This performance indicates that reliability of the algorithms did not 

improve significantly after 250 iterations. Thus, it is necessary to use a suitable 

stopping criterion for the optimization algorithm to stop at the right time incurring 

least computational resources without compromising reliability of finding the global 

optimum. 
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Figure 5.3. Global Success Rate (GSR) Versus Iterations for PS Problems Using 
UBBPSO, IDE_N and IDE with SC-1 
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times the total NFE required by IDE. Hence, IDE has faster convergence compared to 

IDE_N and UBBPSO, probably due to tabu list and checking. 

Table 5.4. Success Rate (SR) and Number of Function Evaluations of UBBPSO, 
IDE_N and IDE for PS Problems Using SCmax with NP of 10D  

PS         
No. SCmax 

UBBPSO   IDE_N   IDE 
SR NFE   SR NFE   SR NFE 

PS-1 10 85 1274 93 594 89 582 
25 97 3686 100 2518 99 2631 
50 99 6051 100 3553 100 3789 

PS-2 10 100 2536 100 2227 100 1448 
25 100 7880 100 5756 100 6536 
50 100 10515 100 6571 100 9053 

PS-3 
10 100 3342 100 1741 100 1250 
25 100 8906 100 4721 100 4747 
50 100 14856 100 6144 100 7619 

PS-4 
10 100 827 100 822 100 781 
25 100 2310 100 2339 100 2437 
50 100 4096 100 3369 100 3321 

PS-5 
10 56 21272 69 4033 46 2051 
25 78 31777 99 10573 82 10055 
50 92 44606 100 13285 99 19487 

PS-6 
10 73 74920 47 9296 45 3633 
25 90 93490 62 25816 72 15148 
50 94 105846 62 30045 76 38145 

PS-7 
10 100 64859 100 18020 100 5417 
25 100 90780 100 45681 100 10253 
50 100 105697 100 50074 100 14161 

PS-8 
10 25 127894 7 17033 9 5470 

25 26 140833 7 31647 10 20997 

50 26 147533   7 36894   21 70996 
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Fig. 5.4 summarizes GSR and NFE of IDE, IDE_N and UBBPSO with four 

stopping criteria for PS problems. We obtain the same conclusion of higher reliability 

and increased NFE with higher SCmax. It can be seen from Fig. 5.4a that the use of 

SC-2 gives similar GSR compared to SC-1; especially, GSR of IDE_N with different 

stopping criteria is similar. Among the three algorithms, IDE uses least NFE to 

terminate the global search in case of SCmax = 10 and SCmax = 25 whereas IDE_N uses 

the least NFE to terminate the global search progress for SCmax = 50 (Fig. 5.4b). In 

general, use of SC-2 results in significantly reduced NFE compared to that using SC-1. 

As for PEC problems, it can be concluded that IDE is better and that SCmax = 50 is a 

good stopping criterion for PS problems in order to achieve both high reliability and 

efficiency.  

Low SR is obtained for PS-5, 6 and 8 compared to other PS problems (Table 

5.4). This is probably because of using the same NP = 10D for comparing the three 

algorithms studied in this paper. In general, NP is a user-specified parameter; it does 

not need to be fine-tuned and just a few typical values can be tried according to the 

pre-estimated complexity of the given problem. So PS-5, 6 and 8 are solved by IDE 

with higher population size of NP = 50D. The results show that IDE can obtain 100% 

SR using 24930 NFE for PS-5, 100% SR using 61820 NFE for PS-6, and 76% SR 

using 384416 NFE for PS-8. It is clear that reliability of the algorithm increases with 

population size but this requires more computational effort. This is reasonable 

because larger population size enables more thorough exploration of search space. In 

general, stochastic optimization methods provide only a probabilistic guarantee of 

locating the global optimum, and their proofs for numerical convergence usually state 

that the global optimum will be identified in infinite time with probability 1 (Rudolph, 
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1994; Niewierowicz et al., 2003; Weise, 2008). So, better performance of stochastic 

methods is expected if more iterations and/or larger population size are used.   

To analyze further, performance of IDE is compared in Table 5.5 with that of 

other stochastic optimization algorithms, namely, SA, very fast SA (VFSA), modified 

version of direct search SA (MDSA) and stochastic differential equations algorithm 

(SDE) for PS-3, 5, 6 and 8 reported in Bonilla-Petriciolet et al. (2006). From this table, 

it is clear that IDE uses about 10 times fewer NFE compared to the other four 

stochastic methods for solving PS-3, 5 and 6 with the same reliability. SR of IDE is 

lower for PS-8 using significantly less NFE, and this may due to the different 

stopping criteria and population size used in the algorithms. Note that some methods 

may give better reliability using the stopping criteria based on either known global 

optimum or the number of generations (Bonilla-Petriciolet et al., 2006). However, the 

use of known global optimum is not applicable for new problems whose global 

optima are unknown, and use of number of generations may require large 

computational time. 

Table 5.5 Comparison of SR and NFE of IDE with Other Stochastic Algorithms for 
Selected PS Problems 

PS 
No.   MDSA SA VFSA SDE 

IDE 
(NP = 10D) 

IDE 
(NP = 50D) 

PS-3 
NFE 82611 92422 42944 449574 1250 - 
SR 100 100 100 100 100 - 

PS-5 
NFE 263980 266926 129534 565142 19487 24930 
SR 100 100 96 100 99 100 

PS-6 
NFE 752571 700865 362097 476029 38145 61820 

SR 100 100 100 100 76 100 

PS-8 
NFE 1167211 1104901 581396 958515 70996 384416 

SR 100 100 98 98 21 76 
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Figure 5.5. Global Success Rate of PSO-CQN, PSO-CNM and IDE in PEC and PS 
Problems Using: (a) SC-1 and (b) SC-2 (SCmax = 10, SCmax = 25 and SCmax = 50) as 

Stopping Criteria. 
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Bonilla-Petriciolet et al. (2010) compared various PSO algorithms for solving 

the PEC and PS problems. Their results suggest that the classical PSO outperforms 

other variants of PSO. So, the performance of IDE and UBBPSO is compared with 

two classical PSO algorithms reported in Bonilla-Petriciolet et al. (2010) for both 

PEC and PS problems, with different types of stopping criteria in Fig. 5.5. The two 

PSO algorithms are classical PSO with quasi-Newton method (PSO-CQN) and 

classical PSO with Nelder-Mead simplex method (PSO-CNM). Fig. 5.5a shows that 

IDE achieved the best reliability at 100 iterations or more, compared to UBBPSO, 

PSO-CQN and PSO-CNM. UBBPSO achieved the second best reliability at different 

iteration levels among the four algorithms tested with SC-1. The reliability 

comparison of the four algorithms with SC-2 stopping criterion is shown in Fig 5.5b. 

IDE gave the highest GSR even with SC-2 as the stopping criterion with SCmax = 25 

and 50, among the four algorithms. With stopping criterion, SCmax = 10, UBBPSO 

obtained slightly better GSR than IDE but much better GSR than PSO-CQN and 

PSO-CNM. Overall, IDE is superior to UBBPSO, PSO-CQN and PSO-CNM 

algorithms for PEC and PS problems. 

5.4.3  Performance of Algorithms on rPEC problems 

GSR of UBBPSO (Zhang et al., 2011c), IDE_N and IDE algorithms for all 

rPEC problems using SC-1 is illustrated in Fig. 5.6. It generally improves with 

increasing number of iterations for these problems as well. The highest GSR is 91% 

obtained by IDE. At 50 iterations, IDE_N obtained best GSR, but from 250 to 1500 

iterations, its GSR did not improve; on the other hand, UBBPSO and IDE obtained 

better GSR at higher iterations. GSR of UBBPSO is 80% at 50 iterations, and it 

increases to 87% at 250 iterations and 90% at 1500 iterations. GSR of IDE is 77%, 85% 
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and 91% at 50, 250 and 1500 iterations, respectively. In short, UBBPSO, IDE_N and 

IDE algorithms obtained good GSR of 80% or more (Fig. 5.6). 

 

Figure 5.6. Global Success Rate (GSR) Versus Iterations for rPEC Problems Using 
UBBPSO, IDE_N and IDE with SC-1 

Results obtained on the effect of stopping criteria on the three algorithms 

using SC-2 with SCmax = 6D, 12D and 24D, for rPEC problems are summarized in 

Table 5.6. Note that these SCmax values are those used by Bonilla-Petriciolet et al. 

(2011a) so that the present results can be compared with those in this reference. Table 

5.6 shows that reliability of the algorithm increases with SCmax but requires more NFE. 

For rPEC-1, 2, 3, 6 and 8, UBBPSO, IDE_N and IDE algorithms obtained 100% SR 
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SR at 118108 NFE. Among the three algorithms, NFE required by IDE is much less 

than that by IDE_N and UBBPSO. As shown in Table 5.5, total NFE required by IDE 

for all rPEC problems is 325487 compared to 389885 by IDE_N and 878907 by 

UBBPSO. On the other hand, mean SR for the three algorithms is almost the same. 

Thus, the results show that IDE has faster convergence compared to IDE_N and 

UBBPSO for the same reliability.  

Table 5.6. Success Rate (SR) and Number of Function Evaluations of UBBPSO, 
IDE_N and IDE for rPEC Problems Using SCmax with NP of 10D  

rPEC          
No. SCmax 

UBBPSO   IDE_N   IDE 
SR NFE   SR NFE   SR NFE 

rPEC-1 6D 100 21585 100 14484 100 5585 
12D 100 47720 100 16102 100 14720 
24D 100 68953 100 19387 100 16641 

rPEC-2 
6D 100 33794 100 13012 100 12698 
12D 100 61252 100 14511 100 16559 
24D 100 70037 100 17511 100 18885 

rPEC-3 
6D 100 14896 100 14928 100 8143 
12D 100 29376 100 16461 100 14157 
24D 100 47986 100 19460 100 27034 

rPEC-4 
6D 10 23107 1 11676 9 10312 
12D 13 34655 1 14394 17 13765 
24D 14 44068 1 19014 17 20763 

rPEC-5 
6D 93 14792 98 8794 90 2644 
12D 98 32370 99 12160 98 5664 
24D 98 43177 100 15793 100 11264 

rPEC-6 
6D 100 39571 100 18361 100 19504 
12D 100 43742 100 22175 100 21135 
24D 100 50421 100 28628 100 29150 

rPEC-7 
6D 90 16129 99 9229 90 2546 
12D 97 28041 100 11945 97 4680 
24D 98 33326 100 14001 98 10330 

rPEC-8 
6D 100 22954 100 15487 100 5780 

12D 100 25941 100 18652 100 10411 

24D 100 31014   100 23720   100 23117 
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Fig. 5.7 shows GSR and NFE of IDE, IDE_N and UBBPSO with different 

stopping criteria for rPEC problems. Again, we conclude that the higher the SCmax, 

the better the reliability of the algorithm is, and that the use of SC-2 gives similar 

GSR compared to SC-1 (Fig. 5.7a). However, IDE_N gave almost the same GSR with 

different stopping criteria. Among IDE, IDE_N and UBBPSO, IDE uses least NFE to 

terminate the global search via SC-2. Between IDE and IDE_N, results show that IDE 

provides better reliability with fewer NFE (Fig. 5.7), probably due to enhancement of 

global search ability by tabu list and tabu check operations in IDE. For optimal 

efficiency and reliability of IDE, SCmax = 12D is a good stopping criterion for rPEC 

problems. 

Recently, SA, DETL and GA have been tested for rPEC problems in Bonilla-

Petriciolet et al. (2011a). All these stochastic algorithms were run 100 times 

independently in FORTRAN environment. At the end of every run, a deterministic 

local optimizer (namely, DBCONF of IMSL library) was activated. The performance 

of IDE is compared with that GA, SA and DETL for rPEC problems, in Table 5.7. 

The data of IDE in Table 5.7 is slightly different from those in Table 5.5 because NFE 

given in Bonilla-Petriciolet et al. (2011a) is based on successful runs only (and not all 

runs). For fair comparison, similar data of IDE are given in Table 5.7.  From this table, 

it is clear that IDE achieved the best reliability compared to SA, GA and DETL at 

SCmax = 6D, 12D and 24D. For example, for rPEC problems 5 and 7, IDE obtained 

much better SR than other algorithms compared. However, IDE requires more NFE 

compared to GA and DETL. This indicates that GA and DETL have faster 

convergence rate for rPEC problems but they can be trapped at the local optimum in 

several runs. The computational time (in seconds) for solving rPEC problems using 

IDE algorithm with SCmax = 6D, 12D and 24D is reported in the last column of 
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Table 5.7. Obviously, CPU times increases with NFE. Further, there is nearly linear 

relationship between NFE and CPU time, which supports the use of NFE for 

comparison. 

Table 5.7. Success Rate (SR) and Number of Function Evaluations of SA, GA, DETL 
and IDE for rPEC Problems Using SCmax with NP of 10D  

rPEC          
No. SCmax 

SA  GA  DETL  IDE 

SR NFE   SR NFE   SR NFE   SR NFE 
Time 
(s) 

rPEC-1 6D 93 5544 89 4650 100 7791 100 5585 3 

12D 99 10818 98 7866 100 9787 100 14720 7 

24D 100 44083 99 13228 100 11548 100 16641 9 
rPEC-2 6D 98 4703 99 4465 100 4237 100 12698 6 

12D 100 10159 100 7363 100 5708 100 16559 10 
24D 100 35837 100 12464 100 6665 100 18885 12 

rPEC-3 
6D 95 4740 98 4670 100 6366 100 8143 5 
12D 100 9299 100 7484 100 8017 100 14157 8 
24D 100 32630 100 12680 100 10893 100 27034 15 

rPEC-4 
6D 11 4460 15 4234 1 10621 9 6799 3 
12D 10 8396 11 7065 1 15420 17 11647 6 
24D 11 29589 17 12136 2 22043 17 11652 6 

rPEC-5 
6D 71 2401 63 2403 88 2235 90 2706 2 
12D 76 4725 73 4224 86 2705 98 5685 4 
24D 79 9508 70 8292 92 3205 100 11264 7 

rPEC-6 
6D 99 8038 100 6420 100 4859 100 19504 11 
12D 100 18759 100 10708 100 5994 100 21135 14 
24D 100 66336 100 17623 100 8532 100 29150 19 

rPEC-7 
6D 56 2690 58 2913 65 3955 90 2573 1 
12D 55 5389 70 4584 77 4985 97 4682 2 
24D 61 13599 90 8257 85 5713 98 10338 5 

rPEC-8 
6D 92 5733 95 4906 100 4057 100 5780 2 

12D 98 11096 98 7777 100 5036 100 10411 4 

24D 98 31887   100 12420   100 6124   100 23117 10 
 

For rPEC 4, at SCmax = 6D, GA and SA are better than IDE in terms of both 

SR and NFE. When SCmax = 12D, IDE is more reliable than GA and SA but with 
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more NFE. When SCmax = 24D, the IDE is better than GA and SA in both SR and 

NFE. This is probably due to the self-adaptive strategy of IDE which needs more 

generations initially for adaptive tuning of algorithm parameters. For high reliability 

of GSR = 85%, GA requires SCmax of 24D and NFE of 12138 whereas IDE requires 

SCmax of 12D and NFE of 12375 to obtain 89% GSR. This shows that IDE uses 2% 

more NFE to improve GSR by 4%. Further, IDE has fewer parameters to be tuned, 

which makes the algorithm more robust. In summary, the present results indicate that 

IDE offers a good balance between diversification and intensification stages for 

reliable and efficient phase equilibrium calculations in both reactive and non-reactive 

systems. Compared to other stochastic methods, its reliability and efficiency are 

generally better for solving these thermodynamic problems.  

5.5  Conclusions 

The stochastic global optimization algorithms, namely, IDE_N and IDE 

studied in this work have fewer parameters to be tuned. The performance of these 

algorithms has been tested and compared for solving PEC, rPEC and PS problems. 

IDE was found to be the overall best performer across different problems tried. 

Results for IDE and IDE_N confirm that use of tabu radius and tabu list improves 

reliability and decreases computational effort although it involves two parameters. 

Comparison of IDE with PSO variants for both PEC and PS problems shows that IDE 

provides higher reliability and efficiency. Comparison of IDE with SA, GA and 

DETL suggests that the former provides higher reliability for rPEC problems. The 

stopping criterion, SC-1 gives slightly better reliability than SC-2 at the expense of 

computational resources, and the use of SCmax can significantly reduce the 
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computational effort for solving PEC, rPEC and PS problems without much effect on 

the reliability of the stochastic algorithms studied. 
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Chapter 6 

An Efficient Constraint Handling Method *5 

6.1 Introduction 

Nowadays, optimization is a necessity in almost every field such as business, 

science and engineering. In every area, effective optimization techniques are required for 

improving the performance of applications and processes. To achieve this goal, we need 

to have a mathematical model for the application and an objective function that depends 

on decision variables. A typical optimization problem has an objective function, 

equality/inequality constraints and upper/lower bounds on decision variables. Most of the 

practical optimization problems are nonlinear and non-convex in either the objective 

and/or constraints, and so optimization of such problems requires a global optimization 

method. Hence, the study of global optimization for constrained optimization problems is 

an active research area (Angira and Babu, 2006; Babu and Angira, 2006; Liu et al., 2010; 

Luo et al., 2007; Srinivas and Rangaiah, 2007; Zahara and Kao, 2009). 

This study considers the following optimization problem with equality and 

inequality constraints, and upper and lower bounds. 

 

Minimize  ( )

Subject to  ( ) 0, 1,2,..., 1

                 ( ) 0, 1,2,..., 2

                 , 1,2,...,

i

j

l u

k k k

f x

h x i m

g x j m

x x x k n

= =

≤ =

≤ ≤ =

                                                                 (6.1) 

                                                           
5* This chapter is based on the papers - Zhang, H. and Rangaiah, G.P., An Efficient constraint 
Handling Method with Integrated Differential evolution for Numerical and Engineering 
optimization. Comp. & Chem. Eng., 2011, in press.  
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Here, x is the n-dimensional vector of decision variables, f(x) is the objective function, 

hi(x) = 0 and gj(x) ≤ 0 are respectively m1 equality constraints and m2 inequality, and xk
l 

and xk
u are respectively the lower and upper bounds of xk. 

Global optimization methods can be classified into two broad categories: 

deterministic and stochastic methods (Pardalos et al., 2000). The former methods include 

outer approximation methods and branch & bound methods, and have been proposed for 

solving constrained optimization problems (Floudas et al., 1989; Kocis & Grossmann, 

1998; Ryoo & Sahinidis, 1995). The stochastic algorithms include SA, GA, TS, DE, PSO 

and ACO, and they have been applied to constrained optimization problems too (Das et 

al., 1990; Jayaraman et al., 2000; Lampinen, 2002; Lin & Miller, 2004; Srinivas & 

Rangaiah, 2007; Yu et al., 2000). The deterministic methods can provide a guaranteed 

global optimal solution but they require certain properties of objective function and 

constraints such as continuity and convexity. The stochastic methods require little or no 

assumption on the characteristics of the optimization problem, provide probabilistic 

convergence to the global optimum, are usually simple in principle and easy to 

implement. However, they do not guarantee global optimality in finite iterations although 

they can often locate the global optimum in modest computational time compared to 

deterministic methods (Lin & Miller, 2004). One of the major challenges of the stochastic 

methods is handling constraints, particularly equality constraints. 

Recently, many researchers have studied the solution of constrained optimization 

problems using stochastic algorithms (Kheawhom, 2010; Liu et al., 2010; Luo et al., 

2007; Srinivas & Rangaiah, 2007; Yuan & Qian, 2010; Zahara & Kao, 2009). Srinivas 

and Rangaiah (2007) employed DETL, which incorporated the useful concept of TS to 
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avoid revisits during the global search in order to improve computational efficiency and 

reliability, and the penalty function method to handle inequality constraints for solving 

nonlinear programming (NLP) and mixed-integer NLP (MINLP) problems. Luo et al. 

(2007) proposed an improved PSO algorithm for solving non-convex NLP/MINLP 

problems with equality constraints. The proposed method requires elimination of equality 

constraints by partitioning variables and identifying reduced variables for optimization 

through analysis and tearing equality constraints. Zahara and Kao (2009) proposed a 

hybrid Nelder-Mead simplex search and PSO for constrained engineering design 

problems. It embeds a constraint handling method which includes the gradient repair 

method and ranking based on constraint fitness.  

Yuan and Qian (2010) proposed genetic algorithm with local solver to solve 

twice-differentiable NLP problems; their results show that the proposed method can solve 

such NLP problems with inequality constraints. Liu et al. (2010) proposed hybrid PSO 

with DE (PSO-DE) to solve constrained optimization problems. It uses DE to update the 

previous best positions of the particles to force PSO jump out of stagnation. The 

constraints are handled by minimizing the objective function and the degree of constraint 

violation simultaneously with two populations of identical size. Kheawhom (2010) 

proposed a constraint handling scheme for DE to solve chemical engineering 

optimization problems. It uses a repair algorithm based on the gradient information 

derived from the equality constraints, to correct infeasible solutions. The dominance-

based selection (feasibility approach) is also used to handle constraints. Most of the 

problems studied in the works cited in this and previous paragraph are inequality 

constrained problems, and equality constraints, if present, are eliminated by some way. 
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Thus, global optimization of problems with equality constraints is still challenging 

without elimination of equality constraints. Hence, the present study focuses on finding 

the global optimum of equality constrained optimization problems without any re-

formulation to eliminate equality constraints. 

Among many stochastic global optimization algorithms, DE is a population-based 

global optimization method proposed by Storn and Price (Price et al., 2005; Storn & 

Price, 1997). Its principle is instinctive to understand, number of parameters involved is 

fewer compared to other algorithms, has a relatively faster convergence and high 

reliability to find the global optimum (Babu & Munawar, 2007; Srinivas & Rangaiah, 

2006). The original DE is designed for unconstrained optimization problems. In the 

recent past, many DE variants have been proposed to improve its performance. Many of 

them are on two aspects: adapting DE parameters (Brest et al., 2006; Qin et al., 2009), 

and hybridization to combine DE with another optimization method to enhance the 

performance (Angira & Babu, 2006; Babu & Munawar, 2007; Liu et al., 2010; Srinivas & 

Rangaiah, 2007; Zhang & Rangaiah, 2011). Our recent algorithm (Zhang & Rangaiah, 

2011), referred to as integrated DE (IDE), combines both these aspects by integrating the 

tabu list to avoid revisits (Srinivas & Rangaiah, 2007), and self-adaptation of parameters 

and mutation strategy (Qin et al., 2009). In addition, a novel stopping criterion is included 

in IDE to terminate the global search after finding the minimum approximately and then a 

local optimizer is used to find the minimum accurately and efficiently (Zhang et al., 

2011).  

When the problems contain constraints, the feasible region is reduced, leading to 

many difficulties in solving them. In this study, we propose an efficient constraint 
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handling method, particularly for equality constraints, for stochastic global optimization 

methods. It incorporates adaptive constraint relaxation method with the feasibility 

approach of Deb (2000) to handle the relaxed constraints; in this, both the equality and 

inequality constraints are relaxed in order to increase temporarily the feasible region in 

the initial exploration. Then, the feasible region is gradually shrunk according to the 

fraction of feasible individuals in the population.  

The focus and contribution of this study are on a new constraint handling method 

and its use with IDE algorithm. The proposed constrained IDE, C-IDE is tested on 

benchmark problems with equality and/or inequality constraints and its performance is 

compared with the recent techniques. Subsequently, it is applied to chemical engineering 

application problems with equality/inequality constraints. The remainder of this chapter 

is organized as follows. Strategies for handling equality and inequality constraints are 

outlined in Section 6.2. Section 6.3 describes the proposed constraint relaxation method 

to handle the constraints. The IDE algorithm incorporating this constraint handling 

method is described in Section 6.4. The numerical experiments and results on the 

benchmark problems are presented and discussed in Section 6.5. Section 6.6 discusses 

performance of the C-IDE on chemical engineering application, and compares it with 

other methods. Finally, the conclusions of this work are summarized in Section 6.7. 

6.2 Methods for Handling Constraints 

Many chemical engineering applications such as process design, synthesis, 

control and scheduling involve formulating and solving optimization problems with 

equality constraints besides inequality constraints and bounds on variables. Of the 

constraints, equality constraints are more challenging to handle due to the tiny feasible 
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region. In principle, they can be used to reduce the number of variables in the 

optimization problem by elimination procedure. However, identifying the reduced 

variables is hard, some equality constraints are irreducible and cannot be used to decrease 

the problem dimension, and the transformed problem may be more difficult to solve.  

The methods for handling constraints in the stochastic global optimization 

methods have received much attention in the last decade. They can be divided into five 

categories: (1) Penalty functions, (2) Separation of objectives and constraints, (3) Special 

representations and operators, (4) Repair algorithms, and (5) Hybrid methods (Coello 

Coello, 2002). The first two categories are widely applied for solving constrained 

problems, and the last three categories are infrequently used (Lampinen, 2002). The main 

disadvantage of penalty function method is the difficulty to choose a suitable penalty 

parameter because it is problem-dependent. The main advantage of the second method is 

that it does not require any parameter to handle constraints, and the results show that it is 

very effective to handle inequality constraints. It is also referred to as the feasibility 

approach (Deb, 2000; Lampinen, 2002); its disadvantage is the difficulty to maintain 

population diversity, which may cause premature convergence (Coello Coello, 2002).  

In the recent past, many researchers have been using or modifying the feasibility 

approach to solve the constrained problems by stochastic global optimization algorithms. 

He and Wang (2007) proposed a hybrid PSO (HPSO) to solve constrained global 

optimization problems; it combines PSO with simulated annealing in order to enhance the 

search ability and prevent premature convergence. The feasibility approach is used for 

handling the constraints. The results show that the proposed algorithm has better 

searching quality and robustness for constrained engineering design problems. Takahama 
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and Sakai (2006) proposed the ε-constrained DE with gradient-based mutation and 

feasible elites (εDE). It combines ε-constrained method and DE with gradient-based 

mutation that finds a feasible point using the gradient of constraints at an infeasible point. 

In the ε-constraint handling method, the relaxation of constraints is controlled by using 

the ε parameter. The proper control of ε is essential in order to obtain high-quality 

solutions for problems with equality constraints (Takahama & Sakai, 2006). The ε value 

is updated until the generation counter G reaches the control generation Tc (eq. 3). After 

the generation counter exceeds Tc, ε is set to zero to obtain solutions with no constraint 

violation. 

��0� �  ��	
�                                                                                                     (6.2) 

���� �  ���0��1 � ������       0 � � � ��0                                   � � ��     
�                                                            (6.3) 

where δ(x) is the constraints violation and xk is the top k
th individual and k = 0.2NP, 

where NP is the population size. The recommended parameter ranges are Tc ∈ [0.1Gmax, 

0.8Gmax] and cp ∈ [2, 10] (Takahama & Sakai, 2006).  

The selection of individuals in the evolution by using the ε-constraint technique is 

similar to the feasibility approach. The results in Takahama and Sakai (2006) show that 

εDE algorithm can handle problems with small feasible region and equality constraints 

but it has more parameters compared to others (Eqs. 6.2 and 6.3). Ali and Kajee-Bagdadi 

(2009) proposed local exploration-based DE (LEDE) method with feasibility approach 

and parameter-free penalty method for constrained global optimization. They tested the 

proposed algorithm on many benchmark problems, and the results show that it 

outperforms other algorithms for constrained optimization problems. 
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6.3 Proposed Constraint Handling Method 

In this study, we propose an effective constraint handling method to handle both 

equality and inequality constraints, for use with IDE and other stochastic algorithms. It 

incorporates adaptive relaxation of constraints and the feasibility approach in the 

selection step of IDE. In the initialization step, values of the objective function and 

constraints of the whole population are calculated. The total absolute violation (TAVk) of 

individual k is defined as 

TAV
 � �|� �x�|"#
 $# % �max�0, g*�x��"+

*$#    , � 1, 2, … ,/0                                  �6.4� 

which includes violation, if any, of all constraints. The median of TAVk of all individuals 

in the population is assigned to the initial constraint relaxation value (µ). 

If the total absolute violation of all constraints (and not violation of a constraint) 

of an individual is less than µ, then it is temporarily treated as a feasible solution; else, it 

is taken as an infeasible solution. Thus, relaxation is for all equality and inequality 

constraints together. During the generations, µ is gradually reduced according to the 

fraction of feasible individuals (FF) with respect to the relaxed constraints, in the latest 

population at generation, G. After considering and testing several possibilities, we 

propose the following equation for reducing µ for the next generation, G+1. 

4�G % 1� � 4�G��1 � 6789�                                                                          (6.5) 

The relaxation of constraints in the initial generations helps greater exploration of 

the search space for locating the global optimum region. The extent of relaxation is 

related to the feasibility of the population. When fewer individuals in the current 

population are feasible, rate of reducing µ will be slower. Hence, more generations are 
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required to find the feasible and better solutions. For example, when all individuals in the 

current population are infeasible, µ will not be reduced until some feasible individuals are 

found. Without checking the feasibility of individuals in the population and using this 

information to reduce µ may have faster convergence but it is likely to lead to premature 

convergence and failure to find the global optimum. In the proposed adaptive relaxation, 

µ is dynamically reduced based on the fraction of (temporarily) feasible solutions in the 

population but it will not be increased (Eq. 6.5). This is because increasing µ will result 

in individuals with higher constraint violations, which will slow the convergence of the 

algorithm. 

It is clear, when µ is near 0, the rate of decrease of µ can be low. However, this 

makes the method more robust since it is still based on the performance of the population. 

In general, some problems can have very large constraint violation, and so the rate of 

decrease of µ will be fast. Other problems can have very small constraint violation, and 

so the rate of decrease of µ will be slow. Therefore, we cannot apply the same rate of 

decrease of µ to different problems. It is better, as in the proposed method, to decrease µ 

adaptively according to constraint violations and thus for different problems. The 

proposed adaptive relaxation by Eq. 6.5 will effectively control the extent of relaxing and 

enhance the global search. Compared to the εDE, it has no parameter, and relaxation is 

adapted based on search performance. 

The selection between target and trial individuals in the C-IDE algorithm is based 

on the feasibility approach of Deb (2000) along with temporarily treating an individual as 

feasible if its total absolute constraint violation is less than µ. According to the feasibility 

approach, (a) a feasible solution is preferred over an infeasible solution, (b) among two 
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feasible solutions, the one with better objective function value is preferred, and (c) among 

two infeasible solutions, the one with smaller TAV is chosen. The emphasis in this 

approach is on feasibility, which may affect exploration. The adaptive relaxation and 

feasibility approach will improve global search by gradually forcing the population 

towards the feasible region. This is demonstrated below for some optimization problems 

with equality and/or inequality constraints. 

6.3.1 Illustration of the Proposed Constraint Handling Method 

The effectiveness of the proposed constraint handling method and its comparison 

with feasibility approach alone (i.e., without constraint relaxation) are shown in Fig. 6.1 

for G11 problem in Table 6.1, which has 2 variables and one equality constraint. Plots a1, 

a2, a3 and a4 in this figure depict the distribution of population using feasibility approach 

alone at initialization, 20th, 50th and 300th generation respectively. Plots b1, b2, b3 and 

b4 in Fig. 1 show the distribution of population using the proposed constraint handling 

method at initialization, 20th, 50th and 300th generation respectively; in these plots, the 

relaxed constraint is shown by the red, dotted curves. The green triangles in Fig. 6.1 

represent the population at the stated generation, and the red square is the global optimum 

of the problem.   

In the initialization stage, a solution/individual in plot a1 in Fig. 6.1 is feasible 

only if it is on the equality constraint indicated by the blue line whereas individuals in the 

population will be treated as feasible if they are within the region between the two red, 

dotted curves in plot b1 in Fig. 6.1. Thus, it is clear that the feasible region is more with 

the constraint relaxing method. The selection criterion based on the feasibility approach 

of Deb (2000) forces the population towards the equality constraint with generations as 
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shown in plots a2 and b2 of Fig. 6.1. In plot a2, the entire population moves to the 

equality constraint line (i.e., becomes feasible) but the individuals are far from th

optimum. However, in plot b2 of Fig. 6.1, with the same selection criterion based on the 

feasibility approach, the population moves towards the global optimum due to constraint 

Note the gradual reduction in the constraint relaxation with generations in plots b1 

1), which guides the population towards the equality constraint. At the 50th 

generation, the solution does not improve much without constraint relaxation (plot a3 in 

1) but the population generated by the proposed method moves towards the global 

optimum (plot b3 in Fig. 6.1). When the search progresses to the 300th generation, the 

population is trapped at the local optimum in case of feasibility approach alone as shown 

1. With the constraint relaxation, the population is converged to the 

global optimum (plot b4, Fig. 6.1). Therefore, Fig. 6.1 for problem G11 clearly indicates 

that the proposed constraint relaxation can enhance the global search ability for problems 

with equality constraints, without introducing any additional parameters.

 (b1)
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1. In plot a2, the entire population moves to the 

equality constraint line (i.e., becomes feasible) but the individuals are far from the global 

1, with the same selection criterion based on the 

feasibility approach, the population moves towards the global optimum due to constraint 

ith generations in plots b1 

1), which guides the population towards the equality constraint. At the 50th 

generation, the solution does not improve much without constraint relaxation (plot a3 in 

oposed method moves towards the global 

1). When the search progresses to the 300th generation, the 

population is trapped at the local optimum in case of feasibility approach alone as shown 

int relaxation, the population is converged to the 

1 for problem G11 clearly indicates 

that the proposed constraint relaxation can enhance the global search ability for problems 

s, without introducing any additional parameters. 
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For inequality constraints, the proposed constraint handling strategy is applied for 

solving problem G06 in Table 1, which contains inequality constraints only. For this 

inequality problem, it is clear from the contour plots in Fig. 
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a4) Distribution of the Population of IDE with Feasibility 
onstraint Relaxation) at Different Generations, and (b1

opulation of IDE with the Adaptive Relaxed Constraint 
ethod at Different Generations: Problem G011 

For inequality constraints, the proposed constraint handling strategy is applied for 

solving problem G06 in Table 1, which contains inequality constraints only. For this 

inequality problem, it is clear from the contour plots in Fig. 6.2 that the proposed 

elaxation method with feasibility approach can guide the population to approach the 

feasible region of the search space from different directions. Compared with the results 
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For inequality constraints, the proposed constraint handling strategy is applied for 

solving problem G06 in Table 1, which contains inequality constraints only. For this 

2 that the proposed 

elaxation method with feasibility approach can guide the population to approach the 

feasible region of the search space from different directions. Compared with the results 



  

 

for the equality problem shown in Fig. 

feasible region is faster for the inequality problem. We can see that at 20th generation, 

the population has moved to the feasible region as shown in Figs. 

has converged to the global optimum at 50th generation as shown in Fig. 

comparison of the proposed relaxation method with feasibility approach alone also shows 

that the proposed method obtains better result. Thus, the proposed relaxation method can 

handle inequality constraints efficiently.

(a)

(c)

Figure. 6.2. Contour Plots of Problem G06. (a) Search Space and Population at 
Generation 1. (b) Search Space and Population at G

(d) Enlarged Search Space and Population at G
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for the equality problem shown in Fig. 6.1, convergence of the population towards t

feasible region is faster for the inequality problem. We can see that at 20th generation, 

the population has moved to the feasible region as shown in Figs. 

has converged to the global optimum at 50th generation as shown in Fig. 

comparison of the proposed relaxation method with feasibility approach alone also shows 

that the proposed method obtains better result. Thus, the proposed relaxation method can 

handle inequality constraints efficiently. 

  (b)

 (d)

Contour Plots of Problem G06. (a) Search Space and Population at 
Generation 1. (b) Search Space and Population at Generation 20. (c) Enlarg

(d) Enlarged Search Space and Population at Generation 50.
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1, convergence of the population towards the 

feasible region is faster for the inequality problem. We can see that at 20th generation, 

the population has moved to the feasible region as shown in Figs. 6.2(b) and (c), and it 

has converged to the global optimum at 50th generation as shown in Fig. 6.2(d). The 

comparison of the proposed relaxation method with feasibility approach alone also shows 

that the proposed method obtains better result. Thus, the proposed relaxation method can 

 

 

Contour Plots of Problem G06. (a) Search Space and Population at 
eneration 20. (c) Enlarged Plot of (b). 

eneration 50. 
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In order to illustrate the effectiveness of the proposed constraint handling method 

for both equality and inequality constraints, problem G05 in Table 6.1 is next used. This 

problem has 4 variables, 2 inequality constraints and 3 equality constraints. The 

convergence profiles of IDE with the proposed constraint handling method and with the 

feasibility approach alone (without constraint relaxation), are shown in Fig. 6.3. In the 

initial generations, feasibility approach has faster convergence compared to the proposed 

method. However, the best solution is fluctuating because the selection operation chooses 

the solution with less constraint violation or feasible solution even though it has worse 

objective value. After 1200 NFE, the best solution obtained with the feasibility approach 

does not change any more. This is because the feasible solution is found and the 

population is trapped at a local optimum. On the other hand, the proposed method can 

continuously improve the solution until the global optimum is reached. The gradual 

reduction of relaxation (µ) with NFE can be seen in Fig. 6.3, and this is very important in 

order to avoid trapping at a local optimum. It is interesting that the reducing trend of µ  is 

very similar to that of the objective function value. This is consistent with Eq. (6.5) as 

more feasible individuals in population results in faster reduction of µ  and faster 

convergence. The convergence profiles of Fig. 6.3 clearly indicate that the proposed 

constraint handling method can handle both equality and inequality constraints better 

than the feasibility approach alone.  



  

 

Figure. 6.3. Convergence Profiles of IDE with the Proposed Method and with the 
Feasibility Approach A

6.3.2 Analysis of Constraint Relaxation Rules

The relaxation (

constraint handling method. Initially, we have 
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Convergence Profiles of IDE with the Proposed Method and with the 
roach Alone, and also the Profile of the Relaxation V

for Problem G05. 

Analysis of Constraint Relaxation Rules 

The relaxation (µ) of constraints plays an important role in the proposed 

constraint handling method. Initially, we have tested Eqs. (6.2) and (

too many parameters to be tuned. Furthermore, the reduction of µ

progress and performance of the global search, which can vary with the problem 

characteristics. Therefore, we developed parameter-free rules for reducing 

performance of algorithm. These are Eqs. (6.5), (6.6) and (6.7). 

�G� ;1 � 6789<+
                                                                          

: �G��1 � F6�   0 > F6 > 0.90.14�G�         0.9 � F6 �                           
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Convergence Profiles of IDE with the Proposed Method and with the 
and also the Profile of the Relaxation Value (µ) with NFE 

) of constraints plays an important role in the proposed 

2) and (6.3), but there are 

too many parameters to be tuned. Furthermore, the reduction of µ is not based on the 

progress and performance of the global search, which can vary with the problem 

free rules for reducing µ based on the 

                                                                         (6.6) 

                                (6.7) 



  

 

The performance of the different rules for reducing the relaxation value (

the objective function value for problem G03 (Table 

that Eq. (6.7) offers the fastest reduction o

relaxation based on Eq. (6.6) has faster reduction of 

reduction in later stages; however, the solution stagnates due to the initial faster reduction 

of µ (Fig. 6.4). Eq. (6.5) shows the slowest in reduction of 

continuously improve with the generations and finally converge to global optimum. 

Therefore, Eq. (6.5) for reducing the relaxation value (

gradually guide the search towards the global optimum.

Figure. 6.4. Profiles of Constraint 
with Generations, for Solving 

In order to confirm the robustness of the proposed constraint handling method, 

Eq. (6.5) is tested for two more problems (G01 and G13) with inequality and equality 

constraints respectively, and the convergence profiles with generations are presented in 
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The performance of the different rules for reducing the relaxation value (

the objective function value for problem G03 (Table 6.1) are shown in Fig. 

7) offers the fastest reduction of µ but solution convergence is very slow. The 

6) has faster reduction of µ in the early generations and slower 

reduction in later stages; however, the solution stagnates due to the initial faster reduction 

5) shows the slowest in reduction of µ but the solution can 

continuously improve with the generations and finally converge to global optimum. 

5) for reducing the relaxation value (µ) is very promising as it can 

h towards the global optimum. 
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is tested for two more problems (G01 and G13) with inequality and equality 

constraints respectively, and the convergence profiles with generations are presented in 
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constraints respectively, and the convergence profiles with generations are presented in 
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Fig. 6.5. The constraint relaxation value (µ) is reduced to a very small value (Fig. 6.5), 

which indicates that Eq. (6.5) can force the solutions into the feasible region. Comparing 

Figs. 6.5(a) and (b), it is clear that the reduction of µ for the inequality constraint problem 

is faster than that for the equality constraint problem. This is reasonable because the 

inequality constrained problem usually has bigger feasible region than the equality 

constrained problem and the reduction of µ is related to the feasibility of the population. 

Thus, the reduction of µ is not the same in different problems since it is based on the 

feasibility of the population and consequently on the problem characteristics. Hence, the 

proposed constraint relaxation rule (Eq. 6.5) is robust and suitable for different problems. 

The convergence profile of error (i.e., discrepancy from the global optimum) in 

the objective function of the best solution at different generations in Fig. 6.5 shows that 

the proposed constraint handling method can find the global optimum effectively. 

Further, Fig. 6.5 shows that the solution convergence for inequality constrained problem 

is faster than that for the equality constraint problem. In summary, the convergence plots 

(Figs. 6.1-6.5) for different problems with equality, inequality, and both inequality and 

equality constraints, show that the proposed constraint handling method along with IDE 

can effectively and robustly handle the constrained problems. 



  

 

Figure. 6.5. Profiles of Constraint 
Value for Problem G01 (left plot) and G13 (right plot)

6.4 Description of IDE with the Proposed Constraint Handling 

Method 

The classic DE consists of four steps: initialization, mutation, crossover and 

selection (Storn & Price, 1997). Mutation and crossover steps are used to generate new 

individuals. After evaluation of the objective function value, the selection step chooses 

either the trial or target individual based on the survival of the fittest criterion. Therefore, 

the individual with better fitness/objective value will proceed to the next generation. The 

mutation and crossover steps together with the selection step constitute one generation or 

iteration of the DE algorithm. The generation procedure is repeated until

stopping criterion is satisfied. 

In IDE, several strategies are incorporated into the classic DE to enhance the 

algorithmic robustness, reliability and efficiency (Zhang & Rangaiah, 2011). They are: 

(1) crossover parameter, mutation strateg

the learning experience from the previous generations; (2) tabu list and tabu check are 
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Price, 1997). Mutation and crossover steps are used to generate new 

individuals. After evaluation of the objective function value, the selection step chooses 

either the trial or target individual based on the survival of the fittest criterion. Therefore, 

the individual with better fitness/objective value will proceed to the next generation. The 

mutation and crossover steps together with the selection step constitute one generation or 

iteration of the DE algorithm. The generation procedure is repeated until

stopping criterion is satisfied.  

In IDE, several strategies are incorporated into the classic DE to enhance the 

algorithmic robustness, reliability and efficiency (Zhang & Rangaiah, 2011). They are: 

(1) crossover parameter, mutation strategy and parameter are self-adapted according to 
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The classic DE consists of four steps: initialization, mutation, crossover and 

Price, 1997). Mutation and crossover steps are used to generate new 

individuals. After evaluation of the objective function value, the selection step chooses 

either the trial or target individual based on the survival of the fittest criterion. Therefore, 

the individual with better fitness/objective value will proceed to the next generation. The 

mutation and crossover steps together with the selection step constitute one generation or 

iteration of the DE algorithm. The generation procedure is repeated until the specified 

In IDE, several strategies are incorporated into the classic DE to enhance the 

algorithmic robustness, reliability and efficiency (Zhang & Rangaiah, 2011). They are: 

adapted according to 

the learning experience from the previous generations; (2) tabu list and tabu check are 
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used to avoid revisiting the same area, increase the diversity of the population and avoid 

unnecessary function evaluation in order to enhance global exploration and prevent 

premature convergence; (3) a novel and effective stopping criterion is used based on the 

number of rejected points during the generation of a trial point; and (4) a local optimizer 

is employed. In the present work, the proposed adaptive constraint relaxation technique is 

included in the IDE for constrained problems. 

The flowchart of the C-IDE algorithm is shown in Fig. 6.6. The algorithm begins 

with the setting of parameter values: population size (NP), learning period (LP), tabu list 

size (TLS), tabu radius (TR), maximum number of generations (Gmax) and maximum 

number of rejections (NRmax). The initial population of NP individuals is generated 

using uniformly distributed random numbers within the search space. The objective 

function and constraints of each individual are evaluated. The median value (µ) of the 

total absolute violation of constraints (TAV) of all individuals in the initial population is 

calculated. The feasibility of each individual in the population is checked as follows. If 

the TAV (and not violation of each constraint) of an individual is less than µ, then it is 

temporarily treated as a feasible solution; else, it is taken as an infeasible solution. The 

best individual in the initial population based on the feasibility approach (Deb, 2000) is 

selected. The evaluated individuals are then sent to the tabu list, which is used to prevent 

the algorithm from searching the area close to these individuals.  

The concept of tabu list, from the tabu search, keeps track of the previously 

evaluated points in the search space to avoid the revisit of the already searched regions. 

During the generation process, when a trial individual is generated, its location in the 

search space is compared to the previously evaluated points in the tabu list in terms of 
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Euclidean distance. If the Euclidean distance is smaller than the specified tabu radius 

(TR), which indicates that the trial individual is close to one of the points in the tabu list, 

the newly generated trial individual is rejected since it may not bring new information 

about the search space but increase the number of function evaluations (NFE). The 

rejected trial individual is replaced by generating a new trial individual until the 

Euclidean distance between the new trial individual and all the points inside tabu list is 

greater than TR. This procedure avoids revisiting the already visited regions, makes the 

individuals in the population more diverse, enhances the exploration of the search space 

and avoids unnecessary evaluation of the objective function. The objective function is 

evaluated at the trial individual only if it is away from all the points in the tabu list. After 

each evaluation, the tabu list is updated dynamically to keep the latest points in the list by 

replacing the earliest entered point(s). Thus, the new point is added to the list by rejecting 

the oldest point in the list so that the recently added points are retained. The tabu check 

will require extra computational effort but this is negligible in application problems 

where the evaluation of objective function and constraints is computationally intensive.  

In each generation, mutation, crossover and selection steps of DE are performed 

on the population (Fig. 6.6). The probability of kth mutation strategy, Pk and crossover 

rate for kth mutation strategy, Crk are self-adapted based on the performance from the 

previous generations; the number of mutation strategies used in this study is 4. For the 

first LP generations, probability of each mutation strategy is 0.25 and mean crossover 

rate for each strategy, Crmk is 0.5. For subsequent generations, Pk is updated based on the 

performance of the strategy in the previous LP generations, and the median of stored Crk 

values is used for Crmk. During each generation, a strategy for each target individual is 
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selected with probability Pk using stochastic universal sampling method (Baker, 1987). 

For generating ith trial individual, mutation factor F is calculated based on normal 

distribution with mean of 0.5 and standard deviation of 0.3, and Cri,k is based on normal 

distribution with mean of Crmk and standard deviation of 0.1. The ith trial individual is 

then produced according to the assigned mutation strategy, F and Cri,k through mutation 

and crossover steps of DE (Price et al., 2005).  

A boundary violation check is performed to make sure the decision variables of 

the trial individual generated satisfy their respective bounds (Fig. 6.6). If any bound is 

violated, a new trial individual is generated randomly within the bounds. The trial 

individual is then compared with the individuals/points in the tabu list. If it is near to any 

point in the tabu list, the trial individual is rejected and another point is generated through 

the mutation and crossover operations. If the number of rejections, NR is greater than 

NRmax for the same trial individual, then it indicates the algorithm has converged to either 

the approximate global optimum or trapped at a local optimum, and so the best solution 

found so far is unlikely to improve significantly in subsequent generations. Therefore, the 

evolution process is terminated, and the local optimizer is started from the best point 

found so far.  
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 Figure. 6.6. Flowchart of C-IDE for Constrained Problems 
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If NR is not greater than NRmax, then the algorithm will continue the generation 

process (Fig. 6.6). After evaluating the objective function and constraints of the trial 

individual produced, the tabu list is updated and feasibility check is performed according 

to the constraints relaxed by µ (i.e., feasible if TAV < µ). Then, the selection step 

between the target and trial individuals is performed according to the feasibility approach 

based on the objective function value, (temporary) feasibility of the individual and TAV. 

If the trial individual is selected, it replaces the target individual in the population 

immediately, and Cri,k is stored and the success of the corresponding mutation strategy is 

updated as nsk,G = nsk,G +1. Otherwise, the target individual remains in the population and 

the failure of the corresponding mutation strategy is recorded as nfk,G = nfk,G +1. Then, 

NR is reset to 0 for generating the trial individual for the next target individual until all 

NP target individuals are covered. 

After each generation, µ is updated according to Eq. (6.5), and the feasibility of 

the population based on the new µ is checked. The updating of PkG, calculation of Crmk, 

mutation, crossover and selection operations are repeated for the next generation until the 

maximum number of generations, Gmax. Then, the best point obtained over all generations 

is refined using the local optimizer. Solver tool in Excel is used as the local optimizer in 

order to find the precise solution. It is a powerful gradient-based optimizer, readily 

available in MS Excel. It can solve different types of the linear and nonlinear 

optimization problems with both equality and inequality constraints. Generalized reduced 

gradient (GRG) method, used for solving nonlinear problems in Solver tool, is an 

efficient local optimizer and uses finite difference approximation for numerical 

derivatives of the objective function. It works by first evaluating the objective/constraint 
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functions and their partial derivatives at the initial values of the decision vector, and then 

iteratively searches for a better solution using a search direction suggested by derivatives. 

To determine a search direction, Solver uses the quasi-Newton or conjugate gradient 

method. The user is not required to provide the partial derivatives with respect to decision 

variables; instead, forward or central difference approximation, as per user preference, is 

used in Solver (Stokes & Plummer, 2004).   

6.5 Numerical Experiments, Results and Discussion 

The proposed constraint handling method with IDE, C-IDE, is implemented in 

MS Excel environment using Visual Basic Application (VBA) language because of its 

ready availability and use by researchers and practitioners in diverse fields. A user-

friendly interface is developed for coding the objective function, constraints and calling 

the optimization algorithm by anyone familiar with a spreadsheet. Performance 

evaluation of the proposed constraint handling method with IDE using this program in 

MS Excel, and its comparison with the recent methods and results in the literature are 

presented in this section. All computations were performed on Dell Optiplex 750 with 

Intel Core 2 (Duo CPU 2.66 GHz, 3.25 GB RAM), which can complete 594 MFlops 

(million floating-point operations) for the LINPACK benchmark program (at 

http://www.netlib.org/) for a matrix of order 500. 

6.5.1 Benchmark Problems 

The proposed  C-IDE is evaluated on 22 benchmark problems with equality 

and/or inequality constraints, given in CEC 2006 (Liang et al., 2006), for testing and 

comparing with other constrained global optimization algorithms. Mathematical 
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characteristics of these benchmark problems are summarized in Table 6.1. Note that each 

of these problems involves one or more constraints. 

Table 6.1. Mathematical Characteristics of the Benchmark Problems (Liang et al., 2006) 

Problem Variables ρ (%) LI NI LE NE α 
Global 
Optimum, f* 

G01 13 0.0111 9 0 0 0 6 -15.0000 
G02 20 99.9971 0 2 0 0 1 -0.8036 
G03 10 0.0000 0 0 0 1 1 -1.0005 
G04 5 52.1230 0 6 0 0 2 -30665.5387 
G05 4 0.0000 2 0 0 3 3 5126.4967 
G06 2 0.0066 0 2 0 0 2 -6961.8139 
G07 10 0.0003 3 5 0 0 6 24.3062 
G08 2 0.8560 0 2 0 0 0 -0.0958 
G09 7 0.5121 0 4 0 0 2 680.6301 
G10 8 0.0010 3 3 0 0 6 7049.2480 
G11 2 0.0000 0 0 0 1 1 0.7499 
G12 3 4.7713 0 1 0 0 0 -1.0000 
G13 5 0.0000 0 0 0 3 3 0.0539 
G14 10 0.0000 0 0 3 0 3 -47.7649 
G15 3 0.0000 0 0 1 1 2 961.7150 
G16 5 0.0204 4 34 0 0 4 -1.9052 
G17 6 0.0000 0 0 0 4 4 8853.5397 
G18 9 0.0000 0 13 0 0 6 -0.8660 
G19 15 33.4761 0 5 0 0 0 32.6556 
G20 7 0.0000 0 1 0 5 6 193.7245 
G21 9 0.0000 0 2 3 1 6 -400.0551 
G22 2 79.6556 0 2 0 0 2 -5.5080 

Notes: ρ is the estimated ratio between the feasible region and the search space. LI and NI are 
respectively the number of linear and nonlinear inequality constraints, LE and NE are 
respectively the number of linear and nonlinear equality constraints, and α is the number of active 
constraints at the global optimum. 

6.5.2 Parameter Settings and Testing Details  

The following parameters were used throughout this study: population size, NP = 

20, tabu list size = 20 and tabu radius = 0.001D, which are the same as in Srinivas and 

Rangaiah (2007), And learning period, LP = 20. Stopping criterion is the satisfaction of 

either the maximum number of rejections, NRmax = 20 or the maximum number of 
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function evaluations, NFEmax = 50,000; the latter is included to avoid indefinite iterations. 

The same parameter values were used for all benchmark problems and application 

problems in order to test the robustness of the algorithm for practical applications.  

Since C-IDE is a stochastic optimization algorithm, random numbers may affect 

convergence speed and reliability of finding the global optimum. Hence, 25 independent 

runs, each time starting from a different random number seed, were performed on each 

benchmark problem. A successful run means that the algorithm can achieve the objective 

function value very close to the known global optimum value, f*. Here, a run is 

considered to be successful if the objective function value found is ≤ [f* + 0.0001] for all 

benchmark functions. Success rate (SR) is the percentage of number of successful runs 

out of 25 trials.  The SR, mean and standard deviation of the error, | fbest - f*|, and average 

number of objective function/constraints evaluations (NFE) in the 25 trials are reported in 

Table 2; here, fbest is the best value found in each run. The solution quality, NFE and SR 

are compared and discussed in the following section. 

6.5.3 Results and Discussion 

6.5.3.1 Comparison with εDE, SaDE and LEDE 

Table 6.2 summarizes the results obtained by C-IDE and C-IDE without local 

search, both with the proposed constraint handling method; recall that C-IDE (Fig. 6.6) 

includes local optimization after the completion of global search. It also compares their 

performance with εDE (Takahama & Sakai, 2006), LEDE (Ali & Kajee-Bagdadi, 2009) 

and SaDE (Huang et al., 2006) for all benchmark problems in Table 6.1. The εDE and 

SaDE have shown good performance on the 2006 CEC benchmark functions (Liang & 

Suganthan, 2006). LEDE (Ali & Kajee-Bagdadi, 2009) is a recent constrained 
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optimization method, which has been tested on many benchmark functions with both 

equality and inequality constraints. In order to check the performance of the proposed 

constraint handling method, we first consider C-IDE without local search and using 

NFEmax = 50,000 as the stopping criterion. From Table 6.2, it is obvious that C-IDE 

without local search can achieve the best mean and standard deviation of the objective 

function value for many of the benchmark problems tested. The smallest error mean, 

standard deviation and NFE of the average of the 22 benchmark functions indicates that 

the solution obtained by the proposed algorithm is very close to the global solution. From 

this, we can conclude that the proposed constraint handling method is more effective than 

SaDE, εDE and LEDE to solve the constrained optimization problems. Note that SaDE 

and εDE use gradient based local search during the generations. 

Compared to SaDE, εDE, LEDE and C-IDE without local search, it is clear that 

C-IDE with the NRmax stopping criterion and local search obtained the best mean and 

standard deviation using the least NFE. For problems G01 and G02, the reduction in NFE 

is about 75%. For problem G06, the reduction in NFE is more than 95%. This may due to 

fewer decision variables, and so C-IDE is able to converge faster. Similar reduction can 

also be seen for problems G08, G11 and G22. The total NFE reduction for all problems 

tested is about 61%.  
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Table 6.2. Comparison of DE-based Algorithms for Benchmark Problems 

Problem &       
Optimal 

value 
 

εDE 
(Takahama & 
Sakai, 2006) 

SaDE 
(Huang et 
al., 2006) 

LEDE (Ali & 
Kajee-

Bagdadi, 2009) 

C-IDE 
w/o Local 

Search  
C-IDE 

G01                            
-15.0000 

Mean  8.44E-04 2.94E-10 7.95E-04 4.98E-04 3.15E-08 

std  2.52E-04 4.95E-10 3.40E-04 2.27E-03 1.67E-07 

NFE 50000 50000 50000 50000 16529 

G02                            
-0.8036 

Mean  6.94E-02 2.18E-02 2.68E-01 3.31E-02 2.71E-02 

std  2.77E-02 8.27E-03 7.20E-02 3.83E-02 2.83E-02 

NFE 50000 50000 50000 50000 19049 

G03                            
-1.0005 

Mean  5.44E-02 6.24E-02 2.38E-01  5.04E-04  7.50E-07 

std  2.29E-02 1.54E-01 3.90E-02 3.30E-05  1.32E-06 

NFE 50000 50000 50000 50000 25493 

G04                         
-

30665.5387 

Mean  4.92E-11 2.98E-07 1.44E-03 2.30E-05 6.64E-07 

std  3.40E-11 2.51E-08 5.20E-05 2.42E-05 3.49E-06 

NFE 50000 50000 50000 50000 11728 

G05                           
5126.4967 

Mean 3.22E-02 6.40E-02 1.10E-01  1.47E-03  9.60E-06 

std 3.42E-02 5.43E-04 4.10E-03  7.22E-04  3.21E-09 

NFE 50000 50000 50000 50000 21363 

G06                            
-6961.8139 

Mean  1.18E-11 4.55E-11 6.70E-07 0.0E+00   2.57E-12 

std  0.00E+00 0.00E+00 2.70E-07 0.0E+00  2.43E-11 

NFE 50000 50000 50000 50000 1523 

G07                            
24.3062 

Mean  3.88E-03 4.93E-03 2.22E-03 1.71E-03 5.23E-06 

std  1.60E-03 5.93E-03 2.10E-04 2.66E-03 3.17E-06 

NFE 50000 50000 50000 50000 18429 

G08                            
-0.0958 

Mean  4.16E-17 8.20E-11 2.35E-06 1.93E-10 3.47E-16 

std  1.23E-32 6.05E-18 7.00E-07 3.28E-11 2.32E-16 
NFE 50000 50000 50000 50000 2668 

G09                            
680.6301 

Mean  2.41E-07 4.45E-06 1.21E-07 7.53E-08 7.53E-16 
std  1.45E-11 8.79E-06 3.50E-08 2.71E-07 6.26E-15 
NFE 50000 50000 50000 50000 35003 

G10                            
7049.2480 

Mean  1.67E+00 3.98E-01 6.20E+00 1.48E+00 1.08E-05 
std  1.18E+00 7.43E-01 3.00E+00 1.13E+00 1.17E-06 
NFE 50000 50000 50000 50000 37620 

G11                          
0.7499 

Mean 5.66E-06 9.40E-06 0.0E+00   0.0E+00   2.38E-11 
std 4.37E-06 2.75E-05 0.0E+00  0.0E+00  2.13E-10 
NFE 50000 50000 50000 50000 6609 

G12                            
-1.0000 

Mean  0.00E+00   0.00E+00   3.57E-05 0.00E+00 0.00E+00 
std  0.00E+00  0.00E+00  6.60E-06 0.00E+00 0.00E+00 
NFE 50000 50000 50000 50000 13905 

G13                           
0.0539 

Mean 7.41E-05 1.08E-01  1.63E-01 1.35E-05  1.54E-11 
std 6.99E-05 1.76E-01  1.4E-01 4.90E-05 2.47E-10 
NFE 50000 50000 50000 50000 19180 
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Table 6.2 Continuous 

G14                           
-47.7649 

Mean 3.92E+00 1.61E-04 NA 2.06E+00  2.25E-09 
std 1.65E+00 1.10E-04 NA 1.64E+00  6.43E-09 
NFE 50000 50000 NA 50000 34825 

G15                          
961.7150 

Mean 1.33E+00 6.34E-05 NA  1.28E-07 3.28E-10 
std 2.21E+00 6.01E-05 NA  1.47E-09 1.75E-10 
NFE 50000 50000 NA 50000  11706 

G16                            
-1.9052 

Mean  5.03E-15 6.53E-11 NA 6.96E-10 3.25E-11 
std  8.16E-16 6.76E-14 NA 1.89E-09 9.45E-10 
NFE 50000 50000 NA 50000 9765 

G17                          
8853.5397 

Mean 4.37E+01 7.27E+01 NA  3.75E+01 1.55E+01 
std 3.70E+01 6.85E+00 NA  3.37E+01 6.17E+00 
NFE 50000 50000 NA  50000 43369 

G18                            
-0.8660 

Mean  3.98E-04 1.53E-02 NA 1.23E-03 2.73E-07 
std  2.22E-04 5.30E-02 NA 2.55E-04 2.10E-07 
NFE 50000 50000 NA 50000 31478 

G19                            
32.6556 

Mean  1.18E+01 6.07E-03 NA 2.40E-01 6.69E-07 
std  2.96E+00 2.24E-02 NA 5.17E-02 1.80E-06 
NFE 50000 50000 NA 50000 19111 

G20                           
193.7245 

Mean  3.04E+01 6.03E-02 NA 1.86E+01 1.05E-02 
std  4.25E+01 3.81E-03 NA 4.03E+01 1.08E-02 
NFE 50000 50000 NA 50000 23631 

G21                         
-400.0551 

Mean 3.87E+02 5.02E-02 NA  1.10E+03 2.56E-13 
std 1.45E+02 1.36E-02 NA  1.99E+02 3.25E-13 
NFE 50000 50000 NA  50000 41671 

G22                            
-5.5080 

Mean  5.77E-14 4.64E-12 NA 5.62E-10 6.57E-09 
std  2.52E-29 0.00E+00 NA 5.51E-09 2.08E-08 
NFE 50000 50000 NA 50000 1739 

Average 
Mean  2.29E+01 3.50E+00 7.19E-01 1.57E+00 7.06E-01 
std  1.11E+01 3.82E-01 3.11E-01 2.97E+00 2.82E-01 
NFE 5.00E+04 5.00E+04 5.00E+04 5.00E+04 2.03E+04 

Notes: C-IDE and C-IDE without local search in the last two columns include the proposed 
constraint handling method; NA - Data are not available; std – Standard deviation. 

C-IDE obtained good reliability with 100% SR for all the benchmark functions 

except G02, G17and G20 for which SR is 60%, 92% and 88% respectively. The lower 

SR of G02 and G20 is because there are some local optima that are very near to the 

global optimum. For G02, the global solution is -0.8036, but there are many local 

solutions such as -0.79466, -0.79261 and -0.78527. For G20, the global solution is 

193.7245 at (193.7245, 0, 17.3192, 100.0479, 6.6845, 5.9917, 6.2145), but there is a local 

optimum of 193.7581 at (193.7581, 0, 17.3192, 100.0479, 6.6845, 5.9917, 6.2145). This 
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caused the gradient-based local optimization technique (GRG) to converge prematurely 

in a few trials. Even through SR for G17 problem by C-IDE is only 92%, the mean and 

standard deviation are better than other algorithms. Furthermore, the feasibility of this 

problem is 100%. From detailed results, we noticed that the few failures are mainly due 

to the wrong direction taken by the local search. The solution obtained after the global 

search is very near to the global solution, but the local search converges to a local 

solution that is far from the global solution. Overall, the proposed constraint handling 

method, C-IDE, which integrates the global and local searches together with switching 

from global to local search based on maximum number of rejections, is very reliable and 

efficient for solving general constrained problems. 

6.5.3.2 Comparison with Other Methods 

The superior performance of the C-IDE over DE-based algorithms (SaDE, εDE 

and LEDE) is demonstrated in Table 6.2. In this sub-section, the performance of the 

proposed constraint handling method with IDE is compared with that of recent non-DE 

based constrained global optimization algorithms. Leguizamon and Coello Coello (2009) 

proposed a boundary search with ant colony metaphor algorithm (ANT-β) for constrained 

optimization. ANT-β focuses the search on the boundary region between feasible and 

infeasible search space. The penalty function method is used as a complementary 

mechanism for handling the constraints. The proposed method has been tested on a 

number of benchmark functions and compared with other methods (Leguizamon & 

Coello Coello, 2009). Liu et al. (2010) used a hybrid PSO-DE algorithm with feasibility 

approach to optimize the objective function and constraints simultaneously with two 

populations of same size. Mani and Patvardhan (2009) proposed a hybrid constraint 
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handling method with evolutionary algorithm (EA) to solve the constrained optimization 

problems. Two constraint handling methods (penalty function and feasibility approach) 

with two populations are cooperated in EA. This approach overcomes the drawbacks of 

both penalty function and feasibility approach, and utilizes their strengths to handle 

constraints. Results on the benchmark problems demonstrate its efficacy. 

The performance results of the C-IDE are compared in Table 6.3, with those of 

ANT-β, PSO-DE and EA taken from (Leguizamon & Coello Coello, 2009; Liu et al., 

2010; Mani & Patvardhan, 2009) respectively. These algorithms are implemented 

differently with different accuracies, termination criteria and/or parameter values. Hence, 

it would be unfair and difficult to draw any conclusions from the direct comparisons of 

these results. However, we wish to highlight and comment on certain aspects, e.g. the 

quality of solution obtained and associated effort required. Table 6.3 shows that C-IDE 

and ANT-β have been used to solve 22 and 17 problems whereas PSO-DE and EA were 

tested on only 11 and 10 problems respectively. The solution quality by them is indicated 

by the best, mean and worst of the objective function values found (in 100 runs of PSO-

DE, 30 runs of EA and ANT-β) for each problem. For G01, G03, G04, G11 and G22, C-

IDE and ANT-β obtained equally good results. For the remaining 12 problems, C-IDE 

obtained much better results compared to ANT-β. Among the 11 problems tested by the 

PSO-DE, solutions obtained for 10 problems are as good as those of C-IDE. For G02, C-

IDE obtained better solutions compared to PSO-DE. Compared with EA, C-IDE found 

better solutions for 6 out of 10 problems. ANT-β, PSO-DE and EA were terminated after 

1,500,000, 140,100 and 200,000 NFE (Leguizamon & Coello Coello, 2009; Liu et al., 

2010; Mani & Patvardhan, 2009). On the other hand, maximum NFE used by the C-IDE 
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is 43,369 for G17 (see Table 6.2). Thus, C-IDE with the stopping criterion on NRmax 

stops the search efficiently and reliably for constrained problems, even without knowing 

the optimum solution in advance. 
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Table 6.3. Comparison of Objective Function Value Found by C-IDE, ANT-β, PSO-DE and EA on Benchmark Problems in (Liang et al., 2006) 

Probs C-IDE    ANT-β    PSO-DE     EA 

Best Mean Worst   Best Mean Worst   Best Mean Worst   Best Mean Worst 
G01 -15.000 -15.000 -15.000 -15.000 -15.000 -15.000 -15.000 -15.000 -15.000 -15.000 -15.000 -15.000 

G02 -0.804 -0.795 -0.754 
 

-0.804 -0.803 -0.793 
 

-0.804 -0.757 -0.637 
 

NA NA NA 

G03 -1.001 -1.001 -1.001 -1.000 -1.000 -1.000 -1.001 -1.001 -1.001 NA NA NA 

G04 -30665.54 -30665.54 -30665.54 -30665.54 -30665.54 -30665.54 -30665.54 -30665.54 -30665.54 -30665.54 -30665.54 -30665.54 

G05 5126.497 5126.497 5126.497 5126.500 5138.370 5132.140 NA NA NA 5126.498 5127.235 5135.928 

G06 -6961.814 -6961.814 -6961.814 -6961.810 -6961.740 -6961.710 -6961.814 -6961.814 -6961.814 -6961.814 -6961.814 -6961.814 

G07 24.306 24.306 24.306 24.370 24.640 24.920 24.306 24.306 24.306 24.319 24.410 24.541 

G08 -0.096 -0.096 -0.096 NA NA NA -0.096 -0.096 -0.096 -0.096 -0.096 -0.096 

G09 680.630 680.630 680.630 680.630 680.670 680.720 680.630 680.630 680.630 680.630 680.646 680.667 

G10 7049.248 7049.248 7049.248 7052.300 7199.010 7493.150 7049.248 7049.248 7049.248 7049.424 7075.022 7111.849 

G11 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 

G12 -1.000 -1.000 -1.000 NA NA NA -1.000 -1.000 -1.000 NA NA NA 

G13 0.054 0.054 0.054 0.054 0.055 0.055 NA NA NA 0.054 0.057 0.076 

G14 -47.764 -47.764 -47.764 -47.760 -47.652 -46.724 NA NA NA NA NA NA 

G15 961.715 961.715 961.715 961.715 961.716 961.717 NA NA NA NA NA NA 

G16 -1.905 -1.905 -1.905 NA NA NA NA NA NA NA NA NA 

G17 8853.540 8859.711 8927.598 8855.819 8937.446 8952.621 NA NA NA NA NA NA 
G18 -0.866 -0.866 -0.866 NA NA NA NA NA NA NA NA NA 
G19 32.656 32.656 32.656 NA NA NA NA NA NA NA NA NA 
G20 193.725 196.834 202.862 193.783 194.345 202.068 NA NA NA NA NA NA 
G21 -400.055 -400.055 -400.055 -399.985 -249.008 -28.448 NA NA NA NA NA NA 
G22 -5.508 -5.508 -5.508 -5.508 -5.508 -5.508 NA NA NA NA NA NA 

Note: NA - Data are not available. 
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6.6 Application to Chemical Engineering Optimization Problems 

In this section, C-IDE is tested on 10 chemical engineering optimization problems 

taken from the literature (Babu & Angira, 2006; Kheawhom, 2010; Lee et al., 2010; Luo 

et al., 2007; Pintarič & Kravanja, 2006; Srinivas & Rangaiah, 2007). These examples are 

carefully chosen so that they have equality constraints in addition to inequality 

constraints, multiple minima and/or narrow feasible region. Mathematical characteristics 

of the selected application problems are summarized in Table 6.4.  

Problems 1, 5 and 7 are for the design of heat exchanger networks, all of which 

have active constraints at the global minimum. The objective function is to minimize the 

cost subject to the approach temperature, heat and energy balance equality constraints. 

Problem 2 is a reactor network design problem that involves the design of a sequence of 

two reactors. It is difficult to solve because the local minimum value (-0.3881) is very 

close to the global minimum value (-0.3888) of this problem. Problem 3 is the design of 

an insulated tank problem, and Problem 4 is a pooling problem. Problem 6 is on the 

design of a three-stage process system with recycle. Problem 8 is the separation network 

synthesis problem, and problem 9 is the alkylation process optimization. Problem 10 is 

the optimization of the William-Otto process (Williams & Otto, 1960), which is 

representative of chemical processes and has been used in many studies. 
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Table 6.4. Mathematical Characteristics of the Application Problems 

Problem 
No. of 

Variables 
No. of Equality 

Constraints 
No. of Inequality 

Constraints 
Global 

Optimum (f*) 

P1 8 3 3 7049.248 

P2 6 4 1 -0.3888 

P3 4 2 0 5194.866 

P4 10 5 2 -400.0 
P5 3 2 0 189.312 

P6 6 3 3 -13.402 
P7 12 11 0 36162.989 
P8 22 16 0 1.864 
P9 10 7 0 1162.027 

P10 10 6 0 Refer Table 7 

 

6.6.1 Result and Discussion 

Each of the 10 problems listed in Table 6.4 is solved 100 times, each time with a 

different random number seed. The success rate (SR), which indicates the reliability of 

the algorithm, and NFE are reported. Firstly, C-IDE is tested on P1 to P6 in Table 6.4, 

which were solved by Srinivas and Rangaiah (2007) by eliminating the equality 

constraints. The results by C-IDE with and without eliminating the equality constraints of 

the original problems are compared with DETL from Srinivas and Rangaiah (2007) in 

Table 6.5. Results obtained to solve the reformulated problems (by eliminating equality 

constraints) are indicated by an asterisk (i.e., DETL* and C-IDE*) in this table. SR 

results show that C-IDE* has better reliability compared to DETL*. It can solve all the 

six problems with 100% SR. This indicates that C-IDE could handle the problems 

without equality constraints efficiently. C-IDE* has also comparable convergence speed 

with DETL*, as indicated by NFE in Table 6.5.  
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In order to demonstrate the effectiveness of the proposed constraint handling 

method, especially for equality constraints, C-IDE is used to solve the original problems 

P1 to P6 without eliminating equality constraints. Results in Table 6.5 show that C-IDE is 

able to solve these problems with 100% SR but it requires more NFE compared to that 

for solving the re-formulated problems. Total NFE required for C-IDE is almost double 

the NFE required by C-IDE* for the problems in Table 6.5. This confirms that problems 

with equality constraints are more difficult to solve by stochastic methods compared to 

those without equality constraints. This is because of the tiny feasible area of the equality 

constraints. So, where possible, it is better to eliminate equality constraints in the 

optimization problems for efficient solution by stochastic methods. 

Table 6.5. Performance of C-IDE and DETL for Problems P1 to P6 

Problem 
Number 

DETL* C-IDE* C-IDE 

SR NFE   SR NFE   SR NFE 

P1 95 11999 100 15632 100 15846 
P2 98 1468 100 3975 100 11604 
P3 96 1495 100 858 100 7930 
P4 100 4421 100 7475 100 19772 
P5 100 418 100 328 100 3648 
P6 100 2912   100 3773   100 5441 

*   The equality constraints in the problems are eliminated, and the transformed problems without 
equality constraints are solved by the stochastic method. 

We now compare the performance of C-IDE, with the recent DE-based 

constrained global optimization algorithm proposed by Kheawhom (2010), who 

employed Newton’s method to solve the equality constraint equations in the problems, in 

Table 6.6. From this, it is obvious that both C-IDE and the algorithm of Kheawhom 

(2010) have very high and comparable reliability (i.e., SR). C-IDE is significantly faster 

than the algorithm of Kheawhom (2010), as indicated by NFE in Table 6.6. For P7, C-
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IDE needs 11524 NFE to obtain 95% SR; although SR is slightly lower, it requires 

significantly fewer NFE compared to the algorithm of Kheawhom (2010). 

Table 6.6. Comparison of Results by C-IDE with Those of Kheawhom (2010) 

Problem 
Number 

(Kheawhom, 2010) C-IDE 

SR NFE   SR NFE 

P1 100 380000 100 15632 
P2 100 10500 100 11604 
P7 100 864000 95 11524 
P8 100 954500   100 16338 

Problem 9 is an alkylation process important in petroleum refining. Rangaiah 

(1985) studied two different formulations of this problem: (a) original one with 7 equality 

and no inequality constraints, and (b) reduced one with 14 inequality and no equality 

constraints. Babu and Angira (2006) studied the reduced problem using DE and modified 

DE (MDE), both with penalty method to handle the constraints. On the other hand, C-

IDE is used to solve both the reduced and original problems. The results show that, for 

the reduced problem with no equality constraints, DE, MDE and C-IDE can obtain 100% 

SR but C-IDE requires only 11,925 NFE compared to 100,126 and 92,287 NFE required 

by DE and MDE respectively. Further, for the more difficult original problem with 

equality constraints, C-IDE obtained 100% SR using 33,320 NFE. These results indicate 

that the proposed constraint handling technique, C-IDE is very effective for solving the 

constrained optimization problems. 

The complete model of WO process consists of 82 variables and 78 equality 

constraints (Lee et al., 2010). The 82 variables are the reaction rate constants, mass flow 

rates, reactor temperature, reactor volume, component mass fraction and purge fraction. 

The equality constraints arise from mass balances on the reactor, cooler, decanter and 



Chapter 6 Constraint Handling Method  

  

190 

 

column. Most of the 78 equality constraints can be easily eliminated, leaving 6 nonlinear 

equality equations (Lee et al., 2010). For the present study, we chose this model of Lee et 

al. (2010) with 10 decision variables and 6 equality constraints. Four objectives used for 

optimizing the WO process by Pintaric and Kravanja (2006) and Lee et al. (2010) are 

considered here; these are the pay-back period (PBP), profit before taxes (PBT), total 

annual cost (TAC) and net present worth (NPW).  

TAC is the sum of operating cost and annualized capital cost, calculated by 

dividing the fixed capital investment (FCI) over the lifetime of the project (assumed to be 

10 years). FCI is the capital necessary for the installed process equipment with all 

components needed for complete process operation. PBT is the difference between the 

annual revenue and TAC, without accounting for taxes. PBP is the time required to 

recover FCI from the annual cash flows (CF). The CF is the sum of profit after taxes and 

depreciation, where the tax rate is taken to be 30% per year. The NPW is the present 

value of all investments and cash flows during the project lifetime, where time value of 

money is at the expected rate of return (0.12 year-1). Note that the program used by 

Pintaric and Kravanja (2006) is GAMS/CONOPT (a local optimizer), and Lee et al. 

(2010) used NSGA-II-aJG (a version of genetic algorithm) with an equation solver to 

handle the equality equations. Lee et al. (2010) stated that the local optimizer can give the 

correct optimum only when the initial guesses are close to the optimum solution.  

In the present study, the proposed C-IDE is able to handle the equality constraints 

without using any equation solver, to optimize the WO process for different objectives. 

Optimal values of the decision variables and objectives are compared with the reported 

results (Lee et al., 2010; Pintarič & Kravanja, 2006) in Table 6.7. This table clearly 
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shows that the proposed constraint handling method is able to optimize the WO process 

for all the four different objective functions considered, with SR of 99-100%. The 

average NFE for the four objective functions are 11936, 11918, 20000 and 19770 (Table 

6.7). The computational times for these functions are 50, 51, 84 and 83 seconds 

respectively. It can be seen that the CPU time has almost linear relationship with NFE. 

This indicates that NFE is a good indicator for comparison of convergence speed since 

function evaluation involves extensive computations in application problems, and NFE is 

independent of the computer and software platform used. Note that VBA is used in the 

present study because of its ready availability and use by researchers and practitioners in 

diverse fields. Based on our experience, VBA is about one order of magnitude slower 

than the equivalent MATLAB code. For optimizing PBP, PBT and NPW, the C-IDE 

obtained same results compared to those of Lee et al. (2010) and Pintaric and Kravanja 

(2006). For minimizing TAC, C-IDE obtained slightly better result at 9.043 compared to 

9.082 and 9.081 obtained by Lee et al (2010) and Pintaric and Kravanja (2006) 

respectively. These results show the efficiency and robustness of the C-IDE method for 

solving constrained problems. 

In summary, C-IDE method can efficiently solve the chemical engineering 

optimization problems with equality and/or inequality constraints. It is more reliable and 

efficient compared to the recent algorithms (Babu & Angira, 2006; Kheawhom, 2010; 

Lee et al., 2010; Pintarič & Kravanja, 2006; Srinivas & Rangaiah, 2007). Furthermore, it 

does not require the global optimum in advance since the stopping criterion can 

effectively switch the algorithm from global search to local search. 
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tTable 6.7. Results for the Optimization of William-Otto Process for Four Different Objectives 
         

 

Min. Pay-Back Period 

(PBP) 
  

Max. Profit Before Tax 

(PBT) 
  

Min. Total Annual Cost 

(TAC) 
  

 Max. Net Present Worth 

(NPW) 

Quantity (units) Pintaric 
and 

Kravanja 
(2006) 

Lee 
 et al. 
(2010) 

C-IDE   

Pintaric 
and 

Kravanja 
(2006) 

Lee 
 et al. 
(2010) 

C-IDE   

Pintaric 
and 

Kravanja 
(2006) 

Lee 
 et al. 
(2010) 

C-IDE   

Pintaric 
and 

Kravanja 
(2006) 

Lee 
 et al. 
(2010) 

C-IDE 

V(m3) 0.873 0.871 0.873 
 

6.82 6.80 6.81 
 

7.90 7.89 7.42 
 

3.75 3.71 3.75 

T(K) 374 375 375 
 

342 343 343 
 

342 342 345 
 

351 351 351 

η 0.100 0.100 0.100 
 

0.113 0.113 0.113 
 

0.102 0.102 0.107 
 

0.109 0.11 0.109 

qm,1 
A(kg/h) 6123 6121 6123 

 
4957 4956 4957 

 
4808 4809 4937 

 
5239 5247 5239 

qm,2 
B(kg/h) 13956 13965 13953 

 
11113 11118 11112 

 
10880 10882 10936 

 
11792 11809 11789 

FCI (Million US$/yr) 0.925 0.924 0.926 
 

7.22 7.21 7.23 
 

8.37 8.37 7.87 
 

3.97 3.94 3.97 

CF (Million US$/yr) 0.876 0.875 0.877 
 

2.42 2.42 2.42 
 

2.52 2.52 2.43 
 

2.00 1.99 2.00 

PBP (years) 1.056 1.056 1.056 
 

2.983 2.979 2.988 
 

3.321 3.321 3.239 
 

1.985 1.980 1.985 

PBT (Million US$/yr) 1.120 1.118 1.121 
 

2.425 2.425 2.425 
 

2.406 2.404 2.353 
 

2.286 2.286 2.286 

TAC (Million US$/yr) 10.680 10.681 10.679 
 

9.117 9.117 9.117 
 

9.081 9.082 9.043 
 

9.315  9.315 9.314 

NPW (Million US$/yr) 4.02 4.02 4.03 
 

6.44 6.46 6.45 
 

5.86 5.87 5.88 
 

7.30 7.31 7.31 

SR (%) NA NA 99 
 

NA NA 100 
 

NA NA 100 
 

NA NA 100 

CPU (Seconds) NA NA 50 
 

NA NA 51 
 

NA NA 84 
 

NA NA 83 
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6.7 Conclusions 

We have presented an adaptive relaxation of constraints for use with IDE, 

where the parameters of DE are adapted based on the previous performance, tabu list 

is used to prevent re-visiting the same place, and the stopping criterion is used to 

terminate global search and start local search, for solving constrained optimization 

problems. The proposed adaptive relaxation of constraints is gradual based on the 

number of feasible solutions found, and can enhance the global search, especially for 

problems with equality constraints. Furthermore, it does not involve any parameters. 

The proposed C-IDE is tested on benchmark problems with equality and/or inequality 

constraints, and its performance is shown to be significantly better than four state of 

the art algorithms (SaDE, εDE, LEDE and ANT-β) in terms of reliability and 

efficiency. Subsequently, it is applied to 10 chemical engineering optimization 

problems with equality and inequality constraints. The results show that the C-IDE 

can find the global optimum reliably and efficiently compared to the recent 

algorithms. Overall, the proposed adaptive relaxation constraint handling algorithm is 

robust, efficient and suitable for constrained optimization problems even with equality 

constraints. It has potential for use with other global stochastic optimization methods. 
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Chapter 7 

Global Optimization of Pooling Problems*6 

7.1  Introduction 

Pooling problems that arise in optimal blending of materials via pools/tanks to 

produce products are important in petroleum refineries (Baker and Lasdon, 1985) and 

wastewater treatment (Bagajewicz, 2000). They are also encountered in other 

engineering fields such as supply chain operations and communications (Misener and 

Floudas, 2009).3 In pooling problems, streams from various processing units are 

mixed and stored in intermediate tanks, called “pools”. The stored streams in pools 

are subsequently allowed to mix to meet varying requirements. These pools enhance 

the operational flexibility of the process, but complicate the decision making for 

blending of pools into final products.  

Finding the least costly mixing recipe from intermediate streams to pools and 

then from pools to final products is referred to as the pooling problem. It can be 

formulated as an optimization problem whose objective is to minimize cost (or 

maximize profit) by optimal allocation of intermediate streams to pools and the 

blending of pools into final products. The main difficulties in solving the pooling 

problems are: they involve nonlinearities and non-convexities leading to the existence 

of several optima, the need to find the global optimal solutions, and the presence of 

many equality/inequality constraints. Consequently, a robust, efficient and yet simple 

global optimization technique is required for reliably solving pooling problems.  

Many researchers have studied the global optimization of pooling problems 

because a slightly better solution can lead to large savings for the companies. The 

                                                           
6* This chapter is based on the paper - Zhang, H. Lee, K.L. and Rangaiah, G.P., New 
formulation and approach for global optimization of pooling problems, submitted to AIChE J. 
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literature on the pooling problems is on two major areas: problem formulation and 

solution methodologies (Almutairi and Elhedhli, 2009). From the modeling 

perspective, several formulations have been proposed such as p-formulation (Haverly, 

1978), q-formulation (Ben-Tal et al., 1994), pq-formulation (Tawarmalani and 

Sahinidis, 2002) and the generalized formulation (Audet et al., 2004; Meyer and 

Floudas, 2006). This paper focuses on the optimization method only, and the p-

formulation is used as it is widely studied and easy to understand. 

Haverly (1978) is the first one to study the solution of pooling problems using 

recursive linear programming method. The main drawback of this method is that it 

does not always converge to the global optimum and it is sensitive to the starting 

point. Further, with increasing number of pools and products, recursive methods 

become more unstable and face computational difficulties. Successive linear 

programming (SLP) algorithms have also been applied to solve the pooling problems 

(Main, 1993). In SLP, the nonlinear problem is solved via a sequence of the linear 

problems. Lasdon (1979) applied an SLP algorithm for solving pooling problems. 

Later, Baker and Lasdon (1985) applied SLP to improve blending schemes at Exxon.  

Generally, a complex problem can be decomposed into a simpler problem by 

fixing values of certain variables. Based on this approach, several extensions of the 

decomposition method have been developed and applied to solving the pooling 

problems. For example, Floudas and Aggarwal (1990) introduced a decomposition 

approach for pooling problems. A disadvantage of decomposition strategy is that it 

does not guarantee the convergence of the solution to the global optimum (Foulds et 

al., 1992; Sahinidis and Grossmann, 1991). Visweswaran and Floudas (1990) 

proposed a deterministic global optimization (GOP) algorithm and tested it on 

Haverly’s pooling problems. This algorithm is based on rigorous solution of the 
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problem through a series of primal and relaxed dual problems until the upper and 

lower bounds of these problems converge to the global optimum. Subsequently, 

Visweswaran and Floudas (1993) proposed an improved version of their deterministic 

GOP algorithm, which can solve more complex pooling problems involving more 

pools, products and quality components.  

Many researchers have used branch and bound method as the basic algorithm 

for solving the pooling problems. This method is based upon partitioning, sampling, 

and subsequent lower and upper bounding procedures, which are iteratively applied to 

the collection of active subsets within the feasible set. Branch and bound methods are 

non-heuristic in the sense that they maintain provable upper/lower bounds on the 

globally optimal objective value. An important factor influencing their convergence 

rate is the quality of the convex relaxations and the tightness of the bounding 

procedure. Hence, many studies have focused on the bounding procedures that would 

provide tight bounds within the branch and bound framework. Accordingly, many 

modifications of the branch and bound method have been proposed and applied to 

solving the pooling problems.  

Foulds et al. (1992) introduced the approach of bilinear envelopes with the 

branch and bound algorithm, and tested it on a number of pooling problems. Ben-Tal 

et al. (1994) studied the principle of reducing duality gap between a non-convex 

program and its Lagrangian dual. This idea was implemented in a branch and bound 

algorithm to find the approximate global solution and the lower bound of the global 

optimum value. Visweswaran and Floudas (1996) implemented the branch and bound 

framework into GOP (Visweswaran and Floudas, 1990) method. The combination of 

these strategies is to prune the tree and provide tighter under-estimators for the 

relaxed dual problems. Consequently, the algorithm complexity is reduced and its 
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efficiency is increased, and it was successfully applied to some pooling problems. 

Adhya et al.(1999) introduced a Lagrangian relaxation approach for developing 

tighter lower bounds for pooling problems using p-formulation. Later, Tawarmalani 

and Sahinidis (2002) showed that it is no tighter than the linear programming 

relaxation obtained using bilinear envelopes for pooling problems with pq-

formulation.  

Almutairi and Elhedhli (2009) suggested a new Lagrangean relaxation for 

solving pooling problems. This relaxation targets all nonlinear constraints, and results 

in a Lagrangean sub-problem with a nonlinear objective function and linear 

constraints. The proposed relaxation is integrated with the branch and bound method, 

and shown to be often tighter than the previously developed relaxations for pooling 

problems. Pham et al. (2009) proposed a convex-hull discretization approach with the 

branch and bound method for solving pooling problems efficiently. This approach is 

based on three concepts: linearization by discretization of nonlinear variables, 

preprocessing to form a convex hull which limits the size of the search space, and 

application of integer cuts to ensure compatibility between the original and the 

discretized problems. Gounaris et al. (2009) proposed a piecewise-linearization 

scheme to partition the original domain of variables, and applied bilinear relaxation 

principles for each of the resulting sub-domains. The effectiveness of resulting 

schemes has been shown on many pooling problems. Comprehensive reviews of 

global optimization methods and their applications to pooling problems can be found 

in Floudas et al. (2005), Floudas and Gounaris (2009) and Misener and Floudas 

(2009). 

Recently, several deterministic global optimization algorithms are proposed 

and applied to pooling problems (Misener and Floudas, 2010; Misener et al., 2010; 
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Misener et al., 2011). Misener and Floudas (2010) introduced a new formulation for 

the generalized pooling problem based on the generic superstructure of the water 

treatment topology, and solved small, medium, large and two very large problems 

using novel piecewise under-estimators within the branch and bound method. Misener 

et al.(2011) developed a new formulation for the piecewise relaxation of bilinear 

functions with a logarithmic number of binary variables. The resulting computational 

tool, APOGEE can globally optimize the standard, generalized and extended pooling 

problems. Misener et al. (2010) proposed extended pooling problems with the 

Environmental Protection Agency (EPA) complex emissions constraints, and solved 

them using a branch and bound algorithm with a MILP solver (CPLEX) and a local 

solver (MINOS).  

All the above attempts to solve the pooling problems are using deterministic 

algorithms, which can provide a guaranteed global optimal solution while exploiting 

the mathematical structure of the given problem. Many studies have investigated 

different kinds of global optimization algorithms for various applications. The 

comparison of several deterministic and stochastic global optimization algorithms has 

also been discussed in the literature (Srinivas and Rangaiah, 2007b; Moles et al., 2003; 

Teh and Rangaiah, 2003; Mladenovic et al., 2008; Mashinchi et al., 2011; Bonilla-

Petriciolet and Segovia-Hernandez, 2010; Nocedal and Wright, 2006; Weise, 2008; Exler et 

al., 2008). In general, stochastic methods are more robust, require little or no 

assumption on the characteristics of the optimization problem, and yet provide a high 

probabilistic convergence to the global optimum. Further, they are usually simple in 

principle, easy to implement and use. Although stochastic algorithms do not guarantee 

global optimality in finite time, they can often locate the global optimum in modest 
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computational time compared to deterministic methods (Moles et al., 2003; Exler et al., 

2008; Lin and Miller, 2004; Liberti and Kucherenko, 2005; Bonilla-Petriciolet et al., 2010b).  

To the best of authors’ knowledge, no stochastic global algorithm has been 

applied to pooling problems, particularly in the last two decades. This could be due to 

the presence of many equality constraints in pooling problems. On the other hand, 

there have been many developments on stochastic global optimization in the last two 

decades (Rangaiah, 2010). In this work, a stochastic global optimization method, 

namely, integrated differential evolution (IDE) is applied to optimize the pooling 

problems. The remainder of this chapter is organized as follows. The formulation of 

the pooling problems is presented in Section 7.2. The application of IDE to pooling 

problems and performance comparison of IDE with other algorithms are discussed in 

Section 7.3. Finally, Section 7.4 concludes this chapter. 

7.2 Description and Formulation of the Pooling Problems 

The mathematical formulation of pooling problems using “p-formulation”, 

which has been studied by many researchers, is described in this section. Figure 7.1 

shows the general pooling problem network with one bypass, and the nomenclature 

used for the pooling problem formulation is given in Table 7.1. When a bypass is 

present in the network, it goes directly to all the products as shown in Figure 1. Its 

role is similar to the pools except that all the streams going to the products will have 

same qualities as the bypass stream. To generalize the formulation with bypass 

streams, the most convenient way is to consider each bypass stream as a pool. Thus, 

when one bypass exists as shown in Fig. 7.1, the number of pools becomes P+1. 
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Table 7.1. Notation for Pooling Problems  

Type Symbol Description 

Indices i Input streams, i=1,…, Nj 
j Pools, j=1,…, P 
k End products, k=1,…,R 
w Qualities, w=1,…,L 

Parameters A
L

i Minimum availability of the ith input raw material 
A

U
i Maximum availability of the ith input raw material 

Bj Capacity of the jth pool  
Cij Unit cost of the ith input stream into jth pool  
D

L
k Minimum demand of the kth product 

D
U

k Maximum demand of the kth product 
L Total number of component qualities 
Nj Number of input streams entering pool,  j 
P Total number of pools 
R Total number of end products 
Sk Unit selling price of the kth product  
Zk Quality requirement of the kth product 
λijw w

th quality specification of the ith input stream entering the 
j
th pool 

Decision  Qjw w
th quality of the intermediate stream from the jth pool  

Variables Xij  Flow rate of ith input stream entering into the jth pool 

  
Yjk Flow rate from jth pool to the kth product (Intermediate 

stream) 

 

The objective function is to minimize the total loss (negative profit), which is 

defined as the difference between the cost of required raw materials and the revenue 

from selling the final products as shown below.  

1 1

, , ,
1 1 1 1

min ( ) ( )
jNP R P

i j i j k j k

j i k j

C X S Y
+ +

= = = =

−∑∑ ∑ ∑                                              (7.1) 

It is subject to the following constraints.  

Mass balance on pools: , ,
1 1

0    1,..., 1
jN R

i j j k

i k

X Y j P
= =

− = = +∑ ∑                                (7.2) 

Quality balance on pools: 

, , , , ,
1 1

( ) ( ) 0    1,..., ;  1,...,
jNR

j w j k i j w i j

k i

Q Y X j P w Lλ
= =

− = = =∑ ∑                              (7.3)  
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Product demand:  
1

,
1

0    1,...,
P

j k k

j

Y D k R
+

=

− ≤ =∑                                               (7.4) 

Quality restrictions on products:
 1

, , , 1, 1, , ,
1 1

( ) ( ) 0   1,..., ; 1,...,
P P

j w j k i P w P k k w j k

j j

Q Y Y Z Y k R w Lλ
+

+ +
= =

+ − ≤ = =∑ ∑     (7.5) 

Bounds for the decision variables:  

,
1

,
1

, , , , ,

0 min{ , , }    1,..., ;     1,...,

0 min{ , , }    1,..., ;     1,...,

min{ } max{ }    1,..., ;  1,..., ;  1,...,

j

R
U U

i j i j k j

k

N

U U

j k k j i

i

i j w j w i j w j

X A B D i N j P

Y D B A j P k R

Q i N j P w Lλ λ

=

=

≤ ≤ = =

≤ ≤ = =

≤ ≤ = = =

∑

∑    (7.6) 

 

Figure 7.1. Blending Network for the Pooling Problem Formulation 

It is obvious that the pooling problem becomes more complicated when a large 
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number of pools, products and quality components are present in the blending 

network. These lead to pooling problems with a large number of equality and 

inequality constraints, and local optima. Therefore, a robust and reliable global 

optimization algorithm is required for solving such problems. 

7.3 Application to Pooling Problems 

In this section, IDE is evaluated on 13 widely used pooling problems with 

many variables and constraints for testing and comparing the optimization algorithms. 

Number of variables in these problems is from 7 to 168, the number of constraints 

(both equality and inequality constraints) is from 6 to 48, and the number of qualities 

is one or more. Tables 7.2a and 7.2b summarize the basic details of these pooling 

problems with single and multiple qualities respectively. The IDE algorithm is 

implemented in MATLAB platform because it is widely used by researchers and 

practitioners in diverse fields, for solving these pooling problems. It does not require 

any problem reformulation, prior knowledge of the problem and is easy to use. 

Table 7.2a. Basic Details of Pooling Problems with Single Quality 

Problem Name → Haverly 
1 

Haverly 
2 

Haverly 
3 

Foulds 
2 

Foulds 
3 

Foulds 
4 

Foulds 
5 

Ben-
Tal 4 

Input streams 3 3 3 6 11 11 11 4 
Pools 1 1 1 4 8 8 4 2 
Products 2 2 2 4 16 16 16 2 
Quality 1 1 1 1 1 1 1 1 
Variables 7 7 7 22 168 168 100 8 
Constraints (EC+IEC) 3+4 3+4 3+4 6+8 16+32 16+32 8+32 2+4 
Global optimum -400 -600 -750 -1100 -8 -8 -8 -450 
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Table 7.2b. Basic Details of Pooling Problems with Multiple Qualities 

Problem Name → Ben-Tal 
5 

Adhya 
1 

Adhya 
2   

Adhya 
3   

Adhya 
4 

Input streams 5 3 3 6 11 
Pools 4 1 1 4 8 
Products 5 2 2 4 16 
Qualities 2 4 6 6 4 
Variables 38 21 25 38 26 
Constraints (EC+IEC) 16+20 12+15 14+28 21+28 10+25 
Global optimum -3500 -549.8 -549.8   -561.05   -877.65 

 

7.3.1 Parameter Settings and Initialization 

In the numerical experiments, the following parameters were used: population 

size, NP = 50, learning period, LP = 50, taboo list size = 50 and taboo radius = 

0.001D. Stopping criterion is the satisfaction of either the maximum number of 

rejections, Nmax = 10 or maximum number of function evaluations, Gmax = 10000D. 

The latter is used as another stopping criterion to avoid indefinite loops. These 

parameter values are the same as those in Zhang and Rangaiah (2011), in order to 

show the robustness of the algorithm for solving pooling problems as well. 

Since this is a stochastic optimization algorithm, random numbers affect 

convergence speed, reliability of finding the global optimum and solution quality. 

Hence, 100 independent runs, each time starting from a different random number seed, 

were performed on each of the pooling problems. A successful run means that the 

algorithm can achieve the objective function value very close to the known global 

optimum value, f(x*). Here, the algorithm in a run is considered to be successful if the 

objective function value found is ≤ [f(x*) + 1e-5] and the solution is feasible. Average 

number of (objective) function evaluations (NFE) and success rate (SR) respectively 

assess the convergence speed and reliability. Here, SR is the percentage of successful 

runs over the total runs, and NFE is the average over only the successful runs out of 
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100 trials. NFE is a good criterion for evaluating the computational efficiency of the 

algorithm and it is independent of computer system used. The NFE for IDE includes 

all the objective function evaluations used by the global and local optimizer. 

Feasibility rate (FR) is the percentage of runs, wherein the best solution found in the 

run satisfies all the constraints, and it can be more than SR. 

The solution quality (in terms of the best objective function value from all 

runs, and median and standard deviation (SD) of final objective function value from 

each of the 100 runs), success rate and number of function evaluations for solving 

pooling problem by IDE are summarized and discussed in the following section. The 

computer system employed in this study is Intel Core 2 (Duo CPU 2.66 GHz, 3.25GB 

RAM) for which MFlops (million floating point operations per second) for the 

LINPACK benchmark program (at http://www.netlib.org/) for a matrix of order 500 

are 594. 

7.3.2 Results and Discussion 

In order to illustrate the performance of IDE, the convergence for one single 

quality pooling problem (Haverly-1) is shown in Fig. 7.2. It is obvious that the 

constraint violation is decreasing very fast with the number of the generations, 

especially in the early stage. The steady decrease in constraint violation value 

indicates that the population is moving towards the feasible region. The objective 

function value of Haverly-1 is initially decreasing and then increases with the 

generations (Fig. 7.2) because constraints are relaxed greatly in the initial generations. 

As the generations increase, the constraint relaxation is less and solutions considered 

feasible in the previous generations become infeasible. This can be seen in the initial 

generations where the relaxation value is decreasing fast and the objective function 
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value is fluctuating (Fig. 7.2). After 30 generations, the constraint relaxation becomes 

very small, and so the objective function is steadily improving to the global optimum.  

 

Figure 7.2. Objective Function and Constraint Violation Values Vesus the Number of 
Generations for Single Quality Problem (Haverly-1); Inset Shows the Profile for 

Smaller Range of Objective Function and Constraints Violation. 

The convergence profiles for two pooling problems with multiple qualities 

(Adhya-1 and Adhya-3) are shown in Fig. 7.3. Constraint violation value is 

decreasing much slowly in Fig. 7.3 than in Fig. 7.2, which indicates that it is more 

difficult to find the feasible solution of Adhya-1 and Adhya-3 compared to Haverly-1. 

This is agreement with presence of more equality and inequality constraints in multi-

quality pooling problems than in single-quality problems. As in Fig. 7.2, constraint 

violation is decreasing relatively quickly initially and then slowly in the later 

generations. This is because the relaxation of constraints is more in the initial 
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generations, and more individuals in the population are treated feasible. When the 

relaxation is reduced faster, it will lead to more feasible individuals according to the 

selection criterion. Therefore, the constraint violation value is decreasing faster 

initially.  

It can be seen in Fig. 7.3 that the objective function value is fluctuating. This 

is probably due to reduction in constraint relaxation and many local optima. 

Comparing Adhya-1 and Adhya-3 in Fig 7.3, the constraint violation of Adhya-1 is 

decreasing slower than that of Adhya-3; this may due to the more number of 

constraints in Adhya-3 and the overall constraint violation is large. For Adhya-1, both 

constraint violation and objective function value do not change after 300 generations, 

which indicates convergence of the algorithm. After the global search is terminated, 

local search starts from the best point found by the global search to refine the solution. 

It is clear from Figure 4 that, for Adhya-1, the global search has found the solution 

with objective function value -558.6, which is very close to the known global 

optimum (-549.8). Starting with the former, local search found the global optimum 

precisely.  

For Adhya-3, the constraint violation value is reducing very slowly from 400 

to 800 generations which indicates the difficulty to find feasible solutions when the 

relaxation is small. The objective function value of Adhya-3 is fluctuating even 

though the constraint violation is not improving. This indicates Adhya-3 has more 

local optima compared to Adhya-1 as the selection step chooses the better solution 

based on feasibility, constraint violation and objective function value. After the global 

search is terminated, the local search starts from the best point found by the global 

search to refine the solution as indicated in Fig 7.3. For Adhya-3, the global search 

has found the solution with objective function value of -779.8, which is far from the 
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known global optimum (-561.05). So, local search found only the local optimum (-

549.8) but it eliminated constraint violation.  

Table 7.3 gives the summary of the results obtained by IDE for all the 13 

pooling problems listed in Table 7.2. In Table 7.3, the best optimum found refers to 

the best solution found in 100 runs, the median and SD are the median and standard 

deviation of the final objective function values found in 100 runs. These are often 

used to show the quality of solutions obtained by a stochastic algorithm. As shown in 

Table 7.3, IDE is able to find the global optimum for all 13 problems in all or many of 

the 100 runs, and FR is 100%, which indicates that the best solution obtained in each 

run of IDE is feasible. For Haverly-1 and 3, Foulds-3, Ben-Tal 4 and 5, SR of IDE is 

100%; for the remaining problems too, SR of IDE is very high at around 90% except 

for Adhya-3 with SR of 23%. The median values in Table 7.3 confirm that solutions 

obtained in most runs are the global solutions except for Adhya-3. Median value in 

case of Adhya-3 also is close to the global solution. As reported, Adhya-3 is a 

challenging problem having many local optima, which are very close to the global 

optimum. For example, Adhya et al. (1999) reported that the local optimizer could not 

find the global optimum even in 100 runs, each run starting from a different starting 

point. The SD of the Foulds-2, Adhya-1, Adhya-2, Adhya-3 and Adhya-4 is relatively 

large; this is because the second best optimum of these problems is very different 

from the global optimum. Therefore, only a few failures can result in a larger SD. 
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Figure 7.3. Profile of the Objective Function and Constraint Violation Vesus the 
Number of Generations for Pooling Problems with Multiple Qualities 

(Adhya-1 and Adhya-3). 

Although SR of IDE for Adhya-3 is only 23%, the local solution obtained by 

IDE is close to the global solution (as can be seen by the median and SD values in 

Table 7.3). Values of decision variables of the best solution obtained in 100 runs on 

Adhyra-3 were found to be at or near the bounds. So, we tried a different re-

initialization when a variable is outside its bounds. In IDE algorithm, boundary 
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violation of a decision variable is handled by randomly generating a value within the 

bounds. The modified algorithm is to set the value of decision variable equal to its 

nearest bound when the decision variable bound is violated. Adhya-3 is tried with the 

modified algorithm, and the median value of the 100 runs is -559.6 which is very 

close to the global optimum solution -561.05. Even through SR is less than before (10% 

versus 23%), the modified algorithm gives a better median value of -559.6 and a 

better SD of 2.27 in 100 runs, which means that it has higher probability to find a 

solution very close to the global optimum.  
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Table 7.3. Performance of IDE for Solving Pooling Problems and its Comparison with Deterministic Methods Reported in Pham et 
al.(2009)

  

IDE  Results from Pham et al.(2009) 

Problem SR NFE 
CPU 

Time (s) 
Best optimum 

found 
Median of 

optima found 
Standard 

deviation (SD) 
Optimum 

found 
Discretization  

Method Time (s) 
Time (s) for 

Global Solver 

Haverly-1 100 15116 5 -400 -400 4.5E-07 -400 < 1 38 
Haverly-2 94 16901 6 -600 -600 1.3E+00 -600 < 1 < 1 
Haverly-3 100 12101 4 -750 -750 6.8E-10 -750 < 1 < 1 
Foulds-2 85 11534 6 -1100 -1100 6.9E+01 -1100 < 1 > 30000 
Foulds-3 100 18533 14 -8 -8 1.9E-08 -8 < 1 > 30000 
Foulds-4 92 29377 21 -8 -8 9.0E-02 -8 < 1 > 30000 
Foulds-5 91 32667 22 -8 -8 2.6E-01 -8 < 1 > 4000 
Ben-Tal 4 100 6738 3 -450 -450 4.1E-13 -450 < 1 > 10000 
Ben-Tal 5 100 7285 4 -3500 -3500 1.4E-11 -3500 < 1 < 1 
Adhya-1 94 15182 8 -549.8 -549.8 9.5E+01 -547.45 24 196 
Adhya-2 75 19794 14 -549.8 -549.8 2.3E+02 -547.45 27 193 
Adhya-3 23 29545 19 -561.05 -549.8 4.6E+00 -557.566 10 6446 
Adhya-4 87 12448 9 -877.65 -877.65 3.3E+01 -854.492 20 143 
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The NFE and computational time are also reported in Table 3. For Ben-Tal 4 

and 5, IDE requires least NFE and CPU time but Foulds-4 and 5 require much more 

NFE and CPU time. This is likely due to the larger number of the variables and 

constraints in Foulds-4 and 5 compared to Ben-Tal 4 and 5 (Table 2). In order to 

compare the performance of IDE with deterministic methods, results from Pham et 

al.(2009) are reported in Table 3. Pham et al. reported optimum found and CPU time 

for two methods: one is for the new convex-hull discretization with branch and bound 

method (DBBM) and another is for the global solver (LINGO). Note that the 

computer system used in Pham et al.(2009) is a desktop computer Dell Optiplex GX 

620 with a Pentium IV, 3.6 GHZ processor and 1 GB of RAM. A similar computer, 

namely, Dell Optiplex GX620 with a Pentium IV, 3.6 GHZ and 2 GB of RAM has 

297 MFlops for the LINPACK benchmark program for a matrix of order 500. So, the 

computer in Pham et al. is probably half slow compared to the computer used in this 

study. On the other hand, MATLAB program used in the present study is slow 

compared to compiled codes such as FORTRAN code. These differences should be 

kept in view for CPU time comparison.  

In general, the global solver is computationally very expensive compared to 

both IDE and DBBM (Table 7.3). DBBM can solve the first nine problems efficiently 

and reliably. It uses much less CPU time compared to IDE. However, for Adhya-1, 2 

and 4, DBBM requires more CPU time than IDE and cannot find the global solution 

accurately. In contrast, IDE can find much better solutions for the pooling problems 

with multiple qualities (Adhya-1, 2, 3 and 4) compared to DBBM of Pham et al. 

(2009). Especially, for Adhya-4, the optimum solution obtained by DBBM is very far 

from the known global optimum (Table 7.3). Therefore, we can conclude that IDE is 

more reliable and efficient for solving pooling problems with multiple qualities. 
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Gounaris et al.(2009) proposed a piecewise-linear relaxation with branch and 

bound method (PLRBBM) for solving pooling problems, and reported its efficiency 

and reliability for different formulations and partition levels. However, as can be seen 

in Table 7.4, there are many failures in the trials, and the same partition level is not 

suitable for all problems (Gounaris et al., 2009). Further, PLRBBM requires prior 

experience for setting parameter value (i.e., γ used in the selection of the grid points) 

in order to obtain good performance for a particular problem. In any case, 

performance of IDE for solving pooling problems is compared with the best/reported 

results for PLRBBM in Table 7.4. Computer system used is not stated in Gounaris et 

al.(2009). Further, CPU time for PLRBBM in Table 7.4 is the smallest CPU time 

reported; maximum CPU time allowed for a run in Gounaris et al. (2009) is 1 hour 

which means that any convergence failure will cause the CPU time to reach 3600 

seconds. On the other hand, CPU time for IDE in Table 4 is the average in all 100 

runs, which is more representative of the algorithm efficiency. Ignoring all these 

differences including the computer systems and programs used and their effect on 

CPU time, PLRBBM requires much less time than IDE for the single-quality pooling 

problems tested (Table 7.4). For pooling problems with multiple qualities, 

performance of IDE is comparable to PLRBBM.  
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Table 7.4. Comparison of IDE with the Deterministic Method of Gounaris et al., 
(2009) for Solving Pooling Problems  

IDE 

CPU(s) 

Piecewise Linear Relaxation with Branch and 
Bound Method: CPU time (s) for Different 
Formulations and Partitioning Level = 15 

Problem nf41 nf4r nf6t nf7r 
Haverly-1 5 < 1 < 1 < 1 < 1 
Haverly-2 6 < 1 < 1 < 1 < 1 
Haverly-3 4 < 1 < 1 < 1 < 1 
Foulds-2 6 < 1 < 1 < 1 < 1 
Foulds-3 14 < 1 < 1 < 1 < 1 
Foulds-4 21 < 1 < 1 < 1 < 1 
Foulds-5 22 < 1 < 1 < 1 < 1 
Ben-Tal 4 3 < 1 < 1 < 1 < 1 
Ben-Tal 5 4 < 1 < 1 < 1 < 1 
Adhya-1 8 4 3 4 5 
Adhya-2 14 8 7 8 11 
Adhya-3 19 95 76 42 43 
Adhya-4 9 4 3 9 8 

 

7.4 Conclusions 

This study applied IDE to solving the pooling problems, and its performance  

is compared to a few deterministic methods recently reported in the literature. Our 

results indicate that IDE is capable of handling the difficult characteristics of this 

constrained global optimization problems. In particular, IDE is more robust and 

efficient in solving the multiple-quality pooling problems. Therefore, the study shows 

that the stochastic method, IDE is suitable and promising for pooling problems.  

 

 



Chapter 8 Heat Exchanger Network Retrofitting Using IDE 

  

214 

 

Chapter 8 

Heat Exchanger Network Retrofitting Using Integrated 

Differential Evolution*7 

8.1 Introduction 

One of the most frequent problems in industrial plants is excessive 

consumption of energy. Heat exchanger networks (HEN) are vital in the chemical 

process industries to reduce energy consumption (i.e., utilities). Although there are 

numerous papers addressing HEN synthesis, there is significantly less research on 

HEN retrofitting. Since 1970’s, rise in energy costs and environmental concerns have 

led to extensive research in developing technologies for heat integration. Many 

approaches have been developed for HEN synthesis, and there are still some 

challenges in solving HEN synthesis problems.  

HEN retrofitting is based on revamping the existing plant, and has greater 

industrial importance than synthesis. It is performed by changing structure (integer 

variables) and parameters (i.e., continuous variables) of HEN. The structural changes 

are mainly for the location of heat exchangers, splitters and mixers. The parameters 

are heat exchanger surface area, split ratio, etc. Additional factors that should be taken 

into account in retrofitting include structure constraints, relocation and re-piping costs, 

reassignment of existing heat exchanger units and effective use of existing heat 

exchanger areas. The main objectives of HEN retrofitting problems are reduction of 

utilities consumption, better utilization of existing exchangers, minimizing retrofitting 

                                                           
7* This chapter is based on the paper - Zhang, H. and Rangaiah, G.P., One-step approach for 
heat exchanger network retrofitting using integrated differential evolution.–Under preparation. 
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cost and identification of required structural modifications (Shenoy, 1995). Owing to 

many possible structural changes, number of discrete variables will be high. This 

makes the retrofitting problems highly combinatorial, and the changes are interrelated. 

Additional complex logical conditions have to be included in the optimization 

problems. These features make HEN retrofit problems much more difficult to solve.  

HEN retrofit methods can be classified into three broad categories: 

thermodynamic-based approach, mathematical programming methods and approaches 

combining both (Rezaei and Shafiei, 2009). The first retrofitting procedure was 

introduced by Tjoe and Linnhoff (1986), where cross-pinch exchangers are identified 

and eliminated from the existing network, followed by positioning of new exchangers 

or reusing eliminated exchangers from the previous step. Then, improvements can be 

made by considering heat-load loops between streams, process and utility heat 

exchangers. Yee and Grossmann (1986) proposed a mathematical formulation that 

targets three objectives for retrofitting: (1) maximum utilization of existing 

exchangers, (2) assigning the existing units to stream matches with minimum piping 

cost, and (3) minimum stream matches that require new units. However, this model 

does not consider all possible modification combinations and the optimal usage of 

area of each exchanger in order to reduce investment cost. To address these issues, 

Ciric and Floudas (1989) designed a two-step approach for HEN retrofitting. In the 

first stage, MILP formulation is used to optimize the cost associated with all possible 

stream combinations. Thus, information regarding how the existing exchangers 

should be assigned, area increase/decrease needed and how many units to be 

purchased are obtained. The second stage finds the network structure that has the 

minimum modification cost. The two-stage approach was later combined into a single 

stage, MINLP problem by Ciric and Floudas (1990). Due to the complexity of the 
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formulation, Generalized Benders Decomposition technique was employed to divide 

the problem into smaller, more manageable sub-problems. 

Asante and Zhu (1997) developed a technique for HEN retrofitting by 

combining pinch analysis with mathematical programming. The concept of network 

pinch was introduced by showing how network structure can affect the energy targets, 

creating a pinch point similar to process pinch. In their procedure, the network is first 

diagnosed using thermodynamics and mathematical programming to identify the best 

topology, which was further optimised in the later stage to obtain the final design. 

Although pinch analysis is easy to use and provides useful guidelines for 

implementing an efficient HEN, the outcome of the network depends largely on the 

decisions and experience of the engineer. Further, the design becomes much more 

complicated and difficult when a larger HEN is involved.  

Ponce-Ortega et al. (2008) proposed a new formulation for retrofit of HENs 

considering process modifications. The complex MINLP was solved by a local 

method: GAMs/DICOPT. The authors claimed that the MINLP model is non-convex. 

Hence, the global optimum can only be found with global optimization methods. 

Nguyen et al. (2010) extended the MILP model developed by Barbao and Bagajewicz 

(2005) for HEN synthesis, to HEN retrofit problems; the MILP model considers the 

addition and location of heat exchangers as well as splitting. The retrofit model is 

solved using CPLEX in GAMS.  

Li and Chang (2010) solved HEN retrofitting problems using simple pinch 

analysis. The proposed pinch-based approach is keeping additional capital investment 

to a reasonable level. In particular, every cross-pinch match is removed, and its heat 

loads on the hot and cold streams are both divided into two according to the pinch 

temperatures. At either side of the pinch, the divided heat loads on each stream are 
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combined and then matched according to a systematic procedure derived from simple 

pinch analysis. Li and Chang (2010) solved only small size HEN retrofit problems 

containing a maximum of five streams in total.  

Most formulations of HEN mathematical model involve nonlinear constraints 

and objective functions which might lead to non-convexities and more than one 

minimum. Such multi-modal functions pose a starting point problem; if a poor initial 

guess is provided, the solution might converge to a local solution (Price et al., 2005). 

In such cases, global optimization methods are required to find a better solution. The 

MINLP model of HEN retrofitting is NP-hard which makes it difficult for 

deterministic optimization methods, especially for larger problems (Furman and 

Sahinidis, 2001; Ponce-Ortega et al., 2008; Chen, 2008; Khorasany and Fesanghary, 

2009).  

Hence, in recent years, more studies have used stochastic approaches like 

simulated annealing and genetic algorithm to solve HEN optimization problems. 

Furthermore, unlike deterministic methods which require derivatives, stochastic 

global algorithms are applicable to any problem and simpler to implement. Silva et al. 

(2009) used particle swarm optimization for solving HEN retrofit problems. In this 

approach, HEN superstructure takes into account the operation and capital costs by 

maximizing energy recovery and minimizing installation costs. The case is treated as 

a constrained optimization problem whose objective is to minimize the total cost of 

HEN, composed of cost of utilities used and of new equipments. The constraints are 

thermodynamic limits and the obligation of reusing all the existing heat exchangers. 

Rezaei and Shafiei (2009) used GA with NLP and integer linear programming (ILP) 

for HEN retrofit problems. Their results show that the proposed method usually finds 

better solutions than those reported in the literature.  
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Smith et al (2010) developed a two-level pinch approach for optimization of 

HEN parameters and HEN structure. In this approach, Levenberg-Marquardt 

algorithm is used to optimize heat loads of existing matches for maximum heat 

recovery. The stream split fractions are optimized using sequential quadratic 

programming (SQP) algorithm. Simulated annealing with a feasibility solver is 

employed to solve HEN parameter (NLP) problem. Bochenek and Jezowski (2010) 

proposed a novel superstructure and HEN representation based on hot and cold nodes, 

and then used GA to solve the HEN retrofitting problem. Their results show that the 

proposed method is flexible and can find near global optimum efficiently. 

All the above studies using stochastic global optimization are two level-

approaches, and problem sizes are relatively small. In the first level, HEN structure 

(integer) variables are generated using a stochastic algorithm; in the second level, 

continuous variables such as heat exchanger areas and split ratios are optimized using 

a local optimizer. Owing to the complex nature of HEN retrofit problems, there can be 

many local solutions even with only continuous variables. However, using a 

stochastic global method for optimizing these continuous variables will significantly 

increase the computational time since there are many possible structures. Therefore, it 

is better to optimize both the integer and continuous variables simultaneously. This 

will not only reduce the computational time but also prevent the algorithm trapping at 

a local optimum. Hence, in this chapter, a single-step approach for HEN retrofitting 

using integrated differential evolution (IDE), is proposed and investigated for 

retrofitting problems.  

The remainder of this chapter is organized as follows. HEN retrofit problem is 

stated in Section 8.2. The methodology used for global optimization of HEN retrofit 

problems is described in Section 8.3. Several HEN retrofitting problems and their 
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solution using IDE are presented and discussed in Section 8.4. Finally, conclusions of 

this work are summarized in Section 8.5. 

8.2 HEN Retrofit Problem Statement 

In the general formulation of an HEN retrofitting problem, the topology of the 

existing HEN is fixed and known. Also, given are the parameters of the exiting heat 

exchangers, heaters and coolers, the initial and final temperatures of the process 

streams and the utilities. The objective of the problem is usually to minimize the total 

annual cost by modifying the locations and/or areas heat exchangers as well as adding 

new heat exchangers. The advantage of using the total annual cost as the objective 

function is to bring the balance (trade-off) between investment cost and utility cost. 

The problem is solved by performing a sequence of changes on the existing structural 

topology and parameters of the exchangers including heaters and coolers.  

• Structural changes: heat exchanger relocation by either changing the pairing of 

hot  and cold streams or simply moving it without changing the pairing, adding or 

removing split streams and adding new heat exchangers. 

• Parameter changes: changes in split ratio at the split streams and heat exchange 

surface areas of the exchangers. 

Structural changes usually result in discrete decisions while parameter changes are 

usually continuous in nature, except when standard heat exchanger areas are used. 

Furthermore, since the changes are often interrelated, logical conditions used in the 

formulation greatly increases the number of integer variables. Hence, the overall HEN 

retrofitting problem is a mixed integer non-linear programming (MINLP) problem 

and the parameter optimization is a non-linear programming (NLP) problem, both 

having multiple local minima.  
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8.2.1 Structural Representation 

The HEN structural representation used in this work is adopted from Jezowski 

et al. (2007) and Bochenek and Jezowski (2010). In order to make the following 

description easy to understand, frequently used terms are defined here. A stream is 

defined as any flow that needs to be heated or cooled, but does not change in 

composition. Hot stream does not literally refer to the temperature of the stream but is 

defined as a stream that needs to be cooled. Similarly, a cold stream is a stream that 

needs to be heated. A HEN superstructure is conceptual network including all 

possible matches of hot and cold streams, with heat exchangers (Kemp, 2007). It 

basically defines the entire search space of the HEN retrofitting problem. Lastly, 

nodes are potential locations on the streams where a heat exchanger can be placed 

upon. 

In contrast to the classical HEN structure representation where the 

superstructure is presented in the form of complex equalities and inequalities with 

large number of binaries, the structural representation used in this work defines only 

spaces for placing the heat exchangers using matrices. An example of the HEN 

structure representation using node-based model is illustrated in Fig. 1. To form the 

superstructure, side branches are first added to the main streams. As a rule of thumb, 

split streams are usually added to streams with a large product of flow-rate and heat 

capacity (FCP), in order to decrease the utility cost. This is because, under 

thermodynamic analysis, splitting a stream with large FCP helps to distribute the 

energy of the streams more effectively and thus less energy is wasted. See Kemp 

(2007) for a more detailed explanation of the FCP criteria in pinch analysis. Next, a 

number of nodes are distributed along all the hot and cold streams including split 

streams, if any. 
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This method of creating superstructure is requires inputs from the user; these 

are splitting one or more streams and number of nodes on each stream including split 

streams. This is perhaps an advantage of using this representation as it enables the 

user to define specific characteristics of the problem, taking into account his 

understanding of the problem. For example, the number of nodes on a stream can be 

defined according to the spatial constraints at the plant site. Also, heuristics and 

results of a more systematic analysis (e.g., from pinch analysis) are helpful.  

8.2.2 Matrices Used in Superstructure Representation 

To form the matrices in the superstructure representation, start by numbering 

all the main streams first, followed by the split streams. Hot and cold streams are 

given separate set of numberings. Next, nodes on each stream are numbered 

separately, starting from the inlet of the stream. The superstructure can thus be 

represented using two node vectors NOD
H and NOD

C, and two split matrices SPL
H 

and SPL
C. These vectors have the follow structures. 

• @AB �  
CDD
DE n#GnHGn8IJKK

KL  where elements of the vector is NB, the total number of hot (or 

cold) streams plus their split streams, and element ni equals to the number of 

nodes on the ith stream.  

• MNO �  P S#,# S#,+ S#,RG G GS8S,# S8S,+ S8S,R
T where number of rows is NS, the total number of 

split streams on hot (or cold streams), and number of columns is 3. The 1st column 

shows the stream number where the split stream occurs, the 2nd column shows the 

node number where the split occurs and the 3rd column shows the node number 

where the split stream mixes with the main stream. 
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The HEN retrofitting superstructure is fixed and unique for each retrofitting 

problem. Hence, all genetic operators, i.e., mutation and crossover, in an evolutionary 

optimization algorithm will only be performed on the structural matrix, SM. This 

matrix shows a specific HEN topology, where each heat exchanger is connected to a 

unique pair of nodes on the hot and cold streams.  

• MU � V hot stream#Ghot stream8]
hot node#Ghot node8]

cold stream#Gcold stream8]
cold node#Gcold node8]

a   with 

number of rows equal to NA, the maximum number of heat exchangers that can 

exist in the HEN, and four columns. First 2 columns involve the hot node address 

while the last 2 columns involve the cold node address.  

In summary, HEN retrofitting superstructure is built by adding potential splits 

(split streams) and potential points (nodes) where heat exchangers can be placed in 

the existing HEN topology. Fig. 8.1 shows an example of how the HEN can be 

represented using the matrices. H1, H2, H3, C1, C2 and C3 are main streams/branches, 

and H4 and C4 are split/side streams/branches. Black dot and arrow head denotes a 

hot or cold node for placement of a potential heat exchanger. For instance, dot number 

6 on H2 is a hot node because it lies on a hot stream. Construction of matrices SM, 

NOD and SPL in Figure 1 is as explained earlier. 

 

Figure 8.1: Example of a HEN Structure and its Corresponding Matrix 
Representation 
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8.2.3 HEN Model Calculations 

There are several ways to formulate the mathematical model for parameter 

calculations. Such formulations are tested and evaluated base on their effectiveness 

and ease of application in MATLAB used in this study. The model employed in this 

work is based on the work of Kotijabasakis and Linnhoff (1986). In this model, heat 

transfer surface area is used as the defining parameter for the heat exchanger instead 

of the usual heat load. Hence, following this model, decision variables used in IDE 

optimization will be heat transfer surface area of each exchanger in the HEN structure 

defined by the chosen discrete variables. Assumptions imposed on this model are 

similar to those used in other works: 

• Heat exchangers are of shell-and-tube type 

• Strictly counter-current flow scheme in all heat exchangers, i.e., temperature 

driving force is given by the logarithmic mean temperature difference 

• Enthalpy changes of streams are linear functions of temperature, i.e. FCP values 

are constant in each heat exchanger 

Under these assumptions, a heat exchanger can be modeled by the following 

equations: 

b � cd ∆�fg                                                                                                      (8.1) 

h � ij0�  k�lmno � � po q                                                                                 (8.2) 

h � ij0r  ��lmnr � � pr�                                                                                 (8.3) 

∆�s"p � ��tuvw�xyz{ �w��xyzv w�tu{ �
|} �~tuv �~xyz{ ��~xyzv �~tu{ �

                                                                            (8.4) 

∆�s" � ∆�" p                                                                                                (8.5) 

By combining Eqs (8.3) to (8.5), followed by some algebraic manipulations, 

the model used in this work can be represented as follows: 
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�lmn � � � p % k1 � � q� p �   �� � 1, 2, … , �                                              (8.6) 

where � � k�t�w�tq�t�w�t�k�t��t�q     �� � 1, 2, … , �                                                             (8.7) 

� � d��o�t  ,   � � � d��o�t�   �� � 1, 2… , �                                                       (8.8) 

0 � � � 1                    (8.9) 

b, ij0, � � 0                     (8.10) 

Superscript (*) is used to differentiate one stream from the other in the heat exchanger, 

i.e. if the hot stream has a superscript (*), the cold stream does not and vice versa. n is 

used to represent the total number of heat exchangers in the network. Advantages of 

this model are: it is based on heat exchanger surface area instead of heat load, and it 

does not require thermodynamic constraints on temperature approaches (Bochenek 

and Jewozski, 2010).  

In a typical HEN retrofitting optimization, exchanger equipment and stream 

data are usually available. Hence, FCPH, FCPC, U and the starting temperatures are 

known. Therefore, by setting the heat transfer surface area (A) as the decision variable 

in the optimization, we will have new values of A during the iterative calculations, 

making Eq. (8.6) linear. Thus, Eqs. (8.6) to (8.8) can be solved as a series of linear 

equations for the dependent variables, making the calculations much easier. Also, 

since heat transfer surface area is required directly in the calculation of investment 

costs, it is more convenient to base the calculations on it. In the typical formulation, 

additional constraints are added on temperature approaches to ensure a feasible HEN. 

However, in this formulation, such constraints are not required. For more information 

on this, refer to Bochenek and Jewozski (2010). 
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Each heat exchanger can be represented by a set of 2 equations similar to Eq. 

(8.6): one for hot stream and another for cold stream. Hence it is convenient to use a 

matrix notation:  

��r p� po � � �r 1 � �r1 � �o �o � �  ��lmnr�lmno �               (8.11) 

Where the parameters αH and αC are defined as follows: 

�r � k�{w �vq��{
�{��{w �v��v                                                                                        (8.12) 

�o � k�vw �{q��v
�v��vw �{��{                                                                                       (8.13) 

�r � d��o�v  ,   �o � d��o�{                                                                             (8.14) 

The model so far assumes a fixed FCP, suggesting that the split ratios are fixed. 

However, in our HEN retrofitting model, the split ratios are variables and therefore 

equations at the splitters and mixers have to be added. By setting the split ratios as 

decision variables in the optimization, we can still get linear Eq. (8.11) for 

optimization calculations. Eqs. (8.15) - (8.18) and Fig. 8.2 shows the energy and mass 

balance of the splitters and mixers.  

Energy balance of splitters:          �lmn# � � p ,     �lmn+ � � p             (8.15) 

Energy balance of mixers:            
�tu� �o�tu��o�tu� ��o�tu� % �tu� �o�tu��o�tu� ��o�tu� � �lmn            (8.16) 

Mass balance of splitter:               ij0 p � ij0lmn# % ij0lmn+              (8.17) 

Mass balance of mixers:                 ij0lmn � ij0 p# % ij0 p+               (8.18) 

 

 

Figure 8.2: Symbols Used in Equations for Splitters (left plot) and Mixers (right plot).  
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After calculating the temperature at each node on each stream, a heater or 

cooler is added to the end of cold or hot stream if the temperature of the last node 

does not reach the required target temperature of the particular stream.  

The decision variables include both integer and continuous variables. The 

number integer variables depends on the possible number of heat exchangers in the 

HEN, which is assumed to be number of existing exchangers including heaters and 

coolers plus two (Rezaei and Shafiei, 2009). Each exchanger requires 4 integer 

variables for its representation. Continuous variables include heat changers areas and 

stream split ratios, and so number of continuous variable is the number of heat 

exchangers plus number of stream splits assumed. The inequality constraints are that 

the node temperatures monotonically decrease (or increase) along each hot (or cold) 

stream. Also, final temperature of each hot (cold) stream should not be less (more) 

than or equal to the target temperature. 

8.3 Methodology for Global Optimization of HEN Retrofit 

Differential evolution (DE) is a global optimization technique classified under 

stochastic global optimization method. It is also developed using the idea of evolving 

an initial randomly generated population of potential solutions using operators like 

mutation, recombination and selection. However, in contrast to GA, which is often 

better suited for combinatorial problems as GA uses bit strings to encode the 

parameters and logical operators to modify them, DE is primarily a numerical 

optimizer (Price et al., 2005).  

In this paper, IDE algorithm of Zhang et al. (2011) is modified and used in this 

study. It integrates DE with taboo list, parameter self-adaptive strategy, and a local 

optimizer. This algorithm uses four mutation strategies: DE/rand/1/bin, DE/rand to 
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best/2/bin, DE/rand/2/bin and DE/current to rand/2/bin (Price et al., 2005), each with 

an initial probability of 0.25 and crossover probability Cr of 0.5. In subsequent 

generations, the probability of employing a particular strategy and its respective Cr 

changes according to the cumulative success rate from the previous generations. 

Hence, the program is termed “self-adaptive” as it learns and adapts itself to different 

kinds of problems by varying the mutation strategies and Cr values. The 

mutation/scaling factor F is also randomly chosen using normal distribution with 

mean of 0.5 and standard deviation of 0.3, to balance between the speed of 

convergence and the extent of search. The taboo list is used to ensure that the 

Euclidean distance between the trial vector and each vector on the list is larger than a 

specified taboo radius, to prevent the search from revisiting the same area. Finally, 

after the termination condition for global search is fulfilled, the best solution is 

optimized using SQP (a local optimizer) available in MATLAB.  

8.3.1 Handling Integer Variables 

Integers and binary variables may be encountered in chemical engineering 

problems. Within the optimization algorithm, these are also represented as continuous 

variables and converted into integers for evaluating the objective function and 

constraints. In this study, integers are handled by rounding the continuous variables to 

the nearest integers. Rounding off strategy is used for the generation of HEN structure. 

For example, in the SM in Fig. 7.1 to represent the HEN structure, the maximum 

number of hot (or cold) streams is 3 and minimum is 1; the maximum number of hot 

and cold stream node is 7 and 5 respectively, whereas the minimum number of 

hot/cold stream nodes is 0. So the generation of each element row of the SM matrix 

will be using the upper bound Xub = [3.49 7.49 3.49 5.49] and lower bound Xlb = 

[0.51 -0.49 0.51 -0.49]. In the initialization stage, each row of SM is generated 
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randomly between these lower and upper bounds followed by rounding off the 

continuous variables to the nearest integers. Note the use of 0.49 below the actual 

lower bound and also above the actual upper bound. This ensures equal probability of 

selecting any of the integers in the range of actual bounds.  

8.3.2 Handling Constraint and Boundary Violations  

In HEN retrofit problems, there are only inequality constraints on node 

temperatures along the streams. All these are handled using the popular penalty 

function method. The penalty function method converts the constrained problem into 

an unconstrained one by penalizing the infeasible solutions using penalty weights. A 

high value (1E+06) is used for the penalty weight for all the problems in this study. If 

any constraint is violated, the absolute value of the constraint violation is multiplied 

by the penalty weight and is added to the objective function, assuming that the 

problems are minimization type. If many constraints are violated, then each absolute 

violation is first multiplied with the penalty weight, and all of them are added to the 

objective function value. 

8.3.3 Objective Function 

Normally, the objective in HEN design is to design a cost-effective network. 

Therefore, total annualized cost, comprising operating cost and annualized investment 

cost (AIC), is taken as the objective function.  

Objective �  Operating Cost % AIC                                                            (8.19) 

Operating Cost � � Q*
� ¡¢£¡¤

*$# ¥ C¦§¨ % � Q

�©ªª«¡¤


$# ¥ C�§§|                               �8.20� 

AIC �   ­®�As
�¡¯

s$# ¥ C°±±² % ® � A"
�³¡´

"$# ¥ Cp�µ²¶ ¥ ·� ¥ �1 % ��p�1 % ��p � 1¸       �8.21� 
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The operating cost is the sum of hot and cold utilities cost. In Eq. 8.20, Chot and Ccool 

are the unit cost of hot and cold utility respectively; Nheater and Ncooler are the number 

of heaters and coolers in the HEN; Qj and Qk are the heat loads of the each heater and 

cooler. AIC is calculated from the total investment cost considering interest rate (i) 

and plant life (n years). In Eq. 8.21, Al and Cadd are the additional area to an existing 

exchanger and its cost, and Am and Cnew are the new heat exchanger area and its cost.  

8.3.4 Description of the Overall Methodology 

The overall methodology for the global optimization of HEN retrofit problems 

is shown in Fig.8.3. It shows the main steps in IDE and also in the HEN model 

calculations for objective function. Decision variables used in HEN retrofit model 

includes SM (structural changes) and heat transfer surface areas and split ratios 

(parameter changes). First, users need to provide the superstructure such as NOD and 

SPL matrices, existing HEN topology and stream properties, maximum number of 

exchangers and number of split streams as well as the lower and upper bounds on 

decision variables. The IDE algorithm parameters are taken from Zhang et al. (2011). 

Values used for the 3 problems are same except maximum number of generations, 

Gmax. Population size, NP = 50, tabu list size = 50, learning period = 50 and tabu 

radius = 0.01. Gmax = 10000 for first and second problems, Gmax = 20000 for third 

problem.  In the initialization step of IDE, NP solutions/individuals in the initial 

population are randomly generated within bounds of the decision variables.  

As the IDE used in this work is a general optimizer and not customized for 

HEN problems, solutions formed in the initialization stage or using its mutation and 

crossover operators could result in infeasible structures. Therefore, each of the 

individual in the population is sent for the structure feasible check. If the HEN 

structure generated (a) has more than one heat exchanger connected to the same node, 
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(b) has a heat exchanger on a node that is being used as a splitter or mixer for a split 

stream, or (c) has a heat exchanger on a node number that does not exist on the stream, 

then it will be corrected accordingly. For this, a correction function was created in the 

HEN model to modify the unacceptable heat exchanger(s), thus creating a feasible 

HEN structure. Then, the individual with its integer variables for the feasible HEN 

structure and the continuous variables (heat exchanger surface areas and split ratios) is 

sent for calculating the stream temperature at each node on each stream. Usually, a 

slightly change in the temperature of one node can affect the temperatures in other 

streams due to inter-connections through heat exchangers. Due to the strong 

correlation of the heat exchanger outlet temperatures at different nodes, convergence 

check and iterations, if required, are performed for all the nodes on all hot and cold 

streams.  

In the classic formulation, stream temperatures are usually specified as 

constraints. However, in our model and program, heaters and coolers are 

automatically added at the end of the streams if the target temperatures are not met. 

This ensures that the resulting HEN structure always yield solutions where steam 

target temperatures are met. Furthermore, by reducing the number of constraints, we 

are able to decrease the complexity of the optimization problem. In this study, a 

relaxation of 0.1oC on the final stream outlet temperature is used, i.e. no 

heaters/cooler is added if the stream outlet temperature falls within 0.1oC from the 

target temperature. This relaxation is reasonable since the outlet temperatures in 

industry can vary within small ranges due to heat losses, disturbances etc. Further, 

optimization is based on estimation and reasonable assumptions.  
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Figure 8.3: Flowchart of the Overall Approach Employed in This Study for HEN 
Retrofitting Problems 
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After all the heat transfer areas of the heat exchanger, heaters and coolers are 

confirmed, the program will do a simple assignment task. Aim of this task is to 

reassign the existing heat exchangers to new locations in the retrofitted HEN, and at 

the same time minimize the increase in heat transfer area required in each existing 

exchanger. This task is achieved by sorting the existing heat exchangers, with respect 

to their heat transfer areas, in decreasing order. The same is done to the required 

exchangers in the retrofitted HEN. Finally, the objective function, which includes 

investment cost and utility cost, is evaluated. The investment cost needed can be 

calculated based on the cost of increase in heat transfer surface area of existing heat 

exchangers, cost of new heat exchangers and cost of relocation and re-piping. The 

utility cost is calculated based the heater and cooler duties. This process is repeated 

until the termination criterion is met. Then, the best point obtained over all 

generations is refined using the local optimizer with respect continuous variables only. 

SQP method in MATLAB is used as the local optimizer in order to find the precise 

solution with fixed HEN structure because of its limitation in handling integer 

variables. 

8.4 Case Studies 

The whole program is implemented in MATLAB because it is versatile and 

used by researchers and practitioners in diverse fields. It includes global optimization 

algorithm, IDE, and HEN retrofit models. The computer system employed in this 

study is Intel Core 2 (Duo CPU 2.66 GHz, 3.25GB RAM) for which MFlops (million 

floating point operations per second) for the LINPACK benchmark program (at 

http://www.netlib.org/) for a matrix of order 500 are 594. In order to show the 

reliability of the stochastic optimization method, each problem is solved 10 times with 



Chapter 8 Heat Exchanger Network Retrofitting Using IDE 

  

233 

 

a different value for the random seed. The computational time and success rate of 

finding better solutions as well as the correct structure are reported.  

Three examples from small to large scale from the literature are studied to 

show the effectiveness and reliability of the proposed approach. The first example is 

taken from Shenoy (1995), and it was recently studied by Rezaei and Shafiei (2009) 

using GA with non-linear programming and integer linear programming. The second 

and third examples are relatively large size problems which are for two different 

crude oil preheat trains. One was investigated by Briones and Kokossis (1999) and 

Rezaei and Shafiei (2009); and the other more complex one was recently studied by 

Smith et al. (2010).  

8.4.1 Case Study 1 

This HEN retrofit example is in a process scheme typically encountered in 

chemical industries. It involves a portion of a petrochemical process that includes an 

exothermic reactor and distillation column. From the HEN viewpoint, it has two hot 

and two cold streams. Details of streams, existing exchangers and other information 

are given in Table 8.1 and Fig. 8.4(a) (Shenoy, 1995). 

Table 8.1. Streams and Cost Data for Case Study 1 (Shenoy, 1995). 

Streams Tin (oC) Tout (oC) FCP (kW/oC) Cost ($/kW-year) 

H1 175 45 10 

H2 125 65 40 

C1 20 155 20 

C2 40 112 15 

Steam 180 179 120 

Water 15 25 10 
Notes: U = 0.1 kW/(m2-K) for all exchangers; capital cost ($) = 30000 + 750A

0.81 for all new 
exchangers with A in m2; capital cost ($) = 750∆A

0.81 for additional area of ∆A m2 in an 
existing exchanger; plant lifetime: 2 years; interest rate = 10%; and LMTD is used for area 
calculations. 
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First, the proposed method is used for solve this problem without stream split. 

Number of integer and continuous variables in the optimization problem is 16 and 4 

respectively. The optimal results obtained are compared with Shenoy (1995) which 

also did not involve the stream split. The results shown in Table 8.2 shows that the 

proposed method is able to obtain a much better objective function value (total annual 

cost). The operating and investment costs in Shenoy (1995) are $77863 and $164968 

but these are respectively $77850 and $144513 in this work. It is clear that the 

proposed method obtained the lower investment cost using slightly lower operating 

cost.  

The original HEN for case study 1 is shown in Fig. 8.4 along with the 

retrofitted network using the proposed approach. It is obvious that, with one additional 

heat exchanger, both hot and cold utilities are significantly reduced. The success rate 

of finding the correct structure is 100%, and that of finding a better solution is 90%. 

This indicates that even though the retrofitted HEN structure is correct, there are 

multiple local minima with respect to continuous variables alone. The average 

computation time for solving this problem is 1256 s. 

Table 8.2. Comparison of Results for Case Study 1. 

 Split? 
Operating 
cost ($) 

Investment 
($) 

Total annual cost 
($/year) 

Shenoy (1995) No 77863 164968 172916 

This work No 77850 144513 161117 
Rezaei & Shafiei 

(2009) 
Yes 79810 129212 154260 

This work Yes 81150 125799 153634 
Note: Operating cost in the existing network is $181200 



Chapter 8 Heat Exchanger Network Retrofitting Using IDE 

  

235 

 

 

 

Figure 8.4. HEN in Case Study 1 without Stream Split: (a) Original Network, and (b) 
Retrofitted Network without Stream Split; Temperatures are in 0C and Under-lined 

Values are Exchanger Duties 

Rezaei and Shafiei (2009) studied the HEN problem in case study 1 

considering stream spit. The results show that a much better solution is obtained with 

stream split compared with no stream split in Shenoy (1995); see Table 8.2. In order to 

test the proposed method, HEN retrofit with stream split is also studied. One stream 

split on hot stream 2 is assumed. The stream split ratio obtained from this work is 

0.535 compared to 0.53 in Rezaei and Shafiei (2009). The retrofitted network by 

Rezaei and Shafiei (2009) and in this work are shown in Figs. 8.5(a) and (b) 

respectively. The structure of both these networks is very similar. However, in 

retrofitted network obtained in this work, one heat exchanger (E3) did not change 

location whereas all exchangers changed locations in the network of Rezaei and 

Shafiei (2009). The total additional area of the present solution is 336.2 m2, slightly 

less than that in Rezaei and Shafiei (2009) as shown in Table 8.3. The results in Table 

8.2 show that the proposed method obtained a better solution in terms of investment 
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cost and total annual cost, but using slightly more utilities as indicated by the 

operating cost (Fig. 8.5).  

The heat exchanger reassignments and area distribution after the retrofit by the 

proposed method and method in Rezaei and Shafiei (2009) are shown in Table 8.3. 

Success rate of finding the correct structure is 100%, and that of finding a better 

solution is 60%. This again indicates that, though the retrofitted HEN structure is 

correct, there are still multiple local minima with respect to continuous variables. The 

average computation time for solving HEN retrofit problem in case study 1 with 

stream split, is 1475 s which is more that for the problem without stream split. This is 

expected since HEN retrofit with stream split is more difficult to solve. 

 

 

Figure 8.5. HEN in Case Study 1 with Stream Split: (a) Retrofitted Network of Rezaei 
and Shafiei (2009), and (b) Retrofitted Network in This Work 
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Table 8.3. Heat Exchanger Reassignments and Area Distribution in Case Study 1 with   
Stream Split 

  Rezaei and Shafiei (2009) This work 

Match number 
Existing 

area 
Retrofit area 

(m2) 
Additional 
area (m2) 

Retrofit area 
(m2) 

Additional area 
(m2) 

E1 268.7 272.6 3.9 488.6 219.9 
E2 358.9 358.6 - 362.7 3.8 
E3 256.2 493.6 237.4 256.7 - 
E4 217.2 163.0 - 164.7 - 

New - 110.8 110.8 112.5 112.5 
Total additional 

area (m2) 
- - 352.1 - 336.2 

 

8.4.2 Case Study 2 

This example is crude oil preheat train of a petroleum refinery from Briones 

and Kokossis (1999). It involves six hot and one cold streams. Details of the streams, 

existing exchangers and other information used for calculations are given in Table 8.4. 

The original network for crude oil pre-heat train taken from Briones and Kokossis 

(1999) is shown in Fig. 8.6(a). The retrofitted network using the proposed method in 

Fig. 8.6(b) uses 3 coolers less than those in the original network and also less utility. 

Further, the retrofitted network has only 12 exchangers instead of 13 exchangers in the 

original network. 

Table 8.4. Stream and Cost Data for Case Study 2 (Briones and Kokossis, 1999). 

Streams Tin (K) Tout (K) CP (kW/K) Cost ($/kW-year) 
H1 622 368 86 
H2 572 393 21.4 
H3 549 523 184.7 
H4 503 368 23.5 
H5 479 451 129.4 
H6 455 348 11.5 
C1 316 633 147.9 

Steam 773 772 60 
Water 293 313 5 

Note: U = 0.265kW/(m2-K) for all exchangers; capital cost ($) = 3460 + 300A for a new 
exchanger of area A m2; capital cost ($) = 300∆A for additional area of ∆A m2 in an 
existing exchanger; capital cost($) = 300 for reassignment of an existing exchanger; plant 
lifetime = 5 years, rate of interest = 0%; LMTD is used for area calculations. 
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Figure 8.6. (a) Original Network of Case Study 2; (b) Retrofitted Network  

Several researchers have studied this example without considering stream split 

(Briones and Kokossis, 1999; Ma et al., 2000; Rezaei and Shafiei, 2009). Accordingly, 

this study too does not consider stream split for comparison with these works. Number 

of integer and continuous variables in the optimization problem is 40 and 10 

respectively. Results for solving the HEN retrofit problem in case study 2 by the 

proposed method are summarized in Table 5. They show that the proposed method is 

able to obtain a better objective function value by about 8.5%. This optimal solution 

incurs marginally higher operating cost but requires only half the investment 

compared to the reported solutions. This clearly shows that the proposed method can 

find a much better solution. Success rate of IDE to find the better solution is 60%, and 

the optimal network structure is found to be different in different runs. Average 

computation time for solving this problem is 13911 s. 
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Table 8.5. Comparison of Results for Case Study 2. 

 Operating cost ($) Investment ($) Total annual cost ($/year) 
Briones and Kokossis 

(1999) 
571004 595842 690173 

Ma et al. (2000) 571005 485139 668033 
Rezaei and Shafiei 

(2009) 
556630 547240 666078 

This work 574400 288180 632036 
Note: Operating cost in the existing network is $822100 

 

Heat exchanger reassignments and area distribution after the retrofit by the 

proposed method and by the method in Rezaei and Shafiei (2009) are shown in Table 

8.6. The total number of heat exchanger units used in the solution of Rezaei and 

Shafiei (2009) is 11 compared to 12 in this work. However, in the present solution, 

two exchangers (E11 and E13) did not change location and total additional area is just 

949.6 m2 whereas all heat exchangers have changed locations and total addition area is 

almost twice at 1818.14 m2 in the solution of Rezaei and Shafiei (2009). Hence, as can 

be seen in Table 8.5, heat exchanger reassignments and area distribution after the 

retrofit by the proposed method require just about half the investment cost for the 

retrofit solution in Rezaei and Shafiei (2009).  

Table 8.6. Heat Exchanger Reassignments and Area Distribution in Case Study 2. 

Match number 
Existing 
area (m2) 

Rezaei and Shafiei (2009) This work 
Retrofit area 

(m2) 
Exchanger 
assignment 

Retrofit 
area (m2) 

Exchanger 
assignment 

1 370 957.21 E2 508.6 E3 
2 347 551.02 E6 485.9 E5 
3 448 829.55 E1 680.7 E2 
4 280 522.59 E7 287 E6 
5 448 750.74 E3 759.1 E1 
6 188 181.02 E5 211.8 E9 
7 53 83.46 E10 114 E4 
8 280 335.48 E4 278.9 E7 
9 108 122.09 E8 123.5 E10 

10 45 20.30 E11 66 E8 
11 279 206.67 E9 228.6 E11 
12 27 - - - - 
13 45 - - 28.3 E13 

Total additional area  1818.14  949.6  
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8.4.3 Case study 3 

Case study 3 is on retrofitting HEN for pre-heating crude in an existing 

atmospheric crude unit (Gadalla et al., 2003). It involves nine hot and three cold 

streams, and there are four stream splits in hot streams and one in cold streams. This 

example was also employed in the work of Chen (2008) as an example to demonstrate 

the application of HEN models. Stream and cost data for case study 3 are given in 

Table 8.7.  

Table 8.7. Stream and Cost Data for Case Study 3 (Chen, 2008). 

Streams Tin (oC) Tout (oC) FCP (kW/ oC) Cost ($/kW-year) 
H1 298 268 427.60 

H2 339 100 211.13 

H3 250 200 357.64 

H4 257 50 25.10 

H5 170 150 558.75 

H6 282 40 83.88 

H7 100 77 2081.09 

H8 77 40 35.70 

H9 189 40 41.52 

C1 25 365 454.39 

C2 271 282 798.45 

C3 182 189 946.43 
Flue gas 1500 800 306.8 
Water 10 40 5.25 

Note: U = 0.5kW/(oC-m2) for all exchangers; U = 0.667kW/(oC-m2) for all heaters and U = 
0.714 kW/(oC-m2) for all coolers; capital cost ($) = 94093 + 1127A

0.9887 for each new 
exchanger of A m2; capital cost ($) = 9665∆A

0.68  for additional area of ∆A in an existing 
exchanger; plant lifetime = 5 years; rate of interest = 0%; LMTD is used for area calculations. 

The existing crude oil pre-heat train of the refinery from Gadalla et al. (2003) is 

shown in Fig. 8.7(a). There are 13 heat exchangers, 3 heaters and 8 coolers in this 

network. The retrofitted network (Fig. 8.7b) using the proposed method has only 11 

heat exchangers, 1 heater and 6 coolers. Furthermore, in this network, one of the 

stream splits is removed (hot stream 9 in Fig. 8.7b). Table 8.9 summarizes heat loads 

redistribution of the retrofitted HEN. Success rate of finding the better solution is 80%. 

However, the same network structure was not obtained in all runs. Number of integer 
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and continuous variables in the optimization is 60 and 20 respectively. These 

continuous variables include heat exchanger areas and five streams split ratios which 

are on hot stream H1, H2, H3, H9 and cold stream, C1. Average computation time for 

solving this problem is 39086 s. Although this is quite large, it can be reduced by 

compiling the MATLAB code or using other software such as FORTRAN. 

Recently, Smith et al. (2010) studied this HEN retrofit problem with variable 

FCP. Their results in Table 8.8 show that, even without HEN structure modification, 

the operating cost using variable FCP will decrease by 18%. With HEN structure 

modification, the operating cost for the variable FCP case will decrease by 23%. In the 

present work, we used constant FCP as in Gadalla et al. (2003). The optimization 

results for HEN retrofitting (last column in Table 8.8) show that operating cost 

reduces by 36%. This indicates that the proposed method finds a better HEN structure 

which significantly reduces utility consumption. However, the retrofitted structure 

requires more additional areas and so increased investment cost. Because of the large 

reduction in the operating cost, total annual cost of this work is significantly lower 

than others (Table 8.8).  

Table 8.8. Comparison of Results for Case Study 3. 

 

Solutions in Smith et al. (2010) This work 

Existing 
Network 

Variable FCP        
(without modification) 

Variable FCP            
(with modification) 

Constant FCP            
(retrofitted) 

Hot Utility (kW) 88,951 72,969  68,593  56,935  
Cold Utility (kW) 92,300 76,288  71,908  60,265  
Operating cost 
($/year) 27,770,330 22,783,800  21,418,400  17,784,049  

Additional area (m2) - 1334 1655 3794 
Investment ($) - 2,392,760 2,730,390 4,913,606 

Total annual cost 
($/year) - 23,262,352 21,964,478 18,766,770 
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In order to investigate the effect of variable FCP of hot and cold streams, HEN 

structure of the retrofitted HEN (in Fig. 8.7b) obtained assuming constant FCP is used. 

With this structure and variable FCP of streams, local optimization using heat 

exchange areas and stream split ratios as decision variables was performed. This local 

and partial optimization reduces the operating cost to $20,884,430 and the investment 

cost is $4,527,344. This is because of the large FCP value for cold stream 1 at higher 

temperature which cause the higher heat load of the heat in the stream. The total 

annual cost of 21,789,899 ($/y) is higher than that using constant FCP, probably due 

to multiple minima even with only continuous variables and the inability of a local 

optimizer to find the global solution. However, this is better than the solution in Smith 

et al. (2010).  
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Figure 8.7. HEN in Case Study 3: (a) Original Network and (b) Retrofitted Network  

Table 8.9. Heat Exchanger Reassignments and Heat Loads Distribution in Case Study 3. 

Match number 
Existing heat 
loads (MW) 

From Smith et al. (2010)  This work 
Redistributed heat loads 

(MW) 
 Redistributed heat 

loads (MW) 
1 13.25 11.87  24.99 
2 13.19 14.12  15.62 
3 0.86 0.93  0.18 
4 0.11 10.1  - 
5 7.47 16.29  39.26 
6 7.33 1.63  5.49 
7 11.42 13.74  2.27 
8 11.52 10.76  3.11 
9 0.89 1.7  1.45 

10 2.05 2.91  5.67 
11 2.37 1.32  8.30 
12 1.74 3.87   - 
13 8.76 7.64   6.63 

14hu 73.54 57.61  56.93 
15hu 8.78 8.78   - 
16hu 6.63 6.63   - 
17cu 1.09 -   - 
18cu 3.08 -  - 
19cu 4.33 4.26  5.02 
20cu 11.18 11.18  11.18 
21cu 20.19 10.2  6.19 
22cu 47.87 47.86  22.89 
23cu 1.32 1.32  1.32 
24cu 32.44 1.58  13.67 

Total heat Load (MW) 291.41 246.3  230.14 
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8.5 Conclusions 

One-step optimization using the stochastic global optimizer, IDE is proposed 

for HEN retrofitting and tested it for 3 case studies. It optimizes the structure (discrete 

variables) and the heat exchanger areas and split ratios (continuous variables) 

simultaneously in one step. The new structure generated during IDE iterations is first 

be checked for feasibility before model calculations; thus, only feasible structures are 

evaluated. This approach not only increases the reliability of finding the better 

solution by preventing algorithm trapping at local optimum) but also increase the 

computational efficiency. Three examples from small to large-scale HEN retrofit 

problems with or without stream split are studied using IDE. The proposed one-step 

approach using IDE for HEN retrofit gave results better than those in the literature, 

and is very promising. It is planned to test this one-step approach for HEN retrofit 

problems with variable heat capacity in our future work.  

 

 

 



Chapter 9 Conclusions and Recommendations 

  

245 

 

Chapter 9 

Conclusions and Recommendations 

9.1 Conclusions of the Present Study  

The stochastic global optimization algorithm, IDE is developed and its 

applications to chemical engineering processes have been studied in this doctoral thesis. 

In addition, adaptive constraint relaxation is proposed and studied for optimization 

problems with equality constraints. The major contributions and conclusions of this study 

are summarized in this section.  

1. A review of global optimization algorithms with their applications in 

thermodynamic modeling is presented. Selected deterministic and stochastic 

global optimization algorithms are briefly described, and then their use for 

phase stability analysis, Gibbs free energy minimization and parameter 

estimation in phase equilibrium models, is reviewed. In short, a general 

overview of global optimization for modeling the phase behavior of systems 

with and without chemical reactions is presented. 

2. The IDE algorithm, which integrates DE with tabu list of tabu search, self-

adaptive strategies and a novel stopping criterion based on the number of 

rejected points, is developed. The effectiveness of the proposed stopping 

criterion and IDE is assessed on a wide range of benchmark functions. The 

performance of IDE is compared with state-of-the-art stochastic global 

optimization algorithms recently published in the literature. The results show 

that the reliability of finding the global optimum by IDE is better than many 
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other stochastic global optimizers, and that number of function evaluations 

required by IDE is significantly reduced due to the proposed stopping criterion. 

3. IDE is used to solve parameter estimation problems such as in dynamic models 

and VLE data modeling. The performance of IDE for these problems is 

compared with that of DE, DETL, PSO, SA and a deterministic algorithm, 

BARON. IDE is shown to be better than or comparable to these algorithms for 

parameter estimation in both dynamic systems and VLE data modeling. 

4. Phase equilibrium calculations and phase stability analysis are challenging 

problems due to the high non-linearity of thermodynamic models. IDE with and 

without tabu list, both with SCmax stopping criterion, are used for solving these 

problems. The performance of these stochastic algorithms is compared to 

ascertain their relative strengths for phase equilibrium and phase stability 

problems including without and with chemical reactions. Overall, IDE with tabu 

list has better performance for the phase equilibrium, chemical equilibrium and 

phase stability problems. 

5. A novel constraint handling method, which incorporates adaptive constraint 

relaxation with feasibility approach, is proposed for constrained problems. In 

this, both the equality and inequality constraints are relaxed in order to increase 

temporarily the feasible region in the initial exploration. The feasible region is 

gradually shrunk according to the fraction of feasible individuals in the 

population. The proposed constraint handling technique with IDE is tested for 

solving benchmark problems with constraints, and subsequently applied to 

many chemical engineering problems with equality and inequality constraints. 

The results show that the proposed constraint handling method with IDE is 
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reliable and efficient for solving constrained optimization problems, even with 

equality constraints. 

6. The pooling problem is an important optimization problem in petroleum 

industry. Owing to the bi-linear terms in the formulation, this is a non-convex 

optimization problem with multiple minima. The application of IDE to many 

standard pooling problems from the literature is investigated, for the first time 

by a stochastic optimizer. The results demonstrate that IDE algorithm is a good 

alternative for solving pooling problems. 

7. IDE algorithm is modified for handling both integer and continuous variables, 

and then applied to solve HEN retrofitting problems by one-step approach, 

where both discrete and continuous variables are simultaneously optimized. 

This single-step approach not only avoids the algorithm trapping at a local 

optimum but also improves the computational efficiency. Three examples from 

small to large-scale HEN retrofit problems with and without stream split are 

studied. The results clearly show that the proposed one-step approach for HEN 

retrofit is very promising.  

9.2 Recommendations for Future Work 

Stochastic global optimization is an active research area and there is scope for 

many studies as well as its applications. Some of possible works for future study have 

been identified below.  

Development of more efficient and reliable global optimization algorithms: 

Studies indicate that both deterministic and stochastic global optimization methods 

require further improvement for solving application problems robustly and efficiently. 

Compared to deterministic methods, stochastic optimization techniques involve 
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simple concepts, do not require any assumptions and can be used for any type of 

problem. Hybridization to synergize selected features of different stochastic 

algorithms is a promising approach for developing better algorithms since reported 

results show that the performance of pure algorithms is almost always inferior to that 

of hybrid algorithms. Hence, further studies should be focused on the development of 

hybrid strategies to improve the reliability and efficiency of stochastic optimization 

methods. In addition, alternative termination criteria should be studied and tested for 

reliably determining the convergence of stochastic optimizers (Shoen, 2009). It is also 

desirable that these methods should have no or fewer tuning parameters. 

Even though stochastic global optimizers have been successfully applied in 

many fields, most of the proposed algorithms have been tried and shown to be 

effective for small to medium size problems. Stochastic methods also face the “curse 

of dimensionality”, which means that the performance of the algorithm decreases 

significantly as the problem size increases (Wang, 2008). Several researchers have 

focused on developing stochastic algorithms for solving large global optimization 

problems (Wang et al., 2007; Yang et al., 2008; Cui et al., 2008; Yang et al., 2009). 

Hence, testing and improving IDE for such problems is important and should be 

studied.  

Solution of large global optimization problems: Stochastic global 

optimization algorithms have been successfully employed in many fields, from 

science to engineering, due to their robustness, simple concept and easy to implement. 

But most of the proposed algorithms have been tried and shown to be effective for 

small to medium size problems (i.e., number of decision variables from 2 to 50). 

Stochastic methods also face the “curse of dimensionality”; this means that the 

performance of the algorithm decreases significantly as the problem size increases 
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(Wang, 2008). Optimization problems for some applications can contain a large 

number of variables; for example, Schulz et al. (2005) used DICOPT (a solver in 

GAMS) to solve supply chain optimization of large scale continuous processes with 

more than thousand variables and constraints. Although GAMs/DICOPT can handle 

high dimension and non-convex optimization problems, it is just a local method. 

Hence, development of stochastic global methods to handle large optimization 

problems is an important and challenging task.  

Several researchers have focused on developing stochastic algorithms for 

solving large global optimization problems. Wang et al. (2007) proposed a hybrid 

method which combines SA with a gradient-based method for large global 

optimization problems. In addition, the “stretching” technique is incorporated in this 

hybrid method in order to achieve faster convergence. Results show that their 

algorithm has high success rate and high solution precision. Cui et al. (2008) proposed 

a PSO with fitness uniform selection strategy and random walk strategy. This 

proposed algorithm was tested on seven benchmark functions with dimension up to 

3000. Their results show the good performance of the proposed algorithm compared 

to two other variants of PSO (namely, standard PSO and attractive & repulsive PSO). 

Yang et al. (2008) proposed two DE algorithms, named DECC-1 and DECC-2, for 

problems up to 1000 variables; the algorithms are based on the cooperative co-

evolution framework. Their results show that these proposed algorithms have better 

performance on benchmark functions. Subsequently, a high dimension global 

optimization algorithm, JACC-G was proposed by Yang et al. (2009). This algorithm 

uses DE combined with cooperative co-evolution strategy and self-adaptive parameter 

strategy. Their results show the efficiency improvement for large problems compared 

to other algorithms. So, cooperative co-evolution and/or hybridization strategies 
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should be investigated for solving large global optimization problems, in the near 

future. 

IDE for multi-objective optimization: Many real world problems involve 

several objectives which are conflicting in nature. It is often difficult to formulate 

these problems into a single objective optimization problem. Solution of such 

problems is known as multi-objective optimization (MOO). The conflicting objectives 

in MOO problems lead to a set of optimal solutions called the Pareto-optimal 

solutions, which are equally good for the specified objectives and none of them can be 

said to be better than another without additional information about the problem. These 

solutions provide better understanding of the trade-off among objectives and also 

more choices to the decision-maker to choose a particular solution for implementation. 

MOO problems become even more complex if the objective functions are highly non-

linear and non-convex. Over the last two decades, MOO field has grown significantly 

and many chemical engineering applications of it have been reported (Masuduzzaman 

and Rangaiah, 2009). Although IDE has only been used for single objective 

optimization, it has the capability of solving MOO problems too. Therefore, study of 

IDE for MOO problems is one of the interesting and recommended works. 

IDE for generalized pooling and water management problems: The 

generalized pooling problem can model diverse applications in refineries, chemical 

plants and water treatment facilities (Misener et al., 2010). It differs from the regular 

pooling problem in that it includes connections/flows between the pools. Misener et al. 

(2010) and Faria and Bagajewicz (2011) applied the generalized pooling problem 

approach to a complex industrial wastewater treatment system using p-formulation, 

and solved the problem by deterministic global optimization methods. The IDE in 
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Chapter 7 has been successfully applied to pooling problems. Therefore, solving 

generalized pooling problems with stochastic global optimization algorithm, IDE, will 

be one of the potential future works.  

IDE to HEN retrofitting problems with varying heat capacity: Several 

researchers have studied HEN retrofitting problems with constant heat capacities, as 

reviewed in Chapter 8. However, the thermal properties are highly dependent on 

temperature for some streams. Thus, varying heat capacities often arise when multi-

component streams are cooled or heated, such as in refining preheat trains. Smith et al. 

(2011) presented a methodology which uses network pinch approach with structure 

modifications and cost optimization to solve HEN retrofitting problems with varying 

FCP. The proposed one-step approach using IDE for HEN retrofitting with constant 

FCP has shown good reliability and efficiency (see Chapter 8). Therefore, this 

approach with IDE should be investigated further for HEN retrofitting problems with 

varying FCP values. 
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