4,994 research outputs found

    Robust density modelling using the student's t-distribution for human action recognition

    Full text link
    The extraction of human features from videos is often inaccurate and prone to outliers. Such outliers can severely affect density modelling when the Gaussian distribution is used as the model since it is highly sensitive to outliers. The Gaussian distribution is also often used as base component of graphical models for recognising human actions in the videos (hidden Markov model and others) and the presence of outliers can significantly affect the recognition accuracy. In contrast, the Student's t-distribution is more robust to outliers and can be exploited to improve the recognition rate in the presence of abnormal data. In this paper, we present an HMM which uses mixtures of t-distributions as observation probabilities and show how experiments over two well-known datasets (Weizmann, MuHAVi) reported a remarkable improvement in classification accuracy. © 2011 IEEE

    Parameter estimation and inference for stochastic reaction-diffusion systems: application to morphogenesis in D. melanogaster

    Get PDF
    Background: Reaction-diffusion systems are frequently used in systems biology to model developmental and signalling processes. In many applications, count numbers of the diffusing molecular species are very low, leading to the need to explicitly model the inherent variability using stochastic methods. Despite their importance and frequent use, parameter estimation for both deterministic and stochastic reaction-diffusion systems is still a challenging problem. Results: We present a Bayesian inference approach to solve both the parameter and state estimation problem for stochastic reaction-diffusion systems. This allows a determination of the full posterior distribution of the parameters (expected values and uncertainty). We benchmark the method by illustrating it on a simple synthetic experiment. We then test the method on real data about the diffusion of the morphogen Bicoid in Drosophila melanogaster. The results show how the precision with which parameters can be inferred varies dramatically, indicating that the ability to infer full posterior distributions on the parameters can have important experimental design consequences. Conclusions: The results obtained demonstrate the feasibility and potential advantages of applying a Bayesian approach to parameter estimation in stochastic reaction-diffusion systems. In particular, the ability to estimate credibility intervals associated with parameter estimates can be precious for experimental design. Further work, however, will be needed to ensure the method can scale up to larger problems

    Modeling the environment with egocentric vision systems

    Get PDF
    Cada vez más sistemas autónomos, ya sean robots o sistemas de asistencia, están presentes en nuestro día a día. Este tipo de sistemas interactúan y se relacionan con su entorno y para ello necesitan un modelo de dicho entorno. En función de las tareas que deben realizar, la información o el detalle necesario del modelo varía. Desde detallados modelos 3D para sistemas de navegación autónomos, a modelos semánticos que incluyen información importante para el usuario como el tipo de área o qué objetos están presentes. La creación de estos modelos se realiza a través de las lecturas de los distintos sensores disponibles en el sistema. Actualmente, gracias a su pequeño tamaño, bajo precio y la gran información que son capaces de capturar, las cámaras son sensores incluidos en todos los sistemas autónomos. El objetivo de esta tesis es el desarrollar y estudiar nuevos métodos para la creación de modelos del entorno a distintos niveles semánticos y con distintos niveles de precisión. Dos puntos importantes caracterizan el trabajo desarrollado en esta tesis: - El uso de cámaras con punto de vista egocéntrico o en primera persona ya sea en un robot o en un sistema portado por el usuario (wearable). En este tipo de sistemas, las cámaras son solidarias al sistema móvil sobre el que van montadas. En los últimos años han aparecido muchos sistemas de visión wearables, utilizados para multitud de aplicaciones, desde ocio hasta asistencia de personas. - El uso de sistemas de visión omnidireccional, que se distinguen por su gran campo de visión, incluyendo mucha más información en cada imagen que las cámara convencionales. Sin embargo plantean nuevas dificultades debido a distorsiones y modelos de proyección más complejos. Esta tesis estudia distintos tipos de modelos del entorno: - Modelos métricos: el objetivo de estos modelos es crear representaciones detalladas del entorno en las que localizar con precisión el sistema autónomo. Ésta tesis se centra en la adaptación de estos modelos al uso de visión omnidireccional, lo que permite capturar más información en cada imagen y mejorar los resultados en la localización. - Modelos topológicos: estos modelos estructuran el entorno en nodos conectados por arcos. Esta representación tiene menos precisión que la métrica, sin embargo, presenta un nivel de abstracción mayor y puede modelar el entorno con más riqueza. %, por ejemplo incluyendo el tipo de área de cada nodo, la localización de objetos importantes o el tipo de conexión entre los distintos nodos. Esta tesis se centra en la creación de modelos topológicos con información adicional sobre el tipo de área de cada nodo y conexión (pasillo, habitación, puertas, escaleras...). - Modelos semánticos: este trabajo también contribuye en la creación de nuevos modelos semánticos, más enfocados a la creación de modelos para aplicaciones en las que el sistema interactúa o asiste a una persona. Este tipo de modelos representan el entorno a través de conceptos cercanos a los usados por las personas. En particular, esta tesis desarrolla técnicas para obtener y propagar información semántica del entorno en secuencias de imágen

    Model-based optimization of batch- and continuous crystallization processes

    Get PDF
    Crystallization is an important separation process, extensively used in most chemical industries and especially in pharmaceutical manufacturing, either as a method of production or as a method of purification or recovery of solids. Typically, crystallization can have a considerable impact on tuning the critical quality attributes (CQAs), such as crystal size and shape distribution (CSSD), purity and polymorphic form, that impact the final product quality performance indicators and inherent end-use properties, along with the downstream processability. Therefore, one of the critical targets in controlled crystallization processes, is to engineer specific properties of the final product. The purpose of this research is to develop systematic computer-aided methodologies for the design of batch and continuous mixed suspension mixed product removal (MSMPR) crystallization processes through the implementation of simulation models and optimization frameworks. By manipulating the critical process parameters (CPPs), the achievable range of CQAs and the feasible design space (FDS) can be identified. Paracetamol in water and potassium dihydrogen phosphate (KDP) in water are considered as the model chemical systems.The studied systems are modeled utilizing single and multi-dimensional population balance models (PBMs). For the batch crystallization systems, single and multi-objective optimization was carried out for the determination of optimal operating trajectories by considering mean crystal size, the distribution s standard deviation and the aspect ratio of the population of crystals, as the CQAs represented in the objective functions. For the continuous crystallization systems, the attainable region theory is employed to identify the performance of multi-stage MSMPRs for various operating conditions and configurations. Multi-objective optimization is also applied to determine a Pareto optimal attainable region with respect to multiple CQAs. By identifying the FDS of a crystallization system, the manufacturing capabilities of the process can be explored, in terms of mode of operation, CPPs, and equipment configurations, that would lead to the selection of optimum operation strategies for the manufacturing of products with desired CQAs under certain manufacturing and supply chain constraints. Nevertheless, developing reliable first principle mathematical models for crystallization processes can be very challenging due to the complexity of the underlying phenomena, inherent to population balance models (PBMs). Therefore, a novel framework for parameter estimability for guaranteed optimal model reliability is also proposed and implemented. Two estimability methods are combined and compared: the first is based on a sequential orthogonalization of the local sensitivity matrix and the second is Sobol, a variance-based global sensitivities technic. The framework provides a systematic way to assess the quality of two nominal sets of parameters: one obtained from prior knowledge and the second obtained by simultaneous identification using global optimization. A multi-dimensional population balance model that accounts for the combined effects of different crystal growth modifiers/ impurities on the crystal size and shape distribution of needle-like crystals was used to validate the methodology. A cut-off value is identified from an incremental least square optimization procedure for both estimability methods, providing the required optimal subset of model parameters. In addition, a model-based design of experiments (MBDoE) methodology approach is also reported to determine the optimal experimental conditions yielding the most informative process data. The implemented methodology showed that, although noisy aspect ratio data were used, the eight most influential and least correlated parameters could be reliably identified out of twenty-three, leading to a crystallization model with enhanced prediction capability. A systematic model-based optimization methodology for the design of crystallization processes under the presence of multiple impurities is also investigated. Supersaturation control and impurity inclusion is combined to evaluate the effect on the product's CQAs. To this end, a morphological PBM is developed for the modelling of the cooling crystallization of pure KDP in aqueous solution, as a model system, under the presence of two competitive crystal growth modifiers/ additives: aluminum sulfate and sodium hexametaphosphate. The effect of the optimal temperature control with and without the additives on the CQAs is presented via utilizing multi-objective optimization. The results indicate that the attainable size and shape attributes, can be considerably enhanced due to advanced operation flexibility. Especially it is shown that the shape of the KDP crystals can be affected even by the presence of small quantity of additives and their morphology can be modified from needle-like to spherical, which is more favourable for processing. In addition, the multi-impurity PBM model is extended by the utilization of a high-resolution finite volume (HR-FV) scheme, instead of the standard method of moments (SMOM), in order for the full reconstruction and dynamic modelling of the crystal size and shape distribution to be enabled. The implemented methodology illustrated the capabilities of utilizing high-fidelity computational models for the investigation of crystallization processes in impure media for process and product design and optimization purposes

    Focus Is All You Need: Loss Functions For Event-based Vision

    Full text link
    Event cameras are novel vision sensors that output pixel-level brightness changes ("events") instead of traditional video frames. These asynchronous sensors offer several advantages over traditional cameras, such as, high temporal resolution, very high dynamic range, and no motion blur. To unlock the potential of such sensors, motion compensation methods have been recently proposed. We present a collection and taxonomy of twenty two objective functions to analyze event alignment in motion compensation approaches (Fig. 1). We call them Focus Loss Functions since they have strong connections with functions used in traditional shape-from-focus applications. The proposed loss functions allow bringing mature computer vision tools to the realm of event cameras. We compare the accuracy and runtime performance of all loss functions on a publicly available dataset, and conclude that the variance, the gradient and the Laplacian magnitudes are among the best loss functions. The applicability of the loss functions is shown on multiple tasks: rotational motion, depth and optical flow estimation. The proposed focus loss functions allow to unlock the outstanding properties of event cameras.Comment: 29 pages, 19 figures, 4 table

    A Unifying Contrast Maximization Framework for Event Cameras, with Applications to Motion, Depth, and Optical Flow Estimation

    Full text link
    We present a unifying framework to solve several computer vision problems with event cameras: motion, depth and optical flow estimation. The main idea of our framework is to find the point trajectories on the image plane that are best aligned with the event data by maximizing an objective function: the contrast of an image of warped events. Our method implicitly handles data association between the events, and therefore, does not rely on additional appearance information about the scene. In addition to accurately recovering the motion parameters of the problem, our framework produces motion-corrected edge-like images with high dynamic range that can be used for further scene analysis. The proposed method is not only simple, but more importantly, it is, to the best of our knowledge, the first method that can be successfully applied to such a diverse set of important vision tasks with event cameras.Comment: 16 pages, 16 figures. Video: https://youtu.be/KFMZFhi-9A

    Rapid quantitative magnetization transfer imaging: utilizing the hybrid state and the generalized Bloch model

    Full text link
    Purpose: To improve spatial resolution and scan time of quantitative magnetization transfer (qMT) imaging without constraints on model parameters. Theory and Methods: We combine two recently-proposed models in a Bloch-McConnell equation: the dynamics of the free spin pool is confined to the hybrid state and the dynamics of the semi-solid spin pool is described by the generalized Bloch model. We numerically optimize the flip angles and durations of a train of radio frequency pulses to enhance the encoding of three marked qMT parameters while accounting for an 8-parameter model. We sparsely sample each time frame along this spin dynamics with a 3D radial koosh-ball trajectory, reconstruct the data with sub-space modeling, and fit the qMT model with a neural network for computational efficiency. Results: We were able to extract qMT parameter maps of the whole brain with a nominal resolution of 1mm isotropic and high SNR from a 12.6 minute scan. In lesions of multiple sclerosis subjects, we observe a decreased size of the semi-solid spin pool and slower relaxation, consistent with previous reports. Conclusion: The encoding power of the hybrid state, combined with regularized image reconstruction, and the accuracy of the generalized Bloch model provide an excellent basis for highly efficient quantitative magnetization transfer imaging
    corecore