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Summary

Nowadays, optimization is a necessity in almost every field such as business,
science and engineering. In real life, most of the optimization problems are highly
nonlinear and non-convex. The traditional optimization techniques can be easily
trapped at a local optimum. So, global optimization becomes more and more
important since it can overcome this difficulty and can find the global optimum.
However, there are still many challenges in developing reliable, robust and efficient
global optimization methods and using these techniques to solve the difficult and
complex application problems. Therefore, a study of global optimization methods and
their applications is important and necessary. This thesis focuses on the development
of a stochastic global optimization technique with novel strategies for termination and
constraints handling, and its application to chemical engineering problems.

First, an overview of various global optimization algorithms together with
their categories, advantages and working principles is provided. Then, global
optimization applications in thermodynamics, namely, phase equilibrium modeling,
calculations and stability analysis, are reviewed. Next, an integrated differential
evolution algorithm (IDE) is developed. It combines parameter self-adaption, tabu list,
new stopping criterion and local search. The effectiveness of IDE is demonstrated on
different sets of benchmark problems and by comparison with the latest DE
techniques in the literature. Subsequently, IDE is used to solve many different
parameter estimation problems in vapor-liquid equilibrium modeling and in nonlinear
dynamic systems. Further, performance of IDE for phase equilibrium and stability
problems is studied and compared with other global optimization algorithms.

Many application problems involve equality and inequality constraints. Hence,

a new constraint handling method is developed for handling equality and/or inequality

X



constrained problems. It utilizes self-adaptive relaxation of constraints and the
feasibility approach for selection. IDE with the proposed constraint handling method
is tested for solving benchmark problems and chemical engineering applications with
equality and/or inequality constraints. The results show that the proposed constraint
handling method is reliable and efficient for solving constrained optimization
problems. The pooling problem is an important optimization problem that has not
been studied using stochastic global optimization algorithms. Hence, the constraint
handling method with IDE is applied to solve the pooling problems. The performance
comparison with the recent results by deterministic methods shows that our algorithm
is a good alternative method for solving the pooling problems.

Finally, IDE algorithm is modified to handle both discrete and continuous
variables. In addition, one-step approach for solving heat exchanger network (HEN)
retrofit problems by this modified IDE is proposed. In this approach, HEN structure
(integer variables) and retrofitting model parameters (continuous variables) are
simultaneously optimized, which not only avoids the algorithm trapping at a local
optimum but can also improve the computational efficiency. The performance of the
modified IDE algorithm and the proposed one-step approach is compared with the
reported state-of-the-art methods for HEN retrofit problems. This shows that our

approach is efficient and robust for global optimization of HEN retrofit problems.

Xl
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Chapter 1 Introduction

Chapter 1

Introduction

This chapter provides a general introduction to global optimization techniques,

categories, challenges, applications and motivation for this study.

1.1 Global Optimization

Nowadays, optimization is a necessity in almost every field such as business,
science and engineering. In every area, some quantitative optimization techniques are
required in order to improve the performance of applications and processes. To
achieve this goal, we need to have a mathematical model for the application and an
objective function which depends on decision variables that are subject to relevant
conditions or constraints. Most of the optimization problems in real life are nonlinear
and non-convex in nature, and so optimization of such problems should find a global
optimum rather than a local optimum. However, classical optimization techniques
have difficulties in finding the global optimal solution since they can easily be trapped
in local minima. Moreover, they cannot generate or even use the global information
needed to find the global minimum of a problem with multiple local minima. The
global optimization techniques can overcome the disadvantages of the classical
optimization techniques. They try to find the values of decision variables to optimize
the objective function globally and not just locally.

Interest in global optimization has increased in the last 10-20 years in order to
develop effective algorithms for finding global optimal solutions for different kinds of
optimization problems. Global optimization refers to finding the best (either

maximum or minimum) value of a given non-convex function in the specified feasible
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region. Some optimization problems involve finding the maximum of an objective
function such as profit, production rate, etc. whereas others involve finding the
minimum of an objective such as cost, processing time, etc. Often, optimization
methods are described for minimization. If the problem is for maximization, it can be
transformed to minimization by simply negating the objective function.
A typical global optimization problem features an objective function,
equality/inequality constraints and upper/lower bounds on decision variables.
Minimize f(x)
Subjectto h,(x)=0,i=1,2,...,ml
g;,(x)<0,j=1,2,....m2 (1.1)

x,l{ <x, <x/,k=12,..,n

Here, x; is an n-dimensional vector of decision variables, f(x) is an objective function,
hi(x) = 0 and gj(x) < 0 are respectively m1 equality and m2 inequality constraints, and

x¢ and x;" are respectively the lower and upper bounds of x;.

1.2  Classification of Global Optimization Techniques

There are many global optimization techniques available currently. However,
global optimization is still challenging. Available global optimization methods can be
classified in two broad categories (Pardalos et al., 2000; Liberti and Kucherenko,
2005): deterministic and stochastic (or probabilistic) global optimization methods.

The commonly used methods are classified and shown in Figure 1.1.
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Figure 1.1: Classification of Global Optimization Methods

Deterministic methods include branch and bound methods, homotopy
continuation methods, interval analysis, outer approximation methods, global terrain,
etc. They are most often used for specific problems and when the relation between the
characteristics of the possible solutions and the problem is known (Nocedal and
Wright, 1999; Weise, 2008). Deterministic methods can guarantee the global
optimality of the final solution under certain conditions such as continuity and
convexity. However, no algorithm could solve general global optimization problems
with certainty in finite time (Guus et al. 1995; Moles et al., 2003). If the relation
between a solution candidate and its “fitness” is not so obvious or too complicated, or
the dimensionality of the search space is very high, the global optimization problem
becomes harder to solve using deterministic methods (Weise, 2008). For mixed
integer nonlinear problems (MINLP), some deterministic methods require solving a
relaxed problem or they solve a sequence of NLP with fixed integer values (Exler et

3
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al., 2008). In fact, although several classes of deterministic methods (e.g., branch and
bound) have sound theoretical convergence properties, the associated computational
effort increases very rapidly (often exponentially) with the problem size (Moles et al.,
2003).

The well-known stochastic global optimization methods include genetic
algorithm, evolutionary strategy, simulated annealing, differential evolution, tabu
search, ant colony optimization, particle swarm optimization and scatter search. The
recent book by Rangaiah (2010) covers these and their applications in chemical
engineering. The most challenging global optimization problems are those without
any known structure that can be used, so-called black-box optimization problems
(Pardalos et al., 2000; Exler et al., 2008). Stochastic optimization algorithms, whose
search is random, are designed to deal with such black-box optimization problems or
highly complex optimization problems. They generally require little or no additional
assumptions on the optimization problem, are simple to implement and use, and do
not require transformation of the original problem. These characteristics are especially
useful if the researcher has to link the optimizer with a simulator such as Aspen Plus
and Hysys. On the other hand, stochastic algorithms require infinite number of
iterations to guarantee global optimality, but they can locate the global optimum with
high probability in modest computation times (Moles et al., 2003; Lin and Miller,
2003). Therefore, this thesis focuses on the development and applications of the

stochastic global optimization algorithms.
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1.3 Motivation and Scope of Work

There are many stochastic global optimization methods which have been
developed and applied to application problems in many areas. However, there are still
challenges in reliably and efficiently solving global optimization problems by
stochastic techniques. These include:

1. Tuning of the algorithm parameters

2. Overcoming the premature condition

3. Balancing the exploration (global search) and exploitation (local search)
4. Lack of good stopping criteria

5. Effective constraint handling methods

Therefore, one of the focuses of the present research is on developing a more
reliable, robust and efficient stochastic algorithm for global optimization. The other
important issues considered are the parameter estimation in models, phase equilibrium
and stability calculations, and pooling problems. Finally, a new mixed-integer
nonlinear programming with novel approach for solving heat exchanger network
retrofit problems is also proposed as part of this thesis. The motivation for studying
these issues, together with relevant background information, is briefly discussed in

this section.

1.3.1 An IDE with a Novel Stopping Criterion

The limitation of the global optimization algorithms has been listed in Section
1.3. The proposed algorithm (IDE) integrates differential evolution (DE) with taboo
list of taboo search and parameter adaptation. The taboo list/check prevents revisiting
the same area, thus increasing the population diversity and computational efficiency.

The parameter adaptation strategy reduces the algorithm parameters to be provided
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and makes the algorithm more robust. Furthermore, a novel stopping criterion based
on the number of rejected points is developed, and a local search is employed after the
global search for finding the global optimum accurately and efficiently. The
effectiveness of the proposed stopping criterion and IDE is assessed on more than 30
benchmark problems with 2 to 30 variables. The performance of IDE is compared

with state-of-the-art global optimization algorithms in the literature.

1.3.2 Global Optimization of Parameter Estimation Problems

Parameter estimation is essentially an optimization problem where the
unknown values of the parameters in the model are obtained by minimizing a suitable
objective function. It plays an important role in developing better mathematical
models which can be used to understand and analyze systems. Parameter estimation in
thermodynamic models as well as dynamic models have been of great interest in
chemical engineering due to its complex nature such as non-linearity, flat objective
function in the neighborhood of global optimum, badly scaled model and non-
differential term(s) in the equations. In this thesis, IDE with the proposed stopping
criterion and local search is used to solve the parameter estimation problems for
modeling vapor-liquid equilibrium (VLE) data and chemical engineering applications
involving dynamic models. The performance of IDE for benchmark functions and
VLE modeling is compared with that of other stochastic algorithms such as DE, DE
with tabu list, particle swarm optimization, simulated annealing and a deterministic

algorithm, Branch and Reduce Optimization Navigator (BARON).
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1.3.3 Global Optimization of Phase Equilibrium and Stability Problems

Phase equilibrium calculations and phase stability analysis play a significant
role in the simulation, design and optimization of separation processes in chemical
engineering. These are very challenging problems due to the high non-linearity of
thermodynamic models. In this study, we introduce two global optimization
algorithms developed by our group for phase and chemical equilibrium calculations,
namely, IDE and IDE without tabu list and radius (IDE_N), which have fewer
parameters to be tuned. The performance of these stochastic algorithms is tested and
compared in order to identify their relative strengths for phase equilibrium and phase
stability problems. The phase equilibrium problems include both without and with

chemical reactions.

1.3.4 Novel Constraint Handling Method

Constrained optimization problems are very important as they are encountered
in many engineering applications. Equality constraints in them are challenging to
handle due to tiny feasible region. Additionally, global optimization is required for
finding global optimum when the objective and constraints are nonlinear. Stochastic
global optimization methods can handle non-differentiable and multi-modal objective
functions. In this work, a new constraint handling method for use with such methods
is proposed for solving equality and/or inequality constrained problems. It
incorporates adaptive relaxation of constraints and the feasibility approach for
selection. The IDE with this constraint handling technique is tested for solving
challenging constrained benchmark problems, and then applied to many chemical

engineering application problems with equality and/or inequality constraints.
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1.3.5 Global Optimization of Pooling Problems

The pooling problems are the important optimization problems that are
frequently encountered in the petroleum refining industries, and they often have
multiple optimum. Therefore, pooling problems require a reliable and easy-to-
implement optimization method to find the global optimal solution. Recently, many
deterministic optimization algorithms have been applied to pooling problems. To the
best of our knowledge, the performance of stochastic global optimization algorithms
for solving the complex pooling problems has not been reported. In this thesis, IDE
with the proposed constraint handling method is applied to solve many pooling
problems, and its performance results are compared with those of deterministic

methods.

1.3.6 Heat Exchanger Network Retrofitting Using IDE

Heat exchanger network (HEN) synthesis has been a hot topic in the past
several decades. HEN retrofitting is more important and challenging than HEN
synthesis since it involves the retrofitting existing HEN for improved energy
efficiency. Additional factors to be taken into account include spatial constraints,
relocation and re-piping costs, reassignment and effective use of existing heat
exchangers (Rezaei and Shafiei, 2009). HEN retrofitting is gaining importance in
chemical process industries as one of the most effective ways to decrease energy
consumption in the current plants. It is generally formulated as a MINLP
superstructure model, which contains both discrete and continuous variables. The
MINLP model of HEN retrofitting is NP-hard which makes it difficult for
deterministic optimization methods, especially for larger size problems (Furman and
Sahinidis, 2001). The previous studies using stochastic global optimization algorithms

are mainly focused on two-level approach: the first level uses stochastic algorithm for
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the structure change (discrete variables), and the second level uses either stochastic or
deterministic algorithm for optimizing the continuous variables (Rezaei and Shafiei,
2009; Bochenek, and Jezowski, 2010). In this study, we propose one-step approach,
where IDE algorithm developed above handles both discrete and continuous variable
together. Thus, HEN structure and retrofitting model parameters are simultaneously
optimized, which not only avoids the algorithm trapping at a local optimum but also
can improve the computational efficiency. Application of the one-step approach using

IDE to HEN retrofitting is tested on several examples.

1.4 Organization of the Thesis

This thesis comprises nine chapters. The next chapter presents an overview of
both deterministic and stochastic global optimization techniques together with their
applications in phase equilibrium modeling and calculations. Development of IDE
algorithm along with a novel stopping criterion based on the number of rejection
points, and its evaluation are presented in Chapter 3. Application of IDE to solve the
parameter estimation in chemical engineering applications is described in Chapter 4.
The evaluation of IDE algorithm for solving phase equilibrium and stability problems
is presented in Chapter 5. The subsequent chapter presents a novel constraint handling
method which uses self-adaptive relaxation method with feasibility approach for
constrained global optimization. The first attempt to solve the pooling problems with
a large number of equality and inequality constraints using a stochastic global
optimization is presented in Chapter 7. Next, modified IDE is developed to handle
both continuous and discrete variables, and applied for solving HEN retrofitting
problems by one-step approach in Chapter 8. The conclusions and recommendations

for future works are finally outlined in the last chapter. Note that Chapters 2 to 8§ are
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based on published journal papers or submitted manuscripts, which are edited in order
to minimize repetition. However, some material in Chapters 2 to 8 was repeated with

the sole intention of making the concerned chapters easier to follow.
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Chapter 2

Literature Review *

2.1 Introduction

The phase equilibrium modeling for multi-component systems is essential in
the design, operation, optimization and control of separation schemes. Novel
processes handle complex mixtures, severe operating conditions, or even incorporate
multi-functional unit operations (e.g., reactive distillation and extractive distillation).
Therefore, phase behavior of multi-component systems has significant impact on
process design including equipment and energy costs of separation and purification
strategies (Wakeham and Stateva, 2004). Phase equilibrium calculations are usually
executed thousands of times in process simulators, and are especially important in
chemical, petroleum, petrochemical, pharmaceutical and other process industries
where separation units are the core of process performance. Hence, these calculations
must be performed reliably and efficiently, to avoid uncertainties and errors in process
design.

Global optimization problems abound in the modelling and analysis of phase
equilibrium for both reactive and non-reactive systems. Specifically, several
thermodynamic calculations can be formulated as global optimization problems, and
they include three applications: a) phase stability analysis, b) Gibbs free energy
minimization and c) estimation of parameters in thermodynamic models. Formally,
the optimization problems of these applications can be stated as follows: minimize

Fopj(u) subject to hj(u) = 0 forj=1,2, ..., m and u €  where u is a vector of n

* This chapter is based on the paper: Zhang, H., Bonilla-Petriciolet, A. and Rangaiah, G.P., A
review on global optimization methods for phase equilibrium modeling and calculations. The
Open Thermodynamics J., vol. 5, pp.71-92, 2011.

11
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continuous variables in the domain Q € R", m is the number of equality constraints
arising from the specific thermodynamic application, and F,(u) : Q = R is a real-

valued function. The domain € is defined by the upper and lower limits of each
decision variable.

The major challenge of solving global optimization problems for phase
equilibrium modeling and analysis is because F,;(u) is generally non-convex and
highly non-linear with many decision variables. Thus, the objective functions
involved in phase equilibrium modeling and calculations may have several local
optima including trivial and non-physical solutions especially for multi-component
and multi-phase systems. Therefore, traditional optimization methods are not suitable
for solving these thermodynamic problems because they are prone to severe
computational difficulties and may fail to converge to the correct solution when good
initial estimates are not available (Teh and Rangaiah, 2002; Wakeham and Stateva,
2004). In general, finding the global optimum is more challenging than finding a local
optimum, and the location of this global optimum for phase equilibrium problems is
crucial because only it corresponds to the correct and desirable solution (Floudas,
1999; Wakeham and Stateva, 2004).

The development and evaluation of global optimization methods had played
and continue to play a major role for modeling the phase behavior of multi-
component systems (Floudas, 1999; Teh and Rangaiah, 2002; Wakeham and Stateva,
2004). Until now, many deterministic and stochastic global optimization methods
have been used for phase equilibrium calculations and modeling. Studies on the use of
deterministic methods for phase equilibrium problems have been focused on the
application of branch and bound optimization, homotopy continuation method and

interval-Newton/generalized bisection algorithm. The stochastic optimization
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techniques applied for solving phase equilibrium problems include point-to-point,
population-based and hybrid stochastic methods.

There have been significant developments in global optimization and their
applications to phase equilibrium problems. But, to the best of our knowledge, there is
no review in the literature that focuses on the global optimization methods for phase
equilibrium modeling and calculations. Therefore, use of both deterministic and
stochastic global optimization methods to solve phase equilibrium problems in multi-
component systems is reviewed in this chapter. In particular, we focus on applications
of global optimization for phase stability analysis, Gibbs free energy minimization in
both reactive and non-reactive systems, and parameter estimation in phase
equilibrium models. The performance and capabilities of many global optimization
methods for these thermodynamic calculations are discussed. The remainder of this
review 1is organized as follows. The formulation of optimization problems for phase
equilibrium modeling and calculations is presented in Section 2.2. In Section 2.3, we
briefly describe the deterministic and stochastic optimization methods used for
solving the optimization problems outlined in Section 2.2. Section 2.4 reviews the
phase equilibrium modeling and calculations using global optimization algorithms.

Finally, concluding remarks are given in Section 2.5.

2.2 Phase Equilibrium Modeling and Calculations

This section introduces the basic concepts and description of phase
equilibrium problems considered in this review. Specifically, a brief description of the
global optimization problems including the objective function, decision variables and
constraints, for phase stability, physical and chemical equilibrium, and phase

equilibrium modeling is given in the following sections.
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2.2.1 Phase Stability

Phase stability analysis is a fundamental step in phase equilibrium calculations.
This analysis allows identification of the thermodynamic state that corresponds to the
global minimum of Gibbs free energy (globally stable equilibrium). Additionally, the
results of stability analysis can be used to begin phase-split calculations. According to
the Gibbs criterion, a mixture at a fixed temperature 7, pressure P and overall
composition is stable if and only if the Gibbs free energy surface is at no point below
the tangent plane to the surface at the given overall composition (Michelsen, 1982;
Wakeham and Stateva, 2004). This statement is a necessary and sufficient condition
for global stability. Generally, stability analysis is performed using the tangent plane
distance function (TPDF). So, the phase stability of a non-reactive mixture with ¢
components and overall composition in mole fraction units, at constant P and T,
requires the global minimization of TPDF. Physically, TPDF is the vertical distance
between the Gibbs free energy surface and the tangent plane constructed to this
surface. For more details on the explanation, derivation and implications of TPDF, see
the work of Michelsen (1982).

To perform stability analysis, TPDF must be globally minimized with respect
to a trial composition y subject to an equality constraint and bounds on decision
variables. The decision variables in phase stability problems are the mole fractions. If
the global minimum of TPDF(y) < 0, the mixture under analysis is unstable; else, it is
a globally stable system. Note that the constrained problem can be transformed into an
unconstrained problem by using new decision variables £ instead of y; as the decision
vector (Rangaiah, 2001; Srinivas and Rangaiah, 2007a and 2007b). As an alternative
to the optimization procedure, phase stability can also be determined by finding all

solutions of the stationary conditions of TPDF. If TPDF at any of the solutions
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obtained by this set of equations is negative, then the given mixture is unstable and
will exhibit phase-split. Note that the trivial solution is always present in this
thermodynamic problem, and it corresponds to the global minimum of TPDF for the
case of stable mixtures. As suggested by Michelsen (1982), the stability criterion is
also applicable to chemically equilibrated phases, and consequently almost any
method proposed for stability analysis of non-reactive systems can be extended to

reactive mixtures.

2.2.2 Phase Equilibrium Calculations

In the phase equilibrium/split calculations, main objectives are to establish the
correct number and types of phases at equilibrium as well as the composition and
quantity of each phase (Wakeham and Stateva, 2004). At constant temperature 7 and
pressure P, a ¢ multi-component and 7 multi-phase non-reactive system achieves
equilibrium when its Gibbs free energy is at the global minimum. There are two main
approaches for performing phase equilibrium calculations: a) equation solving
approach and b) Gibbs free energy minimization approach (Teh and Rangaiah, 2002).
The former involves solving a set of non-linear equations arising from mass balances
and equilibrium relationships, whereas the latter involves the direct minimization of
Gibbs free energy function. Although the first approach seems to be faster and simple,
the solution obtained may not correspond to the global minimum of free energy
function. Moreover, it needs a priori knowledge of phases existing at equilibrium (Teh
and Rangaiah, 2002). Therefore, minimization of Gibbs free energy is a natural
approach for calculating the equilibrium state of a mixture.

In a non-reactive system with ¢ components and 7z phases, the thermodynamic
function for phase equilibrium calculations is expressed as a linear combination of the

chemical potential of each component in each phase. The expression for Gibbs free
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energy and its mathematical properties depend on the thermodynamic equation(s)
chosen to model each of the phases that may exist at equilibrium. For a non-reactive
system, Gibbs free energy must be minimized with respect to the set of decision
variables subject to mass balance constraints. One can use new variables instead of
original decision variables in the above optimization problem. Introduction of the new
variables eliminates the restrictions imposed by material balances, reduces problem
dimensionality and the optimization problem is transformed to an unconstrained one.
For multi-phase non-reactive systems, real variables f;e(0, 1) are defined and
employed as new decision variables. For Gibbs energy minimization, the number of
phases existing at the equilibrium is usually assumed to be known a priori, and the
number of decision variables in the unconstrained approach is ¢ (7 - 1) for non-
reactive systems.

Reactive phase equilibrium calculations, also known as chemical equilibrium,
are performed if a reaction is possible in the system under study. Note that reactions
increase the complexity and dimensionality of phase equilibrium problems, and so
phase split calculations in reactive systems are more challenging due to non-linear
interactions among phases and reactions. The phase distribution and composition at
equilibrium of a reactive mixture are determined by the global minimization of Gibbs
free energy subject to mass balances and chemical equilibrium constraints. Based on
the handling of material balance constraints, available strategies can be classified as
either stoichiometric or non-stoichiometric (Stateva and Wakeham, 1997).

For reactive phase equilibrium, the mass balance restrictions and non-
negativity requirements are usually formulated using the conservation of chemical
elements in the components (Seider and Widagdo, 1996). Therefore, to determine the

phase equilibrium compositions in reactive systems using this approach, it is
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necessary to solve the constrained global optimization problem. The constrained
global minimization of Gibbs free energy is with respect to ¢z decision variables. For
modeling reactive systems, the chemical equilibrium condition can be evaluated from
either Gibbs free energy data or chemical equilibrium constants determined
experimentally. Accordingly, we can use different objective functions for the
constrained minimization of Gibbs energy function. In addition, this thermodynamic
problem can be also formulated using transformed composition variables. For more
details on different objective functions using both conventional and transformed
composition variables as the decision vector for Gibbs free energy minimization in
reactive systems, see the recent study by Bonilla-Petriciolet et al. (2011).

In particular, the constrained Gibbs free energy minimization using
conventional composition variables is better in terms of computer time and numerical
implementation, for reactive phase equilibrium calculations (Bonilla-Petriciolet et al.,
2011). For a ¢ multi-component and 7 multi-phase system subject to r independent
chemical reactions, the objective function for reactive phase equilibrium calculations
can be defined, using reaction equilibrium constants. The constrained global
optimization problem can be solved by minimizing Gibbs free energy with respect to
¢ (r— 1) + r decision variables. In this formulation, the mass balance equations are
rearranged to reduce the number of decision variables of the optimization problem
and to eliminate equality constraints. For more details on the development of

equations, see the recent study of Bonilla-Petriciolet et al. (2011).

2.2.3 Phase Equilibrium Modeling
The estimation of parameters in thermodynamic models is an important

requirement and a common task in many areas of chemical engineering because these
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models form the basis for synthesis, design, optimization and control of process
systems. In the case of separation processes, thermodynamic models play a major role
with respect to energy requirements, phase equilibrium and equipment sizing. The
parameter estimation problem refers to determining values of model parameters that
provide the best fit to a set of measured data such as vapor-liquid or liquid-liquid
equilibrium. In particular, estimation of parameters in non-linear thermodynamic
models for vapor-liquid equilibrium (VLE) modeling has been of great interest in the
chemical engineering literature. VLE data modeling using thermodynamic equations
is generally based on classical least squares or maximum likelihood approaches
(Englezos and Kalogerakis, 2001).

Consider a set of observations g;; of i = 1, ..., nd dependent/response variables
from j = 1, ..., ne experiments are available for the system, where the responses can
be expressed by an explicit model g; = f; ( rj, @), with independent variables r; =
(rl,j,...,r,,d,j)T and npar parameters 6 = (91,...,9npar)T. Measurement errors in r; can
either be treated or neglected; depending on this choice, we can have either least
squares (when errors in independent variable are neglected) or maximum likelihood
formulation (when independent variables have measurement errors). For modeling
VLE data (i.e., x—y—P at constant 7, or x—y—T at constant P), excess Gibbs energy
equations are widely employed. Therefore, the objective function commonly used for
VLE data fitting is based on activity coefficients. Thus, the global minimization of LS
objective function can be done as an unconstrained optimization problem using local
composition models. On the other hand, if we assume that there are measurement
errors in all the variables (which include both independent and response variables) for
the experiments of the system to be modeled, the minimization problem to be solved

is the error-in-variable (EIV) formulation of the form. In the EIV formulation, there is
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a substantial increase in the dimensionality of the optimization problem, which

depends on the number of experiments.

2.3 Global Optimization Methods

As stated, global optimization problems involved in the modeling and
calculation of phase equilibrium are very challenging. This is because the objective
functions are multivariable, non-convex and highly non-linear. For example, global
minimization of TPDF and Gibbs free energy are difficult tasks and require robust
numerical methods, since these objective functions often have unfavorable attributes
such as discontinuity and non-differentiability (e.g., when cubic equations of state or
asymmetric models are used for modeling thermodynamic properties). Additional
complexities arise near the phase boundaries, in the vicinity of critical points or
saturation conditions, and when the same model is used for determining the
thermodynamic properties of the mixture (Teh and Rangaiah, 2002; Wakeham and
Stateva, 2004). Consequently, TPDF and Gibbs free energy may have several local
minima including trivial and non-physical solutions.

Parameter estimation problems can be very difficult to solve reliably even for
simple thermodynamic models (Gau et al., 2000; Bollas et al., 2009; Bonilla-
Petriciolet et al., 2010). Specifically, a number of pitfalls and difficulties may be
faced in parameter estimation for VLE modeling; these include convergence to a local
minimum, flat objective function in the neighborhood of the global optimum, badly
scaled model functions and non-differentiable terms in thermodynamic equations. In
addition, the number of decision variables can be very large, especially for EIV
problems. Failure to find the globally optimal parameters for a thermodynamic model

and using locally optimal parameters instead, can have significant consequences in
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phase equilibrium calculations and predictions, may cause errors and uncertainties in
equipment design and erroneous conclusions about model performance. Recent
studies have shown that using the locally optimal parameters may result in incorrect
predictions of the azeotropic states with local composition models and in qualitative
discrepancies of the phase behavior such as prediction of spurious phase split and
modeling of homogeneous azeotropes as heterogeneous (Gau et al., 2000; Bollas et
al., 2009). In summary, several studies have demonstrated the challenging nature of
global optimization problems for phase equilibrium modeling and calculations, and
they have highlighted the need for reliable numerical techniques to overcome these
difficulties.

Global optimization methods can be classified into two broad categories:
deterministic and stochastic methods (Rangaiah, 2010). The former methods can
provide a guaranteed global optimum but they require certain properties of objective
function and constraints such as continuity and convexity. In some cases, problem
reformulation is needed depending on the characteristics of the model under study.
The stochastic methods generally require little or no assumption on the characteristics
of the optimization problem, and yet provide a high probabilistic convergence to the
global optimum. Further, stochastic methods are easy to understand, implement and
use. They can often locate the global optimum in modest computational time
compared to deterministic methods (Blum and Roli, 2003). This section provides the
basic concepts and description of deterministic and stochastic methods used for global

optimization in phase equilibrium calculations and modeling.
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2.3.1 Deterministic Methods

Deterministic optimization methods are those which exploit analytical
properties of the problem to generate a deterministic sequence of points (finitely or
infinitely) converging to a global optimum (Pardalos et al., 2000). These methods
include branch and bound global optimization, homotopy continuation methods,
Lipschitz optimization and interval analysis (Floudas, 1999). In the following
sections, we briefly summarize different deterministic global optimization methods

applied to phase equilibrium calculations and modeling.

2.3.1.1 Branch and Bound Global Optimization

Branch and bound algorithms are a variety of adaptive partition strategies that
have been proposed to solve global optimization problems (Floudas, 1999). These
methods are based upon partitioning, sampling, and subsequent lower and upper
bounding procedures. These operations are iteratively applied to the collection of
active (i.e., candidate) subsets within the feasible set D. Branch and bound methods
are non-heuristic, in the sense that they maintain provable upper and lower bounds on
the globally optimal objective value; they terminate with a certificate that the optimal
point found is €-suboptimal.

Branch and bound methods include many specific approaches, and allow for a
variety of implementations. These methods typically rely on some a priori knowledge
of objective function characteristics and in developing proper structures (i.e., convex
terms) of the optimization problem. The general branch and bound methodology is
applicable to broad classes of global optimization problems. In general, these
optimization algorithms are often slow and require a significant numerical effort that
grows exponentially with problem size (Nichita et al., 2002a; Wakeham and Stateva,

2004).
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2.3.1.2 Homotopy Continuation Methods

A Homotopy continuation method is considered as a global method since it
has the capability of finding all roots of a set of nonlinear equations. In brief,
homotopy continuation methods provide a smooth transition between an approximate
solution (often linear or nearly linear) and the true solution(s) of a nonlinear equation
system, f(u) = 0 by gradually introducing the nonlinearities through the use of a scalar
homotopy parameter, ¢ (Riggs, 1994; Jalali et al., 2008). These methods are global
methods for finding the zeros of nonlinear functions. For global optimization, f(u) is a
system of non-linear equations obtained from the stationary conditions of the
optimization problem. Newton homotopy is usually used in the literature, and it has
the form:

Hu,t)=tfw)-(1-19gu)=0 2.1
where f (u) is the system of equations to be solved, g(u) is a simple system of
equations for which a solution is known or easily found and ¢ is a scalar homotopy
parameter, which is gradually varied from O to 1 as the path is tracked from the
starting point to the true solution.

Note that starting at ¢t = 0, H(u, 0) = 0 is trivial to solve given any initial
vector, u’. A homotopy path is generated as ¢ increases to unity, where the true
solutions occur. A predictor-corrector method can be applied to trace the homotopy
paths by integrating along their arc lengths. Beginning on the homotopy path, a
tangent vector is computed and a step is taken along the direction of its arc length
(Euler’s method). The algorithm calculates tangent vectors by solving an initial-value
problem. The resulting homotopy paths resemble the solution diagrams obtained
through parameterization. When a unique and continuous path exists for H(u, t) from

t =0 tot =1, the Newton homotopy-continuation algorithm guarantees global
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convergence to a single solution; however, it does not guarantee global convergence
to multiple solutions. Note that success in finding all solutions along a single path has
only been demonstrated for simple polynomials when all variables are relaxed from
the real to the complex domain. Therefore, continuation methods can be implemented

in both real and complex search spaces (Golubitsky and Schaeffer, 1985).

2.3.1.3 Interval Analysis

The interval analysis method is a general-purpose computational method to
solve nonlinear equations to find all solutions lying within the variable bounds
(Schnepper and Stadtherr, 1996; Hua et al., 1998). Specifically, consider the solution
of a nonlinear equation system, f(u) = 0 where u € U° and the goal is to enclose,
within very narrow intervals, all roots of the equation system in U". The algorithm is
applied to a sequence of intervals, beginning with the initial interval vector U’
specified by the user. For an interval U* in the sequence, the first step in the solution
procedure is the function range test. The interval extension F (Uk) of f(u) over the
current interval U* is computed and tested to determine whether it contains zero. If
not, then clearly there is no root of f(u) = 0 in this interval and can be discarded. If U*
passes the function range test, then the next step is the interval Newton test. This step
requires an interval extension of the Jacobian matrix of f(z) and involves setting up
and solving the interval Newton equation (a system of linear interval equations) for a
new interval, which is usually referred as the image. Comparison of this image to the
current interval being tested provides an existence and uniqueness test for roots of the
equation system. Note that the initial interval should be wide enough so that the
interval Newton method provides all solutions of local minima and maxima, saddle
points and global minimum for the optimization problem under study (Hansen, 1992;

Gecergormez and Demirel, 2005).
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2.3.2 Stochastic Methods

Stochastic optimization methods involve probabilistic elements and use
random sequences in the search for the global optimum (Gecergormez and Demirel,
2005). These methods employ heuristics for exploring (diversification) and exploiting
(intensification) the search space, and learning strategies are used to find quickly
near-optimal solutions (Blum and Roli, 2003). The balance between diversification
and intensification is important to equilibrate between reliability and computational
efficiency (i.e., improve the effectiveness) of finding the global optimum by the
stochastic algorithm. Stochastic optimization methods manipulate a single (i.e., point-
to-point methods) or a collection of solutions (i.e., population-based methods) at each
iteration or objective function evaluation. They include random search, simulated
annealing, particle swarm optimization, tabu search, genetic algorithms, differential
evolution, ant colony optimization and harmony search. In the following sections, we
describe the general characteristics of several stochastic methods used in phase

equilibrium modeling and calculations.

2.3.2.1 Random Search

The original random search method is pure random search (PRS) which was
first defined by Brooks (1958). It is the simplest algorithm among the random search
methods, and consists of generating a sequence of uniformly distributed points in the
feasible region, while keeping track of the best point that was already found. PRS
offers a probabilistic asymptotic guarantee that the global minimum will be found
with probability one as the sample size grows to infinity. Among the random search
methods, a direct search algorithm (also called adaptive random search, ARS)

proposed by Luus and Jaakola has found many applications in chemical engineering;
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it uses random search points and systematic region reduction for locating the global
optimum (Luus and Jaakola, 1973).

The ARS algorithm begins with a feasible initial point and region size vector
r. Then, it generates a number of random points R around the initial point. The
feasibility of each randomly chosen point is checked. The objective function values of
such feasible points are found, and the best point is recorded. In the next iteration, R
random points are generated around the best point found so far and the same
procedure is repeated. After each iteration, the region size is reduced by a certain
factor. Iterations are continued until the termination criterion is satisfied. Pseudo-code
of ARS is shown in Algorithm 1, and details of this optimization procedure can be
found in (Luus, 2001 and 2010). There are several versions of ARS, which have been
applied to different chemical engineering application problems (Al et al., 1997; Luus

and Brenek, 1989; Lee et al., 1999; Jezowski et al., 2005; Jezowski et al., 2010).

Algorithm 1 Pseudo-code of Adaptive Random Search

Set region size vector r and initialize Xyeg
Give a feasible initial point x, within the search space
While the stopping criterion is not satisfied
Randomly generate R points, x; around x,
Check the feasibility of each x;
Fori=1toR
If x; is feasible then
Evaluate objective function at x;
End if
End for
Update xp,. based on the objective function value and let xy = Xpeg
Reduce the region size by a certain factor
End while

2.3.2.2 Simulated Annealing
Simulated annealing (SA), which was developed by Kirkpatrick et al. (1983),
is a stochastic method inspired by the analogy to annealing of metals. In the physical

process of annealing, a metal is first heated to its molten state and then slowly cooled
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to solid state in order to reach thermal equilibrium with minimum energy. This
process of slow, controlled cooling scheme of the melted metal to obtain the desired
crystalline structure is simulated in SA. It starts from an initial point in the search
space and a given high temperature 7. A new point is randomly created in the
neighborhood of the initial point, and its energy (objective function) is evaluated. If
this new point has lower energy than the previous one, it is accepted; otherwise, the
new point is accepted with probability, P = exp(-AE/KpT) where AE is the difference
in the energy of these two points, Kz is the Boltzmann constant. Generation of new
points and their evaluation/acceptance are repeated N times at the same temperature to
ensure the system is in thermal equilibrium at this 7. After that, 7 is reduced
according to the cooling schedule and the same procedure is repeated until the
termination criterion is satisfied. The probability of acceptance, P decreases as the
search progresses because of lower 7.

From mathematical point of view, SA can be viewed as a randomization
device that allows wrong-way movements during the search for the optimum through
an adaptive acceptance/rejection criterion. Based on this concept, SA not only accepts
the point with better value but also accepts a point with worse value with some
probability, which decreases as search progresses. The main control parameter in the
cooling schedule is the temperature, 7. The main role of T is to let the probability of
accepting a new move be close to 1 in the early stage of the search and to make it
almost zero in the final stage of the search. Convergence to an optimal solution can
theoretically be guaranteed after an infinite number of iterations controlled by the
procedure of cooling schedule. Pseudo-code of SA is shown in Algorithm 2, and more

details of this optimization method are available in Chibante (2010). Various versions
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of SA have been proposed and applied to chemical engineering problems (Cordero et

al., 1997; Hanke and Li, 2000; Zhu et al., 2000; Bonilla-Petriciolet et al., 2007).

Algorithm 2 Pseudo-code of Simulated Annealing

Choose an initial point x,
While the stopping criterion is not satisfied
Fori=1toN
Randomly generate x,,,, around x,
AE = f (%) — f (%)
If AE <0 then
Xo= Xnew
Else
If random(0,1) < exp(-AE/KT) then
X0 = Xnew
End if
End if
End for
Reduce T according to the cooling schedule
End While

2.3.2.3 Genetic Algorithm

Genetic algorithm (GA), developed by Holland (1975), is inspired by the
evolutionary process occurring in nature. The main ideas of this algorithm are the
‘survival of the fittest’, and crossover and mutation operations for generating a new
solution. GA starts with initializing a population of individuals or trial solutions,
which are generated randomly within the feasible region. Objective function value of
these individuals is evaluated. The individuals undergo three main operations,
namely, reproduction, crossover and mutation. Reproduction creates a mating pool in
which the individuals with good fitness will have more copies than the ones with
lower fitness value. Crossover is an operation which allows the algorithm to explore
the entire search space and to escape from the local minima. In this operation, new
strings (individuals) are formed by exchanging the information among parents of the

mating pool. Mutation operation involves making changes in each individual directly.
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Mutation is exploitative; it can create random small diversions, thereby staying near
the parent. After the mutation, the new population is created.

The new population enters into the next generation and the same process of
reproduction, crossover and mutation is repeated until the stopping criteria are
satisfied. Since the selection of the population for the mating pool is based on the
survival of the fittest, the solutions will converge towards its optimal point. GA is
probably the most widely known stochastic algorithm, and has found many
applications in chemical engineering (e.g., Rangaiah, 2001; Alvarez et al., 2008; Babu
et al., 2009; Bonilla-Petriciolet et al., 2011). Pseudo-code of GA is shown in
Algorithm 3, and more details of this stochastic method can be found in Younes et al.

(2010).

Algorithm 3 Pseudo-code of Genetic Algorithm

Initialization:
Randomly generate NP individuals within the search space
Evaluate objective function of each of the individuals generated

While the termination criterion is not satisfied
Reproduction: Create a mating pool of parents
Crossover: New individuals formed from parents
Mutation: Randomly modify the new individuals
Selection: Offspring created by crossover and mutation replaces the original
parent population based on its fitness
End While

2.3.2.4 Tabu Search

Tabu (or taboo) Search (TS) was developed by Glover in 1989 (Glover and
Laguna, 1997). Tabu means that the things must be left alone and should not be
visited or touched. Accordingly, the main idea of TS is that the points searched by the
algorithm should not be re-visited. This procedure enhances the searching capability
of the solution space economically and effectively. Initially, a set of candidate

solutions is evaluated and then stored in a taboo list. Then, each new solution
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generated is compared with the solutions in the taboo list. If the new solution is near
to any point in the taboo list, then it will not be evaluated and discarded right away.
The length of taboo list is defined by the user. If a new solution enters into the taboo
list, the oldest solution in the taboo list will be removed to keep the specified length of
the taboo list. After a number of iterations, several promising areas containing the
global optimum solution will be found. Then, the intensive search is carried out from
these areas to find the global optimum. See the pseudo-code of TS given in Algorithm
4. For more details on this stochastic optimization method, see the book by Glover
and Laguna (1997) and the book chapter by Sim et al. (2010). TS has been
successfully applied to a wide range of optimization problems (e.g., Teh and rangaiah,
2003; Lin and Miller, 2004; Srinivas and Rangaiah, 2007a; Exler et al., 2008;

Mashinchi et al., 2011).

Algorithm 4 Pseudo-code of Tabu Search

Randomly generate N initial points, X; within the search space
Evaluate objective function of all these points, and send them to tabu list
While the termination criterion is not satisfied
Fori=lto N
Generate a new point X; .,

If X; ..., 1s near any point in the tabu list then
Discard X; .,

End if
End for
Evaluate the objective function at all the remaining points X; .,
Find and save the best point found so far
Update tabu list

End while

2.3.2.5 Differential Evolution

Storn and Price (1997) proposed differential evolution (DE). The main idea
behind it is taking the difference between two individuals and adding it to another
individual to produce a new individual. It contains four steps similar to GA, namely,

initialization of population, mutation, crossover and selection (see the pseudo-code in
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Algorithm 5). The main difference between DE and GA is that the search is guided by
mutation in the former whereas it is governed by the crossover in the latter. DE
algorithm starts with a randomly generated initial population within the search region.
For each (target) individual in the population, three other individuals are randomly
selected, and the weighted difference between two of them is added to the third
individual in order to produce a mutant individual. This operation is called as
mutation. Elements of the mutant individual thus obtained are copied to the target
individual using crossover constant/probability to produce a trial individual, in the
crossover operation. In the selection operation, the better one between the trial and
target individuals is selected based on the objective function values, for the next
generation. This selection of the fittest individual causes the individuals to improve
over the generations, finally converging to an optimum. DE has been successfully
applied to a wide range of optimization problems (Chen et al., 2010). More details of

DE can be found in Price et al. (2005).

Algorithm 5 Pseudo-code of Differential Evolution

Initialization:
Randomly generated N individuals (x;) within the search space
Evaluate the objective function of all these individuals, and find the best, xg,
While the termination criterion is not satisfied
Fori=1toN
Randomly choose 3 individuals (x,; # x,, # x,; ) from the current population
Mutation to find mutant individual: v; = x,; + F (X,0— X,3)
Crossover: Forj=1to D
If rand(0,1) > Cr then

Wij=Vij
Else
Uij=Xij
End If
End For

Find the objective function of the new (trial) individual
Between u; and x;, the better one goes to next generation
Update xp,,
End For
End While
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2.3.2.6 Particle Swarm Optimization

Particle swarm optimization (PSO), developed by Eberhart and Kennedy
(1995), exploits swarm intelligence (i.e., the behavior of a biological social system
like a flock of birds or a school of fish) for finding the global optimum. This search
algorithm is also a population-based stochastic optimization technique. The swarm in
PSO consists of a number of particles, each of which represents a potential solution in
the search space. Each particle moves to a new position according to certain velocity
and the previous position of the particle.

PSO algorithm starts with a randomly generated initial population of particles
in the search space. Unlike other evolutionary optimization methods, particles in PSO
do not recombine genetic material directly between individuals during the search, but
work according to the social behavior of swarms instead. Therefore, PSO finds the
global best solution by simply adjusting the moving vector of each individual
according to the personal best and the global best positions of particles in the entire
swarm at each time step (generation). In other words, the search process allows
particles to stochastically return toward previously successful regions in the search
space. Recent developments and applications of PSO can be found in Schwaab et al.
(2008), Skolpap et al. (2008), Bonilla-Petriciolet and Segovia-Hernandez (2010), and
Zhang et al. (2011). Pseudo-code PSO is presented in Algorithm 6, and more details

of this method can be found in Kennedy et al. (2001).
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Algorithm 6 Pseudo-code of Particle Swarm Optimization

Initialization:
Randomly generate N particles (x;), velocities (v;) and positions (pbest;)
Evaluate objective function of all these particles
Set the global best particle to gbest

While the termination criterion is not satisfied

fori=1toN
v; = wv; + cirand(0,1)(pbest; — x;) + corand(0,1)(gbest — x;)
Xi=X;+V;

Evaluate the objective function of the new particle
If x; better than pbest;
pbest;= x;
End if
If x; better than gbest
gbest = x;
End if

End for
End While

2.3.2.7 Random Tunneling Algorithm
The tunneling method was first introduced by Levy and Montalvo (1985). It is
composed of a sequence of cycles, where each cycle has two phases: a local
minimization phase and a tunneling phase. In the first phase, a minimization
algorithm such as gradient descent or Newton’s method is used to minimize the given
objective function, f(x) to locate the first local minimum, x". In the second phase,
the method searches for the zeros of the tunneling function such that x” # x* but
f(x") = f(x*) Then, the zero point is used as the starting point of the next cycle,
and the two phases are repeated sequentially until a stopping criterion such as failure
to find a zero within the prescribed CPU time is met.
Jiang et al. (2002) developed one of the tunneling algorithms, namely, random
tunneling algorithm (RTA). It is a stochastic algorithm based on the concepts of sub-
energy transformation and terminal repeller in the terminal repeller and unconstrained

sub-energy tunneling (TRUST) algorithm of Cetin et al. (1993). RTA consists of two
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phases: a global search phase and a local optimization phase. The global phase
perturbs the system randomly from the last local minimum and solves a system of
differential equations from the perturbed point to explore new regions of attraction.
Then, the local phase employs a local optimization method (e.g., Quasi-Newton
method) to find an improved point in the new region. The two phases are repeated
until the specified termination criterion is met.

Srinivas and Rangaiah (2006) implemented RTA differently, as in Algorithm
7; it starts with setting parameter values and randomly generating an initial point
within the search space. A local optimization is performed from this point to find the
local optimum in this area. Then, tunneling phase is started from this local minimum
which comprises of three steps. The first step is random perturbation from the current
local minimum, and the second step involves tunneling from the perturbed point in a
random direction using uniform grid search until it hits the boundary. The third step
consists of 1D tunneling from the perturbed point along each coordinate axis.

Algorithm 7 Pseudo-code of Random Tunneling Algorithm

Initialization:
Randomly generate a point, x within the search space
While termination criterion is not satisfied
Local phase: Local search starts from x and optimum found is x"
Tunneling: Do
Random perturbation from the best local minimum x"
Perform tunneling from perturbed point along a random direction
1D tunneling from perturbed point along each coordinate axis
If any point is better than x* then
Exit Do and go to Local phase
End if
Until maximum number of perturbations exceed
Set last perturbed point as new initial guess x
End while
Local search starts from x and optimum found is x"

The three steps of tunneling phase are repeated until the number of

perturbations reaches the maximum number or a better point is found. If a better point
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is found, the tunneling phase will be terminated, and this point will be the new initial
guess for the local minimization phase; else, the last perturbed point will be the new
initial guess. In the local minimization, a new local minimum is found and compared
with the previous local minima, and the best minimum is taken as the current local
minimum for the subsequent tunneling phase. The cycle of local minimization and
tunneling is repeated until the number of tunneling phases reaches the maximum
specified number. The algorithm then terminates declaring the last/best local
minimum as the global minimum. More details about this RTA algorithm can be

founded in Srinivas and Rangaiah (2006).

2.3.2.8 Ant Colony Optimization

Ant colony optimization (ACO) is a novel meta-heuristic that mimics foraging
behavior of real ant colonies. Dorigo et al. (1996) developed the first ant algorithm,
and since then several improvements of the ant system have been proposed
(Jayaraman et al., 2010). It is an evolutionary approach where several generations of
artificial ants search for good solutions in a co-operative way. These ants deposit
pheromone on the ground for making some favorable paths that should be followed
by other members of the colony. Note that the indirect communication between the
ants is performed by means of pheromone trails which enable them to find short paths
between their nest and food sources. This characteristic of real ant colonies is
exploited in ACO algorithms in order to solve optimization problems. On the other
hand, pheromone evaporation is a process of decreasing the intensities of pheromone
trails over time. This process is used to avoid local convergence and to explore more
in the search space. The meta-heuristic of classical ACO consists of three basic

components, and its pseudo-code is given in Algorithm 8.
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Algorithm 8 Pseudo-code of Ant Colony Optimization

While termination conditions not met, do
Schedule activities
Ants generation and activity
Pheromone evaporation
Daemon actions
End Schedule activities
Evaluate objective function
End while

Ants find solutions, starting from an initial value and moving to feasible
neighbor regions, in the step of Ants generation and activity. During this step,
information collected by ants is stored in the so-called pheromone trails. An agent-
decision rule, made up of the pheromone and heuristic information, guides the ant’s
search toward neighbor regions stochastically. Objective function values of candidate
solutions are usually used to modify the pheromone values in a way that is deemed to
bias future sampling towards high quality solutions. However, due to pheromone
evaporation, later generations of ants have smaller influence of the pheromone values
than earlier. Ants use this information and make their decisions according to the
probability distribution determined by the relative size of the pheromone values
corresponding to the possible outcomes of the decision variables. Finally, Daemon
actions are optional for ACO, and they can be used to implement centralized actions
which cannot be performed by single ants. Examples are the application of local
search methods to the constructed solutions, or the collection of global information
that can be used to decide whether it is useful or not to deposit additional pheromone
to bias the search process from a non-local perspective. Details of this stochastic

optimization method can be found in Jayaraman et al. (2010).
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2.3.2.9 Harmony Search

Harmony search (HS) is a music-inspired meta-heuristic algorithm, which has
been introduced by Geem et al. (2001). This stochastic optimization method was
developed in analogy with music improvisation process where music players
improvise the pitches of their instruments to obtain better harmony. Specifically,
musicians may perform the following steps to improvise: playing an existing score
from memory, performing variations on an existing piece, or creating an entirely new
composition. In the optimization context, each musician is replaced with a decision
variable, and the possible notes in the musical instruments correspond to the possible
values for the decision variables. So, the harmony in music is analogous to the vector
of decision variables, and the musician’s improvisations are analogous to local and
global search schemes in optimization techniques. HS combines heuristic rules and
randomness to imitate this music improvisation process.

Briefly, HS involves three stochastic operators to perform both diversification
and intensification stages: a) memory consideration, b) pitch adjustment, and c)
random selection. Pseudo-code of HS is given by Algorithm 9. The diversification is
controlled by the pitch adjustment and random selection operators, while memory
consideration is generally associated with the intensification. The proper combination
of these operators is important to favor the performance of HS in global optimization.
This iterative procedure is repeated until the convergence criterion is satisfied.
Recently, some modifications have been proposed in the literature to improve the
convergence performance of the original HS. According to Geem (2009), variations
proposed for HS may involve: a) mechanisms for the proper initialization of HS
parameters, b) mechanisms for the dynamic adaptation of HS parameters during

optimization, and c) the application of new or modified HS operators that include
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hybrid methods using other meta-heuristics such as SA or DE. For example, two
typical and promising variants of HS are the Improved HS and the Global-Best HS.

For more details on this meta-heuristic, consult the book by Geem (2009).

Algorithm 9 Pseudo-code of Harmony Search

While termination conditions are not met, do
Perform Improvisation (i.e., generate a new solution)
Memory consideration
Pitch adjustment
Random selection
End Improvisation
Evaluate objective function
End while

2.3.2.10 Hybrid Methods

In recent years, many hybrid methods have been proposed and studied. A
judicious combination of effective concepts of different meta-heuristics can provide a
better algorithm for dealing with real world and large scale problems (Talbi, 2002).
The hybrid algorithm usually provides several advantages such as better solution
using less computational time and handle large or difficult problems (Srinivas and
rangaiah, 2007b; Balsa-Canto et al., 2008; Jourdan et al., 2009; Liu and Wang, 2009;
Zhang and Rangaiah, 2011). We focus here on hybrid algorithms that have been
applied to phase equilibrium modeling and calculations.

Chaikunchuensakun et al. (2002) presented a combined algorithm based on
nonlinear parametric optimization (NLQPB) routines. It solves the Kuhn-Tucker
conditions by minimizing a quadratic sub-problem with linearized equality and
inequality constraints. The solution vector of the quadratic sub-problem is used as a
search direction until sufficient decrease of a merit function is found. The
approximate Hessian matrix is updated for each quadratic sub-problem by the quasi-
Newton algorithm. Mitsos and Barton (2007) proposed a hybrid method which

combines CPLEX and BARON solvers in GAMS. The upper bound of the problem is
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solved with CPLEX, and lower bound of the problem is solved through BARON in
order to enhance its reliability. Srinivas and Rangaiah (2007b) proposed a hybrid
method which combines DE and tabu list of TS. The tabu list used in DE can avoid
re-visiting the same area, increase the diversity of the population, avoid unnecessary
function evolutions, enhance global exploration and prevent premature convergence.
The proposed method was shown to be more reliable and efficient compared to many
other stochastic algorithms (Bonilla-Petriciolet et al., 2010a and 2011). Pereira et al.
(2010) combined three solvers in GAMS, where BARON is used for global
optimization, MINOS is used as a nonlinear solver and CPLEX is used for linear
problems. The proposed algorithm can solve challenging optimization problems.

Srinivas and Rangaiah (2010) proposed two versions of DE with tabu list,
referred as DETL-G (wherein the tabu list is implemented in the generation step) and
DETL-E (wherein the tabu list is implemented in the evaluation step). These two
algorithms combine the good reliability of DE with the computational efficiency of
TS. Recently, Zhang et al. (2011) proposed a novel bare-bones PSO for parameter
estimation of vapor-liquid data modeling problems. The proposed method combines
the mutation strategy of DE with bare-bones PSO for a good balance between the
exploration and exploitation to enhance the global search ability.

Besides the above hybrid methods, one common approach is to use stochastic
algorithm for global search followed by a local optimizer for intensifying search.
Accordingly, a local optimizer has been combined with stochastic optimization
algorithms such as GA, SA, PSO, DE and HS (Rangaiah, 2001; Srinivas and
Rangaiah, 2007a; Bonilla-Petriciolet et al., 2006, 2007 and 2010b; Lin and Chen,
2007; Staudt et al., 2009; Bonilla-Petriciolet and. Segovia-Hernandez, 2010;

Fernandez-Vargas, 2011).
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2.4 Applications of Global Optimization Methods to Phase

Equilibrium Modeling and Calculations

The following sections summarize studies, mainly from the year 2000, on
application and evaluation of deterministic and/or stochastic global optimization
methods to phase equilibrium modeling (in Section 2.4.1), phase stability analysis (in

Section 2.4.2) and phase equilibrium calculations (in Section 2.4.3).

2.4.1 Applications to Phase Equilibrium Modeling

Deterministic and stochastic global optimization methods have been applied to
parameter estimation in VLE modeling, and these are summarized in Table 2.1. In
comparison to phase equilibrium calculations, there are fewer studies on the solution
of parameter estimation problems for phase equilibrium modeling using global

optimization methods.
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Table 2.1. Application of Global Optimization Methods to Modeling Vapor-liquid Equilibrium Data

Method (Reference) Problem formulation Thermodynamic models

Branch and Bound (Esposito and Floudas, 1998) Error-in-variable Local composition model and ideal gas

Interval Analysis (Gau et al., 2000; Dominguez et al., 2002)  Least squares Local composition models and ideal gas

Interval Analysis (Gau and Stadtherr, 2002) Error-in-variable Local composition model and ideal gas

Simulated Annealing (Costa et al., 2000) Least squares Equation of state

Simulated Annealing (Bonilla-Petriciolet et al., 2007) Least squares and Error-in- Local composition models and ideal gas
variable

Random Tunneling (Srinivas and Rangaiah, 2006) Error-in-variable Local composition model and ideal gas

Genetic Algorithm (Alvarez et al., 2008) Least squares Local composition models and equation

of state
Differential Evolution (Kundu et al., 2008) Least squares Equation of state

Particle Swarm Optimization, Differential evolution, Least squares and Error-in- Local composition model and ideal gas
Simulated Annealing, Genetic Algorithm, Differential variable
Evolution with tabu list (Bonilla-Petriciolet et al., 2010)

Particle Swarm Optimization (Lazzus, 2010) Least squares Local composition models and ideal gas

Bare bone particle swarm optimization (Zhang et al., 2011)  Least squares and Error-in- Local composition models and ideal gas

variable
Harmony Search (Bonilla-Petriciolet et al., 2010) Least squares Local composition models and ideal gas
Ant Colony Optimization (Fernandez-Vargas, 2011) Least squares and Error-in- Local composition models and ideal gas
variable
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Specifically, Esposito and Floudas (1998) have reformulated the optimization
problem in terms of convex under-estimating functions and then used a branch-and-
bound procedure to solve parameter estimation problems. This method provides a
mathematical guarantee of global optimality but, in general, it may be necessary to
perform problem reformulation and develop convex under-estimators specific to each
new application. Gau et al. (2000) and Dominguez et al. (2002) have used an interval
analysis approach and classical least square formulation for modeling VLE data.
These studies indicated that several sets of parameter values of local composition
models published in the DECHEMA VLE Data Collection correspond to local
optima. These authors also showed that these locally optimal parameters affect the
predictive capability of thermodynamic models for phase equilibrium modeling.
Later, Gau and Stadtherr (2002) applied an interval-Newton approach for the reliable
solution of EIV parameter estimation problems in VLE modeling of binary systems.
This approach can be used for both parameter estimation and data reconciliation.

With respect to stochastic methods, several meta-heuristics have been used to
solve the parameter estimation problems in phase equilibrium modeling, and they
include SA, GA, RTA, DE, DE with tabu list (DETL), PSO, HS, bare-bones PSO
(BBPSO) and ACO. Specifically, Costa et al. (2000) reported the application of SA
for parameter estimation in the modeling of vapor-solid equilibrium with supercritical
carbon dioxide as the solvent. Results of data fitting using SA were compared with
those obtained using the Powell method, and the authors concluded that SA may offer
a better performance. Steyer and Sundmacher (2004) used an evolutionary
optimization strategy for the simultaneous fitting of VLE and liquid-liquid
equilibrium (LLE) data for ternary systems. Bonilla-Petriciolet et al. (2007) also

studied the performance of SA for parameter estimation in VLE modeling using both
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least squares and maximum likelihood formulations. This study concluded that SA is
a robust method for non-linear parameter estimation in thermodynamic models.
However, in difficult problems (e.g., EIV problems with several decision variables), it
may converge to a local optimum of the objective function. Srinivas and Rangaiah
(2007a) used a RTA for VLE modeling using the error-in-variable approach. This
method was able to solve reliably the two modeling problems having 18 and 34
decision variables, and with a global minimum not comparable to a local minimum.
Alvarez et al. (2008) applied and compared two versions of GA for VLE modeling
using local composition models and equations of state and LS approach. DE was
successfully applied to modeling the equilibrium solubility of CO, in aqueous
alkanolamines (Kundu et al., 2008).

Recently, the performance of SA, GA, DE, DETL and PSO has been
compared for VLE modeling using experimental data for binary systems and both
least squares and maximum likelihood criteria (Bonilla-Petriciolet et al., 2010a). This
comparison shows that DE and DETL perform better than other algorithms tested in
terms of reliability for parameter estimation in VLE data modeling. Further, DETL
offers a significant reduction in the computational time. Lazzus (2010) also reported
the application of PSO to modeling vapor-liquid equilibrium in binary systems using
UNIQUAC and NRTL local composition models. Zhang et al. (2011) studied the
performance of PSO and variants of BBPSO algorithms for parameter estimation in
VLE modeling problems based on LS and EIV approaches. The reliability of BBPSO
proposed by Zhang et al. (2011) is shown to be better than or comparable to other
stochastic global optimization methods tested; in addition, it has fewer parameters to
be tuned. Preliminary studies have also been performed for parameter estimation in

VLE modeling using both HS and ACO (Bonilla-Petriciolet et al., 2010b; Fernandez-
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Vargas, 2011). In particular, HS is reliable for solving parameter estimation problems
using LS approach but its performance is poor for finding the global optimum using
EIV formulation. On the other hand, ACO appears to be a competitive stochastic
method for VLE modeling especially using EIV formulation.

The above review indicates that several researchers have studied the parameter
estimation in VLE modeling problems using stochastic optimization methods instead
of deterministic methods. In particular, stochastic optimization methods may offer
reduced computational time and easier implementation than the deterministic
approaches. The former methods usually show robust performance for solving
parameter estimation problems but, in some challenging problems, they may fail to
locate the global optimum especially using fewer function evaluations and for
optimization problems with many decision variables (e.g., EIV problems). In addition,
the performance of many stochastic methods is significantly dependent on the

stopping condition used.

2.4.2 Applications to Phase Stability Analysis

With the introduction of the tangent plane criterion for phase stability analysis,
many researchers have studied the solution of this optimization problem using
different computational methods. These studies using deterministic and stochastic

optimization methods are summarized in Tables 2.2a and 2.2b respectively.
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Table 2.2a. Application of Deterministic Optimization Methods to Phase Stability Analysis

Method (Reference) Problem formulation Thermodynamic models
Homotopy Continuation (Sun and Seider ,1995) Tangent plane distance function SRK and PR
Branch and Bound (Harding and Floudas,2000) Tangent plane distance function SRK, PR and van der Waals
Interval Newton/Generalized Bisection (Tessier et al., 2000)  Excess Gibbs energy NRTL and UNIQUAC
Branch and Bound (Zhu and Inoue, 2001) Tangent plane distance function NRTL activity coefficient equation
Interval Newton/Generalized Bisection (Xu et al., 2002) Volume-based formulation using the Statistical associating fluid theory
Helmholtz energy
Tunneling Method (Nichita et al., 2002) Tangent plane distance function SRK and PR
Terrain Method (Lucia et al., 2005) Projected Gibbs energy and the norm PR
of chemical potentials
Interval Newton method (Gecegormez and Demirel, 2005) Tangent plane distance function NRTL
Tunneling Method (Nichita et al., 2006) Tangent plane distance function in SRK and PR
terms of Helmholtz free energy
CPLEX and BARON (Mitsos and Barton, 2007) Tangent plane distance function NRTL and UNIQUAC
Homotopy Continuation (Jalali et al., 2008) Michelsen criteria NRTL
Tunneling Method (Nichita et al., 2008) Tangent plane distance function Perturbed-chain statistical
association fluid theory
Dividing Rectangles (Saber and Shaw, 2008) Tangent plane distance function PR and SRK
Tunneling Method (Nichita and Gomez, 2009) Tangent plane distance function PR and SRK
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Table 2.2b. Application of Stochastic Optimization Methods to Phase Stability Analysis

Method (Reference)

Problem formulation

Thermodynamic models

Genetic Algorithm and Simulated Annealing (Rangaiah,
2001)

Stochastic Sampling and Clustering Method (Balogh et al.,
2003)

Simulated Annealing (Henderson et al., 2004)

Simulated Annealing, very fast SA, a modified direct search
SA and stochastic differential equations (Bonilla-Petriciolet
et al., 20006)

Differential Evolution and Tabu Search (Srinivas and
Rangaiah, 2007a)

Adaptive Random Search (Junior et al., 2009)

Repulsive Particle Swarm Optimization (Rahman et al.,
2009)

Particle Swarm Optimization and its Variants (Bonilla-
Petriciolet and Segovia-Hernandez, 2010)

Differential Evolution, Simulated Annealing and Tabu
Search (Bonilla-Petriciolet et al. 2010)

Tangent plane distance function

Modified tangent plane distance
function

Modified tangent plane distance
function
Tangent plane distance function

Tangent plane distance function

Tangent plane distance function

Tangent plane distance function

Tangent plane distance function

Tangent plane distance function
with reaction

NRTL, UNIQUAC and SRK

SRK

SRK and PR

SRK

NRTL, UNIQUAC and SRK

SRK, PR and Perturbed Chain -
Statistical associating fluid theory
NRTL and UNIQUAC

NRTL, SRK, Wilson, UNIQUAC,
ideal solution and gas

NRTL, Wilson and UNIQUAC
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Sun and Seider (1995) introduced homotopy continuation method for phase
stability problem, in order to locate all stationary points of the tangent plane distance
function (TPDF). However, their technique requires several initial estimates for
finding all stationary points of TPDF. Harding and Floudas (2000a) studied the phase
stability of three cubic equations of state: SRK, Peng-Robinson and van der Waals,
based on analytical findings and the principles of aBB (branch and bound) global
optimization framework. In this study, stability problems with several decision
variables (< 8) have been analyzed.

Tessier et al. (2000) introduced an interval Newton/generalized bisection
technique for solving phase stability problems involving excess Gibbs energy models.
The proposed technique is independent of initialization, immune to rounding errors,
and provides both mathematical and computational guarantees that all stationary
points of TPDF are enclosed. Zhu and Inoue (2001) developed a general quadratic
under-estimating function based on branch and bound algorithm by the construction
of a rigorous under-estimator for TPDF involving NRTL model, and showed its
effectiveness for phase stability analysis of three ternary mixtures with up to 2-3
phases. Xu et al. (2002) studied the phase stability criterion involving the statistical
associating fluid theory equation of state model. They introduced an interval
Newton/generalized bisection algorithm and a volume-based formulation for the
Helmholtz energy, and then applied them successfully to non-associating, self-
associating, and cross-associating systems.

Nichita et al. (2002b) proposed the tunneling method for phase stability
analysis with cubic equations of state by minimization of the TPDF on a variety of
representative systems. Their results show that the proposed method is very robust

even for the very difficult systems. Lucia et al. (2005) incorporated some new ideas
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within the terrain methods and applied them to phase stability and equilibrium of n-
alkanes mixtures. This method provides global knowledge for understanding the
solution structure, saddle points and other information. Gecegormez and Demirel
(2005) introduced interval Newton method for phase stability analysis of binary
systems and ternary systems modeled by NRTL, to locate all the stationary points.
Their results confirm that the interval Newton method is able to locate all the
stationary points of TPDF. Mitsos and Barton (2007) reinterpreted the Gibbs tangent
plane stability criterion via a Lagrangian duality approach, as the solution of the dual
problem of a primal problem that minimizes Gibbs free energy subject to material
balances. Then, this optimization problem was solved using CPLEX and BARON in
GAMS. Nichita et al. (2008a) used the tunneling method to solve the non-convex
optimization problem that results from the TPDF in terms of the Helmholtz free
energy.

Jalali et al. (2008) studied homotopy continuation method for phase stability
analysis in the complex domain using Michelsen criteria (Michelsen, 1982). However,
this approach is not possible if the equations cannot be converted into complex
variables. Nichita et al. (2008b) applied the tunneling method to solve the phase
stability problem for more complex equation of state like perturbed-chain statistical
association fluid theory. Calculations were performed for several benchmark
problems and for binary and multi-component mixtures of non-associating molecules.
Saber and Shaw (2008) tested dividing rectangles (DIRECT) global optimization
algorithm for optimizing TPDF with SRK equation of state for multi-component
mixtures and near critical-point systems, and showed that this algorithm has better
robustness and efficiency compared to Lipschitz method, interval Newton method,

tunneling method, very fast simulated annealing, stochastic differential equations
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and/or modified direct search annealing. Nichita and Gomez (2009) applied the
tunneling method to perform stability analysis of various systems modeled by PR and
SRK equation of state.

Besides the application of deterministic methods outlined in the above
paragraphs, stochastic methods have been studied by many researchers for phase
stability problems. Rangaiah (2001) applied GA and SA to phase stability problems of
various systems. The results show that the former is more efficient and reliable than
the latter. Balogh et al. (2003) introduced a stochastic sampling and clustering method,
and applied it to a modified TPDF with an equation of state as the thermodynamic
model. This method was able to solve small to moderate size problems efficiently and
reliably. Henderson et al. (2004) formulated the phase stability optimization problem
with a slight modification of the Gibbs tangent plane criterion, and used SA to solve it.
Bonilla-Petriciolet et al. (2006) compared four algorithms: SA, very fast SA, a
modified direct search SA and stochastic differential equations, on several phase
stability problems. Their results show that SA is the most reliable among the methods
tested for minimization of TPDF for both reactive and non-reactive mixtures.

Srinivas and Rangaiah (2007a) investigated solution of phase stability
problems with DE and TS, and reported that the former has better reliability but less
computational efficiency compared to the latter. Junior et al. (2009) applied a hybrid
adaptive random search method to solve the phase stability problems for three
different equation of state models. Their results show that the proposed method
outperforms the classical adaptive random search, quasi-Newton and DIRECT
methods. Rahman et al. (2009) tested a repulsive PSO for phase stability problems.
This optimization algorithm uses the propagation mechanism to determine new

velocity for a particle. Consequently, it can prevent the swarm from being trapped in a
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local minimum. Ferrari et al. (2009) used SA and PSO for modeling liquid-liquid
equilibrium data of binary and multi-component systems. They concluded that both
algorithms are robust for estimating the model parameters in these applications.
Bonilla-Petriciolet and Segovia-Hernandez (2010) performed a comparative study of
different variants of PSO algorithms for phase stability of multi-component mixtures.
Their results indicate that the classical PSO with constant cognitive and social
parameters is reliable and offers the best performance for global minimization of
TPDF in both reactive and non-reactive systems.

Srinivas and Rangaiah (2010) proposed two versions of DE with tabu list,
referred as DETL-G and DETL-E, and applied to phase stability problems. Their
results show that the overall performance of DETL-G and DETL-E is better than that
of DE and TS. Bonilla-Petriciolet et al. (2010c) studied phase stability and
equilibrium calculations in reactive systems using DE, SA and TS, and showed that
DE and TS are better than SA in terms of efficiency but not so in terms of reliability.
In these and other studies (Rangaiah, 2001; Srinivas and Rangaiah, 2007a and 2010;
Bonilla-Petriciolet and Segovia-Hernandez, 2010), a local optimization technique was
used after the global search for efficiently and accurately finding the (global)
minimum. Among the many stochastic methods tested and compared for solving the
phase stability problems, DETL has shown better performance.

It is clear that both stochastic and deterministic methods can be used for
reliably solving phase stability problems in multi-component system. Overall, finding
all stationary points of TPDF is not an easy task because a search over the entire
composition space is required and the number of these stationary points is also
unknown. Hence, it is better to find the global optimum of TPDF during phase

stability analysis. Several studies indicate that optimization methods tested may fail to
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find the global optimum in phase stability analysis when there are comparable minima
(i.e., the difference in function values at the global minimum and at a local minimum
is very small). The reduction of CPU time taken by global optimization methods is
one of the major challenges in phase stability analysis of multi-component systems.
This improvement would allow us to extend the application of these strategies for

performing phase equilibrium calculations in more complex systems.

2.4.3 Applications to Phase Equilibrium Calculations

Both deterministic and stochastic global optimization methods have been
applied for phase equilibrium calculations of different systems with and without
chemical reactions; these investigations are summarized in Tables 2.3a and 2.3b. For
example, Lucia et al. (2000) introduced unique initialization strategies and successive
quadratic programming for phase equilibrium calculations. The overall algorithmic
framework is based on using a combination of binary tangent plane analyses, bubble
point calculations and dimensionless Gibbs free energy minimization for solving a
sequence of sub problems (i.e., VLE, LLE, and VLLE). Chaikunchuensakun et al.
(2002) applied a combined algorithm, NLQPB, for the calculation of multi-phase
equilibrium conditions at fixed temperature, pressure and overall composition.
Although global solutions cannot be guaranteed, NLQPB can find equilibrium
compositions accurately for multi-phase mixtures by the minimization of the Gibbs
free energy of the system. Cheung et al. (2002) developed a branch-and-bound
algorithm, which incorporates tight convex under-estimators and bounds on the
dependent variables approach, and applied it to determine the global minimum

potential energy for the solvent-solute interactions in phase equilibrium.
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Table 2.3a. Application of Deterministic Optimization Methods to Phase Equilibrium Calculation

Method (Reference) Problem formulation

Thermodynamic models

Successive Quadratic Programming (Lucia et al. 2000) Gibbs free energy

Nonlinear parametric optimization (NLQPB) (Chaikunchuensakun Gibbs free energy
et al., 2000)

Branch and Bound (Cheung et al., 2002) Potential energy
Tunneling Method (Nichita et al., 2002) Gibbs free energy
Interval Analysis (Scurto et al., 2003) Gibbs energy surface
Tunneling method (Nichina et al., 2004) Gibbs free energy
CONOPT in GAMS (Rossi et al., 2010) Gibbs free energy

Duality based optimization (BARON, MINOS and CPLEX) Helmholtz free energy
(Pereira et al., 2010)

NRTL, UNIQUAC, UNIFAC, RK,
PolyNRTL, HOC, SRK and PolySRK
UNIQUAC, PR and van der Waals

van der Waals and Coulombic
SRK and PR

PR and van der Waals

SRK and PR

NRTL and Wilson

Augmented van der Waals
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Table 2.3b. Application of Stochastic Optimization Methods to Phase Equilibrium Calculations

Method (Reference)

Problem formulation

Thermodynamic models

Enhanced Simulated Annealing (Zhu et al. 2000)

Genetic Algorithm, Simulated Annealing and hybrid GA
(Teh and Rangaiah, 2001)

Enhanced Tabu Search (Teh and Rangaiah, 2003)

Random Tunneling Algorithm (Srinivas and Rangaiah,
2006)

Differential Evolution and Tabu Search (Srinivas and
Rangaiah, 2007a)

Differential Evolution with Tabu List (Srinivas and

Rangaiah, 2007b)
Hybrid Artificial Immune System (Lin and Chen, 2007)

Simulated Annealing (Bonilla-Petriciolet et al, 2009)

Hybrid Genetic Algorithm with Interior Point Method
(Staudt and Soares, 2009)

Genetic Algorithm and Differential Evolution with Tabu
List (Bonilla-Petriciolet et al, 2011)

Gibbs free energy
Gibbs free energy

Gibbs free energy
Gibbs free energy

Gibbs free energy

Gibbs free energy

Gibbs
reaction
Gibbs free energy with its
orthogonal derivatives

Gibbs free energy

free energy with

Gibbs
reaction

free energy with

PR and SRK
SRK, PR, NRTL and UNIFAC

SRK, PR, NRTL and UNIFAC
SRK, PR, NRTL and ideal gas

SRK, PR, NRTL and UNIFAC

SRK, PR, NRTL and UNIFAC

NRTL and UNIQUAC
NRTL, Wilson and ideal gas

NRTL, SRK and PR

NRTL, Wilson,
Margules solution

UNIQUAC

and
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Nichita et al. (2002a) tested the tunneling method for multi-phase equilibrium
calculation by direct minimization of Gibbs free energy of a variety of multi-
component systems. Their results suggest that tunneling method is a robust and
efficient tool for solving phase equilibrium problems even for extremely difficult
cases. However, it requires feasible and improved initial estimates for reliability and
computational efficiency respectively. Scurto et al. (2003) applied interval analysis
methodology to predict the behavior of high-pressure solid-multiphase equilibrium
systems using cubic equations of state with co-solvents, where the likelihood of
formation of more than two phases is great. Nichita et al. (2004) too used the
tunneling method to directly minimize Gibbs free energy in multi-phase equilibrium
calculations. Rossi et al. (2010) applied convex analysis method to chemical and
phase equilibrium of closed multi-component reactive systems. This method employs
the CONOPT solver in GAMS. The optimization is to minimize Gibbs free energy of
systems at constant pressure and temperature, and constant pressure and enthalpy. The
proposed method can solve the phase equilibrium problems with high efficiency and
reliability but it requires the convexity of the model. Pereira et al. (2010) proposed a
duality-based optimization for phase equilibrium where the volume-composition
space is converted from Gibbs free energy to Helmholtz free energy. They used
BARON for global optimization, MINOS as the nonlinear local solver and CPLEX
for linear problems. The method is applicable to the calculation of any kind of fluid
phase behavior (e.g., VLE, LLE and VLLE). The method proposed by Pereira et al.
(2010) can guarantee the global optimum but it requires a differentiable objective
function.

Beside deterministic methods for solving the phase equilibrium problems

reviewed above, many stochastic methods have been used to solve them. Zhu et al.
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(2000) introduced enhanced SA for phase equilibrium calculations of multi-
component systems at high pressure, which include ternary, quaternary and five
component mixtures. Although the proposed algorithm requires slightly more
computational time compared to two algorithms in the literature (MULPRG and
HOMPEQ), it provides comparable reliability, is self-starting and simple. Rangaiah
(2001) evaluated the performance of GA, SA and hybrid GA for phase stability
problems of several mixtures. The results show that GA is more efficient and reliable
than SA, and that hybrid GA outperforms both GA and SA in terms of reliability but
its main limitation is the significant increase in the CPU time. Teh and Rangaiah
(2003) tested enhanced continuous TS for phase equilibrium calculations via Gibbs
free energy minimization, of VLE, LLE and VLLE systems. Their results indicate that
TS is more efficient than GA but both require further improvement for 100%
reliability.

Srinivas and Rangaiah (2006) evaluated RTA on a number of medium sized
problems including VLE, LLE and VLLE problems. This algorithm can locate the
global optimum for most of the examples tested but its reliability is low for problems
having a local minimum comparable to the global minimum. Srinivas and Rangaiah
(2007a) compared DE and TS algorithms for phase equilibrium calculations of
various VLE, LLE and VLLE systems. Subsequently, Srinivas and Rangaiah (2007b)
introduced DETL algorithm for phase equilibrium calculation. Their results show that
this hybrid algorithm performs better than both DE and TS. Lin and Chen (2007)
proposed a hybrid method for chemical reaction and phase equilibrium calculation.
This method was constructed by making use of the advantages of artificial immune
system and sequential quadratic programming. The results show that the hybrid

method is better than the artificial immune system method alone.
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Staudt and Soares (2009) proposed a hybrid global optimization method for
the minimization of Gibbs free energy for multi-phase equilibrium calculation. The
proposed method uses GA for the global search and interior point method for
refinement after the global search. Bonilla-Petriciolet et al. (2011) applied GA and
DETL for phase equilibrium calculations in reactive systems by Gibbs free energy
minimization; two approaches — constrained and unconstrained, were tried for solving
these problems. The results show that unconstrained free energy minimization
involving transformed composition variables requires more computational time
compared to constrained minimization, and that DETL has generally better
performance for free energy minimization in reactive systems. Among the stochastic
methods, hybrid methods often provide better performance in terms of reliability and
efficiency.

In summary, the literature indicates that the major difficulties of Gibbs free
energy minimization using both deterministic and stochastic methods arise in phase
equilibrium calculations for highly non-ideal mixtures. For some conditions,
difference of objective function value at the global minimum and at a local optimum
(i.e., at trivial solutions and unstable phase equilibria) is also very small. In fact,
trivial solutions present a significant region of attraction for numerical strategies, and
may cause convergence problems. Many of the studies and tests assume that the
correct number of phases at equilibrium is known a priori. However, the number and
type of phases, at which Gibbs free energy function achieves the global minimum, are
unknown in phase equilibrium problems and, as a consequence, several calculations
must be performed using different phase configurations (adding or removing phases)

to identify the stable equilibrium state. Hence, it is desirable to develop more effective
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deterministic and stochastic methods for the global Gibbs free energy minimization in

both reactive and non-reactive systems.

2.5 Concluding Remarks

Optimization problems involved in phase equilibrium modeling and
calculations are complex and difficult to solve using traditional local optimization
methods due to (a) the presence of several local minima, (b) the objective function
may be flat and/or with discontinuities in some regions of solution domain, (c) wide
range of decision variables in modeling problems, and (d) presence of trivial solutions
in some problems. In fact, these optimization problems are generally non-convex,
constrained, and highly non-linear. Hence, solution of these important and common
problems requires reliable and efficient global optimization methods able to handle
different problem characteristics. To date, a number of deterministic and stochastic
global optimization methods have been developed and evaluated for solving phase
equilibrium modeling and calculation problems. These methods have been widely
applied to solve phase stability and Gibbs free energy minimization problems in non-
reactive systems. However, fewer attempts have been made in the application of these
methods to reactive phase equilibrium calculations and modeling, compared to those
reported for non-reactive systems.

Even though research in the application of global optimization methods for
phase equilibrium modelling and calculations has grown significantly over the last
decade, results reported in the literature indicate that both deterministic and stochastic
global optimization methods require further improvement for solving, robustly and
efficiently, these application problems. One of the major limitations of deterministic

global optimization methods is the significant computational time required for solving
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high dimensional problems, which grows exponentially with the number of decision
variables. This aspect limits the application of these strategies to model multi-
component and multi-phase systems and the use of complex thermodynamic models
for predicting mixture properties. Therefore, further research should be performed to
improve the performance of available optimization algorithms and to develop general
purpose and effective deterministic methods for solving phase equilibrium problems
in multi-component systems.

Compared to deterministic optimization methods, stochastic optimization
techniques involve simple concepts, do not require any assumptions and can be used
for any type of problem. Hybridization to synergize selected features of different
stochastic algorithms is a promising approach for developing highly effective
algorithms since reported results show that the performance of pure algorithms is
almost always inferior to that of hybrid algorithms. Therefore, further studies should
be focused on the development of hybrid strategies to improve the reliability of
stochastic optimization methods using fewer NFE. In addition, alternative termination
criteria should be studied and tested for reliably determining the global convergence
of stochastic optimization methods for phase equilibrium modeling and calculations.
It is also desirable that these methods should have no or fewer tuning parameters.
Despite the many advances in this area, research in global optimization for phase
equilibrium modeling and calculations will continue to be an active field in chemical
engineering, in order to develop and evaluate effective global optimization methods,
in the foreseeable future. Further, promising deterministic and stochastic methods
need to be compared carefully and comprehensively for solving phase equilibrium

modeling and calculation problems.
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Chapter 3

An Integrated Differential Evolution with a Novel Stopping

Criterion*

3.1 Introduction

Global optimization is a fast growing area in the recent few decades due to its
applications in many areas such as mathematics, science and engineering. Available
global optimization methods can be classified into two broad categories (Pardalos et
al., 2000; Moles et al., 2003): deterministic methods (Horst and Tuy 1996; Pinter
1996; Floudas 1999; Esposito and Floudas 2000; Lucia, Gattupalli et al. 2008) and
stochastic methods (Guus et al. 1995; Zhigljavsky and Zilinskas 2007). Deterministic
algorithms are most often used for specific problems and when the clear relation
between the characteristics of the possible solutions and the problem is available
(Nocedal and Wright. 2006; Weise 2008). They can guarantee the global optimality of
the final solution under certain conditions such as continuity and convexity (Moles
2003; Teh and Rangaiah 2003). However, no algorithm can solve general global
optimization problems with certainty in finite time (Weise 2008). If the relation
between a candidate solution and the objective function is too complicated or the
dimensionality of the search space is very high, it becomes harder to solve an
optimization problem deterministically (Moles, et al., 2003; Liberti and Kucherenko

2005; Weise 2008).

* This chapter is based on the paper - Zhang, H., Rangaiah, G.P. and Bonilla-Petriciolet, A.,
Integrated Differential Evolution for Global Optimization and its Performance for Modeling
Vapor-Liquid Equilibrium Data. IECR, vol.50, pp.10047-10061, 2011.
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The most challenging global optimization problems in real life are those
without any known structure that can be used, the so-called black-box optimization
problems (Pardalos et al., 2000; Exler et al., 2008). Stochastic optimization algorithms,
whose search and outcome are random, are designed to deal with such problems or
highly complex problems. They generally require little or no additional assumptions
on the optimization problem, are simple to implement and use, and do not require
transformation of the original problem, which can be treated as a black box. This
characteristic is especially useful if the researcher has to link the optimizer with a
simulator such as Aspen Plus and Hysys. On the other hand, stochastic algorithms
cannot guarantee global optimality (except for infinite iterations), but they can locate
the global optimum with high probability in modest computation times (Moles et al.,
2003; Lin and Miller 2004; Liberti and Kucherenko 2005).

Many stochastic global optimization methods have been developed and used
for diverse applications. The well-known stochastic global optimization methods
include GA, evolutionary strategy, SA, DE, TS and PSO. Our recent book covers
these and their applications in chemical engineering (Chen et al., 2010). Among these,
DE is a promising population-based stochastic optimization algorithm proposed by
Storn and Price (Storn and Price 1997; Price et al.,, 2005). It has been gaining
popularity due to its simplicity, faster convergence and capability to handle non-
differentiable and multi-model problems (Price et al., 2005; Babu and Munawar
2007). It has found many applications in chemical engineering (Chen et al., 2010). In
general, users need to choose suitable values of DE parameters (namely, population
size NP, mutation/scaling factor F and crossover rate Cr), and proper mutation
strategy for different problems in order to find the global optimum. These selections

require effort and expertise as an improper choice can result in computational
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inefficiency. In order to overcome these difficulties, recently, researchers have been
studying strategies to adapt the algorithm parameters of DE according to the
performance in the previous generations (Brest et al., 2006 and 2008; Soliman and
Bui 2008; Omran et al., 2009; Qin et al., 2009; Liao, 2010). Of these, Qin et al. (2009)
developed a comprehensive self-adaptive DE (SaDE) to adapt mutation strategy, F
and Cr, and showed it to be better than the conventional DE and three recent adaptive
DE variants on more than 20 benchmark optimization problems having up to 30
decision variables and bounds on variables but no constraints. In parallel to these
works, there have been a number of attempts to improve DE (Lampinen, 2002; Angira
and Babu, 2006; Srinivas and Rangaiah, 2007b and 2007c; Yang et al., 2008; Zhang
et al., 2008; Ali and Kajee, 2009; Pant et al., 2009). The work of Srinivas and
Rangaiah (2007b and 2007c) improved the computational efficiency of DE by
including the taboo list of taboo search (DETL) which avoids revisits during the
search. Results show that DETL outperforms the classic DE and modified DE of
Angira and Babu (2006).

Although there are many stochastic global optimization methods with good
performance, there are still some challenges. Limitations of stochastic optimization
algorithms include tuning of algorithm parameters, lack of good stopping criterion
and difficulty to overcome the premature convergence. The main objective of the
present work is to develop an efficient and reliable DE for practical applications that
can overcome these disadvantages. Motivated by the desirable features and
performance of DETL and parameter adaptation, both these are integrated together
with a novel termination criterion to stop the global search reliably and use a local
optimizer for finding the minimum accurately and efficiently. The resulting algorithm,

IDE, is tested on many challenging benchmark problems, and the effectiveness of the
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novel termination criterion is compared with another used earlier (Bonilla-Petriciolet
et al.,, 2006; Babu and Munawar, 2007; Srinivas and Rangaiah, 2007b and 2007c;
Zielinski and Laur 2007; Bonilla-Petriciolet et al., 2010c). Note that an effective
stopping criterion is critical for efficiently and reliably solving application problems
where the global minima are unknown, and yet it has not received much attention in
the literature on stochastic global optimization.

The remainder of this chapter is organized as follows. Classical DE is outlined
in Section 3.2, and development and description of the IDE are presented in Section
3.3. The performance of IDE on benchmark functions is reported and discussed in
Section 3.4. The effect of NRy.x is studied in Section 3.5. Finally, Section 3.6

concludes this chapter.

3.2 Differential Evolution Algorithm

DE is a population-based, real-coded direct search algorithm. It can be used to

solve the following type of optimization problems:

Min F

(X)) J=12,.,D subjectto x7), < x’ < x] (3.1)

min max
Here, F,,; denotes the objective function, ¥ is the jth decision variable, D denotes the
number of decision variables in (i.e., dimension of) the problem, and ¥ i and X/, are
respectively the lower and upper bound on each decision variable. DE uses a
population of NP D-dimensional vectors, which are also called individuals. It has four
main steps: initialization, mutation, crossover and selection, as outlined in the pseudo-
code in Fig. 3.1. Mutation and crossover steps generate new individuals, and they

together with the selection step constitute one generation or iteration of the DE

algorithm.
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Step 1 Initialization

Initialize the generation number as G = 0.
Randomly initialize NP individuals (target vectors X, . = { X] G oeees xiDG} fori=1,2, ...,

NP) within the search range [ X, Xuax], Where X, .= { x! xP } and

min ****> “min
_ 1 D
Xmax - {xmax""’xmax} :

FOR i=1to NP
FORj=1to D
xi{G
END FOR
END FOR

=x! +rand(0,1)*(x! —x’ )

min max min

Step 2 Generation

WHILE stopping criterion is not satisfied

¢ Mutation Step: /generate a mutation vector V, . = {v1 vP }

i,G>* Vi, G
FOR i=1to NP
V’,G = Xrl,G + F(sz,G - er,G)

END FOR /where F is the mutation factor and subscripts: 7;, 7, and r; are randomly

chosen integers from 1 to NP such that; 1, Z 1, #1

* Crossover Step: / generate a trial vector U, ; = {uil,G yeees ufG}
FORi=1to NP
FORj=1toD
; v/, if rand(0,1)<Cror j=j,,
ul, =< "
re X6 otherwise

END FOR / where Cr is the crossover rate and j,4,q is a random integer from 1 to D
END FOR

e Selection Step: / select trial or target vector with better objective value as the individual
for the next generation.

FOR i=1to NP
Ui if Fop(Ui g ) S F (X )
Xign = X otherwise
i,G
END FOR
Increment the generation number G = G + 1
END WHILE

Figure 3.1. Pseudo-code of the Classic DE Algorithm
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3.2.1 Initialization

The search space is bounded by the minimum  bound
X . = {xr‘nin xrfin} and maximum bound X . = {xjnax .., xP } .

’ xmax

The decision variables of each individual are generated randomly (using uniformly

distributed random numbers) within the search space by
x’=x! +rand(0,1)*(x/ — x/. ). So, an individual is expressed by the D-
dimensional genes X = {x‘ e x? } . Thus, the initial population of NP individuals

is produced.

3.2.2 Mutation

One of the vectors (say, i vector, X;¢) in the population is selected as the
target vector for possible replacement. Then, the mutation operation is performed by
randomly selecting two individuals in the population, calculating the difference vector
between them, and then adding the difference vector multiplied by the mutation factor,

F to another individual to produce a mutation vector, V; .
Vie=X,6tF(X,,;—X,36) (3.2)

Here, G denotes the generation number and subscripts: r;, r, and r; are randomly
chosen integers from 1 to NP (number of individuals in population) such that
r#1,#1,#1. So, at generation G, its mutation vector isV, ; ={v!;.....v/;}. When
the population converges to an optimum, any randomly chosen difference vector will
become smaller in magnitude. Eventually when all members converge to a single
solution, the difference vector will become zero and mutation operation (Eq. 3.2) will

be nearly disabled. Thus, mutation operation is not only determined by F but also by

the population diversity.
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3.2.3 Crossover

Once the mutation vector is created, it will undergo a binomial crossover
between target and mutant vectors (X; ¢ and V; ) to generate a trial vector. Each gene
of trial vector is generated using a random number between 0 and 1; if the random
number is lower than crossover rate (Cr), the variable of the target vector is chosen,
otherwise the variable of the mutation vector is chosen. So the variable of trial vector
is

j V,‘{G, lf rand(o’1)<cr’0r j:jrand

Usc=

X/, otherwise (3-3)

Thus, the trial vector is U 6= {uil,G""’uiI,)G}' The condition j=j _ , (where juq is a

random integer in the range 1 to NP) is introduced to ensure that the trial vector will

be different from its corresponding target vector by at least one decision variable.

3.2.4 Selection

After the crossover operation, there is a need to check the boundary violation
of the trial vector. If any variable of the trial vector has crossed the upper or the lower
bound, it is reinitialized randomly within the decision variable’s bounds. After
evaluating the objective function value at the resulting trial vector, selection operation
is performed. DE uses a greedy selection criterion based on the objective function
value. The comparison is performed between the objective function values of the trial

vector, f(U,,)and the corresponding target vector, f(X, ). The vector with better

objective function value is selected for the next generation. The selection operation is

expressed as follows:

U, i U..)< f(X,
X, - { o F FUG)S F(X, ) a4

X,; otherwise
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Mutation, crossover and selection steps are repeated for each and every individual in
the population as the target vector. This completes one generation. The generations

will be repeated until the specific termination criteria are satisfied.

3.3 Integrated Differential Evolution Algorithm

There have been many developments on DE with regards to initialization,
mutation, crossover and selection operations as well as hybridization with other
methods. Developments up to the year 2002 can be found at
http://www2.lut.fi/~jlampine/debiblio.htm, and subsequent developments are
reviewed by Chen et al. (2010). These are not repeated here for brevity, and only two
relevant developments are outlined here. Hybrid methods combine DE with another
optimization method to enhance the performance of DE (Srinivas and Rangaiah,
2007b; Yang et al., 2008; Pant et al., 2009; Liao, 2010). DETL proposed by Srinivas
and Rangaiah (2007b and 2007c¢), was tested on benchmark functions and application
problems, and shown to have better performance. In this, the taboo check is
implemented after mutation and crossover steps; it is performed by measuring the
Euclidean distance between the trial individual and each individual in the taboo list
(TL). If the Euclidean distance is less than the taboo radius, the trial individual is
rejected and another trial individual is produced by mutation and crossover
operations. This procedure is repeated until the Euclidean distance between the trial
individual and each individual in the TL is greater than the taboo radius. This
operation significantly avoids revisiting the same area, increases the diversity of the
population and avoids unnecessary objective function evaluations. Thus, the ability of
global exploration is greatly enhanced. On the other hand, several researchers

investigated self-adaptive strategies to tune the parameters in DE (Brest et al., 2008;
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Nobakhti and Wang, 2008; Omran et al., 2009; Qin et al., 2009). Among these, SaDE,
proposed by Qin et al. (2009) was tested on many benchmark functions and shown to
be better than nine variants of DE.

Typically, DE requires values for algorithm parameters, uses the stopping
criterion of maximum number of generations and has scope to improve its efficacy.
Hence, several useful strategies are integrated into DE to develop IDE for finding the
global optimum reliably and efficiently. These are: adaptation of mutation parameter
and strategy, crossover parameter, inclusion of tabu list and tabu check as in DETL, a
novel stopping criterion and a local optimizer after the global search. These additions

into the classic DE are briefly discussed in the following sub-sections.

3.3.1 Adaptation of Mutation Strategy

A particular mutation strategy performs differently for solving different
optimization problems, and an inappropriate choice of strategies and parameters may
lead to premature convergence.(Lampinen, 2002; Price, Storn et al. 2005) Therefore,
the mutation strategy candidate pool should contain distinct capabilities for dealing
with specific problems at different stages of evolution. Recently, many researchers
have studied adapting mutation strategy and parameters in DE’(Lampinen, 2002;
Brest et al. 2006; Soliman and Bui, 2008; Omran et al., 2009; Qin et al., 2009; Liao,
2010). Of these, Qin et al.(2009) developed a self-adaptive DE to adapt mutation
strategy, F and Cr, and showed it to be better than the conventional DE and three
recent adaptive DE variants on more than 20 benchmark optimization problems
having up to 30 decision variables. Hence, the adaptation schemes of Qin et al. (2009)
are chosen for developing IDE. Accordingly, the following four mutation strategies
are selected for the candidate pool in IDE.

1) DE/rand/1
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Vi,G = Xrl,G + F'(sz,c - Xr3,G) (3.5)
2) DE/rand/2

V.

6= Xpg T FA(X 6= X36)tFeo(X 6 X,56) (3.6)
3) DE/rand-to-best/2

Vi,G = Xi,G +Feo(X Xi,G)+ F°(Xr1,G - XrZ,G)+ F°(Xr3,c - Xr4,G) (3.7)

best,G -

4) DE/current-to-rand/1
Ugs=Xc+ rand (0, De(X, 6 =X, o)+ Fo(X,,6—X,55) (3.8)

Each of the mutation strategies 1, 2 and 3 (Egs. 3.5, 3.6 and 3.7) will be followed by
the binomial crossover operation to produce the trial vector. Mutation strategy 4 (Eq.
3.8) directly produces the trial vector and does not need crossover operation.

During evolution in each generation, one mutation strategy is selected from
the candidate pool according to the probability, Py, k =1, 2, ..., K, where K is the total
number of strategies in the pool. Initially, the probability of each strategy is 0.25 since
K = 4 here. In the subsequent generations, the probability of selecting a mutation
strategy is based on its success rate in the previous LP number of generations. The
number of trial vectors generated by Kt strategy that are successfully selected in a
generation, g is recorded as nsy,y; otherwise, it is recorded as nfy,,. After LP

generations, the probability of choosing k™ strategy in generation G is given by

G-
E ns
g=G-LP k.8

Si6=—c3 o +& fork=1,2,....K (3.9)
Zg:G—LP nsk,g + Zg:G—LP nf k.g
_ Sk,G
Pic =% fork=1,2,....K (3.10)
k=1 Sk,G

Here, ¢ = 0.1 is used to prevent the possibility of null success rate. So, the larger

success rate of k™ mutation strategy in the previous LP generations will result in
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higher probability of the corresponding mutation strategy to be selected in the current
generation G.

Stochastic universal sampling method (Baker, 1987), which provides zero bias
and minimum spread, is employed to choose one of these four strategies for mutation,
based on probability. The probabilities of these strategies are calculated at each
generation, using Eqgs. 3.9 and 3.10. This method for four strategies and 6 individuals
is illustrated in Fig. 3.2. Here, the four strategies are mapped in black/continuous line
such that size of each strategy is equal to its probability (e.g., 0.18, 0.31, 0.24 and
0.27 in Fig. 3.2). The equally spaced pointers (individuals) are placed in green line to
indicate the strategy that they belong to. The first individual position is given by a
randomly generated number in the range [0, 1/6]. For example, the first individual is
randomly generated at 0.1, and the strategies are assigned to individuals as follows:
strategy 1 to individual 1, strategy 2 to individuals 2 and 3, strategy 3 to individual 4
and strategy 4 to individuals 5 and 6 (Fig. 3.2). It is obvious that the higher
probability of a mutation strategy (due to higher success of the trial individuals
produced by this strategy in the previous generations) leads to more chances for
producing the new trial individuals by this strategy. The probabilities of mutation
strategies are calculated once in each generation, which results in adaptive learning to
choose the more suitable strategy for the particular problem being solved. This in turn

makes the algorithm more reliable and robust.

Izlcamtlr:'r | poinlter 2 pointer 3 pDiI‘L}E‘J‘ 4 !:II:I]VI'llt‘I:.'i' 5  pointer 6
Strategies | 1 * | * 2 * | * 3 | * 4 |
I | | | |
00 T 018 049 073 10
random munher

Figure 3.2. Stochastic Universal Sampling Method for Selecting 4 Strategies with 6
Individuals
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3.3.2 Adaptation of F and Cr

Mutation factor (F) is very important for DE as it is closely related to the
convergence speed. So, in order to maintain the balance between exploration and
exploitation, F' is randomly chosen using normal distribution with mean of 0.5 and
standard deviation of 0.3. Crossover rate (Cr) is another important parameter in DE,
which significantly affects the reliability of the algorithm. Cry value follows the
normal distribution with mean of Crmy (where k is the mutation strategy used) and
standard deviation of 0.1. The initial value of Crmy is set at 0.5, and the successful Cry
values of each strategy are stored into CRMemoryy. After LP generations, the median
of values stored inside CRMemory, will be used for Crmy. Thus, Cr; value is
gradually changed by learning from the previous generations. This option will lead to
promising Cry value for different kinds of problems and to more reliability (Qin et al.,

2009).

3.3.3 DE with Tabu List

The hybrid of classic DE with TL was proposed and tested on benchmark
functions by Srinivas and Rangaiah (2007b), and subsequently applied to nonlinear
and mixed-integer nonlinear programming problems (Srinivas and Rangaiah, 2007c).
The tabu check is implemented after the mutation and crossover steps. In this, if the
Euclidean distance between the new trial individual and any of the individuals in the
TL is smaller than the specified tabu radius value (which indicates that the trial
individual is similar to an individual already visited), the trial individual is rejected
and another trial individual is generated by the mutation and crossover steps. This
procedure is repeated until the Euclidean distance between the trial individual and

each of the individuals in the tabu list is greater than the tabu radius. The procedure
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makes the individuals in the population more diverse, enhances the exploration of the
search space and avoids unnecessary evaluation of the objective function.

Tabu radius is one of the parameters used in the algorithm, and it prevents
revisit of the same neighbourhood. So, the higher the value of tabu radius, the larger
area will be forbidden for revisiting and vice versa. Obviously, the higher value of
tabu radius will cause larger number of rejected points and result in faster termination
of the global search by the rejection-based stopping criterion. For problems having a
local optimum very near to the global optimum, it is better to choose a smaller tabu
radius for higher reliability. The tuning of the tabu radius and nominal values are
reported in Srinivas and Rangaiah (2007b).

The objective function is evaluated at the trial individual only if it is away
from all the points in the tabu list. After each evaluation, the tabu list is updated
dynamically to keep the latest points in the list by replacing the earliest entered
point(s). Thus, the new point is added to the list by rejecting the oldest point in the list
so that the recently added points are retained (i.e., first-in first-out basis). The tabu
check avoids revisiting the same area, increases the diversity of the population and
avoids unnecessary function evaluations. Thus, the ability of global exploration is
greatly enhanced. The tabu check will require extra computational effort but this is
negligible in application problems where objective function evaluation is

computationally intensive.

3.3.4 Stopping Criteria

One of the disadvantages of stochastic optimization algorithms is lack of
proper stopping criteria. The improper stopping of the algorithm will lead to the final
solution either at a local optimum (stop too early) or waste of the computational

resources (stop too late). The commonly used stopping criteria for stochastic
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optimization algorithm in the literature can be classified as: (1) closeness of the
optimum found to the exact/known optimum (Brest et al., 2006; Qin et al., 2009); (2)
maximum number of function evaluations (fe,,,) or generations (G,,) (Moles et al.,
2003; Price et al. 2005; Omran et al., 2009; Liao, 2010); and (3) maximum number of
successive iterations without improvement in the best objective function value found
so far, which is also known as an improvement-based stopping criterion (SCp,x)
(Bonilla-Petriciolet et al., 2006; Babu and Munawar, 2007; Srinivas and Rangaiah
2007b and 2007c¢; Zielinski and Laur 2007; Bonilla-Petriciolet et al., 2010c).

The first type is only suitable for benchmark functions where the optimum is
known. It is not applicable for real-world optimization problems where the optimum
is not known a priori. The second one can be applied to these problems but it is
difficult to choose a proper fe, . or G, value. Firstly, it is highly dependent on the
optimization problem being solved. Secondly, the stochastic optimization algorithm
contains some randomness, and so the same problem solved at a different time may
need a different fe,,x or G, Wrong choice of fe,, or G, will lead to a local
solution or excessive computation time. The third criterion has been used in the
application problems (Angira and Babu, 2006; Bonilla-Petriciolet et al., 2006;
Srinivas and Rangaiah 2007b and 2007c; Bonilla-Petriciolet et al., 2010). This is
consistent with the conclusion of Zielinski and Laur (2007) that it is better to use a
stopping criterion which considers knowledge from the state of optimization run.

Here, a novel stopping criterion specifically for IDE is used after observing
detailed results on a number of benchmark functions. It is based on the number of
rejected individuals when producing a new trial individual for a target individual in a
generation. As the generations proceed, individuals in the population congregate

together owing to the nature of DE. When they are close enough, the new trial
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individual is more likely to be rejected by the tabu check, which is performed using
the Euclidean distance between the new trial individual and every individual in the
tabu list. If the Euclidean distance is smaller than the tabu radius, then the new trial
individual is rejected and another trial individual is generated. So, many rejections of
the new trial individual for a target individual in a generation indicate convergence of
the algorithm. The stopping criterion based on number of rejections monitors the
positions of individuals rather than the objective function values. Thus, it is more
robust than the stopping criteria mentioned previously (SCpax and Gnax). The stopping
criterion based on number of rejections is appropriate for IDE which includes tabu
check. In this work, effectiveness of this stopping criterion is compared with SC,x

used earlier.

3.3.5 Hybridize with Local Optimization

There are different ways of hybridization of global optimization with local
optimization methods (Talbi, 2002). The traditional hybridization methods are based
on the global search followed by a local search. In this approach, switching time
between global and local searches is very important. Early switching will increase the
probability of trapping in a local optimum. Conversely, a late switching time will
waste computational resources.(Miettinen et al., 2006) In this chapter, results are
presented later to show that the tabu check in DETL and the stopping criterion based
on the number of rejections can determine the switching time efficiently (i.e., the
global search is expected to terminate in the valley containing the global optimum). In
order to find a precise optimum efficiently, a local optimizer is used after completing
the global search, as in our previous works (Srinivas and Rangaiah, 2007b and 2007c).
Some researchers have used a local optimizer during the iterations of the global

algorithm (Dumas et al., 2009; Tong et al., 2009; Yuan and Qian, 2010). However,
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this increases computational effort, its benefit is unclear and so this approach is not
chosen for the IDE algorithm.

The IDE algorithm is implemented in MS Excel spreadsheet environment
using VBA (Visual Basic Application) language because of its ready availability and
used by researchers and practitioners in diverse fields. Solver tool in Excel is used as
the local optimizer; this can solve different types of optimization problems, and
employs Generalized Reduced Gradient (GRG) method for solving nonlinear
problems. GRG method is an efficient local optimizer, and uses finite difference
approximation for numerical derivatives of the objective function. A user-friendly
interface is developed in a worksheet for coding the objective function and calling the
optimization algorithm by anyone who can use the spreadsheet. Decision variables in

the problem given by the user are normalized between 0 and 1, inside the program.

3.3.6 Description of IDE Algorithm

IDE begins with the setting of parameter values: population size (NP),
learning period (LP), taboo list size (TLS), taboo radius (TR), maximum number of
generations (Gp,x) and maximum number of rejections (NR); see the flowchart in
Figure 3.3. In the first/initialization step, a population of NP individuals is generated
using uniformly distributed random numbers within the search space. The objective
function of each individual is evaluated and sent to the taboo list. The best individual
is saved.

During each generation, a strategy for each target individual is selected with
probability P;¢ using stochastic universal sampling method. The crossover rate (Cr; ;)
for each trial individual is calculated based on normal distribution with mean of Crmy,
and standard deviation of 0.1. Note that the initial probability of each mutation

strategy, Pi¢ 1s 0.25 and median value of crossover rate for each strategy, Crmy is 0.5.
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When the generation number is higher than the learn period (LP), P is updated and
median of values stored inside CRMemoryy is used for Crmy.

For generating a trial individual, mutation factor, F is calculated based on
normal distribution with mean of 0.5 and standard deviation of 0.3, and then a trial
individual is produced according to assigned mutation strategy (based on stochastic
universal sampling and Pi;), F' and Cr;;. A boundary violation check is performed to
make sure the decision variables of the generated trial individual is within the search
space. If any bound is violated, the corresponding decision variable of the trial
individual is replaced by a randomly generated value within its bounds. The trial
individual is then compared with the points in the taboo list. If it is near to any point
in the taboo list (i.e., Euclidean distance between the two points in the search space is
less than TR), the trial individual is rejected and another point is generated through
the mutation and crossover operations.

If the number of rejections for the same trial individual is greater than the
specified number, NR, then it means that the individuals in the current population are
very close. This indicates the algorithm has either converged to the approximate
global optimum or trapped at a local optimum. So, running the global search for more
generations is unlikely to improve the solution significantly. Hence, the global search
is terminated and the local optimizer is started from the best point found so far. In this
study, the Solver tool in Excel is used as the local optimizer. This can solve different
types of optimization problems, and employs Generalized Reduced Gradient (GRG)
method for solving nonlinear problems. GRG method is an efficient local optimizer
and uses finite difference approximation for numerical derivatives of the objective

function.
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If the number of rejections for the same trial individual is not greater than the
specified NR, the global algorithm will continue. After evaluating the objective
function of the trial individual produced, the selection step is performed based on the
fitness of objective function value. If the trial individual is selected, it replaces the
target individual in the population immediately, and Cr;;is stored into Crmy and the
success of the corresponding mutation strategy is updated as nsyg = nsig + 1.
Otherwise, the target individual remains in the population and the failure of the
corresponding mutation strategy is recorded as nfi ¢ = nfic+ 1. The objective function
is evaluated at the trial individual only if it is away from all the points in the taboo list.
After each evaluation, the taboo list is updated dynamically to keep the latest points in
the list by replacing the earliest entered point(s). Then, NR is reset to O for generating
the trial individual for the next target individual until all NP target individuals are
covered. The updating of Pyg, calculation of Crmy, mutation, crossover and selection
operations are repeated for the next generation until the maximum number of function
evaluations or generations, Gn,x or the specified stopping criterion is satisfied. Then,

the best point obtained over all generations is refined using the local optimizer.
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Figure 3.3. Flowchart of IDE Algorithm.
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3.4 Evaluation of IDE on Benchmark Functions

In this section, the proposed algorithm with the novel stopping criterion is
tested on many benchmark functions which include shifted, rotated and composite
functions. The performance of IDE is compared with some recent state-of-the-art
global optimization algorithms in the literature. Finally, the analysis of the proposed

stopping criterion is presented.

3.4.1 Comparison of IDE with DETL
3.4.1.1 Benchmark Functions and Evaluation Procedure

The performance of the IDE algorithm is tested on common benchmark
functions involving a few to thousands of local optima and 2-20 variables (Srinivas
and Rangaiah, 2007b). The details of these benchmark functions are summarized in
Table 3.1. As shown in this table, some of these functions are considered to be
moderate while the rest as difficult to solve (Srinivas and Rangaiah, 2007b). Out of
nine benchmark functions in Table 3.1, five functions (GP, H3, ROS, ZAK and mHB)
can be solved by BARON and four functions (ES, SH, RAS and GW) cannot be
solved by BARON because of cosine terms in the objective function.

The following parameters were used for all benchmark functions: population
size, NP = 30, learning period, LP = 10, tabu list size, TLS = 50, tabu radius, TR =
10°D and 10°D for moderate and difficult functions respectively. Stopping criterion
is the satisfaction of either the maximum number of rejections, NR,.,. = 20 or
maximum number of function evaluations, G,,.,, = 30D and 60D for moderate and
difficult functions respectively. All these parameter values are the same as those in
Srinivas and Rangaiah (2007b) except NP and LP. The G, is used as another

stopping criterion to avoid infinite loops. IDE both with an improvement-based
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stopping criterion (SC,,,,) and the new number of rejections based stopping criterion
(NR,.x), will be evaluated.

Table 3.1. Benchmark Problems

Function Dimension Domain Glpbal
minimum
Goldstein and Price (GP)"
_ 2 2 2 3.0
F =140 +x, +1)7(—14x, +3x —14x, +6xx, +3x;)] ) o<y <2
at x={0,1}
[30-H(2x, —3x,)(18—32x, +12x" +48x, —36x,x, +27%)]
Easom(ES)*
2 2 —100<x, <10 -1.0at
F,; =—cos(x;) cos(x, ) exp[—((x, —m)" +(x, —m))] 2
x={m,mn}
Shubert (SH)* -186.7309
5 5 ) —-10<x, <10
F, :{Z jeos[(j+1)x + j]HZ jeos[(j+Dx, + j]} x={0.0217,
j=1 J=1 -0.9527}
Hartmann 3 (H3)*® -3.86278 at
4 n x={0.1146,0
Fohj = _Z ¢; eXp[—Z aji('xi - pi,j)] 3 O<x <l .5556,
J=l i=l 0.8525}
Rosenbrock (ROSn)* 0.0
" 2 2 i 25.10. _5<x <10
F,, = [100(x} — x,,)*(x, — 1)?] at
i—1 15,20
x={1,...,1}
Zakharovn(ZAKn) ) ) 2.5.10, 5<x<10 0.0
Foo=0 " xH+ O] 05ix)) + (O 0.5ix))* : at
i=1 i=1 i=1 15,20
x={0,...,0}
Modified Himmelbalu (mHB)" ¢ ‘ 0.0
VY IRT 2 2 A 2 2 —6<x <
F =0¢ 426 =117 o +6 =7 0105 -3+ —2)) at x={3,2}
Rastrigin (RASn) " 0.0
n 2510, _600<x <60
F,, =10n+Y  (x; —10cos(27x,)) 20 at
= 15, x={0.....0}
Griewank (GWn)® 510 0.0
Zn: 2 H . A0 600 < x, <60
F, = ) —]|cos(—)+1 at
! o D i=1 \/; 15,20 x={0,...,0}

* Moderate functions; ® Difficult functions
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Since IDE is a stochastic optimization algorithm, convergence speed
(computational efficiency) and reliability of finding the global optimum may be
affected by random numbers. Hence, 100 independent runs, each time starting from a
different random number seed, were performed on each of the benchmark functions.
A successful run means the algorithm has found the objective function value very
close to the known global optimum value, f(x*). Here, a run of an algorithm is
considered to be successful if the objective function value found is < [f(x*) +1e-5] for
all benchmark functions. Convergence speed and reliability are assessed using
average number of (objective) function evaluations (NFE) and success rate (SR)
respectively. NFE for local optimizer is not included here since it is not provided by
the Solver tool in Excel; however, our experience shows that local optimization
contributes only a small percentage to the total NFE for finding accurate final
solutions (Srinivas and Rangaiah, 2007b). Note that NFE is a good indicator of
computational efficiency since function evaluation involves extensive computations in
application problems. Further, it is independent of the computer and software
platform used, and so it is useful for comparison by researchers. The reliability of the
algorithm is measured in terms of SR, which is the number of times the algorithm
located the global optimum to the specified accuracy out of 100 runs. SR and NFE of

the benchmark functions are summarized and discussed in the next section.

3.4.1.2 Results and Discussion

First, IDE and DETL are compared using the same stopping criterion (namely,
SChax = 7D for moderate functions and SCp,x = 12D for difficult functions) used by
Srinivas and Rangaiah (2007b) (see Table 3.2). For an overall comparison of
algorithms, we report the global success rate (GSR) defined as the mean success rate

for all benchmark functions tested (nb):
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nb SR
GSR=) — 3.11
2 b G0

where SR; is the success rate for function i. The results in Table 3.2 for SCpux
criterion show that, out of 21 benchmark functions tested in this study, IDE achieved
100% SR for 16 benchmark functions compared to 100% SR for 10 benchmark
functions by DETL. GSR of all benchmark functions listed in Table 3.2 is
respectively 97.6% and 99.3% for DETL and IDE. It is obvious that IDE is more
reliable than DETL for the benchmark functions. Total NFE used for all the 21
benchmarks is 114,235 and 128,638 for DETL and IDE respectively; thus, total NFE
used for IDE is increased by around 12.6%. This may be partly because DETL used
different parameter settings for different sets of benchmark functions whereas IDE
used the same parameter settings along with parameter adaptation for all benchmark
functions tested. In any case, using SC,,x criterion, IDE with higher reliability at the
expense of slight increase in NFE is preferable to DETL.

Next, IDE is tested using the NR,,,x = 20 stopping criterion. These results in
Table 3.2 show that IDE with NR stopping criterion has achieved 100% SR for 18 out
of 21 benchmark functions tested, and that GSR of IDE with NR criterion is the
highest (99.8%). Further, NFE taken by IDE with NR criterion is less than the other
two algorithms for 11 out of 21 problems tested, and total NFE required by the former
is 14.7% less than that by DETL. Thus, IDE with NR.x is more reliable and efficient
than DETL and IDE with SC,,x. Comparing the performance of IDE with NRy,.x and
SCax, it can be concluded that the NR,,,, stopping criterion is better in stopping the
global search effectively to achieve high reliability with less computational effort.
Further, it is more robust than SC,,x since the latter required different values for
different problems (2007b). Additionally, IDE has fewer parameters to be chosen

compared to DETL since two parameters (F' and Cr) which are very sensitive in DE
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are adapted during the iterations. All these make the IDE algorithm more reliable and

efficient for application problems.

Table 3.2. Performance Results of DETL and IDE for Benchmark Functions

E ) DETL with SC,ax IDE with SC,ax IDE with NR,,,x
unctions SR NFE SR NEE SR NFE
GP 100 636 100 1084 100 862
ES 95 1409 96 1306 100 1482
SH 99 684 100 990 100 1279
ROS2 100 678 100 883 100 1230
ZAK?2 100 400 100 912 100 1161
H3 100 719 100 1364 100 589
ROS5 99 2671 100 2615 100 931
ZAK5 100 1071 100 1980 100 3071
ROS10 97 4913 98 5442 99 1269
ZAK10 100 2194 100 2169 100 5862
ROS20 98 9507 97 11490 98 3043
ZAK20 100 4894 100 4748 100 4378
mHB 93 1473 100 1308 100 1279
RAS5 100 3592 100 6469 100 5862
RAS10 95 7544 100 10210 100 9234
RASI15 93 12532 97 14530 100 12155
RAS20 83 19156 97 18765 99 20361
GW5 98 5889 100 8582 100 3043
GWI10 100 11580 100 12517 100 4960
GWI15 99 11105 100 11505 100 6483
GW20 100 11588 100 9769 100 7800
GSR 97.6 99.3 99.8
Total NFE Used 114235 128638 97388
Total NFE Reduced Compared to DETL(%) -12.6 14.7

Note: The least NFE required for solving each problem by an algorithm is in bold.

3.4.2 Comparison of IDE with SaDE
3.4.2.1 Benchmark Functions and Evaluation Procedure

In this section, the proposed algorithm with the novel stopping criterion is
tested on many benchmark functions in Table 3.3. These include shifted, rotated and

composite functions which are more challenging to solve. In the shifted functions,
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position of the global optimum is shifted to a new random position (i.e., global

optimum solution has different values for decision variables) but keep the objective

function value unchanged.

Table 3.3: Basic Details of 26 Benchmark Functions

Function Name Dimension Global optimum x* fix¥)  Searchrange
il Shifted Sphere 10 & 30 0 0 [-100,100"
) Shifted Schwefel 1.2 10 & 30 0 0 [-100,100
f3 Rosenbrock 10 & 30 (L...,D) 0 [-IOO,IOO]D
f4 Shifted Schwefel 1.2 with niose 10 & 30 0 0 [-IOO,IOO]D
f5 Shifted Ackley 10 & 30 0 0 -3232"
f6 Shifted rotated Ackley 10 & 30 0 0 -3232)"
7 Shifted Griewank 10 & 30 0 0 [-600600]"
8 Shifted rotated Griewank 10 & 30 0 0 [-600600]"
9 Shifted Rastrigin 10 & 30 0 0 [-55]”
£10 Shifted rotated Rastrigin 10 & 30 0 0 [-55]”
f11  Shifted non-continuous Rastrigin 10 & 30 0 0 [-5,5]D
f12 Schwefel 10 & 30 (420.96.....420.96) 0 [-500500]"
f13 Composition 1 10 & 30 0 0 [-55]°
f14 Composition 2 10 & 30 0 0 [-55]”
f15 Schwefel 2.22 30 0....0) 0 [-10,10]°
£16 Schwefel 2.21 30 (0,...0) 0 [100,100"
£17 Generalized penalized 1 30 (-1...c]) 0 [-50,501"
f18 Generalized penalized 2 30 (I,....]) 0 [-50,501"
19 Kowalik 4 (0.19280.19080.1231,0.1358)  0.00031  [-53]°
£20 Six-hump camel-back 2 (0.8983-0.7126):(-0.089830.7126)  -1.03163  [-55]"
1 Branin 2 (3.1422.275);(9.4252.425) 0398  [-510]°
22 Hartman 1 3 (0.1140.5560.853) -3.86 0,15
23 Hartman 2 6 (0.2010.1500.4470.2750.3310.657)  -3.32 0,15

24 Shekel's family 1 4 (4444) 102 (o0
25 Shekel's family 2 4 (4444) 104 (o0
16 Shekels family 3 4 (4444) 105 (oo’

Remark: o is the shifted vector.
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We fixed values of the algorithm parameters for solving all the problems, for
fair performance comparison between the proposed IDE algorithm and SaDE
algorithm. The following parameter values are used: population size, NP = 50,
learning period, LP = 50, taboo list size = 50, The maximum number of function
evaluations is just used as a second stopping criterion to prevent infinite iterations.
Most of the parameter values used in this study are referring Qin et al. (2009) and
Srinivas and Rangaiah (2007b) for fair comparison purpose. In order to make a
reliable evaluation of the IDE algorithm, we performed 30 independent runs on each
benchmark function. The solution quality, success rate and number of function

evaluations (NFE) in these 30 runs are summarized and compared.

3.4.2.2 Results and Discussion

Table 3.4 gives the summary of the results obtained by IDE for the 26
benchmark functions in Table 3.3. These are compared with those of SaDE using the
convergence to the known global optimum (i.e., best objective function value < f(x*)
+1e-5) as the stopping criterion, given in Qin et al' (2009). SaDE is chosen for
comparison because it outperforms the recent self-adaptive DE such as ADE, SDE
and jDE (2008). Note that the termination criteria of IDE are NRp,x and NFE.x
stated above, and do not require the global optimum of the problem in advance. The
stopping criterion of convergence to the known global optimum is very efficient for
problems with known global optimum; but it is not practicable and useful for

application problems where the global optimum is unknown.
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Table 3.4 Comparison of Results by IDE and SaDE for Benchmark Functions

SaDE IDE Reduction in
Dimension Function Name SR NFE SR NFE NFE (%)
fl1  Shifted Sphere 100 8375 100 6744 19
f2  Shifted Schwefel 1.2 100 14867 100 17299 -16
f3  Rosenbrock 100 42446 100 16626 61
f4  Shifted Schwefel 1.2 with niose 100 15754 0 19317 -
f5  Shifted Ackley 100 12123 100 5954 S1
f6  Shifted rotated Ackley 100 12244 100 6256 49
D=10 f7  Shifted Griewank 100 35393 100 31867 10
f8 Shifted rotated Griewank 20 - 47 81924 -
f9  Shifted Rastrigin 100 23799 100 19207 19
f10  Shifted rotated Rastrigin 0 100000 0 92122 8
f11  Shifted non-continuous Rastrigin 100 26945 100 21287 21
f12  Schwefel 100 16663 100 15722 6
f13  Composition 1 100 9740 100 5316 45
f14  Composition 2 80 - 100 18854 -
f1  Shifted Sphere 100 20184 100 16779 17
f2  Shifted Schwefel 1.2 100 118743 100 88641 25
f3  Rosenbrock 90 - 93 36485 -
f4  Shifted Schwefel 1.2 with niose 0 300000 0 168427 44
f5  Shifted Ackley 100 26953 100 14542 46
f6 Shifted rotated Ackley 100 33014 100 15407 53
D=30 f7  Shifted Griewank 80 - 100 22671 -
f8 Shifted rotated Griewank 40 - 37 42614 -
f9  Shifted Rastrigin 100 58723 100 55484 6
f10  Shifted rotated Rastrigin 0 300000 0 224941 25
f11  Shifted non-continuous Rastrigin 100 77920 100 68266 12
f12  Schwefel 100 44283 100 45626 -3
f13  Composition 1 100 19031 100 12227 36
f14  Composition 2 0 - 0 17140 -
30 f15  Schwefel 2.22 100 25137 100 11707 53
30 f16  Schwefel 2.21 100 88934 100 35653 60
30 f17  Generalized penalized 1 100 18742 100 17516 7
30 f18  Generalized penalized 2 100 19390 100 17125 12
4 f19  Kowalik 100 6426 100 8074 -26
2 f20  Six-hump camel-back 100 2076 100 441 79
2 f21  Branin 100 2614 100 1930 26
4 f22  Hartman 1 100 802 100 79 90
6 f23  Hartman 2 100 3080 100 3022 2
4 24 Shekel's family 1 100 4947 100 5805 -17
4 f25  Shekel's family 2 100 4173 100 4136 1
4 26  Shekel's family 3 100 4267 100 4380 -3
Average reduction in NFE (%) by IDE compared to SaDE 25

Note: “-“ Results are not available for SaDE for these functions.
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It is obvious from Table 3.4 that IDE often requires fewer NFE compared to
SaDE even without knowing the global optimum in advance; it requires slightly more
NFE for functions {2, f4, f19 and f24 (i.e., in 4 out of 40 cases studied). The average
reduction in NFE by IDE is by 25%, and SR is also slightly better than SaDE. For 4,
SR for IDE is shown as 0 in Table 2; this is because local optimizer fails to find the
precise minimum due to noise. However, the final value obtained by the global search
is near the global minimum in all runs. In effect, SR of IDE can be considered as 100%
for f4 as well.

To further confirm the improved performance of IDE, Figure 3.4 shows the
convergence characteristics of IDE, SaDE, ADE and jDE on 10D benchmark
functions f1-fl14. It illustrates the convergence profile in terms of best objective
function value of the median run of each algorithm for each function. The data for
SaDE, ADE and jDE are taken from Qin et al. (2009). From Figure 3.4, it can be
concluded that IDE has faster convergence in early stages, and the convergence speed
slows down in the later generations; the former is because of TL and taboo check
which increases exploration of new regions. After terminating the global search by the
proposed stopping criterion, the local optimizer (Solver) is started to find the precise
solution. In Figure 3.4, for functions f1, {2, f3, f6, {8, f13 and {14, IDE shows the
fastest convergence over SaDE, ADE and jDE, throughout most of the search. For
function f4, SaDE shows the best convergence profile among the four algorithms
except in the initial stage where IDE is faster. For functions 7, {9, f11 and f12, ADE
shows the fastest convergence among the four algorithms, but its reliability is lower

than IDE for some of these functions.
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Figure 3.4: Convergence Profiles of IDE, SaDE, ADE and jDE for the Median Trial
on 10D Benchmark Functions f1-f14. Results for SaDE, ADE and jDE are Taken
from Qin et al. (2009).

From Figure 3.4, it is clear that the local optimizer can significantly increase
the convergence speed to the exact optimum. So, the overall convergence speed of
IDE is much faster than the other three algorithms compared. The additional line
(‘IDE (Successful Runs)’) in each plot in Figure 3.4 shows the performance of IDE in
all 30 runs for each function. It shows the number of successful runs at different NFE.
This facilitates better understanding of algorithm’s reliability to find the global

optimum.

3.4.3 Comparison of IDE with CMA-ES
3.4.3.1 Benchmark Functions and Evaluation Procedure

In order to evaluate the stopping criterion of the proposed algorithm and
compare with the state-of-the-art global optimization algorithm other than DE
variants, IDE is compared with covariance matrix adaptation evolution strategy
(CMA-ES) proposed by Hansen and Kern (2004). CMA-ES is readily available in
different programming languages. The 10 commonly used benchmark functions listed

in Omran et al. (2009) are used to evaluate and compare the optimization algorithms.
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These functions are different from Table 3.1 except Rosenbrock and Camel-back
functions, and include five unimodal and five multi-modal functions. All these
functions are considered with 30 dimensions except for Camel-back function with 2
variables. IDE uses the termination criterion based on the number of rejections. CMA-
ES refers to the  updated cmaes.m  version 3 (2008) in

http://www.lri.fr/~hansen/cmaes inMATLAB.html, with  default settings for the

termination.

3.4.3.2 Result and discussion

The results reported in Table 3.5 are SR, mean and standard deviations over 30
trials. The significantly better results are shown in bold in this table. The results in
Table 3.5 clearly show that the proposed stopping criterion can achieve 100% success
rate for all the 10 test functions. CMA-ES can achieve 100% success rate on only 5
test functions, namely, Sphere, Schwefel 2.22, Rotated hyper-ellipsoid, Griewank and
Camel-back; of these, Sphere, Schwefel 2.22 and Rotated hyper-ellipsoid are
unimodal functions whereas Griewank and Camel-back are multi-modal functions.
For the Step function, CMA-ES has only 17% success rate; it fails to find the global
optimum for Schwefel 2.26 and Rastrigin functions. It is clear that the IDE algorithm
has better reliability and that the proposed stopping criterion is very robust compared
to those in CMA-ES. On the other hand, CMA-ES has faster convergence rate
compared to IDE, but it is easily trapped at a local optimum point. It is desirable to
have higher reliability to find the global optimum since computational resources are

often readily available.
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Table 3.5 Comparison of Results by CMA-ES and IDE

CMA-ES IDE
Functions Mean (std) SR NFE Mean (std) SR  NFE
Sphere 0 (0) 100 6101 0 (0) 100 14553
Schwefel 2.22 0 (0) 100 10020 0 (0) 100 10634
Rosenbrock 0.1329(0.7279) 97 46235 000) 100 22498
Step 3.567 (2.725) 17 305 00) 100 12352
Slﬁt;;z?dhyper' 0 (0) 100 19213 0 (0) 100 80583
Schwefel 2.26 -118.359 (0) 0 6363  -12569.5(0) 100 41475
Rastrigin 18.0419 (4.2029) 0 7065 00) 100 50586
Ackley 0.031 (0.170) 97 8970 000) 100 12715
Griewank 0 (0) 100 7100 0 (0) 100 18190
Camel-back -1.0316 (0) 100 528 1.0316 (0) 100 401

3.5 Studies on the Effect of NR,,.«

The proposed stopping criterion is based on the number of trial individuals
rejected, NRy.x, which indicates the clustering of the population. Since NR is
monitoring the positions of the population instead of the objective function value, it is
expected to be more robust and independent of problem dimension and type. In order
to explore this and also find suitable value of NRy.x for the proposed IDE,
experiments were performed. Higher NRya.x will result in higher reliability but lower
efficiency, and lower NR will cause lower reliability but higher efficiency. Therefore,
a good value of NRy,.x should give high reliability as well as reasonable efficiency.
Experiments with NRy.x = 3, 5, 8, 10 and 13 were conducted on five functions;

dimensions of these are 10 and 30.

90



Chapter 3 IDE with a Novel Stopping Criterion

Table 3.6 Effect of NR,,.x on the Performance of IDE

Function with 3 5 8 10 13
D in brackets SR NFE SR NFE SR NFE SR NFE SR NFE

Sphere (10) 100 4826 100 6069 100 6572 100 6850 100 7047
Rosenbrock(10) 100 9820 100 12804 100 16162 100 20065 100 23803
Rastrigin (10) 33 15653 83 17994 100 18690 100 20149 100 21100
Ackley (10) 100 4511 100 5463 100 5840 100 6358 100 6613
Griewank(10) 90 26481 97 28825 100 31463 100 36141 100 42800
Sphere (30) 100 12650 100 13487 100 13996 100 14303 100 14713
Rosenbrock(30) 90 18079 93 20844 100 22753 100 23615 100 24373
Rastrigin (30) 40 41369 93 48852 100 50552 100 50801 100 50934
Ackley (30) 100 10937 100 11954 100 12679 100 12739 100 12953
Griewank (30) 90 16755 93 17227 100 18424 100 18915 100 19282

Total NFE 161081 183519 197131 209936 223618

The results in Table 3.6 and Figure 3.5 show that when NR.x = 3 and 5, the
reliability of the algorithm is low. When NR.x = 8, 10 and 13, the reliability is as
high as 100%, but NR,,x = 10 and 13 require more NFE (lower efficiency) compared
with NRy.x = 8. Thus, NRy.x = 8 is used and recommended as the stopping criterion
in IDE for problems with up to 30 variables. In stochastic global optimization
methods, different parameter settings will affect convergence of speed, and this in
turn can affect NRy.x value. Although NR;.x can be affected by other parameters, it
will be a robust stopping criterion if a higher NR;,,x value is used especially for

application problems where the global optimum is unknown.
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Figure 3.5: Average NFE for the Five Benchmark Functions Versus the Number of
Rejected Points (NR %)

3.6 Conclusions

The IDE algorithm integrates classic DE with parameter adaptation, tabu list, a
new stopping criterion and local optimization after global search. In IDE, where the
two control parameters (F and Cr) of DE are automatically tuned and mutation
strategies for DE are assigned suitable probability based on the previous generations.
The strong feature of TS is integrated with DE in order to prevent re-visiting the same
place, to increase the diversity of population and consequently increase the reliability
of the algorithm. A new novel stopping criterion based on the number of rejection
points is incorporated in IDE to enhance its performance, and a local optimizer is used
to efficiently refine the solution obtained by global search. The results obtained on the
benchmark functions show that IDE algorithm is superior to the recent algorithms
(DETL, SaDE and CMA-ES). In addition, the NR,,,, stopping criterion is effective in

terminating the global search at the right time to start the local search. In summary,
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the proposed IDE integrating DE, taboo check, parameter self-adaptation strategy and

the novel stopping criterion is robust, efficient and suitable for application problems.
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Chapter 4

Global Optimization of Parameter Estimation Problems*

4.1 Introduction

Parameter estimation in models plays a very important role in developing a
better mathematical model which can be used for understanding and analyzing a
physical, chemical and/or biochemical system. Parameter estimation in a
(thermodynamic) model refers to determining the values of model parameters that
best fit the model predictions to the given experimental data. Mathematically, it is
formulated as the minimization of a suitable objective function subject to constraints
arising from the model equations. For many mathematical models, the objective
function and constraints are multi-modal (non-convex). Hence, it is necessary to
estimate the model parameters by using a global optimization method because
traditional gradient-based optimization methods often provide a local solution only
(Gau et al., 2000; Bonilla-Petriciolet et al., 2010).

Many deterministic and stochastic algorithms have been proposed for finding
the global optimum, particularly in the past two decades. The former methods can
guarantee convergence to the global optimum but they usually require certain
properties such as continuity; in some cases, reformulation of the problems is needed
depending on the characteristic of the thermodynamic models. In contrast, stochastic
methods are quite simple to implement and use, and they do not require any

assumptions or transformation of the original problems (Bonilla-Petriciolet et al.,

* This chapter is based on the paper - Zhang, H. and Rangaiah, G.P., A hybrid global
optimization algorithm and its application to parameter estimation problems. Asia Pac. J.
Chem. Eng., vol. 6, pp. 379-390, 2011.
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2010). The stochastic algorithms include simulated annealing, genetic algorithms,
tabu search, differential evolution and particle swarm optimization.

Several researchers have studied the parameter estimation in vapor-liquid-
equilibrium (VLE) data modeling problems. The challenges and difficulties identified
in solving these problems are convergence to a local optimum, flat objective function,
badly scaled model functions, non-differential terms in thermodynamic equations
and/or large number of optimization variables (Gau et al., 2000 and 2002; Alvarez,
2008; Bonilla-Petriciolet et al., 2010a and 2010b). Thus, it is necessary to use a
reliable global optimization method in order to overcome these difficulties.

In the present work, IDE is evaluated on parameter estimation problems in
dynamic models in chemical engineering problems such as first-order chain reaction,
catalytic cracking of gas oil, methanol-to-hydrocarbon process and Lotka-Volterra
problems. Then, it is further applied to parameter estimation in vapor-liquid
equilibrium (VLE) data modeling using both least squares and error-in-variable
approaches; these application problems involve three different thermodynamic models:
NRTL, Wilson, and UNIQUAC. Results obtained by IDE are compared with both
deterministic (BARON) and other stochastic methods, and discussed.

The remainder of this chapter is organized as follows. Classical DE is outlined
in Section 4.2, and development and description of the IDE are presented in Section
4.3. The performance of IDE on benchmark functions is reported and discussed in
Section 4.4. The application of IDE to VLE data modeling problems and performance
comparison of IDE with other stochastic global algorithms and BARON are presented

in Section 4.5. Finally, Section 4.6 concludes this chapter.
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4.2 Solving Parameter Estimation Problems in Dynamic Systems

Many chemical engineering applications involve dynamic models. Hence,
application of global optimization techniques to estimate parameters in dynamic
systems has received greater attention in the recent past. Parameter estimation
involves fitting the model to experiment data by minimizing the objective function
such as sum of squared errors (SSE). So, parameter estimation problem in a dynamic
model is given by:

n NS

min SSE=) > (y,, =¥, (4.1)

i=l j=1

subject to the model constraints and bounds on parameters:

d(y) _ £(7,6) (4.2)
dt
6" <6<6" (4.3)

where n is the number of quantities and NS is the number of sampled data points. 0

denotes D-dimensional parameters, y, ; is the calculated value for " quantity at i

time and y; ,is the corresponding experimental data. §”and 6" are the lower and

upper bounds on the parameters. Note that the D-parameters are the decision variables
in parameter estimation problems.

The solution of the above type of optimization problems is usually very
difficult due to their highly nonlinear and complex nature. Local optimization
methods may get trapped at a local optimum depending on the degree of nonlinearity
and initial guess. Some deterministic global optimization algorithms have been
applied to parameter estimation problems (Esposito and Floudas, 2000; Papamichail
and Adjiman, 2000). Although these methods can guarantee finding the global

optimum, some difficulties in using them were stated in the literature (Angira and

96



Chapter 4 Global Optimization of Parameter Estimation Problems

Santosh, 2007). Several researchers have studied stochastic global optimization
methods for solving parameter estimation problems in dynamic models (Kapadi and
Gudi, 2004; Katare et al., 2004; Angira and Santosh, 2007; Srinivas and Rangaiah,

2007b). In this study, IDE is evaluated for parameter estimation in dynamic systems.

4.2.1 Evaluation Procedure

The application problems (i.e., differential equations and bounds on
parameters) are summarized in Table 4.1. The IDE for solving these parameter
estimation problems is implemented in MATLAB platform, and fmincon in
MATLAB’s optimization toolbox is used as the local optimizer. The reason for using
MATLAB is that Excel does not have an efficient program for solving stiff ordinary
differential equations (ODE). The ODE solver (odel5s) is used to solve stiff ODEs in
the parameter estimation problems tested. The performance of IDE is compared with
that of DETL; in order to make a fair comparison, NP used (= 30) in IDE is the same
as that in DETL (Srinivas and Rangaiah, 2007b), and the rest of the parameters are
kept same at the previous settlings. Each parameter estimation problem is solved 100
times independently as in Srinivas and Rangaiah (2007b). The performance of IDE is
compared with that of DETL based on SR, NFE and stopping criterion. The stopping
criterion used in DETL is the maximum number of iterations (SCp.x = 7D) without
improvement in the best objective function value found so far, which is also known as
an improvement-based stopping criterion. The stopping criterion in IDE is NRy.x (= 8)

as in the benchmark functions studied above.
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Table 4.1 Dynamic System Parameter Estimation Problems

Paramet Number of
No. Application Differential equations i o data points
bounds available
First —order dz, P
pl irreversible DT
chain reaction 4 0<6<10 10
th =6,z,-0,z,
First —order dz
p2 reversible _tl =-0z,+6,z,
chain reaction 0<6.,6,<10
dz
72:6121—(02 +(93)Z2+04Z3 20
t 10<6,,6,<5
dz,
—=0,7,-6,z
dt 242 U433
Catalytic dz )
p3  cracking of d_tl =—(6,+6,)z
gas oil
dz 0<6<20 20
—2= 61212 6,2,
dt
Methanol-to- dz, az
—1=—020—>2—+6,4+6,)
p4  hydrocarbon 1 3 TG
process dt G+)z+2
& _ 62,(6,z,— z,) —0.7
dt  (8,+6)z,+z, 0<6<20 16
& _ 64(10z) | 0,7,
dt  (6,+6)z,+z2,
pS Lotka- dz
Volterra 7; =0z(1-2,)
problem i 0<6<1 10
—2=0,z,(z,-1)
dt 252\%1

4.2.2 Results and Discussion

The results of solving the parameter estimation problems in dynamic models

are summarized in Table 4.2. It shows that SR of IDE for all examples tested is 100%.

The pS problem is highly non-convex and difficult to solve as shown in Esposito and

Floudas (2000). Results in Table 4.2 for this problem show that IDE algorithm has
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higher reliability compared to DETL. The reduction in NFE required for solving
problems p1 to p5 by IDE is 58%, 24%, 60%, 0.2% and -11% respectively compared
to DETL. For p5, IDE requires more NFE because of the difficult nature of the
problem; however, it achieves 100% success rate. On average, IDE requires 26%
fewer NFE compared to DETL, which shows that IDE has faster convergence and is
an efficient algorithm. Thus, the proposed stopping criterion based on NR . is able to
stop the algorithm effectively, which makes IDE more suitable for application
problems.

Table 4.2 Results for Parameter Estimation Problems

Problem DETL IDE Reduction in
No. SR NFE SR NFE NFE (%)
pl 100 1015 100 433 57
p2 100 5025 100 3824 24
p3 100 3490 100 1408 60
p4 100 6137 100 6124 0.2
pS 96 1971 100 2192 -11

Average reduction in NFE (%) by IDE compared to DETL 26

4.3 Solving Parameter Estimation Problems for VLE Modeling
4.3.1 Least Squares Approach

Consider a set of observations g;; of i = 1, 2, ..., m response variables from j =
1, 2, ..., ndat experiments, where the responses can be expressed by an explicit model

f;(r;,0) with nl independent variables r; =(n

ijsesly ;) and npar parameters

0=(6,...,0,,,) . Measurement errors in r; are neglected in LS approach. There are

different objective functions that can be used to estimate the parameter values that

provide the best fit for a model. In this study, the following objective function
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involving fractional errors is used since it tends to weigh errors in small and large

quantities equally.

2

(4.4)

ndat m U_f‘l( j’g)
Fobj:ZZ[L

=1 =1 4q;i

The decision variables in the LS approach are npar parameters 6 .
In the case of VLE data, excess Gibbs energy equation is normally used for
phase equilibrium modeling. Hence, the objective function used in Eq. (4.4) can be

modified as follows to fit the activity coefficient data:

cale 2

exp
Yii — Vi

exp

Yi.j

ndat ¢

Foy :ZZ

j=1 =l

4.5)

where ;7 is the experimental value for the activity coefficient of component i in i

cale

experiment, 7;

is the calculated value for the activity coefficient of component i in

/™ experiment, and ¢ is the number of components in the mixture. ~;® can be

calculated from VLE data as follows:

exp
exp Vi P
P __

i 0
TP

i=1...c (4.6)

where x™ and y™ are, respectively, the measured mole fraction of component i in

the liquid and vapor phases at equilibrium, P’ is the vapor pressure of pure

component i at the system temperature 7" and P is the pressure of the system. For Eq.
(4.6), it is assumed that, at low pressure, the fugacity coefficients of pure components
cancel each other and the values of Poynting corrections are very close to one.

Non-Random-Two-Liquid (NRTL), Wilson and UNIversal QUAsi-Chemical
(UNIQUAC) models have been used to evaluate v*“, and Eq. (4.5) is optimized by

changing the energy parameters (6 ) of these models. Owing to the explicit nature of

calc

the equations for v;““, global minimization of LS objective function, Eq. (4.5) can be

i
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solved as an unconstrained optimization problem. Details of the test problems used

for LS approach are summarized in Table 4.3.

Table 4.3. Details of VLE-LS Problems

No. System Data Models Variables Global optimum  Reference
Alvarez et
3 F,,=0.01026; al.. 2008
LS-1 P = 100 mm He 6, = -567.96 ¥
a 6, =745.33
""""""""""""""" , _. o iacan. Bonilla-
tert butanol  p — 700 mm H Wilsonand D =2: 6.6, F,,=0.013690 ; Petriciolet et
) €  Ideal gas e (-8500, =-
LS-2 + 1 butanol ,44:=9 6 =-733.95 al., 2007
naar= models 320000) 6, = 1318.23 N
o _ 000cgsH. Gauet
- F,; = 0.006852;
LS-3 P =00 mm He o= 71801 al.,2000
- 6 = 1264.74
Wilsonand D=2; 6,,6 F,,;=1.039134; Bonilla-
LS-4 Ideal gas €(-8500, 6, =5072.361 Petriciolet et
____________ models  320000) _ __ 6=-192162 _ al,2007
UNIQUAC D=2:6,6, Fuy=1408547;  Bomla
LS-5 Ideal gas € (-5000, 6, =-1131.84 etriciolet €
water + 1,2 P =430 mm Hg del _ al., 2007
__________ ethanediol  ndat = 18 models 20000 e=setnes
Bonilla-
NRTLand D=3 06 Fou=1233531 poycioleq et
€(-2000, 6, =-678.99
LS-6 Ideal gas al., 2007
5000); a4, 6 =3046.13;
models
€(0.01,10.0) &, =0.621375
_s50o0 F,;;=0.008935; Bollasetal,
LS-7 Z d_atsg 1? 6, = -424.08 2009
________________________________ 6=98306
B F,;;=10.014860 ; Bonilla-
LS-8 P=300mmHg D=2 6, = -432.49 Petriciolet et
benzene +  ndat =17 Wilson and
__________ hexafluoro- -------------------- Ideal gas 6,6, ¢ ¢=99285  al.2007
benzene P = 760 He models (-8500, Fop;=0.014616; Gau et al.,
LS-9 iengE 320000) 6, = -334.70 2000
_________________ I LG=70404
apo F,;;=0.011783; Bonilla-
LS-10 :d_afg) lg 6, =-467.76 Petriciolet et
- 6 = 1313.94 al., 2007

4.3.2 Error-in-variables Approach

Unlike LS approach, EIV approach considers errors in the state variables z;;

for the experiments of the system to be modeled (namely, x, y, T and P for VLE data

modeling). This results in the following objective function:
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5 4.7)

subject to

gz ;,0)=0 i=1,.,nest j=1,..,ndat (4.8)
Here, g is a vector of model functions, nest is the number of state variables, zf‘ j is the
unknown “true” value of i state variable in jth experiment and o; is the standard
deviation associated with the measurement of i state variable. The decision variables
of EIV formulation include the set of z; ; values in addition to npar parameters 6 in
the model. This leads to significant increase in the dimensionality of the optimization
problem depending on the number of experimental data. Bounds for state variables
are usually three standard deviations away from the measured values.

Assuming the experiment is conducted at low pressure, VLE problems can be

defined by the following equations:
P=3 () (49)
i=1

O 7.2 i=1,..c (4.10)

Z(v,xP)

The above equations allow the VLE problems to be solved as unconstrained
optimization problems through their substitution for P* and y/ in Eq. (4.7) to give

the following objective function for EIV optimization problem.

aday & “") O, =y (T =T7°) (P —P™)
)} 4t + + 4.11
bj 121:121: x Ui UT O'P ( )

exp

The independent variables are the set, z=(x;",7%") for all the measurements. The

decision variables for optimization are the set of z' = (x/,7") andf=(0,,....0,,,) ,
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and the total number of decision variables is npar + ¢ X ndat. Both LS and EIV
formulations involve complex, non-linear thermodynamic models, which results in
non-linear and potentially non-convex objective function with local optima. Details of

VLE-EIV problems studied are given in Table 4.4.

Table 4.4. Details of VLE-EIV Problems

No. Data Variables Global optimum  Reference
D=34 Bonilla-
6., 6, € (-10000, 200000);  F,, =19.998720  Petriciolet
P =500 mmHg ndat = 16 ; ; Uj_ et al.. 2007
EIV-1 0 50.003,0.0029, 1.7, 0083) %5 € (% —30,%; +30) 2:{3;3?;

T' €(T —30,T +30)

F,p;=42.343724 Esposito

P =300 ; mmHg ;ndat=17; D=36 and

EIV-2 0(0.003, 0.0029, 1.7, 0.083) b = -437.72 Floudas,
6, =1003.12
___________________________________________________________________________________________________ 1998 .
_ Gau and
Vs = 30 °C; ndat = 10; D=2 I;Obi B 41712'%908795 Stadtherr,
: = | = -472.
5 (0.001,0.01, 0.75,0.1) 6 =1274.32 2002
. Srinivas
Erv-4 = 40°C ndar=10; D=22 Z()bi_-41612' 15710496 and
0(0.001, 0.01, 0.75, 0.1) N 0;: 119731 Rangaiah,
________________________________________________________________________________ L T...2006
= Bonilla-
EIV-5 T=50°C; ndat = 11; D=24 I;fb; ) 42155_67761042 Petriciolet
7 (0.003, 0.0029, 1.7, 0.083) 8, = 944.57 et al., 2007
T= 60 °C; ndat = 10 D=2 Fo=19.401593  Bonilla-
EIV-6 6, =-437.05 Petriciolet
0 (0.003, 0.0029, 1.7, 0.083) 8, =1065.04 et al., 2007

Note: The system used is benzene + hexafluorobenzene, and the models are Wilson and ideal gas. The
bounds of variables used for all the EIV problems as given in EIV-1.

4.3.3. Test Examples and Evaluation Procedure

Altogether, there are 20 VLE problems, consisting of 10 LS and 10 EIV
problems respectively (Tables 4.3, 4.4 and 4.10). All these problems are multi-modal,
and their number of decision variables ranges from 2 to 60. Each VLE problem is
solved 100 times independently. A trial/run is considered successful if the best
objective function value obtained is within 1.0E-5 from the known global optimum.
Also, GSR of different algorithms is reported for the LS and EIV problems. The

performance (i.e., SR and NFE) of IDE is compared for four stopping criteria: SC-1
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(i.e., SChax = 6D) and SC-2 (i.e., SCyax = 12D) are based on the maximum number of
iterations without improvement in the best objective function value, maximum
number of rejected points (NR,,x = 20), and maximum number of iterations (G, =
1000) to find the success rate for a large number of iterations. The results of IDE are

also compared with those by other stochastic algorithms and a deterministic algorithm.

4.3.4. Results and Discussion Using Least Squares Approach
4.3.4.1 Performance of IDE with Different Stopping Criteria and Population Size

In order to show the robustness of the IDE algorithm for VLE-LS problems,
all the algorithm parameters are kept same except that the stopping criteria (SC-1 and
SC-2) are the same as those in Bonilla-Petriciolet et al.(2010c). The SR, GSR, NFE,
total NFE and CPU time (in seconds) for NR,,, and G, of the IDE algorithm with
four stopping criteria used for the ten VLE-LS problems are summarized in Table 4.5.
Recall that VBA is used in the present study because of its ready availability and used
by researchers and practitioners in diverse fields. However, based on our experience,
it is about one order of magnitude slower than the equivalent MATLAB code.

It is obvious from Table 4.5 that IDE with SC-1 has the lowest SR and uses
the least NFE. IDE with SC-2 has better SR but requires higher NFE compared to SC-
1. IDE with NR obtains very good SR although NFE is higher than that with SC-1 and
SC-2 but much lower than G,,,. This is due to the nature of the stopping criteria
where SC-1 and SC-2 will force the algorithm to stop when the best objective
function value in the population fails to improve after a certain number of iterations.
NR,,.x can overcome this difficulty since it is monitoring the convergence of the
whole population instead of the best objective function value. IDE with G, obtains

the best SR but it needs much more NFE.
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Table 4.5. NFE and SR of IDE with Four Different Stopping Criteria: SC-1, SC-2,NR .. and G, for Solving VLE-LS
problems with NP =30.

N SC-1=6D SC-2=12D NRpax = 20 G = 1000
“ "SR NFE SR NFE SR NFE CPU* SR NFE  CPU*
1 16 1044 49 2156 62 6238 19 66 30000 109
2 13 1001 44 2025 66 8656 26 69 30000 98
317 1095 44 2032 65 5618 18 68 30000 106
4 27 1197 58 2374 79 7031 16 79 30000 86
5 52 1112 58 2746 61 6165 22 62 30000 105
6 72 1843 75 3948 79 4599 20 79 30000 111
7 25 1260 43 1962 75 7271 18 75 30000 92
8§ 23 1032 58 2174 73 6667 18 74 30000 102
9 40 1071 70 1956 100 7898 20 100 30000 95
10 19 983 46 1980 75 6627 19 75 30000 91

GSR 30.4 54.5 73.5 74.7

Total NFE  1.16E+04 2.34E+04 6.68E+04 3.00E+05

*  CPU time in seconds
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In general, the higher the iteration level, the better the results are but the
additional iterations with no significant improvement in the results are waste of
computational resources. For example, for LS-4, IDE with NR,,,, can achieve 79% SR
with NFE of 7031, whereas IDE with G,,,, obtained the same SR but with NFE of
30000. Thus, it is essential for the optimization algorithm to stop at the right time
incurring least computational resources without compromising reliability of finding
the global optimum. Results in Table 5 indicate that the IDE with NR,,,, termination
criterion can stop the global search effectively. They further indicate that SR
improves with increasing number of NFE initially; but, once the algorithm is
converged, increasing NFE will not improve SR.

GSR and total NFE for all ten LS problems using 4 different stopping criteria
in IDE is reported in Table 4.5. It is clear that IDE with NR,,,, and G, can achieve
better reliability compared with IDE with SC-1 and SC-2. IDE with NR,,,, obtained
similar good GSR as by IDE with G,,,,, but IDE with NR,,, required much less total
NFE. Furthermore, G, is difficult to choose for application problems especially for
unknown problems. Very low G,,, value will increase the probability of trapping in
local optimum, and very high G, value will waste computational resources. In order
to show the implication of the trade-offs between reductions in NFE and SR between
IDE either G, or IDE with NR,,,,, CPU time for each problem is reported in Table 5.
It is clear that IDE with NR,,,, uses much less computation time compared to IDE
with G, Overall, the IDE with NR,,,, stopping criterion has better reliability and
efficiency.

Population size is another control parameter which can affect the performance
of the stochastic algorithms. The effect of population size on VLE-LS problems is

studied using the IDE with NP of 50D and different stopping criteria. Comparing
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these results shown in Table 6 with those in Table 4.5, it can be seen that both SR and
NFE are increased with NP = 50D. This is expected because, when the population size
is increased, the algorithm can search more thoroughly but requires more
computational effort.

Results for IDE with each of the four stopping criteria (Table 4.6) indicate that
the IDE with NR,,,, can stop the algorithm effectively. This observation is consistent
with the results in Table 4.5. The overall performance of IDE with each of four
different stopping criteria is shown in Table. 4.6. It is clear that IDE with NR,,,, and
Gnax can achieve better reliability compared to IDE with SC-1 and SC-2. IDE with
NR,,,, obtained good GSR similar to IDE with G, but with only one quarter NFE.
Thus, the stopping criterion (NR,,) is very efficient and robust than other stopping

criteria, and performs consistently well for higher population size as well.

Table 4.6. NFE and SR of IDE with Four Different Stopping Criteria: SC-1, SC-2,
NR,.c and G, for Solving VLE-LS problems with NP = 50D

SC-1=6D SC-2=12D NRax =20 Gax = 1000
No. SR NFE SR NFE SR NFE SR NFE
1 26 3189 51 6814 85 24921 90 100000
2 27 3091 60 6855 88 29680 95 100000
3 29 3266 51 7197 74 26729 93 100000
4 39 3361 74 7370 97 23616 97 100000
5 77 3661 76 6494 79 18957 80 100000
6 99 10260 100 21568 100 14701 100 150000
7 26 3325 68 7581 97 24896 97 100000
8 31 3297 55 7376 89 24003 94 100000
9 46 3396 87 6844 100 28007 100 100000
10 34 3112 62 6821 91 31497 93 100000
GSR 43.4 68.4 90 93.9
Total NFE 4.00E+04 8.49E+04 2.47E+05 1.05E+06
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4.3.4.2 Comparison of IDE with Other Stochastic Methods

For the ten VLE-LS problems, GSR of the IDE algorithm with SC-1, SC-2
and NR,,, is compared with that of other stochastic algorithms, namely, SA, DE,
DETL and PSO in Fig. 4; in all these algorithms, NP = 30. It is clear that the overall
reliability (GSR) of IDE for VLE-LS problems is superior to SA, DE, DETL and PSO
with SC-1 and SC-2. As expected, Fig. 4.1 shows that all the algorithms obtained
better GSR when SC-2 is used instead of SC-1 but this is at the expense of
computational effort (i.e., more NFE as can be seen in Table 5 for IDE). IDE with
NR,,., obtained the best GSR compared to other methods and stopping criteria. This

again shows that IDE with NR,,1s very reliable for solving VLE-LS problem:s.

100 7 msc-1=6D mWSC-2=12D SNRmax =20
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Figure 4.1. Global Success Rate (GSR) for SA, PSO, DE, DETL and IDE with
Different Stopping Criteria for VLE-LS Problems Using NP = 30.

In order to illustrate the robustness of the IDE algorithm, Fig. 4.2 compares its
GSR with that of SA, PSO, DE and DETL at different iteration levels without
stopping criterion. For PSO, DE, DETL and IDE, population (NP) = 50D is used. For
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SA, NS x NT = 50D is used. Note that NT is the number of iterations before the
reduction of annealing temperature and NS is the number of cycles for updating the
decision variables. At different iteration levels, local optimizer is used to find the
accurate optimum. Fig. 5 shows that IDE achieves slightly worse GSR compared to
SA and DETL at 50 generations. However, at higher iterations, IDE can give very
good GSR comparable to or better than SA, DE, DETL and PSO. Interestingly, SA

achieves the best GSR at all different iteration levels.
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Figure 4.2. Global Success Rate (GSR) for SA, PSO, DE, DETL and IDE at Different
Iteration Level for VLE-LS Problems Using NP = 50D.

4.3.4.3 Comparison of IDE with a Deterministic Method
BARON is a deterministic global optimization solver, developed by Sahinidis
and Tawarmalani (2010) and available in GAMS(Rosenthal, 2010). Purely continuous,

purely integer and mixed-integer nonlinear model types can be solved using this
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deterministic method. BARON combines constraint propagation, interval analysis and
duality approaches for problem reduction along with enhanced branch and bound
concepts. It can solve a wide range of optimization problems but it cannot solve the
problems containing trigonometric functions (Rosenthal, 2010; Sahinidis and
Tawarmalani, 2010). However, it requires the some reformulation when the
denominator on the right hand side of the equations, defining dependent variables,
contains decision variables. Note that definition of dependent variables is often
required for application problems where the objective function involves numerous,
complex terms. All the VLE-LS problems are solved using the latest version
(23.6.3/9.0.6) of GAMS/BARON. Maximum CPU time is set at 1 hour.

The comparison of IDE (with NR,,,, and NP = 30) and BARON is performed
in order to assess their relative merits for VLE-LS problems. The common
comparison of IDE (Table 4.5) and BARON (Table 4.7) based on finding the global
optimum and computational time for it, shows that BARON obtained global solution
for all ten VLE-LS problems tested. Note that the computational time is on the same
computer but IDE and BARON are on different platforms (namely, Excel and
GAMS). BARON uses less computational time for LS-2, 3, 7, 8, 9 and 10 compared
to IDE. But for LS-1, 4, 5 and 6 BARON has used more computational time.
Especially for LS-6, which has 3 variables, BARON has reached the maximum CPU
time to solve this problem. Based on the results in Table 4.5 and use of IDE in VBA
(which is an order of magnitude slower than software such as MATLAB), it can be
concluded that IDE is better than or comparable to BARON for solving VLE-LS

problems.
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Table 4.7. The Performance and Time Required by BARON for VLE-LS Problems

Problem BARON (Global CPU time (seconds)
Optimum Found) BARON

LS-1 yes 25
LS-2 yes 12
LS-3 yes 4
LS-4 yes 46
LS-5 yes 27
LS-6 yes 3600
LS-7 yes 12
LS-8 yes 13
LS-9 yes 19

LS-10 yes 5

4.3.5. Results and Discussion Using Error-in-Variables Approach
4.3.5.1 Performance of IDE with Different Stopping Criteria

Unlike LS approach, EIV approach considers errors in the measured data in all
decision variables, and hence the number of decision variables, npar + cxndat,
increases significantly. The accounting for the error in all variables leads to unbiased
estimates of parameter values, and achieves more accurate models. Furthermore, in
solving the VLE problems using EIV approach, not only parameter estimation results
are obtained but also data reconciliation is performed. Owing to increased number of
decision variables, VLE-EIV problems are more challenging than VLE-LS problem:s.
For solving VLE-EIV problems, population size of NP = 10D is used which is the
same as that by Bonilla-Petriciolet et al.(2010c), and other parameter settings are the
same as above (Section 4.3). Table 4.8 presents SR and NFE results using IDE with
each of four stopping criteria; SR of EIV problems is better than that of LS problems
in Table 4.5 with the same stopping criterion, probably due to larger population size
arising from 10D and large number of variables. As expected and as in the LS
approach, SR improves with increasing iterations for VLE-EIV problems too.
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It is clear from Table 8 that IDE with any of the 4 criteria tested can achieve
100% SR except for problems 3 and 4. NFE shows that SC-1 and SC-2 can terminate
the algorithm before reaching the maximum number of iterations except for problems
1 and 2. NR,,, can terminate the algorithm before reaching the maximum number of
iterations except for problem 1, and it uses the least NFE compared to others.
Compared to the results with LS problems in Table 4.5, it is obvious that SCp,x
stopping criteria performs differently. For LS problems, SC.x terminated the global
search very early but for EIV problems, SCy.x terminated the algorithm very late.
This is probably due to the use of objective function improvement in this stopping
criterion and characteristics of the objective function. Thus, suitable values for SC,x
are problem-dependent. The CPU time of IDE with NR,, and IDE with G,
reported in Table 4.8, shows that use of NR,,, significantly reduced the computation
time for 5 of the 6 EIV problems tested, compared to IDE with G,,,,, without affecting
reliability. Considering both GSR and total NFE for the four stopping criteria (Table
8), it is clear that NR,,, is an efficient and robust stopping criterion for VLE-EIV

problems too.
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Table 4.8. NFE and SR of IDE with Four Different Stopping Criteria (SC-1, SC-2, NR,, and G,,,,) for Solving VLE-EIV Problems

SC-1=6D SC-2=12D NRyax =20 Gax = 1000

ne- SR NFE SR NFE SR NFE CpU SR NFE CpPU
1 100 340000 100 340000 100 340000 3157 100 340000 3157
2 100 360000 100 360000 100 164524 1132 100 360000 3549
3 96 147727 98 178750 98 113559 771 98 220000 1655
4 97 146300 97 220000 97 120192 795 97 220000 1622
5 100 167760 100 193157 100 118612 915 100 240000 1842
6 100 144569 100 184278 100 106668 728 100 220000 1576

GSR 9838 99.2 99.2 99.2

Total NFE 1.31E+06 1.48E+06 9.64E+05 1.60E+06
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4.3.5.2 Comparison of IDE with Other Stochastic Methods

Of the many stochastic algorithms, SA, PSO, DE and DETL have been
evaluated for parameter estimation involved in modeling VLE data.(Bonilla-
Petriciolet et al., 2010b and 2010c) Fig. 4.3 shows GSR values for solving VLE-EIV
problems by these and IDE algorithms using NT x NS = NP = 10D. It can be seen that
IDE achieves consistently much higher GSR with SC-1, SC-2 and NR,,,, compared to
SA, PSO, DE and DETL. This is a clear indication that IDE is very reliable for

solving VLE-EIV problems.

100 -
ESC-1=6D mSC-2=12D B NRmax =20

80 -

60 -

40

20 I

0 - . T .
SA DE

DETL PSO IDE

GSR (%)

Algorithms

Figure 4.3. Global Success Rate (GSR) for solving VLE-EIV problems by SA, DE,
DETL, PSO and IDE algorithms with different stopping criteria.

4.3.5.3 Comparison of IDE with a Deterministic Method
BARON is used to solve VLE-EIV problems also, and the performance results

and CPU time required of BARON are summarized in Table 4.9. Comparing the
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performance of BARON with that of IDE in Table 4.8, reliability of BARON is low
within the maximum CPU time setting of one hour; it obtained only the local
optimum for EIV-1 and EIV-2, and terminated with the message: “No feasible
solution was found and bounds too wide — model status uncertain” for the remaining 4
problems. So, bounds on 0; and 0, are reduced by a factor of 10, and BARON was
tried again for solving all 6 VLE-EIV problems. The global solution can then be
obtained; however, CPU time was still the maximum one hour (Table 4.9). In contrast,
IDE has shown high reliability and efficiency; it obtained the global optimum with
significantly less CPU time for 5 of the 6 EIV problems (Table 4.8). The above
message indicated that BARON in GAMS platform is taking explicit equations such
as equations 14 and 15 as constraints. So, an attempt was made to substitute these
equations into the objective function, which became extremely long and prone to error.
In any case, this laborious substitution was tried for EIV-6 problem. The global

solution can then be obtained; however, CPU time was still the maximum one hour.

Table 4.9. Performance and Time Required by BARON for VLE-EIV Problems

Original Bounds (See Table 4) Reduced Bounds*
Problem  Global Optimum  CPU time Global Optimum  CPU time
Found? (seconds) Found? (seconds)
EIV-1 Local Optimum 3600 yes 3600
EIV-2 Local Optimum 3600 yes 3600
EIV-3 No Convergence 3600 yes 3600
EIV-4 No Convergence 3600 yes 3600
EIV-5 No Convergence 3600 yes 3600
EIV-6 No Convergence 3600 yes 3600

* In this case, bounds on 6; and 6, are reduced by a factor of 10 from (-10,000 to
200,000) to (-1,000 to 20,000); bounds for other variables are same as those in Table
4.4.
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4.3.5.4 Solution of LS Problems Using EIV Approach

Four LS problems from Table 4.3 (LS-1, LS-2, LS-3 and LS-9) for different
systems, are also studied using EIV approach; these are referred to as EIV-7, EIV-8,
EIV-9 and EIV-10 respectively. Details of these EIV problems are listed in Table 4.10.
These problems are in addition to problems LS-7, LS-8 and LS-10, which have been
considered via EIV approach as EIV-5, EIV-2 and EIV-3 (in Table 4.4) respectively.
As stated in Section 4.3, different objective functions are used in the two approaches
to obtain the optimal parameter values for the respective objective. By comparing the
objective function value obtained from both LS and EIV approaches, it is clear that
LS approach can achieve a better objective value. This is because EIV approach
includes many more error residuals divided by respective variance in the objective
function. However, EIV approach is more realistic for data modeling problems.

Table 4.10. Details of VLE-LS Problems Using EIV approach

No. System Data Variables Global optimum
D=20
6, 6 € (-10000, 200000);  F,;; =2.677843

tert butanol P =100 mmHg ndar =9 ;

- t = -
EIV-T 1 butanol 60003, 0.0029, 1.7,0.083) %5 € (X; —30,x; +30) 2—15;225
T' (T —30,T +30)

prv.g tertbutanol P =700 mmHg ;ndat=9 D =20 I;"bi =_7187664558547
+ 1 butanol  (0.003, 0.0029, 1.7, 0.083) 9; :1695 '77

EIV-9 tert butanol P = 500 mmHg ; ndat = 9; D =20 I;“bi =_774'28252433
+ 1 butanol  (0.003, 0.0029, 1.7, 0.083) B 9; :1498'13
benzene + P =760 mmHg ; ndat = 29; D =60 F,p=16.925014

EIV-10- hexafluoro-—— _ ) 41 0,01, 0.75, 0.1 01 = -420.67
benzene c(0.001,0.01,0.75,0.1) 6 =1060.34

Note: The models systems used are Wilson and ideal gas. The bounds of variables used for these the
EIV problems as given in EIV-7.

The performance of IDE with NR criterion for the same problem by both LS and
EIV approaches is compared in Table 4.11. These results indicate that IDE with NR
criterion is somewhat more reliable for EIV approach compared to LS approach. This
is interesting since LS approach involves significantly fewer parameters, and is
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probably due to the smaller population size used in LS problems (namely, 30
compared to 10D in EIV problems) that limits the exploration of the whole search
space (note that wide bounds of decision variables indicate larger searching space).
On the other hand, NFE required for EIV approach is 5 times more than that for LS
approach, mainly due to the larger number of variables in the former approach.

Table 4.11. Performance of IDE with NR Criterion for LS and EIV Approaches

Problem SR NFE Problem SR NFE
LS-1 85 24921 EIV-7 93 104189
LS-2 88 29680 EIV-8 96 159112
LS-3 74 26729 EIV-9 95 172600
LS-7 97 24896 EIV-5 100 118612
LS-8 89 24003 EIV-2 100 164524
LS-9 100 28007 EIV-10 100 241782

LS-10 91 31497 EIV-3 98 113559

4.4 Conclusions

The IDE algorithm developed by our group is applied to solve the parameter
estimation problems in chemical engineering. The performance of IDE indicates that
IDE is more efficient and reliable than DETL for parameter estimation problems in
dynamic models. Subsequently, IDE is applied to parameter estimation in VLE
modeling problems based on LS and EIV approaches. Compared to SA, PSO, DE and
DETL, IDE was found to be the overall best for these modeling problems. In addition,
among the stopping criteria tested, the stopping criterion based on NR,,, can switch
the global search to local search at the right time in order to achieve good reliability
and to reduce computational resources. The comparison of results shows that IDE is
comparable to or better than BARON for VLE modeling problems tested, particularly
for VLE-EIV problems with more than 20 decision variables and very wide bounds.
In summary, IDE algorithm with NR,,, stopping criterion is robust, reliable, easy to

use and suitable for solving application problems.
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Chapter 5

Evaluation of Integrated Differential Evolution for Phase

Equilibrium and Stability Problems*

5.1. Introduction

Phase equilibrium calculations (PEC) and phase stability (PS) problems are
crucial for the analysis of chemical process. Novel processes handle complex
mixtures, severe operating conditions, or even incorporate combined unit operations
(e.g. reactive distillation, extractive distillation etc.). The reliable computation of the
thermodynamic state for these systems is especially important due to the direct impact
of wrong estimations on energy consumption and operating costs. When a mixture is
analyzed, PEC involves not only the calculation of number of moles of each phase but
also the number of stable phases where PS is used to determine the stability of the
calculated composition at equilibrium. In general, number and type of phases, at
which Gibbs free energy function achieves the global minimum, are unknown in PEC
problems, and so several calculations may have to be performed using different phase
configurations to identify the stable equilibrium state. Therefore, the unknown phases
of general PEC increase the complexity of the optimization problem. Both PEC and
PS problems require the global optimization of a specific function; usually, these have
to be solved numerous times during a simulation. Specifically, PS analysis requires

the minimization of tangent plane distance function (TPDF), while the Gibbs free

* This Chapter is based on the paper - Zhang, H., Fernandez-Vargas, J.A., Rangaiah, G.P.,
Bonilla-Petriciolet, A. and Segovia-Hernandez, J.G., Evaluation of Integrated Differential
Evolution and Unified Bare-bones Particle Swarm Optimization for Phase Equilibrium and
Stability Problems. Fluid Phase Equilibrium, 310, 129-141, 2011.
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energy function needs to be minimized for PEC (Srinivas and Rangaiah, 2007a). A
reactive phase equilibrium calculation (rPEC) or chemical equilibrium, is performed
if any reaction is possible in the system under study, and the objective function must
satisfy the chemical equilibrium constraints.

In general, there are several challenges in finding the global optimum of Gibbs free
energy function. First, number and type of phases where the thermodynamic function
achieves the global optimum are usually unknown a priori. Second, high non-linearity
of thermodynamic models, non-convexity of Gibbs free energy function and the
presence of a trivial solution in the search space make PEC and PS problems difficult
to solve. Moreover, for a fixed number of phases and components, Gibbs free energy
function may have local optima that are very comparable to the global optimum value,
which makes it challenging to find the global optimum (Bonilla-Petriciolet et al.,
2011). Thus, PEC, rPEC and PS problems require a reliable, efficient and robust
global optimization algorithm. Further, application of global optimization techniques
to these problems is very challenging.

Many deterministic and stochastic optimization algorithms have been
proposed and tested for finding the global optimum in PEC, rPEC and PS problems,
particularly in the past two decades (e.g., Reynolds et al., 1997; Wasylkiewicz and
Ung, 2000; Rangaiah, 2001; Burgos-Solorzano et al., 2004; Srinivas and Rangaiah,
2007a; Rossi et al., 2009; Bonilla-Petriciolet et al., 2010a; Bonilla-Petriciolet et al.,
2011). Deterministic global optimization studies have been applied to different PEC,
PS and/or rPEC problems. Homotopy continuation methods have been applied to PEC
and PS problems (Sun and Seader, 1995; Jalali and Seader, 1999; Jalali et al., 2008).
Although homotopy-continuation algorithm guarantees global convergence to a single

solution, it does not guarantee global convergence to multiple solutions. Even using
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complex search spaces, the success of continuation methods in finding all solutions
cannot be assured. Burgos-Solorzano et al. (2004) applied interval Newton method for
solving the PEC problems under high pressure. This method can solve nonlinear
equations to find all solutions lying within the variable bounds. It requires an interval
extension of the Jacobian matrix, and involves setting up and solving the interval
Newton equation for a new interval. However, it is very hard to find all solutions and
Jacobian matrix for the complex systems, and the computational time is significant for
multi-component systems.

Recently, Rossi et al. (2011) applied convex analysis method to PEC and
rPEC problems. This method employs the CONOPT solver in GAMS (General
Algebraic Modeling System). The proposed method can solve PEC problems with
high efficiency and reliability but it requires the convexity of the model. Branch and
bound methods have been applied to many applications including PS and PEC
problems (Harding and Floudas, 2000; Cheung et al., 2002). In general, these methods
are often slow and require a significant numerical effort that grows exponentially with
problem size (Nichita et al., 2002; Wakeham and Stateva, 2004). In addition, branch
and bound methods require certain properties of the objective function, and problem
reformulation is usually needed to guarantee the global convergence. The problem
reformulation can be very difficult to perform, especially for complex thermodynamic
models such as equations of state with non-traditional mixing rules. Finally, Nichita
and co-workers applied the tunneling method to perform stability analysis of various
systems (Nichita et al., 2002; Nichita et al., 2008) and to PEC problems (Nichita et
al., 2002; Nichita et al., 2004). Their results suggest that tunneling method is a robust
and efficient tool for these applications. However, it requires feasible and improved

initial estimates for reliability and computational efficiency respectively (Nichita et
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al., 2002). For an unknown system, it is very difficult to provide a feasible and good
initial estimate for the algorithm.

In summary, the deterministic methods can guarantee convergence to the
global optimum but they usually require certain properties such as continuity, a priori
information of the system; reformulation of the problem may be needed depending on
the characteristic of the thermodynamic models, and the computational time grows
exponentially with problem size. In contrast, stochastic methods are quite simple to
implement and use. They do not require any assumptions or transformation of the
original problems, can be applied with any thermodynamic model, and yet provide a
high probabilistic convergence to the global optimum. They can often locate the
global optimum in modest computational time compared to deterministic methods
(Bonilla-Petriciolet et al., 2011).

In recent years, several stochastic global optimization techniques have been
applied to solve the PS and PEC problems in non-reactive and reactive systems
(Reynolds et al., 1997; Rangaiah, 2001; Nichita et al., 2002; Nichita et al., 2004;
Bonilla-Petriciolet et al., 2006; Srinivas and Rangaiah, 2006; Srinivas and Rangaiah,
2007a; Srinivas and Rangaiah, 2007b; Nichita et al., 2008; Bonilla-Petriciolet and
Segovia-Hernandez, 2010; Bonilla-Petriciolet et al., 2011). These algorithms include
SA, GA, TS, DE, RT and PSO. In particular, Srinivas and Rangaiah (2007a) studied
DE and TS for non-reactive mixtures, and proposed two versions of DETL, in order to
improve the performance of the optimization algorithm. Srinivas and Rangaiah (2006)
evaluated the RT on a number of medium-sized problems including vapor-liquid,
liquid-liquid and vapor-liquid-liquid equilibrium problems. RT can locate the global
optimum for most of the examples tested but its reliability is low for problems having

a local minimum comparable to the global minimum. In a recent study, Bonilla-
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Petriciolet and Segovia-Hernandez (2010) tested different versions of PSO for PS and
PEC for both reactive and non-reactive systems, and their results show that classical
PSO is a reliable method with good performance.

Systematic and comprehensive comparison of different global optimization
methods is challenging. However, some comparison of stochastic with deterministic
algorithms for phase equilibrium calculations can be found in the literature. Teh and
Rangaiah (2002 and 2003) compared GA and TS with several deterministic
algorithms such as Rachford-Rice-Mean value theorem-Wegstein’s projection method,
accelerated successive substitution method, Nelson’s method, simultaneous equation-
solving method, linearly constrained minimization method, GLOPEQ and enhanced
interval analysis method for solving phase equilibrium calculations. Their comparison
shows that some stochastic methods can be more efficient than deterministic
algorithms.

Most of the stochastic methods have some parameters to be tuned for different
problems in order to improve the convergence to the global optimum. Selection of
proper parameter values for different problems usually cost a lot of effort, and an
improper choice can result in computational inefficiency or poor reliability. In order
to overcome such difficulties, this work evaluates two global optimization algorithms
(IDE and IDE without tabu list and radius, IDE_N) that have fewer algorithm
parameters, for PEC, rPEC and PS problems involving multiple components, multiple
phases and popular thermodynamic models. The performance of IDE and IDE_N on
PEC, rPEC and PS problems are compared with recent global optimization algorithms
and discussed based on both reliability and computational efficiency using practical

stopping criteria.
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The rest of this chapter is organized as follows. Description of PEC, PS and rPEC
problems is given in Section 5.2. Implementation of IDE_N and IDE is presented in
Section 5.3. Section 5.4 presents the results and discusses the performance of IDE_N
and IDE on PEC, PS and rPEC problems. Finally, conclusions of this work are

summarized in Section 5.5.

5.2. Description of PEC, PS and rPEC Problems

A brief description of the global optimization problems including the objective
function, decision variables and constraints, for PEC, PS and rPEC problems is given

in the following sections.

5.2.1 Description of PEC Problems

A mixture of substances at a given temperature, 7, pressure, P and total molar
amount may separate into two or more phases. The composition of the different
substances is the same throughout a phase but may significantly vary in different
phases at equilibrium. If there is no reaction between the different substances, then it
is a phase equilibrium problem. There are mainly two different approaches for PEC:
equation solving approach and Gibbs free energy minimization approach. The former
involves solving a set of non-linear equations arising from mass balances and
equilibrium relationships. The latter involves the minimization of the Gibbs free
energy function. Although the first approach seems to be faster and simple, the
solution obtained may not correspond to the global minimum of Gibbs free energy
function. Moreover, it needs a priori knowledge of phases existing at equilibrium
(Rangaiah, 2001). Classic thermodynamics indicate that minimization of Gibbs free
energy is a natural approach for calculating the equilibrium state of a mixture. Hence,

this study uses Gibbs free energy minimization for PEC, which was used to determine
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phase compositions at equilibrium in several works (e.g., McDonald and Floudas,
1995; Reynolds al., 1997; Rangaiah, 2001; Teh and Rangaiah, 2003).

The mathematical formulation involves the minimization of a non-convex
objective function (Gibbs free energy) subject to mass balance equality constraints
and bounds that limit the range of variables. In a non-reactive system with ¢

components and 7 phases, the objective function for PEC is

j=1i=1 j=11

g=3 Ynn(xy)=3 Sn, h{%} (5.1)
=1 (1

where n;;, x;, % and ngU are respectively the moles, mole fraction, activity coefficient

and fugacity coefficient of component i in phase j, and ¢, is the fugacity coefficient of
pure component. Eq. (5.1) must be minimized with respect to n; taking into account

the following mass balance constraints:

inu =zn, i=L..,c (5.2)

j=1

0<n;,<zn, i=l..,c j=L..x (5.3)
where z; is the mole fraction of component i in the feed and n is the total moles in the
feed.

To perform unconstrained minimization of Gibbs energy function, we can use
new variables instead of n; as decision variables. The introduction of the new
variables eliminates the restrictions imposed by material balances, reduces problem
dimensionality and the optimization problem is transformed into an unconstrained one.
For multi-phase non-reactive systems, new variables S;e(0, 1) are defined and
employed as decision variables by using the following expressions:

ng=pPazng i=l..,c 5.4)
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j-1
1 :IBlj[ZinF - an"”j i=l..,c; j=2,..,7-1 (5.5)

m=1
=1
Mg =ZiNp — 2Ny, i=L..,c (5.6)
m=1

Using this formulation, all trial compositions satisfy the mass balances allowing the
easy application of optimization strategies. For Gibbs energy minimization, the
number of phases existing at the equilibrium is assumed to be known a priori, and the
number of decision variables f; is ¢ (- 1) for non-reactive systems.

Details of PEC problems used in this study are in Table 5.1. In most of the
reported studies, PEC problems tested are assuming that the number and type of
phases are known; such problems are also known as phase split calculations. In this
study too, the same assumption is made, and the problems tested are simply referred

to as PEC problems.

5.2.2 Description of PS Problems

Phase stability (PS) problem is used to determine the thermodynamic state that
corresponds to the global minimum of Gibbs free energy. Its results can be used to
find good starting points to improve the reliability of PEC. PS is often tested using the
tangent plane criterion, which states that a phase is stable provided that the tangent
plane generated at the corresponding composition lies below the molar Gibbs energy
surface for all compositions (Sun and Seider, 1995; Harding and Floudas, 2000). As
an alternative, Mitsos and Barton (2007) reinterpreted the Gibbs tangent plane
stability criterion via a Lagrangian duality approach, as the solution of the dual
problem of a primal problem that minimizes Gibbs free energy subject to material

balances for solving the PS problems.
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One common implementation of the tangent plane criterion (Sun and Seider,
1995; Harding and Floudas, 2000) is to minimize the tangent plane distance function
(TPDF), defined as the vertical distance between the molar Gibbs energy surface and
the tangent plane at the given phase composition. Specifically, TPDF is given by
TPDF =Y yi(ui|, - i) (5.7)
i=1

where /zi|y and 4| are the chemical potentials of component i calculated at

compositions y and z, respectively. Eq. (5.7) is the objective function, and the

constraint and bounds are
> y;=land 0<y <1 (5.8)
i=1

For stability analysis of a phase/mixture of composition z, TPDF must be globally
minimized with respect to composition of a trial phase y. If the global minimum value
of TPDF is zero, then the specified phase and others sharing the same tangent plane
would coexist at equilibrium. The decision variables in phase stability problems are y;
fori=1,2,...,c.

The constrained global optimization of TPDF can be transformed into an
unconstrained problem by using decision variables £; instead of y; as follows:

n,=Bzn, i=1,...c (5.9)

and

Y, = nl.y/Zniy i=1,...c (5.10)

where nr is the total moles in the feed mixture used for stability analysis, and n;, are

the conventional mole numbers of component i in trial phase y. The number of
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decision variables is still ¢ for the unconstrained minimization of TPDF. Thus, the

unconstrained global optimization problem for phase stability analysis is:

min TPDF (3)

0< B <li=l,..c SR

The calculation of TPDF is straightforward with almost any thermodynamic model

because:

0

H—H —In X, @,

=1In(x,) (5.12)
RT o

where R, is the universal gas constant, £ is the chemical potential of component i at
the mixture, and g’ is the chemical potential of pure component i. More details of PS

problem formulation can be found in Rangaiah (2001). Characteristics of PS problems

used in this study are summarized in Table 5.1
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Table 5.1. Details of PEC and PS Problems Studied

Global optimum for

PEC&PS
No. System Feed conditions Thermodynamic models Equilibrium  Stability
1 n-Butyl acetate  ng= (0.5, 0.5) NRTL model and parameters reported by -0.020198  -0.032466
+ water at 298K and 101.325kPa Rangaiah (2001).
2 Toluene + water ng= (0.29989, 0.20006, NRTL model and Model parameters -0.352957  -0.294540
+ aniline 0.50005) reported by McDonald and Floudas (1995).
at 298K and 101.325kPa
3 Ny+C; + G, nrg= (0.3, 0.1, 0.6) SRK EoS with classical mixing rules. -0.547791 -0.015767
at 270K and 7600kPa Model parameters reported by Bonilla-
Petriciolet et al. (2006).
4 C; + H,S ng=(0.9813, 0.0187) SRK EoS with classical mixing rules. -0.019892  -0.003932
at 190K and 4053kPa Model parameters reported by Rangaiah
(2001).
5 C+C+Cy+ ng= (0.401, 0.293, 0.199, SRK EoS with classical mixing rules. -1.183653  -0.000002
Cs + Cq 0.0707, 0.0363) Model parameters reported by Bonilla-
at 390K and 5583kPa Petriciolet et al. (2006).
6 Ci+GC+C+ ng=(0.7212, 0.09205, SRK EoS with classical mixing rules. -0.838783  -0.002688
Cs+Cs5+Cg+ 0.04455, 0.03123, 0.01273,  Model parameters reported by Harding and
Cr16+ Cr7s 0.01361, 0.07215, 0.01248)  Floudas (2000).
at 353K and 38500kPa
7 Ci+GC+C+ ng=(0.614, 0.10259, SRK EoS with classical mixing rules. -0.769772  -1.486205
1Cs +C4+1Cs+  0.04985, 0.008989, 0.02116, Model parameters reported by Rangaiah
Cs + Cg +1C15 0.00722, 0.01187, 0.01435,  (2001).
0.16998)
at 314K and 2010.288kPa
8 Ci+G+C+ nr= (0.6436, 0.0752, SRK EoS with classical mixing rules. -1.121176 -
Cs+GCs+Cg+ 0.0474, 0.0412, 0.0297, Model parameters reported by Bonilla- 0.0000205
C+Csg+Co+ 0.0138, 0.0303, 0.0371, Petriciolet et al. (2006).
Cio 0.0415, 0.0402)

at 435.35K and 19150kPa
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Table 5.2. Details of rPEC (Chemical Equilibrium) Problems Studied

rPEC System Feed conditions Thermodynamic Gl-obal
No. models optimum
1 Al+A2 < A3+A4 ng= (0.5, 0.5, 0.0, 0.0) NRTL model and ideal -1.298000
(1) Ethanol at 355K and gas. K.=18.670951
(2) Acetic acid 101.325kPa
(3) Ethyl acetate
(4) Water
2 Al1+A2 < A3, and A4 as ng= (0.3, 0.3, 0.0, 0.4) Wilson model and ideal -1.434267

an inert component

(1) Isobutene

(2) Methanol

(3) Methyl ter-butyl ether
(4) n-Butane

Al+A2 +2A3+ 2A4

(1) 2-Methyl-1-butene

(2) 2-Methyl-2-butene

(3) Methanol

(4) Tert-amyl methyl ether

Al+A2 & A3+A4
(1) Acetic acid

(2) n-Butanol

(3) Water

(4) n-Butyl acetate

Al+A2 < A3

at 373.15K and
101.325kPa

ng= (0.354, 0.183,
0.463, 0.0) at 355K
and 151.95kPa

ng=(0.3,0.4, 0.3, 0.0)
at 298.15K and

A1+A2+2A3 < 2A4 with ng= (0.1, 0.15, 0.7,

A5 as inert component

(1) 2-Methyl-1-butene

(2) 2-Methyl-2-butene

(3) Methanol

(4) Tert-amyl methyl ether
(5) n-Pen ane

Al+A2 < A3

Al+A2 — A3+A4

gas.
AG' /R = -4205.05
+10.0982T-0.2667TInT
In Keg= - AG’ /R
where T is in K

Wilson model and ideal -1.226367
gas. K.=1.057%10"

4273.5/T
€

where 1sin K

UNIQUAC model and -0.301730
ideal gas.

101.325kPa InK,=450/T +0.8
ng= (0.6, 0.4, 0.0 Margules solution -1.798377
model.
g"/R,T =
3.6X1X2+2.4X1X3+2.3X2X3
Ke=0.9825
Wilson model and ideal -0.144508
0.0, 0.05) gas.
at 335K and Keg=1.057%10* ?7T
151.9875kPa where T is in K
ng=(0.52, 0.48, 0.0) at Margules solution -1.043199
323.15K and model. Kqq=3.5
101.325kPa
ng= (0.048, 0.5, 0.452, NRTL model -1.347857
0.0) Ke=4.0
at 360K and
101.325kPa
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5.2.3 Description of rPEC or (Chemical Equilibrium) Problems

In rPEC problems, also known as chemical equilibrium problems, reactions
increase the complexity and dimensionality of phase equilibrium problems, and so
phase split calculations in reactive systems are more challenging due to non-linear
interactions among phases and reactions. The phase distribution and composition at
equilibrium of a reactive mixture are determined by the global minimization of Gibbs
free energy subject to element/mass balances and chemical equilibrium constraints
(Seider and Widagdo, 1996; Burgos-Solorzano et al., 2004). Therefore, to determine
the phase equilibrium compositions in reactive systems, it is necessary to find the
global minimum of the free energy with respect to mole numbers of components in
each of the phases subject to constraints and bounds. The expressions for Gibbs free
energy and its mathematical properties depend on the structure of the thermodynamic
equation(s) chosen to model each of the phases that may exist at equilibrium (Bonilla-
Petriciolet et al., 2011).

Recently, Bonilla-Petriciolet et al. (2011) concluded that the constrained
Gibbs free energy minimization approach has the advantage of requiring smaller
computing time compared to the unconstrained approach, is straightforward and
suitable for chemical equilibrium calculations. In summary, for a system with ¢
components and 7 phases subject to r independent chemical reactions, the constrained

objective function for rPEC is

=g- 2in K,N'n

j=1

F

obj

(5.13)

ref,j

where g is given by Eq. (5.1), InK,, is a row vector of logarithms of chemical

equilibrium constants for r independent reactions, N is an invertible, square matrix

formed from the stoichiometric coefficients of a set of reference components chosen
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from r reactions, and n,s is a column vector of moles of each of the reference
components. This objective function is defined using reaction equilibrium constants,
and it must be globally minimized subject to the following mass balance restrictions

(Rangaiah, 2001):

Z”:(n,j ~v.N7n, )=n,—vNn,, i=1, ., c—r (5.14)

j=1
where n;r 1s the initial moles of component i in the feed. These mass balance
equations can be rearranged to reduce the number of decision variables of the
optimization problem and to eliminate equality constraints, which are usually
challenging for stochastic optimization methods. Thus, Eq. (5.14) is rearranged to

reduce the number of decision variables using the following expression:

-1
Mg =Ny —VN ' (=0, )= (n;=v,N'n,; ) i=l..,c—r (5.15)

T
j=1

Using Eq. (5.15), the decision variables for rPEC are ¢ (7—1) + r mole numbers (n;).
Then, the global optimization problem can be solved by minimizing Eq. (5.13) with
respect to ¢ (7—1) + r decision variables n; and the remaining ¢ — r mole numbers (7;7)
are determined from Eq. (5.15), subject to the inequality constraints n;; > 0.

For rPEC, feasible points satisfy all the mass balance constraints, Eq. (5.14),
while infeasible points violate at least one of them (i.e., nj;< 0 wherei=1, ..., c —r).
The penalty function method is used to solve the constrained Gibbs free energy
minimization in reactive systems because it is easy to implement and is considered
efficient for handling constraints in the stochastic methods (Rangaiah, 2001). For
handling these constraints, absolute value of constraint violation is multiplied with a
high penalty weight and then added to the objective function. In case of more than one

constraint violation, all constraint violations are first multiplied with the penalty
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weight, and all of them are added to the objective function. Specifically, the penalty

function is given by

F =

r

F,;, itVn;>0 i=L...c j=1..7x,
(5.16)

o T P otherwise,

where p is the penalty term whose value is positive. So, the penalty term used for

handling infeasible solutions in rPEC is given

T unf

p=10-> |n,| (5.17)

i=1

where n;; is obtained from Eq. (5.15) and n,, is the number of infeasible mole
numbers (i.e., n;z < 0 where i = 1, ..., ¢ — r). In this study, the resulting constrained

Gibbs free energy minimization for a reactive system is solved using IDE_N and IDE

algorithms. The details of rPEC problems are shown in Table 5.2.

5.3 Implementation of the Methods

In this study, all the optimization algorithms and thermodynamic models are
coded in MATLAB. The parameters used for the algorithms are fixed for all problems
tested in order to compare the robustness of the algorithm. Further, NP = 10D for both
IDE and IDE_N, and TL = 50 and TR = 0.001D are used in IDE. Altogether, there are
24 problems consisting of 8 PEC, 8 PS and 8 rPEC problems, whose details can be
found in Tables 5.1 and 5.2. All these problems are multimodal with number of
decision variables ranging from 2 to 36. Each problem is solved 100 times
independently with a different random number seed for robust performance analysis.
The performances of stochastic algorithms are compared based on success rate (SR)
and average number of function evaluations (for both global and local searches) in the

100 runs (NFE), for two stopping criteria: SC-1 based on the maximum number of

132



Chapter 5 Evaluation of IDE for Phase Equilibrium and Stability Problems

iterations and SC-2 based on the maximum number of iterations without improvement
in the gbest objective function value (SCpx).

Note that NFE is a good indicator of computational efficiency since function
evaluation involves extensive computations in application problems. Further, it is
independent of the computer and software platform used, and so it is useful for
comparison by researchers. SR is the number of times the algorithm located the global
optimum to the specified accuracy, out of 100 runs. A run/trial is considered
successful if the gbest objective function value obtained after the local optimization is
within 1.0E-5 from the known global optimum. Also, global success rate (GSR) of
different algorithms is reported for all the problems.

At the end of each run by each stochastic algorithm, a local optimizer is used
to continue the search to find the global optimum precisely and efficiently. This is
also done at the end of different iteration levels for analysis; however, global search in
the subsequent iterations is not affected by this. Since all algorithms are implemented
in MATLAB, sequential quadratic program (SQP) is chosen as the local optimizer.
The best solution at the end of the stochastic algorithm is used as the initial guess for
SQP, which is likely to locate the global optimum if the initial guess is in the global

optimum region.

5.4. Results and Discussion
5.4.1 Performance of Algorithms on PEC problems

First, GSR values for all PEC problems by IDE and IDE_N with NP of 10D
using SC-1 are illustrated in Fig. 5.1, and compared with those of UBBPSO from
Zhang et al. (2011c). The results are collected at different iteration levels, starting

from 50 to 1500 iteration level, after local optimization at each of these iteration
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levels. As expected, GSR improves with increasing number of iterations (Fig. 5.1),
particularly at lower iteration levels. After 250 iterations, GSR does not improve
significantly; this suggests that subsequent iterations without improvement in the
results are waste of computational resources. For example, GSR of UBBPSO is 83.5%
at 50 iterations; it increases to 88% at 250 iterations and 89.6% at 1500 iterations.
GSR of IDE is 8